文档库 最新最全的文档下载
当前位置:文档库 › 伯努利分布参数p的区间估计 _ 负二项分布 - 贝塔分布法

伯努利分布参数p的区间估计 _ 负二项分布 - 贝塔分布法

伯努利分布参数p的区间估计 _ 负二项分布 - 贝塔分布法
伯努利分布参数p的区间估计 _ 负二项分布 - 贝塔分布法

1 / 3

第1章 多元正态分布的参数估计

1 第一章 多元正态分布的参数估计 一、填空题 1.设X 、Y 为两个随机向量,对一切的u 、v ,有 ,则称X 与Y 相互独立。 2.多元分析处理的数据一般都属于 数据。 3.多元正态向量()' =p X X X ,,1 的协方差阵∑是 ,则X 的各分量是相互独立的随机变量。 4.一个p 元函数() p x x x f ,,,21 能作为p R 中某个随机向量的密度函数的主要条件是 和 。 5.若p 个随机变量1X ,2X , ,p X 的联合分布等于 ,则称1X , 2X , ,p X 是相互独立的。 6.多元正态分布的任何边缘分布为 。 7.若()∑,~μp N X ,A 为p s ?阶常数阵,d 为s 维常数向量,则~d AX + 。 8.多元正态向量X 的任何一个分量子集的分布称为X 的 。 9.多元样本中,不同样品的观测值之间一定是 。 10.多元正态总体均值向量和协差阵的极大似然估计量分别是 。 11.多元正态总体均值向量μ和协差阵∑的估计量X 、 S n 1 1-具有 、 和 。 12.设X 和S 分别是多元正态总体()∑,μp N 的样本均值向量和离差阵,则 ~X ,X 和S 。 13.若()()∑,~μαp N X ,n ,,2,1 =α且相互独立,则样本离差阵 ()()()()∑='--=n X X X X S 1~ααα 。 14.若()∑,~i p i n W S ,k i ,,1 =,且相互独立,则~21k S S S S +++= 。 二、判断题 1.多元分布函数()x F 是单调不减函数,而且是右连续的。 2.设X 是p 维随机向量,则X 服从多元正态分布的充要条件是:它的任何组合()p R X ∈'αα都是一元正态分布。 3.μ是一个P 维的均值向量,当A 、B 为常数矩阵时,具有如下性质: (1)E (AX )=AE (X ) (2)E (AXB )=AE (X )B 4.若P 个随机变量X 1,…X P 的联合分布等于各自边缘分布的乘积,则称X 1,… X P 是相互独立的。 5.一般情况下,对任何随机向量()'=X X X p ,,1 ,协差阵∑是对称阵,也 是正定阵。 6.多元正态向量()'=X X X p ,,1 的任意线性变换仍然服从多元正态分布。 7.多元正态分布的任何边缘分布为正态分布,反之一样。 8.多元样本中,不同样品之间的观测值一定是相互独立的。 9.多元正态总体参数均值μ的估计量X 具有无偏性、有效性和一致性。 10. S n 1是∑的无偏估计。

厦门大学《应用多元统计分析》习题第02章 多元正态分布的参数估计

思考与练习 2.1 试述多元联合分布和边缘分布之间的关系。 2.2 设随机向量12(,)X X ′=X 服从二元正态分布,写出其联合分布密度函数和1X 、2X 各自的边缘密度函数。 2.3 已知随机向量12(,)X X ′=X 的联合分布密度函数为: ()()()()()()()()() 121122 2 22,d c x a b a x c x a x c f x x b a d c ??+?????2???? = ?? 其中,。求: 12,a x b c x d ≤≤≤≤⑴ 随机变量1X 和2X 各自的边缘密度函数、均值与方差。 ⑵ 随机变量1X 和2X 的协方差和相关系数。 ⑶ 判断1X 和2X 是否相互独立。 2.4 设随机向量12(,,,)p X X X ′=X L 服从正态分布,已知其协差阵为对角阵,证明ΣX 的分量是相互独立的随机变量。 2.5 从某企业全部职工中随机抽取一个容量为6的样本,该样本中各职工的目前工资、受教育年限、初始工资和工作经验资料如下表所示: 职工编号 目前工资 (美元) 受教育年限(年) 初始工资 (美元) 工作经验(月) 1

1 2 3 4 5 6 57,000 40,200 21,450 21,900 45,000 28,350 15 16 12 8 15 8 27,000 18,750 12,000 13,200 21,000 12,000 144 36 381 190 138 26 设职工总体的以上变量服从多元正态分布,根据样本资料求出均值向量和协差阵的最大似然估计。 2.6 均值向量和协差阵的最大似然估计量具有哪些优良性质? 2.7 试证多元正态总体的样本均值向量(,)p N μΣ1 ~(, p N n X μΣ)。 2.8 试证多元正态总体的样本协差阵S 为(,)p N μΣΣ的无偏估计。 2.9 设()1x 、()2x 、…、()n x 是从多元正态总体中独立抽取的一个随机样本,试求样本协差阵的分布。 (,)p N μΣS 2.10 设()i i X n p ×是来自(),p i i N μΣ的数据阵,1,,i k =L , ⑴ 已知1k ===μμμL 且1k ===ΣΣL Σ,求μ和的估计。 Σ⑵ 已知1k ===ΣΣL Σ,求1,,k μμL 和Σ的估计。 2

随机变量及其分布考点总结

第二章 随机变量及其分布 复习 一、随机变量. 1. 随机试验的结构应该是不确定的.试验如果满足下述条件: ①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果. 它就被称为一个随机试验. 2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量. 3、分布列:设离散型随机变量ξ可能取的值为:ΛΛ,,,,21i x x x ξ取每一个值),2,1(Λ=i x 的概率p x P ==)(,则表称为随机变量ξ的概率分布,简称ξ的分布列. 121i 注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数. 典型例题: 1、随机变量ξ的分布列为(),1,2,3(1) c P k k k k ξ== =+……,则P(13)____ξ≤≤= 2、袋中装有黑球和白球共7个,从中任取两个球都是白球的概率为1 7 ,现在甲乙两人从袋中轮流摸去一 球,甲先取,乙后取,然后甲再取……,取后不放回,直到两人中有一人取到白球时终止,用ξ表示取球的次数。(1)求ξ的分布列(2)求甲取到白球的的概率 3、5封不同的信,放入三个不同的信箱,且每封信投入每个信箱的机会均等,X 表示三哥信箱中放有信件树木的最大值,求X 的分布列。 4 已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为5 . (1)请将上面的列联表补充完整; (2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由; (3)已知喜爱打篮球的10位女生中,12345,,A A A A A ,,还喜欢打羽毛球,123B B B ,,还喜欢打乒乓球,12C C ,还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求1B 和1C 不全被选中的概率. (参考公式:2 ()()()()() n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)

货币效用函数辨析

货币效用函数辨析 内容摘要:货币的边际效用递减理论源自于著名数学家Daniel Bernoulli(1738)为解决“圣彼得堡悖论”而提出的效用函数解决方案。然而,王文辉在《圣彼得堡悖论新解与不确定性估值》中证明了Bernoulli的效用函数解决方案是不成立的,因此,货币的边际效用递减是颇值得怀疑的。本文对传统效用理论进行了更深入的分析和阐述,得到了一个效用函数族,并且首次提出了“效用阈限漂移”现象。进而通过理论和实验两方面证明了货币的边际效用并非是单调递减的,而且效用函数与人们的风险偏好没有任何关系,从而纠正了微观金融经济学基础理论中长期存在的误区,为新的研究开辟了方向。 关键词:边际效用,效用函数,风险偏好,风险厌恶 1.传统效用及效用函数理论回顾 1.1贝努利与圣彼得堡悖论――最初的肇始 著名数学家丹尼尔.贝努利(Bernoulli, D. 1738)于1738年提出了货币的边际效用递减理论,其目的在于解决“圣彼得堡悖论”。“圣彼得堡悖论”来自于一种掷币游戏,即圣彼得堡游戏。设定掷币掷出正面为成功,游戏者如果第一次投掷成功,得奖金2元,游戏结束;第一次若不成功,继续投掷,第二次成功得奖金4元,游戏结束;这样,游戏者如果投掷不成功就反复继续投掷,直到成功,游戏结束。如果第n次投掷成功,得奖金2n元,游戏结束。由于各个结果之间是相互独立的,因此游戏的期望收益为所有可能结果的得奖期望值之和: 1111 ()2482 2482n n E=?+?+?++?+ 这是无数个1求和,等于无穷大。由于游戏的次数没有限制,该游戏的数学期望值是无限的。问题是人们对于参加这样一个理论上收益的数学期望无穷大的‘游戏’会支付多少费用呢?试验表明,大多数人只准备支付几元参加这一游戏。人们对参与这种游戏所愿支付的有限费用与其无穷数学期望之间的矛盾就构成了所谓的“圣彼得堡悖论”。 贝努利对于这个问题给出一种解决办法,他认为人们真正关心的是货币的效用而非它的价值量;而且额外货币增加提供的额外效用,会随着奖励的价值量的增加而减少,即后来广为流传的“货币边际效用递减律”。 贝努利将货币的效用测度函数用货币值的对数来表示,从而所有结果的效用

伯努利分布参数p的区间估计_F分布法

伯努利分布参数p 的区间估计_F 分布法 本文基于Wolfram Mathematica 9,在证明伯努利分布与二项分布的关系、 二项分布与F 分布关系的基础上,给出了伯努得分布参数p 的经典等尾置信区间和区间长度,以及最短置信区间和区间长度的求法,并通过程序实现。 定理一:n 个独立同伯努利分布B p 的和服从二项分布B n,p : CharacteristicFunction BinomialDistribution n,p ,t CharacteristicFunction BernoulliDistribution p ,t n 1 p t p n 1 p t p n 0定理二:二项分布B n,p 与F 分布F n 1,m 的分布函数分别记为F B n,p k 和F F n 1,m x ,则有F B n,p k F F 2 n k ,2 k 1 。 In[101]:=Assuming n 0&&0 p 1&&k Integers &&0 k n,CDF BinomialDistribution n,p ,k Assuming n 0&&0 p 1&&k Integers &&0 k n, CDF FRatioDistribution 2 n k ,2 k 1 ,k 1n k 1 p p FullSimplify FullSimplify ,k Integers &&0 k n &&0 p 1 Out[101]=BetaRegularized 1 p,n Floor k ,1 Floor k 0 k n 1k n 0True Out[102]= BetaRegularized 1 p, k n,1 k 1 k k n 1 p p 00True Out[103]=0 推论:由F 分布的性质知F F Α,Β p 1 F Β,Α , 从而得F B n,p k F F 2 n k ,2 k 1 1 F F 2 k 1 ,2 n k 。伯努利分布B p 参数p 的经典置信区间: 设X 1,X 2, ,X n 为伯努利分布B p 总体的一个i.i.d.n 为样本容量, k i 1n X i 为成功数,根据定理一,知k B n,p 。 参数p 的置信水平为1 Α的经典等尾置信区间的下限和上限由F B n,p k 1 1 Α Β和F B n,p k Β决定,其中0 Β Α。根据定理二及其推论,得到 F B n,p k 1

参数估计在实际问题中当所研究的总体分布类型已知但分布

第六章 参数估计 在实际问题中, 当所研究的总体分布类型已知, 但分布中含有一个或多个未知参数时, 如何根据样本来估计未知参数,这就是参数估计问题. 参数估计问题分为点估计问题与区间估计问题两类. 所谓点估计就是用某一个函数值作为总体未知参数的估计值;区间估计就是对于未知参数给出一个范围,并且在一定的可靠度下使这个范围包含未知参数. 例如, 灯泡的寿命X 是一个总体, 根据实际经验知道, X 服从),(2σμN , 但对每一批灯泡而言, 参数2,σμ是未知的,要写出具体的分布函数, 就必须确定出参数. 此类问题就属于参数估计问题. 参数估计问题的一般提法: 设有一个统计总体, 总体的分布函数为),(θx F , 其中θ为未知参数(θ可以是向量). 现从该总体中随机地抽样, 得一样本 n X X X ,,,21 , 再依据该样本对参数θ作出估计, 或估计参数θ的某已知函数).(θg 第一节 点估计问题概述 内容分布图示 ★ 引言 ★ 点估计的概念 ★ 例1 ★ 评价估计量的标准 ★ 无偏性 ★ 例2 ★ 例3 ★ 有效性 ★ 例4 ★ 例5 ★ 例6 ★ 相合性 ★ 例7 ★ 例8 ★ 内容小结 ★ 课堂练习 ★ 习题6-1 内容要点: 一、点估计的概念 设n X X X ,,,21 是取自总体X 的一个样本, n x x x ,,,21 是相应的一个样本值. θ是总体分布中的未知参数, 为估计未知参数θ, 需构造一个适当的统计量 ),,,,(?2 1 n X X X θ 然后用其观察值 ),,,(?21n x x x θ 来估计θ的值. 称),,,(?21n X X X θ为θ的估计量. 称),,,(?21n x x x θ为θ的估计值. 在不致混淆的情况下, 估计量与估计值统称为点估计,简称为估计, 并简记为θ?. 注: 估计量),,,(?21n X X X θ是一个随机变量, 是样本的函数,即是一个统计量, 对不同的样本值, θ的估计值θ?一般是不同的. 二、评价估计量的标准 从例1可见,参数点估计的概念相当宽松, 对同一参数,可用不同的方法来估计, 因而得到不同的估计量, 故有必要建立一些评价估计量好坏的标准. 估计量的评价一般有三条标准:

实验十三 二项分布的计算与中心极限定.

实验十三二项分布的计算与中心极限定 [实验目的] 1.研究用Poisson逼近与正态逼近进行二项分布近似计算的条件 2.检验中心极限定理 §1 引言 二项分布在概率论中占有很重要的地位。N次Bernoulli实验中正好出现K次成功的概 率有下式给出b k;n,p C n k p k1p n k ,k=0,1,2,……..n.二项分布的 值有现成的表可查,这种表对不同的n及p给出了b(k;n.p)的数值。在实际应用中。通常可用二项的Poisson逼近与正态逼近来进行二项分布的近似计算。在本实验中,,我们来具体地研究在什么条件下,可用Poisson逼近与正态逼近来进行二项分布的近似计算。 在概率论中,中心极限定理是一个很重要的内容,在本实验中,我们用随即模拟的方法来检验一个重要的中心极限定理——Liderberg-Levi中心极限定理。 §2 实验内容与练习 1.1二项分布的Poisson逼近 用Mathematica软件可以比较方便地求出二项分布的数值。例如n=20;p=0,1;Table[Binomial[n,k]*p^k*(1-p)(n-k),{k,0,20}]给出了b(k;20,0.1)(k=0,1,2,…..,20)的值。 联系 1 用Mathematica软件给出了b(k;20,0.1),b(k;20,0.3)与 b (k;20,0.5)(k=0,1,2,…..,20)的值。 我们可用Mathematica软件画出上述数据的散点图,下面的语句给出了b(k;20.0.1)的(连线)散点图(图13。1): LISTpOLT[table[Binomi al[20,k]*0.1^k*0.9^(20-k), {k,0,20}],PlotJoined->True] 图13.1 b(k;20,0.1) b k;n,p C n k p k1p n k (k=1,1,2,……,20)的散点图 练习2绘出b(l;20,0.3)与b(k;20,0.5)(k=0,1,2,…,20)的散点图 根据下面的定理,二项分布可用Poisson分布来进行近似计算。 定理13。1 在Bernoulli实验中,以P n 代表事件A在试验中出现的概率,它与试验总数有关. 如果np n→→λ,则当n→∞时,b k;n,p k k e 。 由定理13,1在n很大,p很小,而λ=np大小适中时,有 b k;n.p c k n p k1p n k k k e

练习一多元正态分布的参数估计(精)

练习一 多元正态分布的参数估计 1.试叙述多元联合分布和边际分布之间的关系。 2.设二维随机向量12()X X '服从二元正态分布,写出其联合分布。 3.已知随机向量1 2()X X '的联合密度函数为 12121222 2[()()()()2()()] (,)()()d c x a b a x c x a x c f x x b a d c --+-----= -- 其中1a x b ≤≤,2c x d ≤≤。求 (1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数; (3)判断1X 和2X 是否相互独立。 4.设12(,,)p X X X X '= 服从正态分布,已知其协方差矩阵∑为对角阵,证明其分量是相互独立的随机变量。 5. 影响粮食产量的因素很多, 大致可分为三个层次:第一层次是宏观因素。主要有三种,一是制度创新, 如20世纪50年代初的土地改革、60年代初的“ 三自一包”和 80年代初的联产承包责任制和现行的粮食直补及税费改革等。二是政策导向, 如收购政策及价格、市场政策结构调整、储备政策、财政投人、政府抓粮食生产的力度等。三是科技进步,如良种的培育、播种技术的改进、机械化程度的提高等等, 特别是杂交水稻的发明, 是粮食生产的一次绿色革命, 大大地提高了粮食单位面积产量。第二层次是中观因素。主要有粮食播种面积、单位面积产量、受灾面积等等, 这些因素是影响粮食产量的直接因素。第三层次是微观因素, 主要有有效灌溉面积、化肥施用量、农业机械化程度、财政三项投入等。为了分析粮食产量的影响因素及其影响程度,将用1978一2007年的统计数据进行分析。其中:Y 是粮食产量(万吨),X1是农业化肥试用量(万吨),X2是粮食播种面积(千公顷),X3是成灾面积(千公顷),X4是农业劳动力(万人),X5是农业机械总动力(万千瓦)。

几种常见的分布

一、常见数据类型 在正式的解释分布之前,我们先来看一看平时遇到的数据。数据可大致分为离散型数据和连续型数据。 离散型数据 离散型数据顾名思义就是只取几个特定的值。例如:当你掷骰子的时候,结果只有1,2,3,4,5,6,不会出现类似1.5,2.5。 连续型数据 在一个给定的范围内,连续型数据可以取任意值。这个范围可以是有限的或者是无穷的。例如:一个人的体重或者身高,可以取值54kg,54.4kg,54.33333kg等等都没有问题。 下面就开始介绍分布的类型。 二、分布类型 伯努利分布(Bernoulli Distribution) 首先从最简单的分布开始,伯努利分布实际上是一个听起来最容易理解的分布。伯努利分布一次实验有两个可能的结果,比如1代表success及0代表failure。随机变量X X一个取值为1并代表成功,成功概率为p p,一个取值为0表示失败,失败概率为q q或者说1?p1?p。 这里,概率分布函数为p x(1?p)1?x px(1?p)1?x,其中x∈(0,1)x∈(0,1),我们也可以写成如下形式: P(x)={1?p,p,x=0x=1P(x)={1?p,x=0p,x=1 成功和失败的概率没必要相同,也就是没必要都是0.5,但是这俩概率加和应该为1,比如可以是下面的图:

这个图就是p(success)=0.15,p(failure)=0.85p(success)=0.15,p(failure) =0.85。 下面说一下随机变量的期望,一个分布的期望就是这个分布的均值。服从伯努利分布的随机变量X X的期望值就是: E(X)=1?p+0?(1?p)=p E(X)=1?p+0?(1?p)=p 服从伯努利分布的随机变量的方差是: V(X)=E(X2)?[E(X)]2=p?p2=p(1?p)V(X)=E(X2)?[E(X)]2=p?p2=p(1?p) 还有许多伯努利分布的例子,比如说明天是否会下雨,今天会不会去健身,明天乒乓球比赛是不是会赢。 均匀分布(Uniform Distribution) 当你掷骰子的时候,结果出现1到6中的任何一个,而任何一个结果出现的概率都是相同的,这就是均匀分布最原始的雏形。你可能看出来了,与伯努利分布不同的是,这n n个出现的结果的概率都是相同的。 一个随机变量X X为均匀分布是指密度函数如下: f(x)=1b?a?∞

高中数学人教版 选修2-3(理科) 第二章 随机变量及其分布 2.2.3独立重复试验与二项分布D卷

高中数学人教版选修2-3(理科)第二章随机变量及其分布 2.2.3独立重复试验与 二项分布D卷 姓名:________ 班级:________ 成绩:________ 一、选择题 (共10题;共19分) 1. (2分) (2016高一下·兰州期中) 从一批羽毛球产品中任取一个,质量小于4.8g的概率是0.3,质量不小于4.85g的概率是0.32,那么质量在[4.8,4.85)g范围内的概率是() A . 0.62 B . 0.38 C . 0.7 D . 0.68 2. (2分)已知随机变量ξ服从二项分布ξ~B(n,p),且E(ξ)=7,D(ξ)=6,则p等于() A . B . C . D . 3. (2分) (2016高二下·邯郸期中) 设随机变量X~B(2,p),Y~B(4,p),若P(X≥1)= ,则P(Y≥1)为() A . B . C .

D . 1 4. (2分) (2017高二下·洛阳期末) 设随机变量X~B(2,p),随机变量Y~B(3,p),若P(X≥1)= ,则D( Y+1)=() A . 2 B . 3 C . 6 D . 7 5. (2分)设随机变量X~B(2,P),随机变量Y~B(3,P),若P(X≥1)=,则D(3Y+1)=() A . 2 B . 3 C . 6 D . 7 6. (2分)随机变量ξ服从二项分布ξ~B(n,p),且Eξ=300,Dξ=200,则p等于() A . B . 0 C . 1 D . 7. (2分)某人射击一次击中目标的概率为0.6,此人射击3次恰有两次击中目标的概率为() A . B .

C . D . 8. (2分) (2017高二下·南阳期末) 设随机变量ξ~B(2,p),随机变量η~B(3,p),若,则Eη=() A . B . C . 1 D . 9. (2分) (2018高二下·黄陵期末) 若随机变量X服从二项分布,且 ,则 =________ , =________. 10. (1分) (2018高二下·枣庄期末) 已知随机变量,且,则 ________. 二、填空题 (共2题;共6分) 11. (1分)已知随机变量X服从二项分布B(n,p),若E(X)=40,D(X)=30,则p=________ 12. (5分)(2019·天津) 设甲、乙两位同学上学期间,每天7:30之前到校的概率均为 .假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立. (Ⅰ)用表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量的分布列和数学期望; (Ⅱ)设为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件发生的概率. 三、解答题 (共2题;共20分) 13. (10分)(2019·大连模拟) 随着电子阅读的普及,传统纸质媒体遭受到了强烈的冲击.某杂志社近9

第二章 多元正态分布及参数的估计汇总

第二章多元正态分布及参数的估计 在多元统计分析中,多元正态分布占有相当重要的地位.这是因为许多实际问题涉及到的随机向量服从正态分布或近似服从正态分布;当样本量很大时,许多统计量的极限分布往往和正态分布有关;此外,对多元正态分布,理论与实践都比较成熟,已有一整套行之有效的统计推断方法.基于这些理由,我们在介绍多元统计分析的种种具体方法之前,首先介绍多元正态分布的定义、性质及多元正态分布中参 数的估计问题. 目录 §2.1 随机向量 §2.2 多元正态分布的定义与基本性质 §2.3 条件分布和独立性 §2.4 多元正态分布的参数估计 §2.1 随机向量 本课程所讨论的是多变量总体.把p个随机变量放在一起得X=(X1,X2,…,Xp)′为一个p维随机向量,如果同时对p维总体进行一次观测,得一个样品为p维数据.常把n个样品排成一个n×p矩阵,称为样本资料阵.

?? ? ? ?? ??'''= ?????? ??=)()2()1(2 1 2222111211n np n n p p X X X x x x x x x x x x X def =(X 1,X 2,…,X p ) 其中 X(i)( i =1,…,n)是来自p 维总体的一个样品. 在多元统计分析中涉及到的都是随机向量,或是多个随机向量放在一起组成的随机矩阵. 本节有关随机向量的一些概念(联合分布,边缘分布,条件分布,独立性;X 的均值向量,X 的协差阵和相关阵,X 与Y 的协差阵)要求大家自已复习. 三﹑ 均值向量和协方差阵的性质 (1) 设X ,Y 为随机向量,A ,B 为常数阵,则 E(AX )=A·E(X ), E(AXB )=A·E(X )·B D(AX)=A·D(X)·A' COV(AX,BY)=A·COV(X,Y)·B' (2) 若X,Y 相互独立,则COV(X,Y)=O;反之不成立. 若COV(X,Y)=O,我们称X 与Y 不相关.故有: 两随机向量若相互独立,则必不相关;

统计分布临界值表

附录 附表一:随机数表 _________________________________________________________________________ 2附表二:标准正态分布表 ___________________________________________________________________ 3附表三:t分布临界值表____________________________________________________________________ 4 附表四: 2 分布临界值表 __________________________________________________________________ 5 附表五:F分布临界值表(α=0.05)________________________________________________________ 7附表六:单样本K-S检验统计量表___________________________________________________________ 9附表七:符号检验界域表 __________________________________________________________________ 10附表八:游程检验临界值表 _________________________________________________________________ 11附表九:相关系数临界值表 ________________________________________________________________ 12附表十:Spearman等级相关系数临界值表 ___________________________________________________ 13附表十一:Kendall等级相关系数临界值表 ___________________________________________________ 14附表十二:控制图系数表 __________________________________________________________________ 15

各种概率分布及应用场合(建模对象)

1、高斯分布 高斯分布是最常见的分布,我现在觉得高斯分布中最难的就是,如何说服别人,你假设某个分布是高斯,是有依据的,而不是一个所谓的“经验假设”。 高斯分布的概率密度函数为: 各种各样的心理学测试分数、各种各样的无力现象、测量误差等都被发现近似地服从正态分布。尽管这些现象的根本原因经常是未知的,但是理论上可以证明如果把许多小作用加起来看做一个变量,那么这个变量服从正态分布。 由正态分布还可以到处一些常见的分布: 2、伯努利分布(又称:两点分布,0-1分布) 均值为p,方差为p(1-p). 这是为纪念瑞士科学家伯努利而命名的,猜测应该与伯努利本人没有太大关系吧,哈哈。 3、二项分布

进行独立的n次伯努利实验得到。均值为np,方差为np(1-p)。 与高斯分布的关系:当n足够大时,且p不接近于0或1,则二项分布近似为高斯分布,且n越大越近似。 4、多项分布 与二项分布对应,每次独立事件会出现3个及3个以上可能值。 二项分布和多项分布的概率值都可以经过计算多项式(x1+x2)^n 和多项式 (x1+x2+...+xm)^n的通项得到,对于二项分布,此时的x1=p,x2=1-p。 5、泊松分布 参考资料: https://www.wendangku.net/doc/258930046.html,/wiki/%E6%B3%8A%E6%9D%BE%E5%88%86%E5%B8%83 泊松分布适合于描述单位时间内随机事件发生的次数的概率分布。如某一服务设施在一定时间内受到的服务请求的次数,电话交换机接到呼叫的次数、汽车站台的候客人数、机器出现的故障数、自然灾害发生的次数、DNA序列的变异数、放射性原子核的衰变数等等。 概率质量函数为:(区分概率质量函数和概率密度函数,概率质量函数-离散,是概率值;概率密度-连续,不是概率值)

二项分布临界值表

附表1 二项分布临界值表 在p=q=下,x或n–x(不论何者为大)的临界值 n 单侧检验()双侧检验()0.050.010.050.01 55———66—6—7777—8788—98989 10910910 119101011 1210111011 1310121112 1411121213 1512131213 1612141314 1713141315 1813151415 1914151516 2015161517 2115171617 2216171718 2316181719 2417191819

2518191820 2618201920 2719202021 2819212022 2920222122 3020222123

附表2 正态分布概率表 Z F(Z)Z F(Z)Z F(Z)Z F(Z) 0.000.00000.350.27370.700.5161 1.050.7063 0.010.00800.360.28120.710.5223 1.060.7109 0.020.01600.370.28860.720.5285 1.070.7154 0.030.02390.380.29610.730.5346 1.080.7199 0.040.03190.390.30350.740.5407 1.090.7243 0.050.03990.400.31080.750.5467 1.100.7287 0.060.04780.410.31820.760.5527 1.110.7330 0.070.05580.420.32550.770.5587 1.120.7373 0.080.06380.430.33280.780.5646 1.130.7415 0.090.07170.440.34010.790.5705 1.140.7457 0.100.07970.450.34730.800.5763 1.150.7499 0.110.08760.460.35450.810.5821 1.160.7540 0.120.09550.470.36160.820.5878 1.170.7580 0.130.10340.480.36880.830.5935 1.180.7620 0.140.11130.490.37590.840.5991 1.190.7660 0.150.11920.500.38290.850.6047 1.200.7699 0.160.12710.510.38990.860.6102 1.210.7737 0.170.13500.520.39690.870.6157 1.220.7775 0.180.14280.530.40390.880.6211 1.230.7813 0.190.15070.540.41080.890.6265 1.240.7850

随机变量及其分布列.几类典型的随机分布

随机变量及其分布列.几类典型的随机分布 1. 离散型随机变量及其分布列 ⑴离散型随机变量 如果在试验中,试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化的,我们把这样的变量X 叫做一个随机变量.随机变量常用大写字母,,X Y 表示. 如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量. ⑵离散型随机变量的分布列 将离散型随机变量X 所有可能的取值i x 与该取值对应的概率i p (1,2,,)i n =列表表示: X X 的分布列. 2.几类典型的随机分布 ⑴两点分布 如果随机变量X 其中01p <<,1q p =-X 服从参数为p 的二点分布. 二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X 为任意抽取一件产品得到的结果,则X 的分布列满足二点分布. 两点分布又称01-以这种分布又称为伯努利分布. ⑵超几何分布 一般地,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件 ()n N ≤, 这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为 C C ()C m n m M N M n N P X m --==(0m l ≤≤,l 为n 和M 中较小的一个). 我们称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X 服从参

数为N ,M ,n 的超几何分布.在超几何分布中,只要知道N ,M 和n ,就可以根据公式求出X 取不同值时的概率()P X m =,从而列出X 的分布列. ⑶二项分布 1.独立重复试验 如果每次试验,只考虑有两个可能的结果A 及A ,并且事件A 发生的概率相同.在相同的条件下,重复地做n 次试验,各次试验的结果相互独立,那么一般就称它们为n 次独立重复试验.n 次独立重复试验中,事件A 恰好发生k 次的概率为 ()C (1)k k n k n n P k p p -=-(0,1,2,,)k n =. 2.二项分布 若将事件A 发生的次数设为X ,事件A 不发生的概率为1q p =-,那么在n 次独立 重复试验中,事件A 恰好发生k 次的概率是()C k k n k n P X k p q -==,其中0,1,2,,k n =.于是得到X 的分布列 由式 00111 0()C C C C n n n k k n k n n n n n n q p p q p q p q p q --+=++++ 各对应项的值,所以称这样的散型随机变量X 服从参数为n ,p 的二项分布, 记作~(,)X B n p . 二项分布的均值与方差: 若离散型随机变量X 服从参数为n 和p 的二项分布,则 ()E X np =,()D x npq =(1)q p =-. ⑷正态分布 1.概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时, 直方图上面的折线所接近的曲线.在随机变量中,如果把样本中的任一数据看作随机变量X ,则这条曲线称为 X 的概率密度曲线. 曲线位于横轴的上方,它与横轴一起所围成的面积是1,而随机变量X 落在指定的两个数a b ,之间的概率就是对应的曲边梯形的面积. 2.正态分布 ⑴定义:如果随机现象是由一些互相独立的偶然因素所引起的,而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作用,则表示这样的随机现象的随机变量的概率分布近似服从 正态分布. 服从正态分布的随机变量叫做正态随机变量,简称正态变量. 正态变量概率密度曲线的函数表达式为 22 ()2()x f x μσ--= ,x ∈R ,其中μ,σ是参数,且0σ>, μ-∞<<+∞. 式中的参数μ和σ分别为正态变量的数学期望和标准差.期望为μ、标准差为σ的正态分布通常记作2(,)N μσ. 正态变量的概率密度函数的图象叫做正态曲线.

Poisson分布的检验

P o i s s o n分布的检验文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

目录 承诺保证书……………………………………………………………………I 1 引言 (1) 研究背 景 (1) 研究方法及目 的 (1) 2 Poisson分布检验的步骤和基本理论 (2) 检验步骤 (2) 检验的基本原理 (3) 3 关于Poisson分布检验的三个案例及实际研究 (7) 案例分析 (7)

对单位时间到来顾客数的实际研究 (13) 参考文献 (18) 英文摘要 (19)

关于Poisson分布的检验 肖秋光 摘要:Poisson分布是概率论中的一种重要离散分布,在许多实际问题中都有着广泛应用.本文概括了检验样本数据是否服从泊松分布的一般方法,主要是对随机数据进行图像模拟估计和利用假设检验原理对给定的临界值进行估计.其中2χ检验是众所周知的拟合优度检验,它能适用于任意的备择假设.另外,通过三个例子进行说明,最后用该方法对实测数据进行了分析和检验,并得出了结论. 关键词:Poisson分布假设检验独立变量2χ统计量 1 引言 研究背景 改革开放三十年来随着社会的发展、经济的增长,科学技术日新月异、人民拥有的物质日益丰富、感受到的文化也更加多元、社会的各种法规制度日臻成熟,无论是住房、保险、交通、旅游、高质量产品还是教育、饮食等.其结果是构成了大量的随机数据,而这些数据有没有什么规律可循呢就需要我们对它进行研究.在现实生活中的许多数据经过人们大量的研究是服从泊松分布的.若通过观察记录得到了一组数据,它是否服从泊松分布,则需要我们对其进行检验.

Poisson分布的参数估计

Poisson 分布的参数估计 作者:高晨 指导老师:戴林送 摘要 泊松分布是概率统计学科中一种重要的离散分布,在参数估计这块,对点估计,矩估计,最大似然 估计以及近似的区间估计等,该文中对泊松分布的相关知识,包括其性质,参数的相关估计,研究了泊松分布的一些性质,参数的估计,以及一些在生活中的简单应用。 关键词 P o i s s o 分布 参数估计 性质 简单应用 1 引言 Poisson 分布是离散型随机变量X 作为大量试验中稀有事件出现的频数的概率分布的数学模型,其中X 可能取值为0,1,2,……而取各个值的概率为: {},0,1,2! k e P x k k k λ λ-== = 其中0λ>是常数,称X 服从参数为λ的泊松~(;)X P k x . 1.1相关定义 1. 离散型随机变量X 的函数分布律{},0,1,2k k P X x P k === ,若级数1k k k x p ∞ =∑绝 对收敛,称级数 1 k k k x p ∞ =∑为随机变量X 的数学期望[]E x , []E x =1k k k x p ∞ =∑. 2. 定理:Y 是随机变量X 的函数,(),(Y g x g =是连续函数),X 是离散型随机变量, 若 1 ()k k k g x p ∞ =∑绝对收敛,则 [][()]E Y E g x ==1 ()k k k g x p ∞ =∑. 3. 随机变量X ,若2{[()]}E X E X -存在,则称2{[()]}E X E X -为X 的方差,记 为()D x 或()Var x ,即 ()D x =()Var x =2{[()]}E X E X -.

概率论中几种常用的重要的分布

伯努利试验、泊松过程、独立同分布生成 的重要分布 敖登 (内蒙古大学数学科学学院2010级数理基地,01008104) 摘要 本文是一篇读书报告。主要研究了伯努利试验与二项分布的关系,泊松过程生成泊松分布的过程和在泊松条件下的埃尔朗分布,正态分布的生成用到的独立同分布以及均匀分布生成任意分布的重要性质。 关键词:伯努利试验泊松分布独立同分布均匀分布的生成性

Important in theory of probability distribution of exploration Author:Ao Deng Tutor: Luo Cheng (School of Mathematical sciences ,Huhhot Inner Mongolia 01008104 ) Abstract This article mainly discusses the theory of several common distribution (0-1) distribution, binomial distribution, poisson distribution and uniform distribution, exponential distribution, normal distribution and normal distribution out three kinds of important distribution, distribution, distribution and the distribution of the source and the relationship among them and their application in actual. Key words: random variable; The discrete distribution ;Continuous distribution

伯努利试验的推广及应用

伯努利试验的推广及应用 摘要伯努利(Bernoulli)试验作为一类典型的概率模型,可以引申拓展得到多种广泛应用的概率分布模型.文章介绍了由伯努利概型拓展推广得到的两点分布,二项分布,几何分布,多项分布以及帕斯卡分布等重要分布,并介绍了这些重要分布在生产实际中的简单应用. 关键字伯努利试验;两点分布;二项分布;几何分布;多项分布;帕斯卡分布;应用 伯努利(Bernoulli)试验作为史上最早被研究的概率模型之一,它从本质上反映一类试验:具有“二值”属性的随机试验.伯努利试验的应用十分广泛,在企业产品的质量控制管理与检测,金融行业的风险预测与控制,以及生物学上的群体遗传等方面都具有尤为突出的理论地位. 若在一次随机试验中,试验的结果只有两种“成功”或者“失败”,为方便描述记为基本事件和,且,则随机试验称为伯努利试验. 1伯努利试验推广的概率分布 重伯努利试验:伯努利试验在相同条件下独立重复地进行次,即进行随机试验其中试验代表一次伯努利试验,而且任意两次试验的结果相互之间不干扰,在每次子试验中事件发生的概率不变为,则试验称为重伯努利试验. 推广的伯努利试验:在一次随机试验中,试验有种不同的两两互斥的结果,试验结果为的概率为且,则称随机试验为推广的伯努利试验. 广义重伯努利试验:随机试验需要进行次重复的伯努利试验,即随机试验,其中试验指一次伯努利试验,试验的结果由基本事件和组成,在第次伯努利试验中事件发生的概率为不发生的概率为,且,当事件发生的概率与试验序数有关时,则称随机试验为广义重伯努利试验. 由伯努利试验、重伯努利试验以及推广的伯努利试验和广义重伯努利试验不难拓展推广得到以下的概率分布. 1.1两点分布 两点分布是从一次伯努利试验中提炼出来的简单离散型概率分布。为方便随机事件发生概率的描述,在一次伯努利试验中引入随机变量,伯努利试验的结果由和组成,定义随机变量:且.只进行一次伯努利试验的随机试验满足的分布称为两点分布,即,其中.两点分布又称为伯努利分布和分布. 1.2二项分布

相关文档
相关文档 最新文档