文档库 最新最全的文档下载
当前位置:文档库 › 帧中继

帧中继

帧中继
帧中继

帧中继

科技名词定义

中文名称:帧中继

英文名称:frame relay

定义:一种用于统计复用分组交换数据通信的接口协议,分组长度可变,传输速度为

2.408Mb/s或更高,没有流量控制也没有纠错。

应用学科:通信科技(一级学科);交换选路(二级学科)

本内容由全国科学技术名词审定委员会审定公布

帧中继( Frame Relay)是一种用于连接计算机系统的面向分组的通信方法。它主要用在公共或专用网上的局域网互联以及广域网连接。大多数公共电信局都提供帧中继服务,把它作为建立高性能的虚拟广域连接的一种途径。帧中继是进入带宽范围从56Kbps到1.544Mbps的广域分组交换网的用户接口。

目录

产生

链接方法

大多数主要的电信公司像AT&T,MCI,US Sprint,和地方贝尔运营公司都提供了帧中继服务。与帧中继网相连,需要一个路由器和一条从用户场地到交换局帧中继入口的线路。这种线路一般是象T1那样的租用数字线路,但取决于通信量而定。两种可能的广域连接方法,如下面所述:□专用网方法在这种方法中,每个场点将需要三条专用(租用)线路和相联的路由器,以便与其它每一

帧中继

个场点相连,这样总共需要6条专线和12个路由器。

□帧中继方法在这种公共网方法中,每个场点仅需要一条专用(租用)线路和相联的路由器直至帧中继网。这时,在其它网间的交换是在帧中继网内处理的。来自多个用户的分组被多路复用到一条连到帧中继网上的线路,通过帧中继网它们被送到一个或多个目的站。

永久虚电路(PVC)是通过帧中继网连接两个端节点的预先确定的通路。帧中继服务的提供者根据客户的要求,在两个指定的节点间分配PVC。这些信道保持连续不间断地运行,并且保证提供一种客户洽商好了的指定级别的服务。交换式虚电路在1993年后期被加到帧中继标准:这样,帧中继就成为了真正的“快速分组”交换网。

Improved Packet Switching 改善的分组交换

在过去的几年里,交换局在美国国内和国际网上已经安装了大量的光纤电缆,这样可以增加带宽。为了充分利用高带宽的优点,新的通信方案去掉原有方案中固有的常规开销,变得更为切实可用。帧中继通过取消网络自身进行流控和错误处理做到这一点的,避免了因网络自身做这些事情而导致的延迟。比较而言,老的x.25网技术实行扩展检错是由于使用不可靠的电话线传输数据。

在帧中继中消除这个特性不会出现问题,即使是发生了错误。帧中继设想端节点设备是可编程的智能机器,它们能进行错误处理。端系统不会由于这种错误控制而超负荷,因为通常很少有错误。相对而言,X.25设想网络需要检错纠错是因为端节点是连到主机的终端。

在帧中继中,中间节点(交换器)仅仅沿着预定的通路中继帧。在X.25中,中间节点必须完整地接收每一个分组,并在转发之前进行检错,如果

有错误发生,节点要求发送方重传。使用这种方法,一旦分组丢失,发送方就尽快地重发一个分组。在X.25中每个中间节点使用状态表来处理管理、流控和检错,而在帧中继中是不需要的。

如果一个分组由于帧中继网的拥塞而被破坏或丢失,检测帧丢失和请求重发是接收系统的工作。帧中继网把自己的所有精力都用来传递分组。在子网中的交换节点不会执行任何纠错,尽管它们能检测出被损坏的分组,一旦检测出,分组就会被丢弃了。

Setting Up Frame Re1ay Connections建立帧中继连接

为了建立帧中继连接,你需要与和US sprint,MCI,AT&T或本地的地方贝尔运营公司等电信公司联系,通常要象下面那样进行通信速度的选择,以及专用线通信或交换式通信的选择。

□由Switched-56服务或综合业务数字网(ISDN)提供56/64Kbps交换式访问;高级数字网(ADN)提

帧中继

供专用线访问。

□两条ISDN线路或两条ADN线路提供128Kbps的访问。

□通过T1线路或部分T1线路可使用384Kbps到1.544Mbps的连接。

一旦你选定了一种服务,你就要计划一条从你的场地到帧中继服务提供者的链结。在你的场地放置路由器和帧中继访问设备以建立到提供者的帧中继端口的联接,如图F-11所示。

帧中继端口一般用PVC连接。PVC是逻辑链路,它具有特定的端接点和服务特性。它们在网状拓扑结构上提供逻辑连接,且在使用前为交换局提供一种确定服务特性和速率的方法。它们也在端接点之间提供快速连接。在得到提供者的服务时,你可以为PVC规定一些服务特性,下面列举了一些服务特性。

□访问速率这是线路的速度,它决定在网上的数据传输的速度。在美国,一般访问速率是1.544Mbps(T1)和56Kbps。

□承诺的信息速率(CIR)CIR是帧中继电路上最高的平均数据传输率。它通常比传输速率慢;当传输突发数据时,传输速度可以超过CIR。

□承诺的成组数据大小(CBS) CBS是网络提供者在一定的时间间隔内和正常的网络条件下所允许传输的最大数据量(位数)。

□额外的成组数据大小(EBS)EBS是超过CBS的最大非提交数据量,CBS数据是网络将在一定的时间间隔内发送出去的数据。EBS数据是被网络看作可以丢弃的数据。

帧中继

下面将列举另外一些由帧中继网提供的特性。

网络服务下面的管理特性和服务在帧中继网中可以采用:

□虚电路状态消息远程服务在网络和用户之间提供通信。它确保PVC 的存在和报告被删除的PVC。

□广播这种可选服务使一个用户能把帧发给多个目的站。

□全局寻址这种可选服务使帧中继网具有象局域网一样的能力。

□简单流控这种可选服务为那些需要流控的设备提供XON/XOFF流控机制。

拥塞控制当帧中继网拥塞时,帧可以适宜地丢弃(端节点负责重发它们),或根据用户指定的级别丢弃。例如,用户可以指明一些对事务运作不是很关键的通信帧是可以丢弃的(DE)。路由器或帧中继交换器可以用DE来标识帧,DE的使用提供了一个方法,确保重要的信息通过网络传送,而不重要的信息可以在网络不太忙时重传。

安全性帧中继中有几个安全性选项:

□仅用专用线路才能访问网。

□需要口令访问网。

□不活动的站点超过一定时间就被注销。

Frame Relay Specifications 帧中继规范

在公共分组交换网上,一个帧中继网可以连接两个局域网(LAN)。这个过程非常简单——来自LAN的帧被放到帧中继的帧中,且通过网络的底层(帧中继的网状连结)送到目的地。统计式多路实用技术把来自客户站点多个源的数据有效地交替放在一条单一线路上传到帧中继网。帧中继是高级数据链路控制规程(HDLC)的改进,所以它能用于一些桥接器和路由器的升级。帧中继由于它的变长帧格式而不适合声音和视频通信。

帧的结构

图F-12显示了帧中继分组的帧结构。帧两末端的标志域用特殊的位序列定界帧。开始标志域后面是帧中

帧中继

继头部,它包含地址和拥塞控制信息。在它后面的是信息(载体)和帧检验序列(FCS)。在接受方,帧将重新计算,得到一个新的FCS值并与FCS 域的值比较,FCS域的值是由发送方计算并填写的。如果它们不匹配,分组就被丢弃,而端站必须解决分组丢失的问题。这种简单的检错就是帧中继交换器所做的全部工作。

帧中继头部包含下列信息:

口数据链路连接标识符(DLCI)这个信息包含标识号,它标识多路复用到通道的逻辑连结。

□可以丢弃(DE)这个信息为帧设置了一个种级别指示,指示当拥塞发生时一个帧能否被丢弃。

□前行显示拥塞通告(FECN)这个信息告诉路由器接收的帧在所经通路上发生过拥塞。

□倒行显示拥塞通告(BECN)这个信息设置在遇到拥塞的帧上,而这些帧将沿着与拥塞帧相反的方向发送。这个信息用于帮助高层协议在提供流控时采取适当的操作。

Frame Relay Providers帧中继的提供者

大多数交换局现在都提供帧中继服务,例如象Compuserve这样的公共数字网(PDA)提供者就是这样。

帧中继

每个交换局有特殊的地点号,称为存在点(points-of-presence)。通过这个存在点用户能够链接到网上,通过本地交换电信局(LEC)或其它的提供者,客户能够访问存在点。下面列举了一些服务:

□BT North America Inc.′s global Expresslane(800/872-7654)。

□CompuServe Frame-Net Service(800/433-0389)。

□MCI Hyperstream Frame Relay(800/933-9029)。

□US Sprin'ts Frame Relay service(800/8877-2000)。

□Williams Telecommunications Groups Wilpak(918/588-3210)。

Frame Relay Forum 帧中继论坛

FRF总部在加利福尼亚州Mountain view(415/962-2579),是帧中继用户、供应商和服务提供者的联合会。这个组织是由那些为发展帧中继标准建立实现协议的委员会组成。协议是根据团体中的成员或其它人提供的信息和建议建立的。FRF有关于帧中继的技术资料和市场信息。

帧中继网络的发展

帧中继标准已渐成熟,业务需求不断增加,目前已进入高速发展时期。帧中继可通过X.25更新软件实现,可在DDN网上配置端口实现,在以ATM 为主干的网络中,帧中继仍然可以作为良好的用户接入方式。

目前大多数业务都集中在2Mbps之内,是FR业务的最经济有效的范畴,未来的FR业务将有很大的市场发展潜力,有较好的投资保护。

帧中继与X.25协议的主要差别

帧中继是继X.25后发展起来的数据通信方式。从原理上看,帧中继与X.25都同属于分组交换。与X.25协

帧中继

议的主要差别有:

(1)帧中继带宽较宽。

(2)帧中继的层次结构中只有物理层和链路层,舍去了X.25的分组层。

(3)帧中继采用D通道链路接入规程LAPD。X.25采用HDLC的平衡链路接入规程LAPB。

(4)帧中继可以不用网络层而只使用链路层来实现复用和转接。

(5)与X.25相比,帧中继在操作处理上做了大量的简化。不需要考虑传输差错问题,其中间节点只做帧的转发操作,不需要执行接收确认和请求重发等操作,差错控制和流量均交由高层端系统完成,大大缩短了节点的时延,提高了网内数据的传输速率。

帧中继配置主要命令

帧中继技术特点:

复用与寻址

帧中继在数据链路层采用统计复用方式,采用虚电路机制为每一个帧提供地址信息。通过不同编号的DLCI

帧中继

(DataLineConnection Identifier数据链路连接识别符)建立逻辑电路。一般来讲,同一条物理链路层可以承载多条逻辑虚电路,而且网络可以根据实际流量动态调配虚电路的可用带宽,帧中继的每一个帧沿着各自的虚电路在网络内传送。

带宽控制技术

帧中继的带宽控制技术既是帧中继技术的特点,更是帧中继技术的优点。帧中继的带宽控制通过CIR(承诺的信息速率)、Bc(承诺的突发大小)和Be(超过的突发大小)3个参数设定完成。Tc(承诺时间间隔)和EIR (超过的信息速率)与此3个参数的关系是:Tc=Bc/CIR;EIR=Be/Tc。在传统的数据通信业务中,用户申请了一条64K的电路,那么他只能以

64kbit/s的速率来传送数据;而在帧中继技术中,用户向帧中继业务运营商申请的是承诺的信息速率(CIR),而实际使用过程中用户可以以高于CIR 的速率发送数据,却不必承担额外的费用。举例来说,某用户申请了CIR 为64kbit/s的帧中继电路,并且与电信运营商签定了另外两个指标,Bc(承诺突发量)、Be(超过的突发量),当用户以等于或低于64kbit/s的速率发送数据时,网络将确保此速率传送,当用户以大于64kbit/s的速率发送数据时,只要网络不拥塞,且用户在承诺时间间隔(Tc)内发送的突发量小于Bc+Be时,网络还会传送,当突发量大于Bc+Be时,网络将丢弃帧。所以帧中继用户虽然支付了64kbit/s的信息速率费(收费依CIR来定),却可以传送高于64kbit/s的数据,这是帧中继吸引用户的主要原因之一。随着帧中继技术、信元中继和ATM技术的发展,帧中继交换机的内部结构也在逐步改变,业务性能进一步完善,并向ATM过渡。目前市场上的帧中继交换产品大致有三类:a)改装型X25分组交换机。b)以全新的帧中继结构设计为基础的新型交换机。c)采用信元中继、ATM技术、支持帧中继接口的ATM交换机。a)型交换机在帧中继发展初期比较普遍。主要是通过

帧中继

络的吞吐量;帧中继是一种宽带分组交换,使用复用技术时,其传输速率可高达44.6Mbps。但是,帧中继不适合于传输诸如话音、电视等实时信息,它仅限于传输数据。帧中继是一个接口规范,它定义了信息如何封装,然后如何通过网络传送到目的地。因此它并不对应于某种特定的设备。帧中继接口可以在多种设备上实现。如图9-9所示,帧中继接口在DTE上,这里DTE通常是一台路由器,也可能是帧中继接入设备(FRAD),用于语音业务(VoFR)的接入。它也可以是带有帧中继接口的T1或E1复用器。对于帧中继特别有价值的一点在于,它并不需要投入很多资金,通过对现有设备进行升级就可以实现,因此非常经济。目前,帧中继接口主要是在路由器上实现。帧中继接口接收本地数据流,而不管它们用的是什么协议(例如,可以是TCP/IP、SDLC或X.25),然后将数据封装进帧中继数据包中。帧中继使用交换机可以支持的D信道链路接入协议(LAPD)来封装本地数据。帧中继是一种用于连接计算机系统的面向分组的通信方法。它主要用在公共或专用网上的局域网互联以及广

帧中继

域网连接。大多数公共电信局都提供帧中继服务,把它作为建立高性能的虚拟广域连接的一种途径。帧中继是进入带宽范围从56Kbps到1.544Mbps 的广域分组交换网的用户接口。帧中继是从综合业务数字网中发展起来的,并在1984年推荐为国际电话电报咨询委员会(CCITT)的一项标准,另外,由美国国家标准协会授权的美国TIS标准委员会也对帧中继做了一些初步工作。

大多数主要的电信公司象AT&T,MCI,USSprint,和地方贝尔运营公司都提供了帧中继服务。与帧中继网相连,需要一个路由器和一条从用户场地到交换局帧中继入口的线路。这种线路一般是象T1那样的租用数字线路,但取决于通信量而定。两种可能的广域连接方法,如下面所述:专用网方法在这种方法中,每个场点将需要三条专用(租用)线路和相联的路由器,以便与其它每一个场点相连,这样总共需要6条专线和12个路由器。帧中继方法在这种公共网方法中,每个场点仅需要一条专用(租用)线路和相联的路由器直至帧中继网。这时,在其它网间的交换是在帧中继网内处理的。来自多个用户的分组被多路复用到一条连到帧中继网上的线路,通过帧中继网它们被送到一个或多个目的站。永久虚电路(PVC)是通过帧中继网连接两个端节点的预先确定的通路。帧中继服务的提供者根据客户的要

求,在两个指定的节点间分配PVC。这些信道保持连续不间断地运行,并且保证提供一种客户洽商好了的指定级别的服务。交换式虚电路在1993年后期被加到帧中继标准:这样,帧中继就成为了真正的“快速分组”交换网。

改善的分组交换:在过去的几年里,交换局在美国国内和国际网上已经安装了大量的光纤电缆,这样可以增

帧中继

加带宽。为了充分利用高带宽的优点,新的通信方案去掉原有方案中固有的常规开销,变得更为切实可用。帧中继通过取消网络自身进行流控和错误处理做到这一点的,避免了因网络自身做这些事情而导致的延迟。比较而言,老的x.25网技术实行扩展检错是由于使用不可靠的电话线传输数据。在帧中继中消除这个特性不会出现问题,即使是发生了错误。帧中继设想端节点设备是可编程的智能机器,它们能进行错误处理。端系统不会由于这种错误控制而超负荷,因为通常很少有错误。相对而言,X.25设想网络需要检错纠错是因为端节点是连到主机的终端。

在帧中继中,中间节点(交换器)仅仅沿着预定的通路中继帧。在X.25中,中间节点必须完整地接收每一个分组,并在转发之前进行检错,如果有错误发生,节点要求发送方重传。使用这种方法,一旦分组丢失,发送方就尽快地重发一个分组。在X.25中每个中间节点使用状态表来处理管理、流控和检错,而在帧中继中是不需要的。

如果一个分组由于帧中继网的拥塞而被破坏或丢失,检测帧丢失和请求重发是接收系统的工作。帧中继网把

帧中继

自己的所有精力都用来传递分组。在子网中的交换节点不会执行任何纠错,尽管它们能检测出被损坏的分组,一旦检测出,分组就会被丢弃了。建帧中继连接:为了建立帧中继连接,你需要与和USsprint,MCI,AT&T或本地的地方贝尔运营公司等电信公司联系,通常要象下面那样进行通信速度

的选择,以及专用线通信或交换式通信的选择。由Switched-56服务或综合业务数字网(ISDN)提供56/64Kbps交换式访问;高级数字网(ADN)提供专用线访问。两条ISDN线路或两条ADN线路提供128Kbps的访问。通过T1线路或部分T1线路可使用384Kbps到1.544Mpbs的连接。一旦你选定了一种服务,你就要计划一条从你的场地到帧中继服务提供者的链结。在你的场地放置路由器和帧中继访问设备以建立到提供者的帧中继端口的联接。

帧中继端口一般用PVC连接。PVC是逻辑链路,它具有特定的端接点和服务特性。它们在网状拓扑结构上提供逻辑连接,且在使用前为交换局提供一种确定服务特性和速率的方法。它们也在端接点之间提供快速连接。在得到提供者的服务时,可以为PVC规定一些服务特性,下面列举了一些服务特性。访问速率这是线路的速度,它决定在网上的数据传输的速度。在美国一般访问速率是1.544Mbps(T1)和56Kbps。提交的信息速率(CIR)CIR是帧中继电路上最高的平均数据传输率。它通常比传输速率慢;当传输突发数据时,传输速度可以超过CIR。提交的成组数据大小(CBS)CBS是网络提供者在一定的时间间隔内和正常的网络条件下所允许传输的最大数据量(位数)。额外的成组数据大小(EBS)EBS是超过CBS的最大非提交数据量,CBS数据是网络将在一定的时间间隔内发送出去的数据。EBS数据是被网络看作可以丢弃的数据。

帧中继知识

【如何用路由器模拟帧中继交换机?】 物理连接:所有的DCE接口都接到模拟成帧中继交换的路由器上。因为在实际工程中clockrate是由局端,像电信这样的部门来确定的。 局端的终端服务器通过异步口连接到模拟成帧中继交换的路由器的console口。 配置实现: 首先在全局配置模式下打: router(config)#frame-relay switching //启动帧中继交换功能 然后进入接口配置模式 router(config-if)#en fr //接口封装帧中继,命令全称:encapsulation frame-relay。这里没有打封装类型,就是缺省的cisco类型。另外还可以是ietf的。 router(config-if)#frame lmi-type ansi //配置帧中继LMI封装类型。lmi(local management interface)本地管理接口,运用在路由器和帧中继交换机之间。是数据传输一种信令标准。它有三种封装方法:cisco,ansi,q933a,缺省封装类型,自然是cisco类型。但它是由Cisco,StrataCom,Nortel,DEC联合制定的。ansi(American National Standards Institute)美国国家标准学会,始建立于1918年,标准涉及电工、建筑、日用品、制图、材料试验等技术领域。q933a是国际电联(International Telecommunication Union)的标准。ITU-T (The ITU Telecommunication Standardization Sector )ITU-T是国际电信联盟电信标准化部门,成立于1993年,它的前身是国际电报和电话咨询委员会(CCITT)。 router(config-if)#frame-relay intf-type dce //配置帧中继接口类型,有dce,dte,还有nni选择。虽然在物理上,它已经是DCE接口,但是用于模拟帧中继环境,还需要再配置帧中继里的接口类型。

试从多个方面比较虚电路和数据报这两种服务的优缺点

第五章广域网 5-1 试从多个方面比较虚电路和数据报这两种服务的优缺点。 答:从占用通信子网资源方面看:虚电路服务将占用结点交换机的存储空间,而数据报服务对每个其完整的目标地址独立选径,如果传送大量短的分组,数据头部分远大于数据部分,则会浪费带宽。从时间开销方面看:虚电路服务有创建连接的时间开销,对传送小量的短分组,显得很浪费;而数据报服务决定分组的去向过程很复杂,对每个分组都有分析时间的开销。从拥塞避免方面看:虚电路服务因连接起来的资源可以预留下来,一旦分组到达,所需的带宽和结点交换机的容量便已具有,因此有一些避免拥塞的优势。而数据报服务则很困难。从健壮性方面看:通信线路的故障对虚电路服务是致命的因素,但对数据报服务则容易通过调整路由得到补偿。因此虚电路服务更脆弱。 5-4 广域网中的主机为什么采用层次结构方式进行编址? 答:层次结构方式进行编址就是把一个用二进制数表示的主机地址分为前后两部分。前一部分的二进制数表示该主机所连接的分组交换机的编号,而后一部分的二进制数表示所连接的分组交换机的端口号,或主机的编号。采用两个层次的编址方案可使转发分组时只根据分组和第一部分的地址(交换机号),即在进行分组转发时,只根据收到的分组的主机地址中的交换机号。只有当分组到达与目的主机相连的结点交换机时,交换机才检查第二部分地址(主机号),并通过合适的低速端口将分组交给目的主机。采用这种方案可以减小转发表的长度,从而减少了查找转发表的时间。 5-5一个数据报分组交换网允许各结点在必要时将收到的分组丢弃。设结点丢弃一个分组的概率为p。现有一个主机经过两个网络结点与另一个主机以数据报方式通信,因此两个主机之间要经过3段链路。当传送数据报时,只要任何一个结点丢弃分组,则源点主机最终将重传此分组。试问: (1)每一个分组在一次传输过程中平均经过几段链路? (2)每一个分组平均要传送几次? (3)目的主机每收到一个分组,连同该分组在传输时被丢弃的传输,平均需要经过几段链路? 答:(1)从源主机发送的每个分组可能走1段链路(主机-结点)、2段链路(主机-结点-结点)或3段链路(主机-结点-结点-主机)。 走1段链路的概率是p,走2段链路的概率是p(1-p),走3段链路的概率(1-p)2 则,一个分组平均通路长度的期望值是这3个概率的加权和,即等于 L=1×p+2×p(1-p)+3×(1-p)2= p2-3 p+3 注意,当p=0时,平均经过3段链路,当p=1时,平均经过1段链路,当0

帧中继协议原理及配置

帧中继协议原理及配置 【复习旧课】(教学手段:课堂提问) 【引入新课】(教学手段:创设情景) 【讲授新课】(教学手段:教师讲授) 一、 帧中继概述 帧中继(Frame Relay ,简称FR )是以X.25 分组交换技术为基础,摒弃其中复杂的检、纠错过程,改造了原有的帧结构,从而获得了良好的性能。帧中继的用户接入速率一般为64 kbps ~2 Mbps ,局间中继传输速率一般为2 Mbps 、34 Mbps ,现已可达155 Mbps 。 1. 帧中继简介 帧中继技术继承了X.25 提供的统计复用功能和采用虚电路交换的优点,但是简化了可靠传输和差错控制机制,将那些用于保证数据可靠性传输的任务(如流量控制和差错控制等)委托给用户终端或本地结点机来完成,从而在减少网络时延的同时降低了通信成本。帧中继中的虚电路是帧中继包交换网络为实现不同DTE 之间的数据传输所建立的逻辑链路,这种虚电路可以在帧中继交换网络内跨越任意多个DCE 设备或帧中继交换机。 图6-4 帧中继网络 一个典型的帧中继网络是由用户设备与网络交换设备组成,如图6-4所示。作为帧中继网络核心设备的FR 交换机其作用类似于我们前面讲到的以太网交换机,都是在数据链路层完成对帧的传输,只不过FR 交换机处理的是FR 帧而不是以太帧。帧中继网络中的用户设备负责把数据帧送到帧中继网络,用户设备分为帧中继终端和非帧中继终端两种,其中非帧中继终端必须通过帧中继装拆设备(FRAD )接入帧中继网络。 2. 帧中继的特点 帧中继具有如下特点: ● 帧中继技术主要用于传递数据业务,将数据信息以帧的形式进行传送。 ● 帧中继传送数据使用的传输链路是逻辑连接,而不是物理连接,在一个物理连接上可以复用多个逻辑连接,可以实现带宽的复用和动态分配。 ● 帧中继协议简化了X.25的第三层功能,使网络节点的处理大大简化,提高了网络对信息的处理效率。采用物理层和链路层的两级结构,在链路层也只保留了核心子集部分。 ● 在链路层完成统计复用、帧透明传输和错误检测,但不提供发现错误后的重传。省去了帧编号、流量控制、应答和监视等机制,大大节省了交换机的开销,提高了网络吞吐量、 局域网 局域网

帧中继

基本的帧中继配置 实验1完成了对帧中继交换机的配置,为本实验提供了帧中继的链路环境。本实验将针对连接在帧中继线路上的路由器进行设置,以实现端到端的连通性。 在实际的网络项目中,我们并不调试帧申继交换机,而是调试连在帧中继线路两端的路由器。本实验所完成的就是这样的任务。 1.实验目的 通过本实验,读者可以掌握以下技能: ●配置帧中继实现网络互连; ●查看帧中继pvc信息; ●监测帧中继相关信息。 2.设备需求 本实验需要以下设备: ●实验中配置好的帧中继交换机; ●2台路由器,要求最少具有1个串行接口和1个以太网接口; ●2条DCE电缆,2条DTE电缆; ●1台终端服务器,如Cisco 2509路由器,及用于反向Telnet的相应电缆; ●台带有超级终端程序的PC机,以及Console电缆及转接器。 3.拓扑结构及配置说明 本实验的拓扑如图8-4所示。

在"帧中继云"的位置,实际放置的是实验1中配置好的帧中继交换机,使用全网状的拓扑。使用帧中继交换机的S1和S2接口分别用一组DCE。DTE电缆与R1和R2实现连接。 实验中,以太网接口不需要连接任何设备。 网段划分和IP地址分配如图8-4中的标注。 本实验通过对帧中继的配置实现R1的E0网段到R2的E0网段的连通性。 4.实验配置及监测结果 第1步:配置基本的帧中继连接 连接好所有设备并给各设备加电后,开始进行实验。 这一步完成对于两台路由器S0接口的帧中继参数的配置,同时也配置E0接口。 配置清单8-4记录了帧中继的基本配置。 配置清单8-4 配置基本的帧中继连接 第1段:配置R1路由器 R1#conft Enter configuration commands, one per line. End with CNTL/Z. R1(config)#int eO R1(config-if)#ip addr 192.1.1.1255.255.255.0 R1(config-if)#no keepa R1(config-if)#no shut R1(config-if)#int sO R1(config-if)#ip addr 172,16.1.1255.255.255.0

CISCO路由器配置手册----帧中继(Frame Relay)配置

CISCO路由器配置手册----Frame Relay 1. 帧中继技术 帧中继是一种高性能的WAN协议,它运行在OSI参考模型的物理层和数据链路层。它是一种数据包交换技术,是X.25的简化版本。它省略了X.25的一些强健功能,如提供窗口技术和数据重发技术,而是依靠高层协议提供纠错功能,这是因为帧中继工作在更好的WAN设备上,这些设备较之X.25的WAN设备具有更可靠的连接服务和更高的可靠性,它严格地对应于OSI参考模型的最低二层,而X.25还提供第三层的服务,所以,帧中继比X.25具有更高的性能和更有效的传输效率。 帧中继广域网的设备分为数据终端设备(DTE)和数据电路终端设备(DCE),Cisco 路由器作为 DTE设备。 帧中继技术提供面向连接的数据链路层的通信,在每对设备之间都存在一条定义好的通信链路,且该链路有一个链路识别码。这种服务通过帧中继虚电路实现,每个帧中继虚电路都以数据链路识别码(DLCI)标识自己。DLCI的值一般由帧中继服务提供商指定。帧中继即支持PVC也支持SVC。 帧中继本地管理接口(LMI)是对基本的帧中继标准的扩展。它是路由器和帧中继交换机之间信令标准,提供帧中继管理机制。它提供了许多管理复杂互联网络的特性,其中包括全局寻址、虚电路状态消息和多目发送等功能。 2. 有关命令: 端口设置 任务命令 设置Frame Relay封装encapsulation frame-relay[ietf] 1 设置Frame Relay LMI类型frame-relay lmi-type {ansi | cisco | q933a}2 设置子接口interface interface-type interface-number.subinterface -number [multipoint|point-to-point] 映射协议地址与DLCI frame-relay map protocol protocol-address dlci

帧中继——点到点子接口(point-to-point)配置

帧中继概述: ?是由国际电信联盟通信标准化组和美国国家标准化协会制定的一种标准。 ?它定义在公共数据网络上发送数据的过程。 ?它是一种面向连接的数据链路技术,为提供高性能和高效率数据传输进行了技术简化,它靠高层协议进行差错校正,并充分利用了当今光纤和数字网络技术。 帧中继的作用: ?帧使用DLCI进行标识,它工作在第二层;帧中继的优点在于它的低开销。 ?帧中继在带宽方面没有限制,它可以提供较高的带宽。 ?典型速率56K-2M/s内 选择 Frame Relay 拓扑结构: ?全网结构:提供最大限度的相互容错能力;物理连接费用最为昂贵。 ?部分网格结构:对重要结点采取多链路互连方式,有一定的互备份能力。 ?星型结构:最常用的帧中继拓扑结构,由中心节点来提供主要服务与应用,工程费最省 帧中继的前景: ?一种高性能,高效率的数据链路技术。 ?它工作在OSI参考模型的物理层和数据链路层,但依赖TCP上层协议来进行纠错控制。 ?提供帧中继接口的网络可以是一个ISP服务商;也可能是一个企业的专有企业网络。?目前,它是世界上最为流行的WAN协议之一,它是优秀的思科专家必备的技术之一。 子接口的配置: ?点到点子接口

–子接口看作是专线 –每一个点到点连接的子接口要求有自己的子网 –适用于星型拓扑结构 ?多点子接口(和其父物理接口一样的性质) –一个单独的子接口用来建立多条PVC,这些PVC连接到远端路由器的多点子接口或物理接口 –所有加入的接口都处于同一的子网中 –适用于 partial-mesh 和 full-mesh 拓扑结构中 帧中继术语: ?DTE:客户端设备(CPE),数据终端设备 ?DCE:数据通信设备或数据电路端接设备 ?虚电路(VC):通过为每一对DTE设备分配一个连接标识符,实现多个逻辑数据会话在同一条物理链路上进行多路复用。 ?数字连接识别号(DLCI):用以识别在DTE和FR之间的逻辑虚拟电路。 ?本地管理接口(LMI):是在DTE设备和FR之间的一种信令标准,它负责管理链路连接和保持设备间的状态。 今天我们研究点到点子接口(point-to-point)

帧中继2

帧中继(FRAME-RELAY)是一种广域网技术,最初是为了解决全国性或跨国性的帧中继大公司在地理上分散的局域网络实现通信而产生的。随着局域网与局域网之间进行互联的要求日益高涨,帧中继技术也迅速发展起来的。它是一种先进的包交换技术,是一种快速分组通信方式。它采用虚电路技术,能充分利用网络资源。帧中继为多区域间,全国范围内以及国际间实现通信提供了一个灵活高效的广域网解决方案。 帧中继 帧中继是八十年代初发展起来的一种数据通信技术,其英文名为FrameRelay,简称FR。它是从X.25分组通信技术演变而来的。数据通信的目的就是要完成计算机之间、计算机与各种数据终端之间的信息传递。为了实现数据通信,必须进行数据传输,即将位于一地的数据源发出的数据信息通过数据通信网络送到另一地的数据接收设备。被传递的数据信息的类型是多种多样的,其典型的应用有文件传送、电子信箱、可视图文、文件检索、远程医疗诊断等。数据通信网交换技术历经了电路方式、分组方式、帧方式、信元方式等阶段。 电路方式是从一点到另一点传送信息且固定占用电路带宽资源的方式,例如专线DDN数据通信。由于预先的固定资源分配,不管在这条电路上实际有无数据传输,电路一直被占着。分组方式是将传送的信息划分为一定长度的包,称为 帧中继

分组,以分组为单位进行存储转发。在分组交换网中,一条实际的电路上能够传输许多对用户终端间的数据而不互相混淆,因为每个分组中含有区分不同起点、终点的编号,称为逻辑信道号。分组方式对电路带宽采用了动态复用技术,效率明显提高。为了保证分组的可靠传输,防止分组在传输和交换过程中的丢失、错发、漏发、出错,分组通信制定了一套严密的,较为繁琐的通信协议,例如:在分组网与用户设备间的X.25规程就起到了上述作用,因此人们又称分组网为“X.25网”。帧方式实质上也是分组通信的一种形式,只不过它将X.25分组网中分组交换机之间的恢复差错,防止拥塞的处理过程进行了简化。帧方式的典型技术就是帧中继。由于传输技术的发展,数据传输误码率大大降低,分组通信的差错恢复机制显得过于繁琐,帧中继将分组通信的三层协议简化为两层,大大缩短了处理时间,提高了效率。帧中继网内部的纠错功能很大一部分都交由用户终端设备来完成。 帧中继 帧中继是一种局域网互联的WAN协议,它工作在OSI参考模型的物理层和数据链路层。它为跨越多个交换机和路由器的用户设备间的信息传输提供了快速和有效的方法。帧中继是一种数据包交换技术,与X.25类似。它可以使终端站动态共享网络介质和可用带宽。帧中继采用以下两种数据包技术:1)可变长数据包;2)统计多元技术。它不能确保数据完整性,所以当出现网络拥塞现象时就会丢弃数据包。但在实际应用中,它仍然具有可靠的数据传输性能。 帧中继是在分组交换技术的基础上发展起来的一种电信业务,简称FR。它是对原来的分组交换协议作了简化的数据传输新技术。又称“快速分组交换”技术。“帧”在数据通信中是指一个包括开始和结束标志的一个连续的二进制比特序列,是数据通信中传输链路传送时所用的基本单位。“帧中继”就是在传输链路中以“帧”为单位进行的中继传送。 帧中继(FrameRelay)是一种网络与数据终端设备(DTE)接口标准。由于光纤网比早期的电话网误码率低得多,因此,可以减少X.25的某些差错控制过程。从而可以减少结点的处理时

DDN1

DDN/ATM/FR数据基础网 数字数据网(DDN) 一、DDN网的特点:DDN的基本特点是利用数字信道传输数据信号。 1、DDN对数据传输透明度高,它是一个不受任何通信规程约束的全透明网络, 可支持所有通信规程及各种数据用户。 2、DDN的传输质量好、速率高、网络时延小。 3、DDN是同步数据传输网,要求全网的时钟保持同步,否则网内各节点在实 际互连和电路交叉连接时难以协调工作,出现失步造成数据丢失和重复。我 们DDN主节点采用的外部时钟,取自国家时钟网,其余节点采用跟随时钟。 4、由于DDN不具备检测和纠错功能,因而网络运行管理较为简便。 二、DDN的基本功能和业务 DDN可提供点到点、点到多点数据、图象、话音电路。并且提供多速率从 9.6K—2M电路。通过在DDN节点上设置帧中继模块(FRM)来实现帧中继业 务。为用户提供帧中继的永久虚电路。 三、DDN的组成和基本工作原理 按网络硬件设备划分,DDN是由网络设备、连接电路及网络管理设备组成。 网络设备:网络节点,网络接入单元(NAU)和用户终端设备。 连接电路:用户线、局间中继线。 网络管理设备:DDN网管 工作原理:用户终端发送出来的原始信号通过调制解调器转换成可以在用户线上传输的信号,必要时可以将几个用户设备的信号复用的到一条用户线(2601A/B口),通过数字交叉连接和时分复用将信号传输到对端,再经过调制解调由用户终端接受。

四、DDN网的网络结构:省略,结合网管。 帧中继网络(FR) 帧中继技术简介: 帧中继(Frame Relay,FR)技术是在OSI第二层,即数据链路层上用简化的方法传送和交换数据单元的一种技术。它是在分组技术充分发展,数字与光纤传输线路逐渐替代已有模拟线路,用户终端日益智能化的条件下诞生并发展起来的。帧中继技术具有吞吐量大、时延小,适合突发性业务等特点,能充分利用网络资源。帧中继技术归纳为以下几点: 1、帧中继技术主要用于传递数据业务,它使用一组规程将数据信 息以帧的形式(简称帧中继协议)有效地进行传送。它是广域网通信 的一种方式。 2、帧中继所使用的是逻辑连接,而不是物理连接,在一个物理连 接上可复用多个逻辑连接(即可建立多条逻辑信道),可实现带宽 的复用和动态分配。 3、帧中继协议是对X.25协议的简化,因此处理效率很高,网络 吞吐量高,通信时延低,帧中继用户的接入速率在64kbit/s至 2Mbit/s,甚至可达到34Mbit/s。 4、帧中继的帧信息长度远比X.25分组长度要长,最大帧长度可达 1600字节/帧,适合于封装局域网的数据单元,适合传送突发业务 (如压缩视频业务、WWW业务等)。

帧中继基础知识总结

帧中继基础知识总结 版本V1.0 密级?开放?内部?机密 类型?讨论版?测试版?正式版 1帧中继基本配置 1.1帧中继交换机 帧中继交换机在实际工程环境中一般不需要我们配置,由运营商设置完成,但在实验环境中,要求掌握帧中继交换机的基本配置。 配置示例: frame-relay switching interface s0/1 encapsulation frame-relay frame-relay intf-type dce clock rate 64000 frame-relay route 102 interface s0/2 201 // 定义PVC,该条命令是,s0/1口的DLCI 102,绑定到s0/2口的201 DLCI号 frame-relay route 103 interface s0/3 301 no shutdown

1.2环境1 主接口运行帧中继(Invers-arp) FRswitch(帧中继交换机)的配置: frame-relay switching interface s0/1// 连接到R1的接口 encapsulation frame-relay frame-relay intf-type dce clock rate 64000 frame-relay route 102 interface s0/2 201 // 定义PVC,该条命令是,s0/1口的DLCI 102,绑定到s0/2口的201 DLCI号 no shutdown interface s0/2// 连接到R2的接口 encapsulation frame-relay frame-relay intf-type dce clock rate 64000 frame-relay route 201 interface s0/1 102 no shutdown R1的配置如下: interface serial 0/0 ip address 192.168.12.1 255.255.255.252 encapsulation frame-relay // 接口封装FR,通过invers-arp发现DLCI,并建立对端IP到本地DLCI的映射(帧中继映射表)no shutdown R2的配置如下: interface serial 0/0 ip address 192.168.12.2 255.255.255.252 encapsulation frame-relay no shutdown

帧中继协议

帧中继协议 刷钻代码https://www.wendangku.net/doc/269026429.html,/ 一、数据链路层帧方式接入协议(LAPF) 1、LAPF基本特性 LAPF(Link Access Procedures to Frame Mode Bearer Services)是帧方式承载业务的数据链路层协议和规程,包含在ITU-T建议Q.922中。LAPF的作用是再ISDN用户-网络接口的B、D或H通路上为帧方式承载业务,在用户平面上的数据链路(DL)业务用户之间传递数据链路层业务数据单元(SDU)。 LAPF使用I.430和I.431支持的物理层服务,并允许在ISDN B/D/H通路上统计复用多个帧方式承载连接。LAPF也可以使用其它类型接口支持的物理层服务。 LAPF的一个子集,对应于数据链路层核心子层,用来支持帧中继承载业务。这个子集称为数据链路核心协议(DL-CORE)。LAPF的其余部分称为数据链路控制协议(DL-CONTROL)。 LAPF提供两种信息传送方式:非确认信息传送方式和确认信息传送方式。 2、LAPF帧结构 LAPF的帧由5种字段组成:标志字段F、地址字段A、控制字段C、信息字段I和帧检验序列字段FCS。 标志字段(Flag)是一个特殊的八比特组01111110,它的作用是标志一帧的开始和结束。在地址标志之前的标志为开始标志,在帧校验序列(FCS)字段之后的标志为结束标志。

地址字段A的主要用途是区分同一通路上多个数据链路连接,以便实现帧的复用/分路。地址字段的长度一般为2个字节,必要时最多可扩展到4个字节。地址字段通常包括地址字段扩展比特EA,命令/响应指示C/R,帧可丢失指示比特DE,前向显式拥塞比特FECN,后向显示拥塞比特BECN,数据链路连接标识符DLCI和DLCI扩展/控制知识比特D/C等7个组成部分。 控制字段C分3种类型的帧:信息帧(I帧)用来传送用户数据,但在传拥护数据的同时,I帧还捎带传送流量控制和差错控制信息,以保证用户数据的正确传送;监视帧(S帧)专门用来传送控制信息,当流量和差错控制信息没有I帧可以“搭乘”时,需要用S帧来传送;无编号帧(U帧),有两个用途:传送链路控制信息以及按非确认方式传送用户数据。 信息字段I包含的是用户数据,可以是任意的比特序列,它的长度必须是整数个自己,LAPF信息字节的最大默契长度为260个字节,网络应能支持协商的信息字段的最大字节数至少为1598,用来支持例如LAN互联之类的应用,以尽量减少用户设备分段和重装用户数据的需要。 帧校验序列字段FCS是一个16比特的序列。它具有很强的检错能力,它能检测出在任何位置上的3个以内的错误、所有的奇数个错误、16个比特之内的连续错误以及大部分的大量突发错误。 3、LAPF帧交换过程 LAPF的帧交换过程是对等实体之间在D/B/H通路或其它类型物理通路上传送和交换信息的过程,进行交换的帧有I帧、S帧和U帧。 采用非确认信息传送方式时,LAPF的工作方程十分简单,用到的帧只有一种,即无编号信号帧UI。UI帧的I段包含了用

华为三层交换机配置实例分析

华为三层交换机配置实例一例 服务器1双网卡,内网IP:192.168.0.1,其它计算机通过其代理上网 PORT1属于VLAN1 PORT2属于VLAN2 PORT3属于VLAN3 VLAN1的机器可以正常上网 配置VLAN2的计算机的网关为:192.168.1.254 配置VLAN3的计算机的网关为:192.168.2.254 即可实现VLAN间互联 如果VLAN2和VLAN3的计算机要通过服务器1上网 则需在三层交换机上配置默认路由 系统视图下:ip route-static 0.0.0.0 0.0.0.0 192.168.0.1 然后再在服务器1上配置回程路由 进入命令提示符 route add 192.168.1.0 255.255.255.0 192.168.0.254 route add 192.168.2.0 255.255.255.0 192.168.0.254 这个时候vlan2和vlan3中的计算机就可以通过服务器1访问internet了~~ 华为路由器与CISCO路由器在配置上的差别" 华为路由器与同档次的CISCO路由器在功能特性与配置界面上完全一致,有些方面还根据国内用户的需求作了很好的改进。例如中英文可切换的配置与调试界面,使中文用户再也不用面对着一大堆的英文专业单词而无从下手了。另外它的软件升级,远程配置,备份中心,PPP回拨,路由器热备份等,对用户来说均是极有用的功能特性。 在配置方面,华为路由器以前的软件版本(VRP1.0-相当于CISCO的IOS)与CISCO有细微的差别,但目前的版本(VRP1.1)已和CISCO兼容,下面首先介绍VRP软件的升级方法,然后给出配置上的说明。 一、VRP软件升级操作 升级前用户应了解自己路由器的硬件配置以及相应的引导软件bootrom的版本,因为这关系到是否可以升级以及升级的方法,否则升级失败会导致路由器不能运行。在此我们以从VRP1.0升级到VRP1.1为例说明升级的方法。 1.路由器配置电缆一端与PC机的串口一端与路由器的console口连接 2.在win95/98下建立使用直连线的超级终端,参数如下: 波特率9600,数据位8,停止位1,无效验,无流控,VT100终端类型 3.超级终端连机后打开路由器电源,屏幕上会出现引导信息,在出现: Press Ctrl-B to enter Boot Menu. 时三秒内按下Ctrl+b,会提示输入密码 Please input Bootrom password: 默认密码为空,直接回车进入引导菜单Boot Menu,在该菜单下选1,即Download application program升级VRP软件,之后屏幕提示选择下载波特率,我们一般选择38400 bps,随即出现提示信息: Download speed is 38400 bps.Please change the terminal's speed to 38400 bps,and select XMODEM protocol.Press ENTER key when ready. 此时进入超级终端“属性”,修改波特率为38400,修改后应断开超级终端的连接,再进入连接状态,以使新属性起效,之后屏幕提示: Downloading…CCC 这表示路由器已进入等待接收文件的状态,我们可以选择超级终端的文件“发送”功能,选定相应的VRP软件文件名,通讯协议选Xmodem,之后超级终端自动发送文件到路由器中,整个传送过程大约耗时8分半钟。完成后有提示信息出现,系统会将收到的VRP软件写入Flash Memory覆盖原来的系统,此时整个升级过程完成,系统提示改回超级终端的波特率: Restore the terminal's speed to 9600 bps. Press ENTER key when ready. 修改完后记住进行超级终端的断开和连接操作使新属性起效,之后路由器软件开始启动,用show ver命令将看见

自己整理的帧中继动态映射原理

在上海亚威上课的时候整理的 帧中继接口分为: 点到点:该接口所在链路只连接2台设备 点到多点:该接口所在链路连接多台设备。 不管是点到点还是点到多点,都是基于PVC的,PVC都是点到点的. 反转ARP,动态映射,frame-relay map: ARP包的作用是获得目的设备的MAC地址,反转ARP包也是一种ARP包,但是他的作用恰恰相反是获得目的设备的IP地址。 动态映射是将反转arp所获得的IP地址和本地DLCI号关联起来形成动态的frame-relay map Frame-relay map的作用是当路由器要发送一个IP包的时候,通过查看在frame-relay map 中的目的IP,来获得所对应的DLCI号以完成帧的二层封装。 帧中继动态映射原理: 不管是点到点的帧中继,还是点到多点(多点到点)的帧中继,本质上每条VPC都是P2P 的,即从一个DLCI号丢一个包进去,永远是从一个固定的DLCI号(出口)出来。 由于转发数据包必须依赖frame-relay map中的IP来映射DLCI号完成帧的2层封装。 所以可以通过动态或者静态的映射来获得目的IP所在PVC的DLCI号。 静态的就是手动配置,不多解释了 动态的原理也很简单, 如图:典型的点到多点帧中继。 在R1上有2条PVC 首先从102丢的包进去,只能从201出来,同样的从103丢的包进去也只能从301出来。这是帧中继的特性。也是帧中继的一个安全隔离机制。 那么R1要获得动态的帧中继映射其实非常简单。 首先对于路由器R1而言,接口s1封装为帧中继,配上IP地址,他理应是不知道任何DLCI 号的,那么谁知道DLCI号呢?答案是ISP的帧中继交换机,因为帧中继交换机的帧的传输是通过帧中继交换机上配置的frame-relay route 来实现基于DLCI号的标签交换的,所以帧中继交换机一定知道所直接连接的客户端的路由器的本地DLCI号。 并且如果有多条PVC的话,肯定有多个DLCI号 通过LMI,帧中继交换机可以把他所知道的DLCI号告知直连的客户端路由器,比如他可以告诉R1,2个本地DLCI号分别是102和103。 当R1学习到了本接口的DLCI号后,他可以发送一个反向arp包,包内只要有源IP 10.1.100.1 以DLCI号为102或103分别丢给帧中继交换机,由于帧中继交换机已经设置好了PVC的路线,所以最终这个帧被分别被R2和R3学到,由于R2和R3也通过LMI学习到了自己的DLCI号,又由于PVC是点到点的,所以当R2从自己的本地DLCI号201收到一个包的时候,他查看源IP为10.1.100.1 他就可以得出映射,10.1.100.1 的 DLCI号为201,那么当他要往10.1.100.1发送数据包的时候,他就封装DLCI号为201。

帧中继协议

课程7 帧中继协议

目录 1 课程说明 课程介绍 1 课程目标 1 相关资料 1 2 第一节帧中继协议介绍 1.1帧中继概述 2 1.2 帧中继的历史 2 1.3 网络交换技术及其特点 2 1.4 帧中继的技术和市场起因 4 1.5 帧中继技术的特点 5 1.6 什么情况下适用帧中继 6 7 第二节帧中继协议介绍及应用 2.1 帧中继协议的一些概念7 2.2 帧中继的应用8 2.3 帧中继PVC交换9 2.4 帧中继的带宽管理10 12 第3课帧中继帧格式 3.1 Q.922附录A介绍12 3.2 IETF封装12 3.3 CISCO封装15 17 第四节帧中继LMI协议 4.1 LMI协议简介17 4.2 Q.933附录A 17 22 第五节InARP协议介绍 24 缩略词表

课程说明 课程介绍 本教材介绍了帧中继技术的起因、发展、特点及应用等,阐述了有关帧中继 的一些基本概念,注重介绍了帧中继的封装协议、LMI协议和INARP协议。课程目标 完成本课程学习,学员能够掌握: ?了解帧中继的特点、技术条件、应用等 ?理解帧中继的基本概念,了解帧中继的一些协议 相关资料 《帧中继技术及其应用》 《QUIDWAY路由器用户手册》

第一节帧中继协议介绍 1.1帧中继概述 概括的讲,帧中继技术是在数据链路层用简化的方法传送和交换数据单元的 快速分组交换技术。帧中继技术是在分组交换技术充分发展,数字与光纤传 输线路逐渐代替已有的模拟线路,用户终端日益智能化的条件下诞生并发展 起来的。 1.2 帧中继的历史 1986年AT&T首先在其有关ISDN的技术规范中提出帧中继业务;1988年国际 电信联盟ITU-T公布第一个有关帧中继业务框架的标准I.122;1989年美国国家 标准委员会ANSI开始帧中继技术标准的研究工作;1990年CISCO、DEC、NT 和STRATACOM联合创建帧中继委员会;1991年帧中继委员会改名为帧中继 论坛,并开始标准的制定工作。迄今ITU-T、ANSI和帧中继论坛制定了帧中继 的一系列标准,帧中继技术日趋完善。有关标准见附录。 1.3 网络交换技术及其特点 为了对帧中继有一个概括的了解和认识,首先简要回顾一下网络交换技术的 发展。随着数据通讯技术的发展和演变,网络交换技术有电路方式、分组方 式、帧方式、信元方式和交换型多兆比特数据业务(SMDS)。 电路方式是基于电话网电路交换的原理,当用户要求发送数据时,交换机就 在主叫用户和被叫用户之间接通一条物理的数据传输通路。特点是时延小、 “透明”传输(即传输通路对用户数据不进行任何修正或解释)、信息传输 的吞吐量大。缺点是所占带宽固定,网络资源利用率低。 分组方式是一种存储转发的交换方式。他是将需要传输的信息划分为一定的 长度的包(分组),以分组为单位进行存储转发的。每个分组信息都载有接 收地址和发送地址的的标识,在传送分组之前必须首先建立虚电路,然后依

实验5fr(帧中继)的配置

北京理工大学珠海学院实验报告 ZHUHAI CAMPAUS OF BEIJING INSTITUTE OF TECHNOLOGY 班级学号姓名 指导教师成绩 实验题目实验 5 FR 的配置实验时间 实验 5 FR 的配置 一、实验目的 掌握帧中继的基本原理;掌握帧中继网络数据转发的过程;掌握帧中继的基本配置方法。 二、实验环境(软件、硬件及条件) 3Windows 主机+3 台路由器+FR 的网络 或者 1 台 Windows 主机+packet tracer 模拟器 三、实验内容 理解 FR 的工作原理,通过路由协议(本实验采用 RIP 协议)实现 FR 网络的互通。 四、实验拓扑

五、实验步骤 1、在 Packet Tracer 上边画好拓扑,并配置好模块和帧中继 DLCI,配置过程: 1)添加 3 台路由器,为路由器添加 S 端口模块( NM-4A/S 模块)。(由于实验室路由器的 s 端口数量有限,建议大家用模拟器实现本实验) 以R1为例 2)添加一个 Cloud-PT-Empty 设备(Cloud0)模拟帧中继网络,为 Cloud0 添加3 个 S 端口模块,分别与路由器连。

如图: 3)设置好 S1,S2,S3,的 DLCI 值: 以S1为例 先在DLCI选框上填上DLCI的值,在Name选框上填上Name的值,最后按下Add键,结果如下:

4)配置好 Frame-relay 连接: 结果如下: 5)连接端口注意:路由器作为 DTE 设备,Cloud0 作为 DCE 设备,按照拓扑添加 3 台 PC作测试用,连接到路由器 F 端口,并启动各连接端口。为各 PC 设置好 IP 和网关,做好 ip 地址的规划,网络拓扑就基本完成。 2、配置 3 台路由器的 FR R1 路由器配置:

7帧中继链路与上层协议的交互

11 帧中继链路与上层协议的交互 2008-08-19 23:15 15页的东西,很长,帧中继链路和OSPF网络类型的交互,很乱,再整理一下吧:都有些什么呢?嗯,有这些: 一、很NA的理论; 二、用Tunnel搭建远距离的链中继二层链路; 三、帧中继与OSPF网络类型的交互,这个最杂了,总结一下吧: 关于帧中继的不支持广播的问题: 1、帧中继是NBMA非广播型多路访问,由于不支持广播,所以在帧中继链路上运行依赖广播的RIP V1,是起不来的,当然,对于依赖组播的RIP V 2、EIGRP和OSPF,也是跑不下来的,实验中可以看到(组播在后面,现在还不怎么有概念)。怎么解决这个问题呢?在MAP映射里面加broadcast参数,将一个数据包复制成几份扔到各个DLCI管道里面去。反向ARP的话是自动加了这个参数的,手动映射的话必须得注意加上这个参数。再说一个吧,rip v2在帧中继链路上默认在主接口是关闭了水平分割的,但子接口开启,而EIGRP是默认开启的。 2、关于OSPF在帧中继链路上的问题: (1)邻居建立的问题:解决方法:改网络类型、单播建邻居 (2)角色混乱的问题:解决方法:改优先级,spoke端不参与竞选 (3)数据通信的问题:解决方法:做二层PVC和IP地址的映射(不增加PVC) 多播又是怎么发送数据包的?(这个不急,可以学了多播了再说) OSPF有五种网络类型,在帧中继链路上默认是NBMA,即或是帧中继二层链路加上了广播参数,即二层支持广播,OSPF也认为组播包发不出去而不发HELLO包,所以邻居关系无法建立,协议无法运行。 解决方法1:改OSPF网络类型,让OSPF用组播建立邻居: 改OSPF网络类型为点对多点,这时不管二层链路是全互联还是HUB-AND-SPOKE,角色混乱问题和路由数据包的发送问题都不存在值得注意的是:这个MA域的所有路由上的OSPF链路类型必须一致,否则即使能建立邻居,也不能正常传递路由.还有在HUB-AND-SPOKE二层链路上,各个路由器都会出现所有参与OSPF的路由器接口地址的32位主机路由;看一下二层链路是多点子接口的情况,现在是三个路由器多点子接口全互联,也就是三个路由器都还连着其他网络.将主接口和子接口的反向ARP关掉,或者不关开启LMI本地管理协议,在子接口做MAP映射.结果很正常,三个问题都没有出现(很奇怪,看了一下OSPF的接口,这是默认的NBMA三层网络,为什么在多点子接口下就不存在上述三个问题了呢?).这是三层网络为默认的NBMA的情况, NBMA都没有问题,改成点到多点应该更没有问题吧. 看一下,的确没有这三个问题,不过要注意的是这时会生成MA网络中参与OSPF 的接口地址的32位主机路由.现在看二层是HUB-AND-SPOKE的情况.这又是畸形

帧中继技术及其应用

帧中继技术及其应用 帧中继是八十年代初发展起来的一种数据通信技术,其英文名为Frame Relay,简称FR。它是从X.25分组通信技术演变而来的。&127;什么是帧中继? 它有什么优点? 用帧中继来干什么?&127;本文将就这些问题作简单的介绍。 一、数据通信技术发展演变的过程 数据通信的目的就是要完成计算机之间、计算机与各种数据终端之间的信息传递。为了实现数据通信,必须进行数据传输,即将位于一地的数据源发出的数据信息通过数据通信网络送到另一地的数据接收设备。被传递的数据信息的类型是多种多样的,其典型的应用有文件传送、电子信箱、可视图文、文件检索、远程医疗诊断等。数据通信网交换技术历经了电路方式、分组方式、帧方式、信元方式等阶段。 电路方式是从一点到另一点传送信息且固定占用电路带宽资源的方式,例如专线DDN数据通信。由于预先的固定资源分配,不管在这条电路上实际有无数据传输,电路一直被占着。分组方式是将传送的信息划分为一定长度的包,称为分组,以分组为单位进行存储转发。在分组交换网中,一条实际的电路上能够传输许多对用户终端间的数据而不互相混淆,因为每个分组中含有区分不同起点、终点的编号,称为逻辑信道号。分组方式对电路带宽采用了动态复用技术,效率明显提高。为了保证分组的可靠传输,防止分组在传输和交换过程中的丢失、错发、漏发、出错,分组通信制定了一套严密的,较为繁琐的通信协议,例如:在分组网与用户设备间的X.25规程就起到了上述作用,因此人们又称分组网为“X.25网”。帧方式实质上也是分组通信的一种形式,只不过它将X.25分组网中分组交换机之间的恢复差错,防止拥塞的处理过程进行了简化。帧方式的典型技术就是帧中继。由于传输技术的发展,数据传输误码率大大降低,分组通信的差错恢复机制显得过于繁琐,帧中继将分组通信的三层协议简化为两层,大大缩短了处理时间,提高了效率。帧中继网内部的纠错功能很大一部分都交由用户终端设备来完成。 二、帧中继技术简介 我们可以将帧中继技术归纳为以下几点: 1) 帧中继技术主要用于传递数据业务,它使用一组规程将数据信息以帧的形式(简 称帧中继协议)有效地进行传送。它是广域网通信的一种方式。 2) 帧中继所使用的是逻辑连接,而不是物理连接,在一个物理连接上可复用多个 逻辑连接(即可建立多条逻辑信道),可实现带宽的复用和动态分配。 3) 帧中继协议是对X.25协议的简化,因此处理效率很高,网络吞吐量高,通信时 延低,帧中继用户的接入速率在64kbit/s至2Mbit/s,甚至可达到34Mbit/s。 4) 帧中继的帧信息长度远比X.25分组长度要长,最大帧长度可达1600字节/帧,

帧中继介绍

帧中继 帧中继协议概述 帧中继协议是一种简化的X.25广域网协议。帧中继协议是一种统计复用的协议,它 在单一物理传输线路上能够提供多条虚电路。每条虚电路用数据链路连接标识(Data Link Connection Identifier,DLCI)来标识,DLCI只在本地接口和与之直接相连的 对端接口有效,不具有全局有效性,即在帧中继网络中,不同的物理接口上相同的 DLCI并不表示是同一个虚电路。 帧中继网络提供了用户设备(如路由器和主机等)之间进行数据通信的能力,用户 设备被称作数据终端设备(Data Terminal Equipment,DTE);为用户设备提供接 入的设备被称为数据电路终接设备(Data Circuit-terminating Equipment,DCE)。 帧中继网络既可以是公用网络或者是某一企业的私有网络,也可以是数据设备之间 直接连接构成的网络。 帧中继地址映射 帧中继地址映射是把对端设备的协议地址与对端设备的帧中继地址(本地的DLCI) 关联起来,使高层协议能通过对端设备的协议地址寻址到对端设备。 帧中继主要用来承载IP协议,在发送IP报文时,根据路由表只能知道报文的下一 跳地址,发送前必须由该地址确定它对应的DLCI。这个过程可以通过查找帧中继地 址映射表来完成,因为地址映射表中存放的是下一跳IP地址和下一跳对应的DLCI 的映射关系。 地址映射表可以由手工配置,也可以由Inverse ARP协议动态维护。 如下图所示,通过帧中继网络可以实现局域网互联。 图1通过帧中继网络实现局域网互联

虚电路介绍 根据虚电路建立方式的不同,虚电路分为两种类型:永久虚电路(Permanent Virtual Circuit,PVC)和交换虚电路(Switched Virtual Circuit,SVC)。手工设置产生的 虚电路称为永久虚电路。通过协议协商产生的虚电路称为交换虚电路,这种虚电路 由帧中继协议自动创建和删除。目前在帧中继中使用最多的方式是永久虚电路方式。 在永久虚电路方式下,需要检测虚电路是否可用。本地管理接口(Local Management Interface,LMI)协议就是用来检测虚电路是否可用的。LMI协议用于维护帧中继协 议的PVC表,包括:通知PVC的增加、探测PVC的删除、监控PVC状态的变更、 验证链路的完整性。系统支持三种本地管理接口协议:ITU-T的Q.933附录A、ANSI 的T1.617附录D以及非标准兼容协议。 LMI协议的基本工作方式是:DTE设备每隔一定的时间间隔发送一个状态请求报文 (Status Enquiry报文)去查询虚电路的状态,DCE设备收到状态请求报文后,立 即用状态报文(Status报文)通知DTE当前接口上所有虚电路的状态。 对于DTE侧设备,永久虚电路的状态完全由DCE侧设备决定;对于DCE侧设备, 永久虚电路的状态由网络来决定。在两台网络设备直接连接的情况下,DCE侧设备 的虚电路状态是由设备管理员来设置的。 帧中继协议参数 帧中继协议的参数以及含义如表1所示。 表1帧中继协议参数含义 工作方式参数含义取值范围缺省值 请求PVC状态的计数器(N391)1~255 6 错误门限(N392)1~10 3 事件计数器(N393)1~10 4 DTE 用户侧轮询定时器(T391),当为0时,表示禁止LMI协议0~32767 (单位:秒) 10 (单位:秒) 错误门限(N392)1~10 3 事件计数器(N393)1~10 4 DCE 网络侧轮询定时器(T392)5~30 (单位:秒) 15 (单位:秒) 这些参数由Q.933的附录A规定,各参数的含义如下:与DTE工作方式相关的参数含义:

相关文档