文档库 最新最全的文档下载
当前位置:文档库 › 脱氮除磷工艺发展

脱氮除磷工艺发展

脱氮除磷工艺发展
脱氮除磷工艺发展

污水脱氮除磷工艺的概述与展望

摘要:近年来,城市污水(以城市生活污水为主)中氮磷营养物的排放使受纳水体中藻类等植物大量繁殖,导致水体富营养化问题越来越严重,对城市污水进行脱氮除磷处理是防止水体富营养化的一种重要措施。目前来看,污水脱氮除磷的主要方法有物理方法、化学方法及生物方法。与物理法、化学法相比,生物法具有适用范围广、投资及运行费用低、效果稳定、综合处理能力强等优点,已成为污水脱氮除磷的最佳选择。本文对现有的生物脱氮除磷工艺进行了系统的介绍和分析,并对今后的发展方向作了展望。

关键词:城市污水,脱氮除磷,工艺技术

1.城市污水脱氮除磷现状

据近年来环境质量公报发布的消息,水体中的主要污染物为含氮磷的有机物。这些污染物进一步加剧了水资源短缺的矛盾,对可持续发展战略的实施带来了严重的负面影响。目前含氮磷污水的处理技术可分为物理法、化学法、物理化学法和生物法。由于化学法与物理化学法成本高,对环境易造成二次污染,所以污水生物脱氮除磷技术是20世纪70年代美国和南非等国的水处理专家们在化学、催化和生物方法研究的基础上提出的一种经济有效的处理技术,该技术由于处理过程可靠,处理成本低,操作管理方便等优点而被广泛使用。微生物脱氮除磷技术按微生物在系统中的不同状态,可分为活性污泥法和生物膜法,通过设立好氧区、缺氧区和厌氧区来实现硝化、反硝化、释磷和放磷以达到脱氮除磷的目的。具体的生物脱氮除磷工艺主要有:A2/O法同步脱氮除磷工艺、生物转盘同步脱氮除磷工艺、SBR工艺、氧化沟工艺、亚硝酸盐生物脱氮工艺、AB法及其变型工艺等。

污水经二级生化处理后,氮的去除率仅为20%~30%左右,磷的去除率则更低。因此脱氮除磷问题在二级处理普及率较高的工业化国家中受到了高度的重视。我国污水厂大多数以二级生物处理为主。二级生物处理厂去除对象主要是和SS,仅有极少数厂(如广州犬坦沙污水厂)有脱氮除磷功能。我国水体富营BOD

5

养化日趋严重,其原因一是城市污水处理率低;二是传统的活性污泥法仅能去除城市污水中20%~40%的氮以及5%~20%的磷。因此,大量兴建城市二级生物处理厂,不但投资大,运行费用高,并且脱氮除磷的效率也并不高。

在实际的工程设计中,根据受纳水体的要求和其他一些实际情况,生物脱氮除磷工艺可以分成以下几个层次

(1)以去除有机物、氨氮为目的的工艺。因对总氮无要求,可以采用生物硝

化工艺,生物硝化工艺与传统活性污泥法工艺流程完全相同,只是采用延时曝气。

(2)以去除有机物和总氮(包括有机氮、氨氮及硝酸盐氮)为目的的工艺。因要去除总氮,因此应该采用生物反硝化工艺,需要在反应池前增设一个缺氧段,将好氧段中含有硝酸盐的混合液回流到缺氧段,在缺氧的条件下,将硝酸盐反硝化成氮气。

(3)以去除有机物、氨氮和有机氮、磷为目的的工艺。采用除磷的硝化工艺,在反应地前增设一个厌氧段,在厌氧段内完成磷的释放,在好氧段内实现磷的超量吸收、有机物的氧化、有机氮及氨氮的硝化。

(4)以去除有机物、总氮和磷为目的的工艺。对于这种情况,应该采用完全的生物除磷脱氮工艺。在反应池前既要增设一个厌氧段又要增设一个缺氧段,以同时实现生物除磷脱氮。

2.生物脱氮除磷的原理

2.1 生物脱氮原理

传统的生物脱氮过程是在硝化细菌和反硝化细菌的联合作用下,通过硝化和反硝化完成的。在好氧条件下,氨氮经硝化细菌的硝化作用转化为硝态氮或亚硝态氮;在缺氧条件下,硝态氮或亚硝态氮在反硝化细菌的作用下被还原为氮气,从而达到脱氮的目的。

近年来同时硝化反硝化现象、短程硝化反硝化工艺、厌氧氨氧化工艺的发展,为理解污水脱氮机理指明了新的方向。同时硝化反硝化过程在同一条件下实现了脱氮,颠覆了传统脱氮理论认为硝化反应在好氧条件下进行、反硝化反应在厌氧条件下进行的认识。其中,缺氧微环境理论是目前普遍接受被认为是造成此类现象发生的主要机理。短程硝化反硝化是指将氨氮的硝化过程控在 NO

2

阶段,然后

不经 NO

3的生成过程直接由反硝化细菌将 NO

2

转化为 N

2

。厌氧氨氧化工艺的原理

是,自养型厌氧氨氧化细菌在厌氧环境中以硝酸盐、亚硝酸盐作为电子受体,将

氨转化为氮气。该工艺特别适用于高氨氮废水和低碳氮比废水处理。简而言之,脱氮新理论新现象的发现进一步深化了人们对脱氮过程的认识,为实现污水高效的脱氮奠定了坚实的基础。

2.2 生物除磷原理

生物除磷主要是由一类统称为聚磷菌的微生物在厌氧-好氧或厌氧-缺氧交替的环境下完成的。在厌氧条件下,聚磷菌将细胞内的聚磷水解为正磷酸盐,并从中获取能量,同时吸收污水中的易生物降解的 COD,同化为胞内碳源贮存物聚羟基烷酸(PHA);在好氧或缺氧条件下,聚磷菌以分子态氧(例如 O

2

)或化合

态(例如 NO

3

)作为电子受体,氧化代谢胞内贮存物 PHA,同时释放能量,过量地从污水中摄取溶解态磷酸盐,并以聚磷形式贮存于细胞内,最终通过排放富磷污泥实现从污水中除磷的目的。

此外,反硝化除磷现象的发现进一步丰富了生物除磷机理。反硝化除磷过程

是由一类称为反硝化除磷细菌( denitrifying phosphorus removingBacter -ia,DPB)完成的,在缺氧条件下,DPB 以硝酸盐取代氧气作为电子受体进行缺氧摄磷,同时硝酸盐被还原为氮气,实现了同时脱氮和除磷的目的。反硝化除磷技术实现了一碳两用,同时节省了曝气量,是一种低耗高效的污水处理方法。3.生物脱氮除磷工艺

从生物脱氮除磷的机理分析来看,生物脱氮除磷工艺基本上包括厌氧、缺氧、好氧 3种状态,这 3个不同的工作状态可以在空间上进行分离,也可以在时间上进行分离。

3.1 空间顺序的生物脱氮除磷工艺

空间顺序工艺的最大特征是污水的各种生化反应在不同的反应池里同时完成,整个生化反应是连续进行,典型代表有A/O,A2/O,改良 A2/O,UCT,改良UCT,五段 Bardenpho,Phostrip 等。

3.1.1 A2/O 改良工艺

改良 A2/O工艺是中国市政工程华北设计研究院提出的。该工艺综合了 A/O 工艺和改良UCT工艺的优点,即在厌氧池之前增设厌氧/缺氧池(图 1)。

首先回流污泥和 10%的污水进入厌氧/缺氧池进行反硝化以去除回流污泥中的硝酸盐。90%的污水进入厌氧区与回流污泥混合,在兼性厌氧发酵菌的作用下将部分易生物降解的大分子有机物转化为VFA;聚磷菌释磷,同时吸收 VFA 以PHB 的形式贮存于胞内。在缺氧区,反硝化菌利用污水中的有机物和经混合液回流而带来的硝酸盐进行反硝化,同时去碳脱氮;在好氧区,有机物浓度相当低,有利于自养硝化菌生长繁殖,进行硝化反应,同时聚磷菌过量摄磷。通过沉淀、排除剩余污泥达到除磷的目的。该工艺降低回流污泥中硝态氮对后续厌氧池的不利影响,有利于厌氧池的聚磷菌释磷,改善了泥水分离性能。

3.1.2 UCT改良工艺

改良的UCT工艺(University of Cape Town)脱氮除磷工艺由厌氧池、缺氧1池、缺氧2池、好氧池、沉淀池系统组成,有2个缺氧池。缺氧1池只接受沉淀池的回流污泥,同时缺氧1池有混合液回流至厌氧池,以补充厌氧池中污泥的流失。回流污泥携带的硝态氮在缺氧 1 池中经反硝化被完全去除。在缺氧2池中接受来自好氧池的混合液回流,同时进行反硝化,缺氧1池出水中的NO3-N

带进厌氧池使之保持较为严格的厌氧环境,从而提高系统的除磷效率。其工艺流程见图 2。

3.2 时间顺序的生物脱氮除磷工艺

时间顺序的生物除磷脱氮技术的最大特征是污水的各种生化反应均在同一个反应池里,按时间顺序进行污水处理,典型代表是CAST,MSBR,A2NSBR等工艺。

3.2.1 CAST 工艺

CAST实际上是一种循环SBR活性污泥法,反应器中活性污泥不断重复曝气和非曝气过程,生物反应和泥水分离在同一池内完成,与SBR同样使用滗水器(图3)。

污水首先进入选择器,污水中溶解性的有机物通过生物作用得到去除,回流污泥中硝酸盐也此时得到反硝化;然后进入厌氧区,此时为微生物释磷提供条件;第三区为主曝气区,主要进行BOD降解和同时硝化反硝化。CAST 选择器设置在池首防止了污泥膨胀。

3.2.2 MSBR 工艺

近年来,有些研究者对传统的 SBR 进行了改进,开发了连续流序批式活性污泥法工艺(ModifiedSequencing Batch Reactor,简称 MSBR)见图 4。

首先,污水进入厌氧池,回流活性污泥中的聚磷菌在此充分释磷,然后混合液进入缺氧池反硝化。反硝化后的污水进入好氧池,有机物在好氧条件下被降解,活性污泥充分吸磷后再进入起沉淀作用的 SBR,澄清后上清液排放。此时另一边的 SBR 在 1.5Q 回流量的条件下进行反硝化、硝化或静置预沉。回流污泥首先进入浓缩池浓缩,上清液直接进入好氧池,而浓缩污泥进入缺氧池。这样,一方面可以进行反硝化,另一方面可先消耗掉回流浓缩污泥中的溶解氧和硝酸盐,为随后进行的厌氧释磷提供更为有利的条件。CAST 综合了以往除磷脱氮工艺的优点,保证了各污染物质降解的最大速率环境,去除有机污染物效率更高,脱氮除磷效果更好。

3.2.3 A2NSBR工艺

Kuba,Merzouki 及 W.J.Ng 等相继对 A2NSBR双污泥系统进行了反硝化除磷小试研究。A2NSBR工艺具有2个独立的SBR(图 5)。

一个 SBR 依次经历厌氧/缺氧段,主要是用来强化 DBP 生长的厌氧/缺氧环境,筛选优势菌种;另一个为好氧 SBR,此反应器主要作用是培养硝化菌,以提供给厌氧/缺氧SBR足量的硝化液。经研究,A2SBR和好氧硝化 SBR 系统的结合表现了稳定的除磷脱氮效果,除磷率几乎达到100%,脱氮率达到 90%以上。4.城市污水脱氮除磷技术的发展与展望

污水排放标准的不断严格是目前世界各国普遍发展的趋势,以控制水体富营养化为目的的氮、磷脱除技术开发已成为世界各国主要的奋斗目标。我国对生物脱氮除磷技术的研究起步较晚,投入的资金也十分有限,研究水平仍处于发展阶段。目前在生物脱氮除磷技术基础理论没有重大革新之前,充分利用现有的工艺组合,开发技术成熟、经济高效且符合国情的工艺应是今后我国脱氮除磷工艺发展的主要方向,主要体现在下面几个方面。

(1)开展对生物脱氮除磷更深入的基础研究和应用开发,优化生物脱氮除磷

组合工艺,开发高效、经济的小型化、商品化脱氮除磷组合工艺。

(2)发展可持续污水处理工艺,向节约碳源、降低CO2释放、减少剩余污泥排放以及实现氮磷回收和处理水回用等方向发展。

(3)大力开发适合现有污水处理厂改造的高效脱氮除磷技术。

5.生物脱氮除磷新工艺

目前应用的脱氮除磷工艺主要有 SBR、A2O、OD(氧化沟)这三类。据统计,在 2006 年,这3种工艺占据了我国污水处理厂处理工艺的 65%,处理了全国约54%的污水。近年来,出现了一些新的脱氮除磷工艺,以下对此作概括介绍。2.1 CANDO

耦合好氧 - 缺氧 N2O 分解工艺( coupledaerobicanoxicnitrous decomposition operation ,CANDO),是由 Scherson等率先提出来的新型污水脱氮工艺。其基本原理可通过 3 个步骤来解释(图6)。

图6 CANDO 工艺的化学反应原理示意图

第一步,将氨氮的氧化控制在亚硝化阶段;第二步,控制亚硝酸盐的还原过

程,保证其尽可能的生成N

2O;第三步,将 N

2

O催化分解为N

2

同时伴随能量的回

收,或者用 N

2O取代氧气作为 CH

4

燃烧的助燃气。CANDO工艺减少了污水处理过

程对氧的需求,降低了剩余污泥的产量,进而减少了污水处理运行费用;实现了

从NOD(nitrogenous oxygendemand)中回收能量,为污水处理进行能量回收开辟了新途径;减少了污水处理过程中 N

2

O 等温室气体的排放,有效缓解了温室效应。

对于 CANDO 工艺而言,第一步可通过高活性的氨氮去除亚硝酸盐的单一反应器系统(SHARON)工艺实现,第三步在热力学上也能够达到,

关键是第二步,即如何稳定、高效地保证 N

2

O的转化过程。目前,主要有两种方法—生物法和化学法。生物法是以细胞内储存的 PHB 等内碳源物质作为电子供

体,将 NO

2还原为 N

2

O。然而,NO

2

的转化率不够稳定,与基质的投加策略有关,

最大的转化率为 60%左右。当乙酸(作为碳源)和亚硝酸盐连续投加时,没有检

测到 N

2O 的产生。当乙酸和亚硝酸盐采用脉冲投加时,检测到了N

2

O的存在。脉

冲投加分为两种方式进行,即耦合投加和非耦合投加。采用耦合投加时,NO

2

转化率为 9%~12%,非耦合投加时,NO

2

转化率为 60%~65%。化学法则是利用碳

酸盐绿锈[carbonate green rust,化学式Fe

4II Fe

2

III(OH)

12

CO

3

]或菱铁矿

(siderite,化学式为 FeCO

3)将 NO

2

还原为 N

2

O。研究发现,这种活性绿锈(green

rust)层状双金属类物质对硝酸盐还具有还原作用并且对其它污染物的迁移转化也有一定作用,进一步促进了该工艺的脱氮效果。同时,green rust 类物质对

磷酸盐也有良好吸附效果。Barthélémy 等使用双氧水将 green rust 氧化为一

种新材料—碳酸铁绿锈[carbonated ferric greenrust,化学式 Fe

7II(OH)

12

CO

3

],

不仅增强了其在溶液中的稳定性,而且还能够从水中吸附磷酸盐实现高效除磷,但去除率受 pH 值的影响。

虽然,这两种方法最后都实现了98%的脱氮率,但生物法对 PHB 的依耐性,导致其转化率可能受进水中易降解的 COD 影响;化学法对反应条件和药剂的特殊要求,也制约了其发展前景。如果能够研究出一种新的高效的 N2O 转化机制,并实现规模化应用,CANDO 工艺对于污水脱氮除磷而言不失为一种极具吸引力的选择。

在相同的情况下,以需氧量、微生物量和能量回收效率为衡量指标比较SHARON、全自养亚硝酸型脱氮(CANON)、CANDO 的处理效果,发现CANDO 工艺仅次于 CANON;与传统的硝化-反硝化脱氮工艺相比,CANDO 工艺的氧消耗和污泥产量分别减少了20%和40%,能源回收率增加了60%。总的来说,CANDO 工艺实可现生物法和化学法的有机结合,从根本上解决了污水处理厂运行管理上的两大难题:曝气量和污泥产量。由此可见,联合工艺突破了传统生物脱氮工艺的基本概念,在一定程度上解决了传统硝化-反硝化工艺存在的问题。

2.2 BioCAST

同时去除含碳有机物及氮磷营养物质(BioCAST)工艺是为了实现从污水中同时去除含碳有机物及氮磷营养物质而开发的新型多环境混合污水处理工艺(图 7)。

图7 BioCAST 工艺流程图

它的主体部分是由两个相互连接的反应器组成,每个反应器又包含有多个具有不同环境条件的区域。反应器①包含有4个区域,即好氧区、微好氧区、缺氧区以及澄清区。前3个区域主要用于污水生物处理,澄清区则实现固液分离的作用。好氧区是根据气提式反应器的原理设计的,位于反应器①的正中央,里面设置有生物填料,使其同时具有活性污泥工艺和生物膜工艺的特点,增加了系统中

生物固体停留时间。原水和来自厌氧区的富含聚磷菌(phosphorus accumulatingorganisms,PAOs)和挥发性脂肪酸的回流污泥首先进入好氧区,PAOs 实现好氧过量吸磷作用,含氮物质经氨化和硝化作用转化为硝态氮和亚硝态氮。

混合液以上向流的方式流出好氧区,抵达附近的微好氧区,进一步完成氨氮的硝化和剩余有机物的降解。然后,微好氧区混合液以下向流方式直抵缺氧区,完成反硝化作用,实现脱氮。系统所需的氧是由位于好氧区底部的3个自定义的内置空气扩散器提供的,曝气不仅提供了生化反应所需的氧,实现液体混合作用,同时也是混合液在好氧区、微好氧区和缺氧区的循环动力,使得污染物每隔几分钟就能够暴露于不同的环境条件下,有利于污染物的去除。反应器①的这种设计和运行机制提供了前置反硝化和后置反硝化所需的环境条件,有利于脱氮。反应器②是为污泥消化和固液分离而设计的。反应器①的出水一部分直接排出系统,一部分进入反应器②,经沉淀作用后上清液排出系统。同时反应器①缺氧区的污泥回流至反应器②厌氧区进行消解,部分回流至好氧区,其余部分作为剩余污泥排放。回流混合液中包含的聚磷菌和挥发性脂肪酸,为除磷和反硝化过程提供了充足的碳源,保证系统的脱氮除磷效果。

BioCAST 工艺能够有效地降低污水中污染物质的含量,在48天的短期持续运行中,COD、TN、TP的去除率分别达到了99.3%、98.0%、92.3%,即使进水中污染物负荷发生波动,其去除效果几乎仍然能够维持不变。同时,在有机负荷率为 0.95~1.86 kg/(m3d)、氮负荷率为0.02~0.08 kg/(m3d)、磷负荷率为0.014~0.02 kg/(m3d)的条件下,经过长达225天的运行,COD、TN、TP的去除率分别也达到了98.9%、98.3%和 94.1%,而且污泥的产率仅为消耗的COD当量的3.7%。在长期和短期运行中均观察到磷的去除效果对总氮负荷有很强的依赖性,即去除率随着氮的负荷率的增加和碳氮比的减小而提高,当TN负荷在0.05 kg/(m3d)以上时,磷的去除效果显著增强。通过增加进水N和P的负荷,系统最终出水的硝酸盐、亚硝酸盐及磷酸盐的浓度可分别低达0.2 mg/L、0.02 mg/L 及 2.9 mg/L,污泥产率仅为11.5%。

总之,BioCAST 工艺既能够积累高浓度的悬浮生长微生物,又能够积累附着生长微生物,使它很适合处理高负荷和高含氮量污水。与传统的工艺相比,反应器内生物量多,污泥产率低,系统启动时间短,同时减少了空间需求;与 SBR 相比,没有复杂的定时或控制系统;与膜生物反应器相比,不需要特殊类型的膜材料。

5.结语

污水生物脱氮除磷是当今水处理的热点与难点。新的脱氮除磷理论的提出,为生物脱氮除磷工艺指引了方向。如:SND (同时硝化反硝化工艺)、SHARON (Single reactor high activity ammonia removalover nitrite,亚硝化反应器)工艺、OLAND(Oxygen-limited autotrophic nitrification-denitriFic- ation,氧限制自氧硝化—反硝化)工艺、厌氧氨氧化工艺以及短程硝化—厌氧

氨氧化组合工艺等。但是,生物除磷脱氮工艺的发展已不仅仅要求对 N,P 去除率,而且要求处理效果稳定,可靠的运行工艺。今后对此技术的研究应集中在以下方面。

(1)加深除磷机理的研究。反硝化聚磷菌的出现解决了硝化菌与聚磷菌争夺碳源,污泥龄不同等主要矛盾。为新型同步脱氮除磷工艺提供了理论依据。但是对于反硝化聚磷菌的了解还不够全面,尤其是其除磷机理还待于进一步研究。应突破传统理论,从微生物的角度来调控工艺。

(2)随着脱氮除磷工艺的进一步发展,许多研究者在进行小试时,都驯化出颗粒污泥,而颗粒污泥的出现改善了污泥膨胀这一难题。同时发现颗粒污泥对N,P 的去除要远远优于絮状污泥。今后在对颗粒污泥的研究上应更加深入,研究了解颗粒污泥外部的胞外聚合物是否对 N,P 有吸附作用,并进一步研究颗粒污泥的形成机理,调整现有反应器的运行参数,从而加速颗粒污泥的形成,提高脱氮除磷效率。

参考文献

[1] 侯金良,康勇. 城市污水生物脱氮除磷技术的研究进展[J]. 化工进展,

2007,26(3):366-370.

[2] Qiu Y,Shi H C,He M. Nitrogen and phosphorous removal in themunicipal

wastewater treatment plants in China : A Review[J].International Journal of Chemical Engineering,2010.DOI:10.1155/2010/914159. [3] Scherson Y D,Wells G F,Woo S G,et al. Nitrogen removal withenergy

recovery through N

O decomposition[J]. Energy &Environmental Science,

2

2013,6(1):241-248.

[4] Pantke C,Obst M,Benzerara K,et al. Green rust formation duringFe( Ⅱ )

oxidation by the nitrate-reducing Acidovorax sp. StrainBoFeN1[J].

Environmental Science & Technology,2006,46(3):1439-1446.

[5] Ruby C,Upadhyay C,Géhin A,et al. In situ redox flexibility of

FeII-IIIoxyhydroxycarbonate green rust and fougerite[J].Environmental Science & Technology,2006,40(15):4696-4702.

[6] Hansen H C B,Poulsen I F. Interaction of synthetic sulphate“Green

rust” with phosphate and the crystallization of vivianite[J].Clays and Clay Minerals,1999,47(3):312-318.

[7] Benali O,Abdelmoula M,Refait P,et al. Effect of orthophosphate on

the oxidation products of Fe(Ⅱ)-Fe(Ⅲ) hydroxycarbonate:Thetransformation of green rust to ferrihydrite[J]. Geochimica EtCosmochimica Acta,2001,65(11):1715-1726.

[8] Barthelemy K,Naille S,Despas C,et al. Carbonated ferric green rust

as a new material for efficient phosphate removal[J]. Journal of

污水处理工艺中如何进行脱氮除磷

污水处理工艺中如何进行脱氮除磷? 氮、磷的主要危害:一是受纳水体富营养化;二是影响水源水质,增加给水处理成本;三是对人和生物有一定的毒害。 生物脱氮分为三步: 1、氨化作用,即水中的有机氮在氨化细菌的作用下转化成氨氮。在普通活性污泥法中,氨化作用进行得很快,无需采取特殊的措施。 2、硝化作用,即在供氧充足的条件下,水中的氨氮首先在亚硝酸钠的作用下被氧化成亚硝酸盐,然再在硝酸菌的作用下进一步氧化成硝酸盐。为防止生长缓慢的亚硝酸细菌和硝酸细菌从活性污泥系统中流失, 要求很长的污泥龄。 3、反硝化作用, 即硝化产生的亚硝酸盐和硝酸盐在反硝化细菌的作用下被还原成氮气。这一步速率也比较快, 但由于反硝化细菌是兼性厌氧菌, 只有在缺氧或厌氧条件下才能进行反硝化, 因此需要为其创造一个缺氧或厌氧的环境( 好氧池的混合液回流到缺氧池) 。 生物除磷原理 所谓生物除磷, 是利用聚磷菌一类的微生物, 在厌氧条件下释放磷。而在好氧条件下, 能够过量地从外部环境摄取磷, 在数量上超过其生理需要, 并将磷以聚合的形态储藏在菌体内, 形成高磷污泥排出系统, 达到从污水中除磷的效果。 可分为三个阶段,,即细菌的压抑放磷、过渡积累和奢量吸收。 首先将活性污泥处于短时间的厌氧状态时,储磷菌把储存的聚磷酸盐进行分解,提供能量,并 大量吸收污水中的BOD、释放磷( 聚磷酸盐水解为正磷酸盐) ,使污水中BOD 下降,磷含量升高。然后在好氧阶段,微生物利用被氧化分解所获得的能量,大量吸收在厌氧阶段释放的磷和原污水中的磷,完成磷的过渡积累和最后的奢量吸收,在细胞体内合成聚磷酸盐而储存起来,从而达到去除BOD 和磷的目的。 脱氮除磷工艺 1、传统A2/O 法即厌氧→缺氧→好氧活性污泥法。污水在流经三个不同功能分区的过程中,在不同微生物菌群作用下,使污水中的有机物、氮和磷得到去除。原污水的碳源物质(BOD)首先进入厌氧池聚磷菌优先利用污水中易生物降解有机物成为优势菌种,为除磷创造了条件,然后污水进入缺氧池,反硝化菌利用其它可利用的碳源将回流到缺氧池的硝态氮还原成氮气排入到大气中, 达到脱氮的目的。 2、氧化沟工艺是一种污水处理工艺形式,因其构造简单、易于维护管理,很快得到广泛应用。主要有Passveer单沟型、Orbal同心圆型、Carrousel循环折流型、D型双沟式和T型三沟式等。传统Passveer单沟型和Carrousel型氧化沟不具备脱氮除磷功能,但是在Carrousel氧化沟前增设厌氧池,在沟体内通过曝气装置的合理设置形成缺氧区和好氧区,形成改良型氧化沟,便具备生物脱氮除磷功能。 3、SBR 法是间歇式活性污泥法,降解有机物,属循环式活性污泥法范围,主要是好氧活性污泥,回流到反应池前部的污泥吸附区,回流污泥中硝酸盐得以反硝化在充分条件下可大量吸附进水中的有机物达到脱氮除磷的效果。 随着对脱氮除磷机理的深入探究,新工艺的不断出现及其可行性, 为水处理工艺提供了新的理论和思路。但社会的可持续发展给污水脱氮除磷处理提出了越来越高的要求,污水处理已不仅限于满足排放标准,更要考虑污水的资源化和能源化的问题,必须朝着最小的COD 氧化、最低的氮磷排放量、最少的剩余污泥排放等可持续污水处理工艺的方向发展。而生物学及其技术的发展,能使生物脱氮除磷工艺得到更大的发展。

生物脱氮除磷工艺技术的应用

生物脱氮除磷工艺技术的应用班级: 学号: 作者:

生物脱氮除磷工艺技术的应用 摘要:生物脱氮除磷技术是技术上可行、经济上合理的新的水处理技术,其在城市生活污水和工业废水处理中得到推广使用。重点介绍了生物脱氮除磷的基本理论,并对近年来我国生物脱氮除磷技术在城市生活污水处理、工业废水处理、中水回用方面的应用进展进行了综述。 关键词:生活污水处理;生物脱氮除磷;机理 前言: 随着国家经济的快速发展,水体污染也越来越严重。大量的研究已经证明,污水中的氮和磷是导致水体富营养化的主要原因之一,脱氮除磷已迫在眉睫。经过实验和工程经验表明,生物脱氮除磷工艺是消除水体富营养化的有效方法。许多发达国家对日常排放的污水中的氮和磷的含量都做了限定,并要求污水处理厂达到除氮除磷的要求。而且对于中国这么一个水资源本来就十分短缺的国家来说,严格控制含氮、磷污水的超标排放是十分必要的。 一、生物脱氮除磷的基本原理 1.1 生物脱氮的基本原理 生物脱氮通过氨化、硝化、反硝化三个步骤完成: 1、氨化反应 有机氮化合物在氨化细菌的作用下分解,转化为氨态氮,这一过程称为“氨化反应”。以氨基酸为例,其反应式为: RCHNH2COOH+O2 ? ?→ ?氨化菌 RCOOH+CO2+NH3 2、硝化反应 在硝化细菌的作用下,氨态氮进一步分解、氧化,就此分两个阶段进行。首先,在亚硝化细菌的作用下,使氨(NH4+)转化为亚硝酸氮,亚硝酸氮在硝酸菌的作用下,进一步转化为硝酸氮。 3、反硝化反应 反硝化反应是指硝酸氮和亚硝酸氮在反硝化菌的作用下,被还原为气态氮的过程。 1.2 生物除磷的基本原理 所谓生物除磷,是利用聚磷菌一类的微生物,能够过量地、在数量上超过其生理需要的、从外部环境摄取磷,并将磷以聚合物的形态贮藏在菌体内,形成富磷污泥。排出系统外,达到废水中除磷的效果。

OAO脱氮除磷工艺

OAO脱氮除磷工艺 一、工艺流程图 二、工艺流程说明 OAO工艺是在传统AO工艺之前增加一级预曝气池,改良而成的一种新型脱氮除磷工艺。废水首先进入预曝气池,不仅能够有效去除其中的大量有机物,而且提供的好氧条件还能够降解废水中的有毒有害物质,如硫化物、硫氰酸根、酚等,从而为后续的生物脱氮工艺提供相对良好的条件,保证脱氮过程的顺利进行。经预曝气池和初沉池处理的废水与回流活性污泥相混合进入反应池。活性污泥在厌氧池进行磷的释放,混合液中磷的浓度随废水在厌氧池的停留时间的增长而增加,接着废水流入好氧池,活性污泥进行磷的摄取,混合液中磷的浓度随污水在厌氧池的停留时间的增长而减少。废水最后经二沉池进行固液分离后排放,沉淀的污泥一部分进行回流,剩余的排放。 三、工艺特点 预曝气池的DO浓度和COD去除效果直接影响着后续反应的进行。曝气量过高,一方面,不可避免破坏后续缺氧环境,影响反硝化效果;另一方面,过高的溶解氧使得原水COD 的大量去除,导致后续反硝化过程碳源不足。曝气量过低,则废水中的有毒有害物质难以有效去除,对后续反应造成不理影响。因此,科学合理的控制预曝气池的曝气量,对保证良好的脱氮效果意义重大。 双泥法多点进水OAO工艺在常规的A/O前增设曝气池,可对进水中的COD进行初步降解,为后续O段硝化菌的低负荷培养创造适宜的条件和环境,提高硝化效率进而提高反硝化效率;同时通过科学分配进水点位及进水水量,为反硝化菌及聚磷菌提供充足的碳源,从而提高反硝化和除磷效率;双泥法还可有效缓和单泥法脱氮除磷对碳源的竞争。此外,二沉池可与OAO主体合建,占地面积小,投资低,一体化设置,可实现设备产业化。 四、OAO工艺的研究现状 汤清泉等通过对比,研究了AAO工艺和OAO工艺在不同有机负荷和碳氮比的条件下,对焦化废水的处理效果。试验结果表明:2种工艺处理焦化废水对有机物和含氮物质去除均表现出良好的效果;针对这两种工艺,有机负荷和废水中难降解物质的高低对有机物的去除

污水处理生物脱氮除磷工艺

污水处理生物脱氮除磷工艺 在城市生活污水处理厂,传统活性污泥工艺能有效去除污水中的BOD5和SS,但不能有效地去除污水中的氮和磷。如果含氮、磷较多的污水排放到湖泊或海湾等相对封闭的水体,则会产生富营养化导致水体水质恶化或湖泊退化,影响其使用功能。因此,在对污水中的BOD5和SS进行有效去除的同时,还应根据需要,考虑污水的脱氮除磷。其中A-A-O(厌氧-缺氧-好氧)为同步生物脱氮除磷工艺的一种。 一、工艺原理及过程 A-A-O生物脱氮除磷工艺是活性污泥工艺,在进行去除BOD、COD、SS的同时可生物脱氮除磷。 在好氧段,硝化细菌将入流污水中的氨氮及由有机氮氨化成的氨氮,通过生物硝化作用,转化成硝酸盐;在缺氧段,反硝化细菌将内回流带入的硝酸盐通过生物反硝化作用,转化成氮气逸入大气中,从而达到脱氮的目的;在厌氧段,聚磷菌释放磷,并吸收低级脂肪酸等易降解的有机物;而在好氧段,聚磷菌超量吸收磷,并通过剩余污泥的排放,将磷去除。以上三类细菌均具有去除BOD5的作用,但BOD5的去除实际上以反硝化细菌为主。污水进入曝气池以后,随着聚磷菌的吸收、反硝化菌的利用及好氧段的好氧生物分解,BOD5浓度逐渐降低。在厌氧段,由于聚磷菌释放磷,TP浓度逐渐升高,至缺氧段升至最高。在缺氧段,一般认为聚磷菌既不吸收磷,也不释放磷,TP保持稳定。在好氧段,由于聚磷菌的吸收,TP迅速降低。在厌氧段和缺氧段,NH3-N浓度稳中有降,至好氧段,随着硝化的进行,NH3-N逐渐降低。在缺氧段,由于内回流带入大量NO3-N,NO3-N瞬间升高,但随着反硝化的进行,NO3-N浓度迅速降低。在好氧段,随着硝化的进行,NO3-N浓度逐渐升高。 二、A-A-O脱氮除磷系统的工艺参数及控制 A-A-O生物脱氮除磷的功能是有机物去除、脱氮、除磷三种功能的综合,因而其工艺参数应同时满足各种功能的要求。如能有效地脱氮或除磷,一般也能同时高效地去除BOD5。但除磷和脱氮往往是相互矛盾的,具体体现的某些参数上,使这些参数只能局限在某一狭窄的范围内,这也是A-A-O系统工艺系统控制较复杂的主要原因。 1.F/M和SRT。完全生物硝化,是高效生物脱氮的前提。因而,F/M(污泥负荷)越低,SRT(污泥龄)越高。脱氮效率越高,而生物除磷则要求高F/M低SRT。A-A-O生物脱氮除磷是运行较灵活的一种工艺,可以以脱氮为重点,也可以以除磷为重点,当然也可以二者兼顾。如果既要求一定的脱氮效果,也要求一定的除磷效果,F/M一般应控制在0.1-0.18㎏ BOD5/(kgMLVSS·d),SRT一般应控制在8-15d。

废水的生物脱氮除磷新工艺的设想

收稿日期:2002—10—03 作者简介:付春平(1975—),女,黑龙江肇州人,重庆大学2001级在读硕士,研究方向为水污染控制理论与技术。 废水的生物脱氮除磷新工艺的设想 付春平1,钟成华2,邓春光2 (1.重庆大学城市建设与环境工程学院,重庆400045;2.重庆市环境科学研究院,重庆400020) 摘 要:结合废水生物脱氮除磷机理和影响因素,在对几种典型脱氮除磷工艺氮、磷去除率进行比较的基础上,解析了一些典型工艺除氮除磷不足之处。根据重庆城市污水水质实际情况和地形的特点,设想一种新的生物脱氮除磷工艺,从而弥补传统工艺的不足。可望提高系统的脱氮和除磷效率,达到更好的脱氮除磷的目的,减少对水体的污染。 关键词:生物脱氮除磷;新工艺;设想 中图分类号:X 522 文献标识码:A 文章编号:1001-2141(2003)-0039-04 随着工业的发展,人民生活水平的提高,城市污水产生量逐日增加,由于城市排水系统的不完善,成分较为复杂的城市综合污水,造成环境污染。重庆地处长江三峡库区,氮磷等营养元素大量入库,将对库区的生态环境造成威胁。因此,探讨和研究适合三峡库区的脱氮除磷实用技术,防止水库富营养化,是十分必要的。 1 水体富营养化状况评价指标 通常水体富营养化指标主要是氮、磷、叶绿素、透 明度、高锰酸钾等指数。一般认为水体中氮、磷为主要控制因素,当总磷浓度高于0.02m g L ,总氮浓度高于0.2~0.5m g L ,即被视为水体富营养化。 2 生物脱氮除磷的基本原理及其影响因素 2.1 生物脱氮的基本原理2.1.1 氨化反应 有机氮化合物在氨化细菌的作用下分解,转化为 氨态氮,这一过程称为“氨化反应”。以氨基酸为例,其反应式为: RCHN H 2COOH +O 2 氨化菌 RCOOH +CO 2+ N H 3 2.1.2 硝化反应 在硝化细菌的作用下,氨态氮进一步分解、氧化, 就此分两个阶段进行。首先,在亚硝化细菌的作用下,使氨(N H +4)转化为亚硝酸氮,反应式为: N H + 4+3 2O 2亚硝化菌 NO -2+2H 2O +2H + -?F (?F =278.42KJ ) 亚硝酸氮在硝酸菌的作用下,进一步转化为硝酸氮,其反应式为: NO -2+1 2O 2硝化菌 NO -3-?F (?F =72.27KJ ) 硝化反应总反应式为: N H + 4+2O 2NO -3+H 2O +2H + -?F (?F =351KJ ) 2.1.3 反应正常进行应保持的环境条件 ①耗氧条件,满足“硝化需氧量”的要求并保持一定的碱度。 ②混合液中有机底物含量不应过高,BOD 5值应在15~20m g l 以下。2.1.4 进行硝化反应应当保持的各项指标 ①溶解氧:在进行硝化反应的曝气池内,溶解氧含量不能低于1m g L 。 ②温度:硝化反应的适宜温度是20~30℃以下,15℃时硝化速度下降,5℃完全停止。 ③pH 值:最佳pH 值为8.0~8.4。④生物固体平衡停留时间:一般对(Ηc )N 的取值,至少为硝化菌世代时间的2倍以上,温度低,(Ηc )N 取值应明显提高。 ⑤重金属及有害物质:重金属,高浓度的N H +4-N ,NO -x N 有机物及络合阳离子等对硝化反应产生抑 制作用。 2.1.5 反硝化 反硝化反应是指硝酸氮(NO -3-N )和亚硝酸氮(NO -2-N )在反硝化菌的作用下,被还原为气态氮(N 2)的过程。 第25卷 第2期 重 庆 环 境 科 学 2003年2月

污水处理工艺脱氮除磷基本原理

污水处理生物脱氮除磷基本原理 国外从六十年代开始系统地进行了脱氮除磷的物理处理方法研究,结果认为物理法的缺点是耗药量大、污泥多、运行费用高等。因此,城市污水处理厂一般不推荐采用。从七十年代以来,国外开始研究并逐步采用活性污泥法生物脱氮除磷。我国从八十年代开始研究生物脱氮除磷技术,在八十年代后期逐步 实现工业化流程。目前,常用的生物脱氮除磷工艺有A2/O法、SBR法、氧化沟法等。 ?生物脱氮原理 生物脱氮是利用自然界氮的循环原理,采用人工方法予以控制,首先,污水中的含氮有机物转化成氨氮,而后在好氧条件下,由硝化菌左右变成硝酸盐氮,这阶段称为好氧硝化。随后在缺氧条件下,由反硝化菌作用,并有外加碳源提供能量,使硝酸盐氮变成氮气逸出,这阶段称为缺氧反硝化。整个生物脱氮过程就是氮的分解还原反应,反应能量从有机物中获取。在硝化和反硝化过程中,影响其脱氮效率的因素是温度、溶解氧、PH值以及碳源,生物脱氮系统中,硝化菌增长速度较缓慢,所以,要有足够的污泥泥龄。反硝化菌的生长主要是在缺氧条件下进行,并且要用充裕的碳源提供能量,才可促使反硝化作用顺利进行。 由此可见,生物脱氮系统中硝化与反硝化反应需要具备如下条件: 硝化阶段:足够的的溶解氧,DO值在2mg/L以上,合适的温度,最好在20℃,不能低于10℃,,足够长的污泥泥龄,合适的PH条件。 反硝化阶段:硝酸盐的存在,缺氧条件DO值在0.2mg/L左右,充足碳源(能源),合适的PH条件。 生物脱氮过程如图5—1所示。 反硝化细菌 +有机物(氨化作用)(硝化作用)(反硝化作用)

?生物除磷原理 磷常以磷酸盐(H 2PO 4 -、HPO 4 2-和H 2 PO 4 3-)、聚磷酸盐和有机磷的形式存在于废水中,生物除 磷就是利用聚磷菌,在厌氧状态释放磷,在好氧状态从外部摄取磷,并将其以聚合形态储藏在体内,形成高磷污泥,排出系统,达到从废水中除磷的效果。 生物除磷主要是通过排出剩余污泥而去除磷的,因此,剩余污泥多少将对除磷效果产生影响,一般污泥龄短的系统产生的剩余污泥量较多,可以取得较高的除磷效果。有报道称,当泥龄为30d时,除磷率为40%,泥龄为17d时,除磷率为50%,而当泥龄降至5d时,除磷率达到87%。 大量的试验观测资料已经完全证实,再说横无除磷工艺中,经过厌氧释放磷酸盐的活性污泥,在好氧状态下有很强的吸磷能力,也就是说,磷的厌氧释放是好氧吸磷和除磷的前提,但并非所有磷的厌氧释放都能增强污泥的好氧吸磷,磷的厌氧释放可以分为两部分:有效释放和无效释放,有效释放是指磷被释放的同时,有机物被吸收到细胞内,并在细胞内储存,即磷的释放是有机物吸收转化这一耗能过程的偶联过程。无效释放则不伴随有机物的吸收和储存,内源损耗,PH变化,毒物作用引起的磷的释放均属无效释放。 在除磷系统的厌氧区中,含聚磷菌的会留污泥与污水混合后,在初始阶段出现磷的有效释放,随着时间的延长,污水中的易降解有机物被耗完以后,虽然吸收和储存有机物的过程基本上已经停止,但微生物为了维持基础生命活动,仍将不断分解聚磷,并把分解产物(磷)释放出来,虽然此时释磷总量不断提高,但单位释磷量所产生吸磷能力随无效释放量的加大而降低。一般来说,污水污泥混合液经过2小时厌氧后,磷的释放已经甚微,在有效释放过程中,磷的释放量与有机物的转化量之间存在着良好的相关性,磷的厌氧释放可使污泥的好氧吸磷能力大大提高,每厌氧释放1mgP,在好氧条件下可吸收2.0~2.24mgP,厌氧时间加长,无效释放逐渐增加,平均厌氧释放1mgP,所产生的好氧吸磷能力降至1mgP以下,甚至达到0.5mgP。因此,生物除磷并非厌氧时间越长越好,同时在运行管理中要尽量避免PH的冲击,否则除磷能

生物脱氮除磷工艺

生物脱氮除磷工艺 第一节 概述 一、营养元素的危害 氮素物质对水体环境和人类都具有很大的危害,主要表现在以下几个方面: 氨氮会消耗水体中的溶解氧; 氨氮会与氯反应生成氯胺或氮气,增加氯的用量; 含氮化合物对人和其它生物有毒害作用:① 氨氮对鱼类有毒害作用;② NO 3- 和NO 2-可被转化为亚硝胺——一种“三致”物质;③ 水中NO 3-高,可导致婴儿患变性血色蛋白症——“Bluebaby ”; 加速水体的“富营养化”过程;所谓“富营养化”就是指水中的藻类大量繁殖而引起水质恶化,其主要因子是N 和P (尤其是P );解决的办法主要就是要严格控制污染源,降低排入水环境的废水中的N 、P 含量;对于城市废水来说,利用传统的活性污泥法进行处理,对N 的去除率一般只有40%左右,对磷的去除率一般只有20~30%。 二、脱氮的物化法 1、氨氮的吹脱法: -++?+OH NH O H NH 423 2 O H H Cl NH HOCl NH 224++→+++ +-+++→+H O H Cl N HOCl Cl NH 332222 每mgNH 4+--N 被氧化为氮气,至少需要7.5mg 3、选择性离子交换法去除氨氮: 采用斜发沸石作为除氨的离子交换体。 出水 折点加氯法脱氯工艺流程

三、除磷的物化法(混凝沉淀法) 1、铝盐除磷 4343AlPO PO Al →+++ 一般用Al 2(SO 4)3,聚氯化铝(PAC )和铝酸钠(NaAlO 2) 2、铁盐除磷:FePO 4 Fe(OH)3 一般用FeCl 2、FeSO 4 或 FeCl 3 Fe 2(SO 4)3 3、石灰混凝除磷 O H PO OH Ca HPO OH Ca 23452423))((345+→++--+ 向含磷的废水中投加石灰,由于形成OH -,污水的pH 值上升,磷与Ca 2+反应,生成羟磷灰石。 第二节 生物脱氮工艺与技术 一、活性污泥法脱氮传统工艺 1、Barth 提出的三级活性污泥法流程: 第一级曝气池的功能:① 碳化——去除BOD 5、COD ;② 氨化——使有机氮转化为氨氮; 第二级是硝化曝气池,投碱以维持pH 值; 第三级为反硝化反应器,可投加甲醇作为外加碳源或引入原废水。 该工艺流程的优点是氨化、硝化、反硝化分别在各自的反应器中进行,反应速率较快且较彻底;但七缺点是处理设备多,造价高,运行管理较为复杂。 2、两级活性污泥法脱氮工艺

脱氮除磷工艺汇总

脱氮除磷工艺汇总 MBR工艺脱氮除磷 MBR就是一种结合膜分离与微生物降解技术的高效污水处理工艺。在反应器内,一方面,膜组件将泥水高效分离,促使出水水质改善;另一方面,污泥停留时间(SRT)与水力停留时(HRT)在反应器内相互独立,可提高污泥浓度;此外,反应器内较长的SRT可使增殖缓慢的某些特殊菌(如自养硝化菌等)在活性污泥中出现,而膜组件又能将这些菌持留,从而使MBR处理效果得以改善。 MBR工艺具有一定局限性,对于生活污水,其仅依靠MBR本身其脱氮除磷能力只能达到40%至60%左右的去除率;对于工业废水,其对难降解有机物的去除率并没有得到太大改善。所以MBR工艺一般与SBR系列/AAO等工艺组合使用。 五种常见组合工艺: SBR-MBR工艺 A2O-MBR工艺 3A-MBR工艺 A2O/A-MBR工艺 A(2A)O-MBR工艺 SBR-MBR工艺: 将SBR与MBR相结合形成的SBR-MBR工艺,除了具有一般MBR的优点外,对于膜组件本身与SBR工艺两种程序运行都互有帮助。由于膜组件的截留过滤作用,反应中的微生物能最大限度地增长,利于世代时间较长的硝化及亚硝化细菌的生长繁殖,因此,污泥的生物活性高,吸附与降解有机物的能力较强,同时也具有较好的硝化能力。此外,SBR式的工作方式为除磷菌的生长创造了条件,同时也满足了脱氮的需要,使得单一反应器内实现同时高效去除氮磷及有机物成为可能。与传统SBR系统相比,SBR-MBR在反应阶段利用膜分离排水,可以减少传统SBR 的循环时间;同时,序批式的运行方式可以延缓膜污染。 A2O-MBR工艺: 由A2O工艺与MBR膜分离技术结合而成的具有同步脱氮除磷功能的A2O-MBR工艺,可进一步拓展MBR的应用范畴。在该工艺中设置有两段回流,一段就是膜池的混

AAO脱氮除磷实用工艺课程设计

课程设计 课程名称水污染控制工程 题目名称A/A/O脱氮除磷工艺课程设计学生学院环境科学与工程学院 专业班级 07环境工程(1)班 学号 学生姓名 指导教师 20010 年 7 月 6 日

一.基本原理 厌氧-缺氧-好氧(Anaerobic-Anoxic-Oxic,简称A/A/O或A2/O)工艺由厌 氧池、缺氧池、好氧池串联而成,是A 1/O与A 2 /O流程的结合。是20世纪70年 代由美国专家在厌氧-好氧除磷工艺基础上开发出来的。该工艺在厌氧-好氧除磷工艺中加入缺氧池,将好氧池流出的一部分混合液流至缺氧池的前端,以达到反硝化脱氮的目的。工艺流程图如下: 污水出水 回流污泥剩余污泥 污水进入厌氧反应区,同时进入的还有从二沉池回流的活性污泥,聚磷菌在厌氧环境下释磷,同时转化易降解COD、VFA为PHB,部分氨氮因细胞的合成而去除。 污水经过第一厌氧反应器以后进入缺氧反应器,本反应器的首要功能是进行脱氮。硝态氮通过混合液内循环由好氧反应器传输过来,通畅内回流量为2至4倍原污水量,部分有机物在反硝化菌的作用下利用硝酸盐作为电子受体而得到降解去除,磷基本无变化。 混合液从缺氧反应区进入好氧反应区,混合液中的COD浓度已基本接近排放标准,在好氧反应区除进一步降解有机物外,主要进行氨氮的硝化和磷的吸收,混合液中的硝态氮回流至缺氧区,污泥中过量吸收的磷通过剩余污泥排除。 厌氧-缺氧-好氧工艺可以同时完成有机物的去除、反硝化脱氮、除磷的功能,脱氮的前提是氨氮应完全硝化,好氧池能完成这一功能,缺氧池能完成脱氮的功能,厌氧池和好氧池联合完成除磷功能。 二.工艺特点 (1)厌氧、缺氧、好氧三种不同的环境条件和不同类型的微生物菌群的有机结合,能同时具有去除有机物、脱氮除磷的功能。 厌氧池缺氧池好氧池沉淀池

脱氮除磷工艺发展

污水脱氮除磷工艺的概述与展望 摘要:近年来,城市污水(以城市生活污水为主)中氮磷营养物的排放使受纳水体中藻类等植物大量繁殖,导致水体富营养化问题越来越严重,对城市污水进行脱氮除磷处理是防止水体富营养化的一种重要措施。目前来看,污水脱氮除磷的主要方法有物理方法、化学方法及生物方法。与物理法、化学法相比,生物法具有适用范围广、投资及运行费用低、效果稳定、综合处理能力强等优点,已成为污水脱氮除磷的最佳选择。本文对现有的生物脱氮除磷工艺进行了系统的介绍和分析,并对今后的发展方向作了展望。 关键词:城市污水,脱氮除磷,工艺技术 1.城市污水脱氮除磷现状 据近年来环境质量公报发布的消息,水体中的主要污染物为含氮磷的有机物。这些污染物进一步加剧了水资源短缺的矛盾,对可持续发展战略的实施带来了严重的负面影响。目前含氮磷污水的处理技术可分为物理法、化学法、物理化学法和生物法。由于化学法与物理化学法成本高,对环境易造成二次污染,所以污水生物脱氮除磷技术是20世纪70年代美国和南非等国的水处理专家们在化学、催化和生物方法研究的基础上提出的一种经济有效的处理技术,该技术由于处理过程可靠,处理成本低,操作管理方便等优点而被广泛使用。微生物脱氮除磷技术按微生物在系统中的不同状态,可分为活性污泥法和生物膜法,通过设立好氧区、缺氧区和厌氧区来实现硝化、反硝化、释磷和放磷以达到脱氮除磷的目的。具体的生物脱氮除磷工艺主要有:A2/O法同步脱氮除磷工艺、生物转盘同步脱氮除磷工艺、SBR工艺、氧化沟工艺、亚硝酸盐生物脱氮工艺、AB法及其变型工艺等。 污水经二级生化处理后,氮的去除率仅为20%~30%左右,磷的去除率则更低。因此脱氮除磷问题在二级处理普及率较高的工业化国家中受到了高度的重视。我国污水厂大多数以二级生物处理为主。二级生物处理厂去除对象主要是和SS,仅有极少数厂(如广州犬坦沙污水厂)有脱氮除磷功能。我国水体富营BOD 5 养化日趋严重,其原因一是城市污水处理率低;二是传统的活性污泥法仅能去除城市污水中20%~40%的氮以及5%~20%的磷。因此,大量兴建城市二级生物处理厂,不但投资大,运行费用高,并且脱氮除磷的效率也并不高。 在实际的工程设计中,根据受纳水体的要求和其他一些实际情况,生物脱氮除磷工艺可以分成以下几个层次 (1)以去除有机物、氨氮为目的的工艺。因对总氮无要求,可以采用生物硝

污水处理中的脱氮除磷工艺

污水处理中的脱氮除磷工艺 摘要:在陈述城市污水生物脱氮除磷机理的基础下,简单分析生物脱氮除磷的处理工艺。 关键词:脱氮除磷;机理;工艺 1 前言 城市污水中的氮、磷主要来自生活污水和部分工业废水。氮、磷的主要危害:一是使受纳水体富营养化;二是影响水源水质, 增加给水处理成本;三是对人和生物产生毒害。上述 危害严重制约了城市水环境正常功能的发挥, 并使城市缺水状况加剧,而且随着人民生 活水体的提高和环境的恶化,对水质的要求也越来越高。为了达到较好的脱氮除磷效果,环境工作者对一些传统工艺进行了改进或设计出新工艺,本文简单介绍一些脱氮除磷工艺。 2 生物脱氮原理【1】 一般来说, 生物脱氮过程可分为三步: 第一步是氨化作用, 即水中的有机氮在氨化细菌的作用下转化成氨氮。在普通活性污泥法中, 氨化作用进行得很快, 无需采取特殊的措施。第二步是硝化作用, 即在供氧充足的条件下, 水中的氨氮首先在亚硝酸菌的作用下被氧化成亚硝酸盐, 然后再在硝酸菌的作用下进一步氧化成硝酸盐。为防止生长缓慢的亚硝酸细菌和硝酸细菌从活性污泥系统中流失, 要求很长的污泥龄。第三步是反硝化作用, 即硝化产生的亚硝酸盐和硝酸盐在反硝化细菌的作用下被还原成氮气。这一步速率也比较快, 但由于反硝化细菌是兼性厌氧菌, 只有在缺氧或厌氧条件下才能进行反硝化, 因此需要为其创造一个缺氧或厌氧的环境( 好氧池的混合液回流到缺氧池) 。反应方程式如下: ( 1) 硝化反应: 硝化反应总反应式为: ( 2) 反硝化反应:

另外, 由荷兰Delft 大学Kluyver 生物技术实验室试验确认了一种新途径, 称为厌氧氨( 氮) 氧化。即在厌氧条件下,以亚硝酸盐作为电子受体,由自养菌直接将氨转化为氮, 因而不必额外投加有机底物。反应式为:NH4+NO2→N2+2H2O 3 生物除磷原理【1】 所谓生物除磷, 是利用聚磷菌一类的微生物, 在厌氧条件下释放磷。而在好氧条件下, 能够过量地从外部环境摄取磷, 在数量上超过其生理需要, 并将磷以聚合的形态储藏在菌体内, 形成高磷污泥排出系统, 达到从污水中除磷的效果。 生物除磷过程可分为3 个阶段,即细菌的压抑放磷、过渡积累和奢量吸收。首先将活性污泥处于短时间的厌氧状态时,储磷菌把储存的聚磷酸盐进行分解,提供能量,并大量吸收污水中的BOD、释放磷( 聚磷酸盐水解为正磷酸盐) ,使污水中BOD 下降,磷含量升高。然后在好氧阶段,微生物利用被氧化分解所获得的能量,大量吸收在厌氧阶段释放的磷和原污水中的磷,完成磷的过渡积累和最后的奢量吸收,在细胞体内合成聚磷酸盐而储存起来,从而达到去除BOD 和磷的目的。反应方程式如下: ( 1) 聚磷菌摄取磷: ADP+H3PO4+能量→ATP+H2O ( 2) 聚磷菌的放磷: ATP+H2O→ADP+H3PO4+能量 4.脱氮除磷工艺 4.1 AB法【2】 AB法污水处理工艺是一种新型两段生物处理工艺,是吸附生物降解法的简称。该工艺将高负荷法和两段活性污泥法充分结合起来,不设初沉池,A、B两段严格分开,形成各自的特征菌群,这样既充分利用了上述两种工艺的优点,同时也克服了两者的缺点。所以

2019年脱氮除磷工艺发展

2019年脱氮除磷工艺发展 污水脱氮除磷工艺的概述与展望 摘要:近年来,城市污水(以城市生活污水为主)中氮磷营养物的排放使受纳水体中藻类等植物大量繁殖,导致水体富营养化问题越来越严重,对城市污水进行脱氮除磷处理是防止水体富营养化的一种重要措施。目前来看,污水脱氮除磷的主要方法有物理方法、化学方法及生物方法。与物理法、化学法相比,生物法具有适用范围广、投资及运行费用低、效果稳定、综合处理能力强等优点,已成为污水脱氮除磷的最佳选择。本文对现有的生物脱氮除磷工艺进行了系统的介绍和分析,并对今后的发展方向作了展望。 关键词:城市污水,脱氮除磷,工艺技术 1.城市污水脱氮除磷现状 据近年来环境质量公报发布的消息,水体中的主要污染物为含氮磷的有机物。这些污染物进一步加剧了水资源短缺的矛盾,对可持续发展战略的实施带来了严重的负面影响。目前含氮磷污水的处理技术可分为物理法、化学法、物理化学法和生物法。由于化学法与物理化学法成本高,对环境易造成二次污染,所以污水生物脱氮除磷技术是20世纪70年代美国和南非等国的水处理专家们在化学、催化和生物

方法研究的基础上提出的一种经济有效的处理技术,该技术由于处理过程可靠,处理成本低,操作管理方便等优点而被广泛使用。微生物脱氮除磷技术按微生物在系统中的不同状态,可分为活性污泥法和生物膜法,通过设立好氧区、缺氧区和厌氧区来实现硝化、反硝化、释磷和放磷以达到脱氮除磷的目的。具体的生物脱氮除磷工艺主要 有:A2/O法同步脱氮除磷工艺、生物转盘同步脱氮除磷工艺、SBR工艺、氧化沟工艺、亚硝酸盐生物脱氮工艺、AB法及其变型工艺等。污水经二级生化处理后,氮的去除率仅为20%~30%左右,磷的去除率则更低。因此脱氮除磷问题在二级处理普及率较高的工业化国家中受到了高度的重视。我国污水厂大多数以二级生物处理为主。二级生物处理厂去除对象主要是BOD5和SS,仅有极少数厂(如广州犬坦沙污水厂)有脱氮除磷功能。我国水体富营 养化日趋严重,其原因一是城市污水处理率低;二是传统的活性污泥法仅能去除城市污水中20%~40%的氮以及5%~20%的磷。因此,大量兴建城市二级生物处理厂,不但投资大,运行费用高,并且脱氮除磷的效率也并不高。 在实际的工程设计中,根据受纳水体的要求和其他一些实际情况,生物脱氮除磷工艺可以分成以下几个层次

活性砂滤池脱氮除磷工艺

李俊生,活性砂过滤器在城镇污水厂节能减排中的应用.中国给水排水,2010,26(1):57~59 李俊生采用活性砂过滤器应用于某市污水厂二沉池出水,结果表明,该设备对SS和TP去除效果较好,平均去除率能高达80%以上,但对氨氮去除作用有限,建议当原出水厂出水氨氮浓度大大超过一级A标准时,需采用其他强化脱氮工艺进行处理。 尉凤珍,李新凯,訾金伟.连续流砂反硝化过滤器在污水深度处理中的应用.中国给水排水,2011,27(5):86~88 尉凤珍等人于2009年5月~7月在某污水处理厂进行了连续流砂反硝化过滤器的深度处理中试试验,试验期间污水处理厂二沉池出水TN水平在9.68~19.8mg/l之间,为使TN<10mg/l,在试验中添加了乙酸和乙酸钠作为碳源,结果表明,连续流砂反硝化器对TN去除较高,达到预期要求。其中,设备运行参数如下: 处理水量:4~10m3/h 滤速;5.7~14.3m/h 进入提砂泵的空压:0.4~0.5MPa 清洗水流量:总进水量1%~3% 滤料直径:1.2~2.0mm 石英砂 滤料装填量:2.5t 李微,梁建勋,裴剑等.气提式连续砂滤池生物预处理试验研究,给水排水,2011,37(11):42~45 李微等人采用了上海帕克环保公司提供的AS-500-40标准规格的气提式连续砂滤池进行了中试研究,试验进水为东江南支流,最大氨氮浓度达 5.97mg/l,设备的设计参数主要如下: 砂床截面积:5m2; 砂层厚度:2.5m、3.2m;石英砂粒径1.2~2mm; 气提量:0.04m3/(m3d); 气水比:0.2~0.3;

床层阻力:0.3~0.5m; 滤速:10~12m/h; 空床接触时间:12.5~21min。 试验过程中,原水氨氮基本在4mg/l以下,去除率较高,一是由于温度较高,二是中试进行一段时间后,试验将气提式连续砂滤池有效砂床高度从2.5m加高至3.2m,增加了硝化微生物量,另外试验中及时调整了气水比、气提量等工艺参数,这些都使得气提式连续砂滤池出水保持了相对理想的氨氮去除效果,平均去除率为70%,即进水氨氮≤3mg/l时,经过气提式连续砂滤池处理,出水氨氮平均在0.5mg/l以下。 王阿华,城镇污水处理厂提标改造技术路线探讨.水工业市场.2010,9:8~11 对于悬浮物浓度不是很高的原水,应根据实际进水水质情况,适当提高初沉池表面负荷,缩短停留时间,通常为0.5~1.0h为宜;采用运行优化技术后,原有生物池处理能力仍无法满足尾水排放标准,且新增池容困难时,可在生物池中投加填料;曝气设备能力允许时,可通过提高溶解氧浓度,提高溶解氧对生物絮体的穿透力,维持较高的硝化速率;冬季低温时,宜在秋季提前提高整个污水处理系统的活性污泥总量,增加实际运行泥龄,累积硝化菌和反硝化菌总量。 陈晓安,桂丽娟.成熟污水处理厂提标改造工程实例.工业用水与废水,2011,42(2):82~83 本工程采取了气水冲洗石英砂滤料滤池对原污水处理厂进行提标改造,其中生物强化处理措施包括了增加曝气量和内回流量核算两部分,控制好氧区DO浓度在2mg/l以上,缺氧区控制在0.2~0.5mg/l,厌氧区控制在0.2mg/l以内;污水处理厂N的去除主要在二级处理中实现,设计进水TN质量浓度未35mg/l,设计出水TN质量浓度为15mg/l/,去除率为57%,生物池内回流比为130%。 陈立,李成江,郭兴方等.城镇污水处理厂提标改造的几点思考.水处理技术,2011,11(9):120~122 外投碳源时,相对来说乙酸钠适应性强,效果优,而甲醇适应期长,价格优,二者作为外加碳源较为合适;外加碳源可优先考虑小分子有机酸、醇类和糖类的工业废水如酒业废水、制药废水等,不足部分再辅以乙酸盐、甲醇、乙醇等商业碳源。

脱氮除磷工艺原理及方法比较

1.水污染现状 自从我们进入和谐社会以来,随着科学和经济的发展,资源严重浪费、环境重度污染等一些问题逐渐突出。由于我国经济发展模式与环境承受能力不相融合,导致现在我国大部分水体造成严重污染。在我国坚持走可持续发展的道路上,水资源的污染和浪费已经成为我国推进现代化建设和可持续发展的绊脚石。防止水资源环境进一步被污染和治理被污染的水资源环境,早就成为我国目前最需要处理的棘手问题之一。水污染的现状也是触目惊心。 2.脱氮除磷工艺原理及方法比较 生物脱氮原理由同化作用、氨化作用、硝化作用、反硝化作用四个步骤组成。在污水生物处理过程中,一部分氮(氮氨或有机氮)被同化成微生物细胞的组分;氨化作用将有机氮化合物在氨化菌的作用下,分解、转化为氨氮;硝化作用实际上是由种类非常有限的自养微生物完成的,该过程分两步:氨氮首先由亚硝化单胞菌氧化为亚硝酸氮,继而亚硝酸氮再由硝化杆菌氧化为硝酸氮;反硝化作用是由一群异养型微生物在缺氧的条件下完成的生物化学过程。生物除磷原理过程中,在好氧条件下细菌吸收大量的磷酸盐,磷酸盐作为能量的储备;在厌氧状态下吸收有机底物并释放磷。 现在,广泛应用的生物脱氮除磷工艺方法有氧化沟法、SBR法、A2/O法等。 ①氧化沟又称连续循环反应器,是20世纪50年代由荷兰的公共卫生所(TNO)开发出来的。氧化沟是常规活性污泥法的一种改型和发展,是延时曝气法的一种特殊形式。其主要功能是供氧;保证其活性污泥呈悬浮状态,是污水、空气、和污泥三者充分混合与接触;推动水流以一定的流速(不低于0.25m/s)沿池长循环流动,这对保持氧化沟的净化功能具有重要的意义。 氧化沟具有出水水质好、抗冲击负荷能力强、除磷脱氮效率高、污泥易稳定、能耗省、便于自动化控制等优点。但是,在实际的运行过程中,仍存在一系列的问题,如污泥膨胀问题、泡沫问题、污泥上浮问题、流速不均及污泥沉积问题。 ②?间歇式活性污泥法简称SBR工艺,一个运行周期可分为五个阶段即:进水、反应、沉淀、排水、闲置。这种一体化工艺的特点是工艺简单,由于只有一个反应池,不需二沉池、回流污泥及设备,一般情况下不设调节池,多数情况下可省去初沉池。 SBR法?工艺流程:?污水?→?一级处理→?曝气池?→?处理水? 特点有:大多数情况下,无设置调节池的心要;SVI值较低,易于沉淀,一般情况下不会产生污泥膨胀;通过对运行方式的调节,进行除磷脱氮反应;自动化程度较高;得当时,处理效果优于连续式;单方投资较少;占地规模较大,处理水量较小。 ③?A2/O法即厌氧一缺氧一好氧活性污泥法。污水在流经厌氧、缺氧、好氧三个不同功能分区的过程中,在不同微生物菌群的作用下,使污水中的有机物、N、P得到去除。A2/O法是最简单的同步除磷脱氮工艺,总水力停留时问短,在厌?氧缺氧、好氧交替运行的条件下,可抑制丝状菌的繁殖,克服污泥膨胀,SVI一般小于100,有利于处理后的污水与污泥分离,

生物脱氮除磷工艺中的矛盾

5,生物脱氮除磷工艺中的矛盾 (1)泥龄问题 作为硝化过程的主休,硝化菌通常都属于自养型专性好氧菌.这类微生物的一个突出特点是繁殖速度慢,世 代时间较长.在冬季,硝化菌繁殖所需世代时间可长达30d以上;即使在夏季,在泥龄小于5d的活性污泥中硝 化作用也十分微弱.聚磷菌多为短世代微生物,为探讨泥龄对生物除磷工艺的影响,Rensink等(1985年)[23]用表2归纳了以往的研究成果,并指出降低泥龄将会提高系统的除磷效率. 泥龄与除磷率关系表2 泥龄/d 30 17 5.3 4.6 磷去除率/% 40 50 87.5 91 由表2可见聚磷微生物所需要泥龄很短.泥龄在3.0d左右时,系统仍能维持较好的除磷效率.此外,生物除磷 的唯一渠道是排除剩余污泥.为了保证系统的除磷效果就不得不维持较高的污泥排放量,系统的泥龄也不得 不相应的降低.显然硝化菌和聚磷菌在泥龄上存在着矛盾.若泥龄太高,不利于磷的去除;泥龄太低,硝化菌 无法存活,且泥量过大也会影响后续污泥处理.针对此矛盾,在污水处理工艺系统设计及运行中,一般所采用 的措施是把系统的泥龄控制在一个较窄范围内,兼顾脱氮与除磷的需要.这种调和,在实践中被证明是可行 的. 为了能够充分发挥脱氮与降磷两类微生物的各自优势,可采取的其它对策大致上有两类. 第一类是设立中间沉淀池,搞两套污泥回流系统使不同泥龄的微生物居于前后两级(见图4),第一级泥龄很短,主要功能是除磷;第二级泥龄较长,主要功能是脱氮.该系统的优点是成功地把两类泥龄不同的微生物分开.但是,这类工艺也是存在局限性.第一,两套污泥回流系统,再加上中间沉淀池和内循环,使该类工艺流程 长且比较复杂.第二,该类工艺把原来常规A2/O(见图5)工艺中同步进行的吸磷和硝化过程分离开来,而各 自所需的反应时间又无法减少,因而导致工艺总的停留时间变长.第三,该工艺的第二级容易发生碳源不足 的情况,致使脱氮效率大受影响.此外,由于吸磷和硝化都需要好氧条件,工艺所需的曝气量也可能有所增加. 第二类方法是在A2/O工艺好氧区的适当位置投放填料.由于硝化菌可栖息于填料表面不参与污泥回流,故 能解决脱氮除磷工艺的泥龄矛盾.这种作法的优点是既达到了分离不同泥龄微生物的目的,又维持了常规 A2/O工艺的简捷特点.但是该工艺也必须解决好以下几个问题:①投放填料后必须给悬浮性活性污泥以优先 的和充分的增殖机会,防止生物膜越来越多而MLSS越来越少的情况发生;②要保证足够的搅拌强度,防止因 填料截留作用致使污泥在填料表面间大量结团;③填料投放量必须适中,投放量太少难以发挥作用,太多则难免出现对污泥的截留.此外,填料的类型和布置方式都应作慎重考虑.

生物脱氮除磷工艺

生物脱氮除磷工艺

生物脱氮除磷工艺 第一节概述 一、营养元素的危害 氮素物质对水体环境和人类都具有很大的危害,主要表现在以下几个方面: 氨氮会消耗水体中的溶解氧; 氨氮会与氯反应生成氯胺或氮气,增加氯的用量; 含氮化合物对人和其它生物有毒害作用:①氨氮对鱼类有毒害作用;②NO3-和NO2-可被转化为亚硝胺——一种“三致”物质;③水中NO3-高,可导致婴儿患变性血色蛋白症——“Bluebaby”; 加速水体的“富营养化”过程;所谓“富营养化”就是指水中的藻类大量繁殖而引起水质恶化,其主要因子是N和P(尤其是P);解决的办法主要就是要严格控制污染源,降低排入水环境的废水中的N、P含量;对于城市废水来说,利用传统的活性污泥法进行处理,对N的去除率一般只有40%左右,对磷的去除率一般只有20~30%。 二、脱氮的物化法

1、氨氮的吹脱法: - ++?+OH NH O H NH 4 2 3 2、折点加氯法去除氨氮: O H H Cl NH HOCl NH 2 2 4 ++→++ + + - +++→+H O H Cl N HOCl Cl NH 3322 2 2 每mgNH 4+ --N 被氧化为氮气,至少需要7.5mg 的氯。 3、选择性离子交换法去除氨氮: 采用斜发沸石作为除氨的离子交换体。 调节pH 值 沉淀池 吹脱塔 出水 排泥 进水 石灰或石灰乳 吹脱法脱氨处理流程 NaOC 废折点加活性炭 吸附塔出折点加氯法脱 再生再生液 脱氯 废 澄清或沸石离子 交换床 NH 3或 离子交换法脱 出

三、除磷的物化法(混凝沉淀法) 1、铝盐除磷 4 343AlPO PO Al →++ + 一般用Al 2(SO 4)3,聚氯化铝(PAC )和铝酸钠 (NaAlO 2) 2、铁盐除磷:FePO 4 Fe(OH)3 一般用FeCl 2、FeSO 4 或 FeCl 3 Fe 2(SO 4)3 3、石灰混凝除磷 O H PO OH Ca HPO OH Ca 2 3 45 24 23))((345+→++-- + 向含磷的废水中投加石灰,由于形成OH -,污水的 pH 值上升,磷与Ca 2+反应,生成羟磷灰石。 第二节 生物脱氮工艺与技术 一、活性污泥法脱氮传统工艺 1、Barth 提出的三级活性污泥法流程:

污水处理脱氮除磷工艺介绍及对比分析

污水处理脱氮除磷工艺介绍及对比分析 2020年9月6日星期日

目录 一、生物脱氮 (3) 1、硝化过程 (3) 2、反硝化过程 (4) 3、生物脱氮的基本条件 (5) 4、废水生物脱氮处理方法 (6) 二、化学脱氮 (7) 1、吹脱法 (7) 2、化学沉淀法(磷酸铵镁沉淀法) (8) 3、低浓度氨氮工业废水处理技术 (9) 4、不同浓度工业含氨氮废水的处理方法比较 (11) 三、化学法除磷 (11) 1、石灰除磷 (12) 2、铝盐除磷 (12) 3、铁盐除磷 (13) 四、生物除磷 (13) 1、生物除磷的原理 (13) 2、生物除磷的影响因素: (14) 3、废水生物除磷的方法有哪些 (15) 4、除磷设施运行管理的注意事项 (15)

一、生物脱氮 脱氮技术包括化学法和生物法,由于化学法会产生二次污染,而且成本高,所以一般使用生物脱氮技术。 污水生物处理脱氮主要是靠一些专性细菌实现氮形式的转化。 含氮有机化合物在微生物的作用下首先分解转化为氨态氮NH4+或NH3,这一过程称为“氨化反应”。 硝化菌把氨氮转化为硝酸盐,这一过程称为“硝化反应”; 反硝化菌把硝酸盐转化为氮气,这一反应称为“反硝化反应”。 含氮有机化合物最终转化为氮气,从污水中去除。 1、硝化过程 硝化菌把氨氮转化为硝酸盐的过程称为硝化过程,硝化是一个两步过程,分别利用了两类微生物——亚硝酸盐菌和硝酸盐菌。这两类细菌统称为硝化菌,这 些细菌所利用的碳源是CO 32-、HCO 3 -和CO 2 等无机碳。 第一步由亚硝酸盐菌把氨氮转化为亚硝酸盐,第二步由硝酸盐菌把亚硝酸盐转化为硝酸盐。 这两个过程释放能量,硝化菌就是利用这些能量合成新细胞和维持正常的生命活动,氨氮转化为硝态氮并不是去除氮而是减少了它的需氧量。 氧化1g氨氮大约需要消耗4.3gO 2和8.64gHCO 3 -(相当于7.14gCaCO 3 碱度)。 硝化过程的影响因素: 1)温度:硝化反应最适宜的温度范围是30~35℃,温度不但影响硝化菌的比增长速率,而且会影响硝化菌的活性。 2)溶解氧:硝化反应必须在好氧条件下进行,溶解氧浓度为0.5~0.7mg/L 是硝化菌可以容忍的极限,溶解氧低于2mg/L条件下,氮有可能被完全硝化,但需要较长的污泥停留时间,因此一般应维持混合液的溶解氧浓度在2mg/L以上。 3)pH和碱度:硝化菌对pH特别敏感,硝化反应的最佳pH是在7.2~8之间。每硝化1g氨氮大约需要消耗7.14gCaCO 3 碱度,如果污水没有足够的碱度进行缓冲,硝化反应将导致pH值下降、反应速率减慢。 4)有毒物质:过高的氨氮、重金属、有毒物质及某些有机物质对硝化反应

相关文档
相关文档 最新文档