植物生理学问答题-整理

53、土壤里的水从植物的哪部分进入植物,双从哪部分离开植物,其间的通道如何?动力如何?

水分进入植物主要是从根毛——皮层——中柱——根的导管或管胞——茎的导管或管胞——叶的导管或管胞——叶肉细胞——叶细胞间隙——气孔下腔——气孔,然后到大气中去。在导管、管胞中水分运输的动力是蒸腾拉力和根压,其中蒸腾拉力占主导地位。在活细胞间的水分运输主要靠渗透。

54、植物受涝后,叶片为何会萎蔫或变黄?

植物受涝后,叶子反而表现出缺水现象,如萎蔫或变黄,是由于土壤中充满着水,短时期内可使细胞呼吸减弱,根压的产生受到影响,因而阻碍吸水;长时间受涝,就会导致根部形成无氧呼吸,产生和累积较多的乙醇,致使根系中毒受害,吸水更少,叶片萎蔫变质,甚至引起植株死亡。

55、植物如何维持其体温的相对恒定?

植物在阳光照射下,即使在炎夏,只要水分的吸收与蒸腾作用能正常进行,就可使植物体及叶面保持一定的温度而不受热害。这是因为水具有高比热、高汽化热,通过蒸腾作用可散失大量热量的缘故。

57、低温抑制根系吸水的主要原因是什么?

低温降低根系吸水速度的原因是(1)水分本身的粘度增大,扩散速度降低;原生质粘度增大。(2)水分不易透过原生质;呼吸作用减弱,影响根压;根系生长缓慢,有碍吸收表面积的增加。(3)另一方面的重要原因,是低温降低了主动吸水机制中所依赖的活力。

59、简述有关气孔开闭的无机离子(K+)吸收学说。

七十年代初期研究证明,保卫细胞中K+的积累量与气孔开关有密切的关系。在光照下保卫细胞内叶绿体通过光合磷酸化形成ATP,A TP在A TP酶的作用下水解,释放的能量可以启动位于质膜上的H+/K+交换主动地把K+吸收到保卫细胞中,保卫细胞内K+浓度增加,水势降低,促进其吸水,气孔就张开。在黑暗中,则K+从保卫细胞中移出膜外,使保卫细胞水势增高,因而失水引起气孔关闭。

61、有A、B两个细胞,A细胞的4a=-10b Pa,4p=4×105Pa, B细胞的4π=-b×105Pa,4p=3×105,请问:(1)A、B两细胞接触时,水流方向如何?(2)在28o C时,将A细胞放入0.12mol·kg-1(质量摩尔浓度)蔗糖溶液中,B细胞放入0.2mol·kg-1蔗糖溶液中。假设平衡时两细胞的体积没有变化,平衡后A、B 两细胞的4w、4a和4p各为多少?如果这时它们相互接触,其水流方向如何?

(1)由于B细胞水势高于A细胞的,所以水从B细胞流入A细胞;

(2)A细胞:4w =-3×105Pa,4π=-10b Pa,4p=7×105Pa ;

B细胞:4w =-5×105Pa,4π=-b×105Pa,4p=105Pa,

水从细胞流向B细胞。

62、假定土壤的渗透势和衬质势之和为-105Pa,生产在这种土壤中的植物4w 、4s和4p各为多少?如果向土壤中加入盐溶液,其水势变为-5×105Pa ,植物可能会出现什么现象?

达到平衡时,根的4w =-105Pa ,4s=-10b Pa,4p=9×105Pa。当土壤水势为-5×105Pa时,因为根中的水分流向土壤,植物可能全发生萎蔫。

64、简述植物叶片水势的日变化

(1)叶片水势随一天中的光照及温度的变化而变化。(2)从黎明到中午,在光强及温度逐渐增加的同时,叶片失水量逐渐增多,水势亦相应降低;(3)从下午至傍晚,随光照减弱和温度逐渐降低,叶片的失水量减少,叶水势逐渐增高;(4)夜间黑暗条件下,温度较低,叶片水势保持较高水平。

65、植物代谢旺盛的部位为什么自由水较多?

(1)因为自由水可使细胞原生质里溶胶状态,参与代谢活动,保证了旺盛代谢的正常进行;(2)水是许多重要代谢过程的反应物质和介质,双是酶催化和物质吸收与运输的溶剂;(3)水能使植物保持固有的姿态,维持生理机能的正常运转。所以,植物体内自由水越多,它所点的比重越大,代谢越旺盛。

66、简述气孔开闭的主要机理。

气孔开闭取决于保卫细胞及其相邻细胞的水势变化以及引起这些变化的内、外部因素,与昼夜交替有关。在适温、供水充足的条件下,把植物从黑暗移向光照,保卫细胞的渗透势显著下降而吸水膨胀,导致气孔开放。反之,当日间蒸腾过多,供水不足或夜幕布降临时,保卫细胞因渗透势上升,失水而缩小,导

致气孔关闭。

气孔开闭的机理复杂,至少有以下三种假说:(1)淀粉——糖转化学说,光照时,保卫细胞内的叶绿体进行光合作用,消耗CO2,使细胞内P H值升高,促使淀粉在磷酸化酶催化下转变为1-磷酸葡萄糖,细胞内的葡萄糖浓度高,水势下降,副卫细胞的水进入保卫细胞,气孔便张开。在黑暗中,则变化相反。(2)无机离子吸收学说,保卫细胞的渗透系统亦可由钾离子(K+)所调节。光合磷酸化产生A TP。A TP使细胞质膜上的钾-氢离子泵作功,保卫细胞便可逆着与其周围表皮细胞之间的离子浓度差而吸收钾离子,降低保卫细胞水势,气孔张开。(3)有机酸代谢学说,淀粉与苹果酸存在着相互消长的关系。气孔开放时,葡萄糖增加,再经过糖酵解等一系列步骤,产生苹果酸,苹果酸解离的H+可与表皮细胞的K+交换,苹果酸根可平衡保卫细胞所吸入的K+。气孔关闭时,此过程可逆转。总之,苹果酸与K+在气孔开闭中起着互相配合的作用。

68、什么叫质壁分离现象?研究质壁分离有什么意义?

植物细胞由于液泡失水而使原生质体和细胞壁分离的现象称为质壁分离。在刚发生质壁分离时,原生质与细胞壁之间若接若离。称为初始质壁分离。把已发生质壁分离的细胞置于水势较高的溶液和纯水中,则细胞外的水分向内渗透,使液泡体积逐渐增大因而原生质层与细胞壁相接触,恢复原来的状态,这一现象叫质壁分离复原。

研究质壁分离可以鉴定细胞的死活,活细胞的原生质层才具半透膜性质,产生质壁分离现象,而死细胞无比现象;可测定细胞水势,在初始质壁分离时,此时细胞的渗透势就是水势(因为此时压力势为零):还可用以测定原生质透性、渗透势及粘滞性等。

70、分析产生下列实验结果的机理

生长旺盛的麦苗在适温、高温条件下:(1)加水,有吐水现象;(2)加20%Nacl无明显吐水;(3)冷冻处理,无明显吐水

(1)根吸水大于蒸腾,叶内水通过水孔排出;

(2)外液水势低,影响根系吸水,故不发生吐水现象;

(3)冷冻低温使根系呼吸降低、根系吸水减少,不发生吐水现象。

89、在农业生产上对农作物进行合理灌溉的依据有哪些?

(1)作物从幼苗到开花结实,在其不同的生育期中的需水情况不同。所以,在农业生产中根据作物的需水情况合理灌溉,既节约用水,又能保证作物对水分的需要。(2)其次,要注意作物的水分临界期,一般在花粉母细胞、四分体形成期,一定要满足作物水分的需要。(3)其三,不同作物对水分的需要量不同,一般可根据蒸腾系数的大小来估计其对水分的需要量。以作物的生物产量乘以蒸腾系数可大致估计作物的需水量,可作为汇聚灌溉用水量的参数。

77、支持矿质元素主动吸收的载体学说有哪些实验证据?并解释之。

(1)选择吸收。不同的离子载体具有各自特殊的空间结构,只有满足其空间要求的离子才能被运载过膜。由于不同的离子其电荷量和水合半径可能不等,从而表现出选择性吸收。例如,细胞在K+和Na+浓度相等的一溶液中时,即使二离子的电荷相等,但它们的水合半径不等,因而细胞对K+的吸收远大于对Na+的吸收。

(2)竞争抑制。Na+的存在不影响细胞对的K+吸收,但同样是第一主族的+1价离子Rb+的存在,却能降低细胞对K+的吸收。这是因为不仅Rb+所携带的电荷与K+相等,而且其水合半径也与K+的几乎相等,从而使得Rb+可满足运载K+的载体对空间和电荷的要求,结果表现出竞争抑制。

(3)饱和效应。由于膜上载体的数目有限,因而具有饱和效应。

78、N肥过多时,植物表现出哪些失调症状?为什么?

叶色墨绿,叶大而厚且易披垂、组织柔嫩、茎叶疯长、易倒伏和易感病虫害等。这是因为N素过多时,光合作用所产生的碳水化合物大量用于合成蛋白质、叶绿素和其它含氮化合物,使原生质含量大增,而用于合成细胞壁物质(纤维素、半纤维素和果胶物质等)的光合产物减少。这样一来,由于叶绿素的合成增加,因而表现出叶色墨绿;原生质的增加使细胞增大,从而使叶片增大增厚,再加上原生质的高度水合作

用和细胞壁机械组织的减少,使细胞大而薄,且重,因而叶片重量增加,故易于披垂;由于光合产物大理用于原生质的增加,而用于细胞壁物质的合成减少,因而表现出徒长和组织柔嫩多汁,其结果就是易于倒伏和易感病虫害。

79、为什么将N 、P 、K 称为肥料的三要素?

因为植物对N 、P 、K 这三种元素的需要量较大,而土壤中又往往供应不足,成为植物生长发育的明显限制因子,对于耕作土壤更是如此。当向土壤中施加这三种肥料时,作物产量将会显著提高。所以,将N 、P 、K 称为肥料的三要素。

80、肥料适当深施有什么好处?

因为表施的肥料氧化剧烈,且易于流失和挥发,对4N H N +

-肥尤其如此。所以,肥料适当深施可减少养分的流失、挥发和氧化,从而增加肥料的利用率,并使供肥稳而久。此外,植物根系生长具有趋肥性,所以肥料适当深施还可使作物根系深扎,植株健壮,增产显著。

81、为什么在石灰性土壤上施用4N H N +-时,作物的长势较施用3N o N --的好?

因为在石灰性土壤的高pH 条件下,磷和大部分微量元素的有效性很低,而4N H N +-一般为生理酸性盐,它可使根际的pH 下降,增加这些元素的有效性,3N o N --一般为生理碱性盐,它可使pH 上升,进一步降低这此无元素的有效性,所以在石灰性土壤上施用4N H N +-时,作物的长势较施用3N o N --的好。

82、为什么叶中的天冬酰胺或淀粉含量可作为某些作物施用N 肥的生理指标?

因为当N 素供应过量时,某些作物就将多余的N 以天冬酰胺的形式贮备起来,这也可消除NH3对植物的毒害作用;某些作物则大量消耗光合产物用以同化N ,而用以合成淀粉的光合产物减少,叶中淀粉含量下降。当N 素供应不足时,则叶中天冬酰胺的含量很低或难以测出,有的作物由于用于N 同化的光合产物减少,结果叶中的淀粉含量增加。正因为某些作物叶片中的天冬酰胺或淀粉的含量随N 素丰缺的变化而变化,所以,叶中的天科酰胺或淀粉含量可用为某些作物施用N 肥的生理指标。

83、某实验室正在进行必需元素的缺素培养,每一培养缸中只缺一种元素,其中有三缸未注明缺乏何种元素,但缺乏症状已表现出来:

第一缸植物的老叶叶尖和叶缘呈枯焦状,叶片上有褐色斑点,但主脉附近仍为绿色。

第二缸植株的老叶叶脉间失绿,叶脉清晰可见;

第三缸植株的症状也是老叶失绿,但失绿叶片的色泽较为均一,只是叶尖和中脉附近较严重些。 根据上述缺素症状,你能判断出各培养缸中最可能缺乏的元素吗?

第一缸缺K ;第二缸缺Mg ;第三缸缺N ;

84、举出10种元素,说明它们在光合作用中的生理作用。

(1)N :叶绿素、细胞色素、酶类和膜结构等的组成成分。

(2)P :NADP 为含磷的辅酶,ATP 的高能磷酸键为光合碳循环所必需;光合碳循环的中间产物都是含磷酸基因的糖类,淀粉合成主要通过含磷的ADPG 进行;促进三碳糖外运到细胞质,合成蔗糖。

(3)K :气孔的开闭受K +泵的调节,K +也是多种酶的激活剂。

(4)Mg :叶绿素的组成成分,一些催化光合碳循环酶类的激活剂。

(5)Fe :是细胞色素、铁硫蛋白、铁氧还蛋白的组成成分,促进叶绿素合成。

(6)Cu :质兰素(PC )的组成成分。

(7)Mn :参与氧的释放。

(8)B :促进光合产物的运输。

(9)S:Fe-S蛋白的成分,膜结构的组成成分。

(10)C:光合放氧所需(或Zn :磷酸酐酶的组成成分等)。

85、NO3-进入植物之后是怎样运输的?在细胞的哪些部分、在什么酶催化下还原成氨?

植物吸收NO3-后,可以在根部或枝叶内还原,在根内及枝叶内还原所占的比值因不同植物及环境条件而异,苍耳根内无硝酸盐还原,根吸收的NO3-就可通过共质体中径向运输。即根的表皮皮层内皮层中柱薄壁细胞导管,然后再通过根流或蒸腾流从根转运到枝叶内被还原为氨,再通过酶的催化作用形成氨基酸、蛋白质,在光合细胞内,硝酸盐还原为亚硝酸盐是在硝酸还原酶催化下,在细胞质内进行的,亚硝酸还原为氨则在亚硝酸还原酶催化下在叶绿体内进行。在农作物中,硝酸盐在根内还原的量依下列顺序递减;大麦>向日葵>玉米>燕麦。同一植物,在硝酸盐的供应量的不同时,其还原部位不同。例如在豌豆的枝叶及根内硝酸盐还原的比值随着NO3-供应量的增加而明显升高。

86、是谁在哪一年发明了溶液培养法?它的发明有何意义?

1859年克诺普和费弗尔创立了溶液培养法,变称水培法,是在含有全部或部分营养元素的溶液中栽培植物的方法。由于溶液培养法对每一种矿质元素都能控制自如,所以能准确地肯定植物必需的矿质元素种类,从确定了植物的16种必需元素,为化学肥料的应用奠定了理论基础。这种培养技术不仅适用于实验室研究用,并逐渐广泛用于农业生产。如在沙漠地带采用溶液培养法生产蔬菜,以满足人民生活的需要。87、固氮酶有哪些特性?简述生物固氮的机理。

固氮酶的特性:(1)由Fe-蛋白和Mo-Fe-蛋白组成,两部分同时存在才有活性。(2)对氧很敏感,氧分压稍高就会抑制固氮酶的固氮作用,只有在很低的氧化还原电位的条件下才能实现固氮过程。(3)具有对多种底物起作用的能力。(4)是固氮菌的固氮作用的直接产物。NH3的积累会抑制固氮酶的活性。

生物固氮的机理可归纳为以下几点:(1)固氮是一个还原过程,要有还原剂提供电子,还原一分子N2为两分子NH3,需要6个电子和6个H+。在各种固氮微生物中,主要电子供体有丙酮酸、NADH、NADPH、H2,电子载体有铁氧还蛋白(Fd)、黄素氧还蛋白(Fld)等。(2)固氮过程需要能量。由于N2具有键能很高的三价键(N≡N),要打开它需要很大的能量。大约每传递两个电子需4—5个ATP,整个过程至少要12—15个ATP。(3)在固氮酶作用下,把氮素还原成氨。

88、设计一个实验证明植物根系对离子的交换吸附。

(1)选取根系健壮的水稻(可小麦等)幼苗数株,用清水漂洗根部,浸入0.1%甲烯蓝溶液中2—3分钟,将已被染成蓝色的根系移入盛有蒸馏水的烧杯中,摇动漂洗数次,直到烧杯中的蒸馏水不再出现蓝色为止。

(2)将幼苗分成数量相等的两组,一组根系浸入蒸馏水中,另一组根浸入10%氯化钙溶液中,数秒钟后可见氯化钙溶液中的根系褪色,溶液变蓝,而蒸馏水中的根系不褪色,水的颜色无变化或变化很小。这说明根系吸附的带正电荷的甲烯蓝离子与溶液中的钙离子发生了交换吸附,甲烯蓝离子被交换进入溶液中,使溶液变蓝。

89、在含有Fe、K、P、Ca、B、Mg、Cu、S、Mn等营养元素的培养液中培养棉花,当棉苗第四片叶展开时,在第一片叶上出现了缺绿症,问该缺乏症是由于上述元素中哪种元素含量不足而引起的?为什么?

是由于Mg的含量不足而引起的。在上述元素中能引起缺绿症的元素有Mg、Cu、S、Mn。这四种元素中只有Mg是属于再利用元素,它的缺乏症一般表现在老叶上;而Cu、S、Mn属于不能再利用元素,它们的缺乏症表现在嫩叶上。当棉苗第四叶(新叶)展开时,在第一片叶(老叶)上出现了缺绿症,可见缺乏的是再利用元素Mg而不是其它。

90、Levitt提出的植物矿质元素主动吸收的四条标准是什么?

(1)转动速度超过根据透性或电化学势梯度所推算出的速度。(2)当转动已达到最终的稳衡状态时,膜两侧的电化学势并不平衡:(3)被转动离子或分子的量与所消耗的代谢能之间有一定的量的关系;(4)转动的机理一定依赖于细胞的活动。

91、钾在植物体内的生理作用是什么?举例说明。

钾不是细胞的结构成分,但它是许多酶的活化剂。目前已知K+在细胞内可作为60多种酶的活化剂。

例如谷胱甘肽合成酶、淀粉合成酶、苹果酸脱氢酶、丙酮酸激酶等,所以K +在蛋白质代谢、碳水化合物代谢及呼吸作用中有重要作用。钾在细胞中是构成渗透势的重要成分,对水分的吸收、转动有重要作用;K +还能调节气孔开闭,从而调节蒸腾作用。此外,在光合电子传递和线粒体内膜电子传递中,K +可用对应离子向相反的方向转移到膜的一侧,从而维持了跨膜的H+梯度,促进了光合磷酸化和氧化磷酸化的进行。K +可以促进碳水化合物的运输,特别是对块茎,块根作物施用K +肥可有效提高块根、块茎的产量。钾还可以提高作物的抗旱性和抗倒伏能力。

95、溶液培养的番茄在第一朵花开放4周后,用50μg/gβ-萘氧乙酸(NOA)+30μg/gGA3处理其花序。或者,先用10μg/g 玉米素(Z )处理蓓蕾,在开花4周后再50μg/g(NOA) +30μg/g 处理花序。生长一段时间后,测定番茄根和果实的鲜重,结果如图A 、B 、C 所示,请从此项研究中得出适当结论。

对照实验表明,番茄根和果实的鲜重成负相关,主要原因是二者竞争有限的营养物质;B 实验表明NOA 和GA3处理不能改变对照中果实与根竞争营养的关系;C 实验表明,玉米素处理后,根和果实的鲜重成正相关,由此可见,玉米素影响营养物质的分配。

96、研究结果如下图所示,豌豆上胚轴细胞的膜电势因为用氰物化处理(A )和随后除去氰化物(B )而发生变化,你如何解释这一研究结果?

(1)氰化物可逆降低膜电势;(2)膜电势中,约-70mV 对氰化物敏感,另一部分(约—60mV )则不敏感;因为氰化物抑制细胞的呼吸作用,所以,膜电势的高低可能与细胞的能量代谢有关。

97、在250C 下,将小麦根浸在含苞K+、Na +、NO3-、Cl -等离子混合液中,24小时达平衡状态。测得根与外部溶液之间的电势差为-110mV 。其中K+、Na + 在根组织中的实际浓度分别为73和8μg/g 。请计算 判定根对 K+、Na +是主动或被动吸收(1.865之反对数值为73)?

K+:被动吸收;

Na +:主动吸收;

98、如何用楞斯特方程判断一个转运过程是主动吸收还是被动吸收?

一种方法是在已知外界溶液中各种离子浓度的情况下,测定植物根内部与外界溶液之间的电势差,然后根据楞斯特方程计算根内离子的浓度。方法是在250C 下,将离体根浸在溶液中24小时,使达到稳衡状

态后,再进行化学分析。计算公式如下:lg 内部浓度/外部浓度=-59E Z

。如果测得的数值与计算值相等或相近,即不发生主动吸收;如果测得的数值大于计算值,则表示发生了这种离子的主动积累;如果实测值小于计算值,则表示发生了主动排出。另外,也可以在已知外界盐溶液浓度的水溶液中,经过一段时间后,分析测定细胞内的各种离子浓度,并根据楞斯特方程计算原生质膜和液泡膜内外两侧的电势差(⊿E ),同时直接测定它们的⊿E ,如果⊿E 的实测值与计算值相等,就表示没有主动传递。即发生了被动吸收;如果两者不等,那么一定发生了主动传递(主动积累或主动排出)。

99、为什么在生产实际中常将磷肥,特别是过磷酸钙或钙镁磷肥作为基肥或种肥而不作为追肥? 因为过磷酸钙或钙镁磷肥效很慢,一进难于被植物吸收利用,但磷肥易于吸附在土壤胶体上而不易被淋失,其有效性可以保持很长时间。所以,磷肥特别是肥效很慢的过磷酸钙或钙镁磷肥在生产实际中常用用基肥或种肥而不用作追肥。

100、影响植物根部吸收矿质的主要因素有哪些?

1、温度,在一定温度范围内,随土温升高而加快;

2、通气状况,在一定范围内,氧气代应越好,吸收矿质越多;

3、溶液浓度,在较低浓度范围内,随浓度升高而吸收增多。

101、何为根外营养?其结构基础是什么?它有何优越性?

植物地上部分吸收矿物养料之过程叫做根外营养。其结构基础是外连丝。其优越性表现在:在作物生育后期吸肥能力衰退时,或营养临界期时,可以之外补充营养;可避免一此肥料(如磷肥)的土壤固定;补充植物所需微量元素,此法用量少、见效快。

102、试述盐分吸收与水分吸收的关系?

植物对盐分与水分的吸收是相对的,既有关,又无关。有关,表现在盐分须溶解于水中方能被吸收;无关,表现在二者被吸收的机理不同。吸盐以主动过程为主,而吸水则以被动吸收为主。

103、为了确切地证实某种元素是植物必需的微量元素,要做哪些实验?

溶液培养,包括:(1)完全培养(对照)(2)缺素培养(试验组);(3)缺素症出现后的恢复试验。104、阴、阳离子能否不耗代谢能量于细胞内积累?为什么?

能。只要细胞内存在不可移动的阴离子(如蛋白质)或不可移动之阳离子时,由于杜南平衡的存在,则会在胞内分别发生阳离子或阴离子的积累。

105、试述根部吸收矿质的过程。

首先进行离子的交换吸附,然后依次发生:离子通过自由空间进入皮层内部;离子通过内部空间(共质体)进入木质部;最后进入导管,向地上部分运输。

106、试述矿物质在植物体内运输的形式与途径,可用什么方法证明?

用伤流液分析结果可以证明,植物体内矿质运输之形式:N——氮基酸酰胺;P—P,S—SO42-,金属离子则以离子状态运输。

矿物质在植物体内运输的途径是:根部吸收的矿物质主要在木质部内向上运输,叶片吸收的矿质则重要在韧皮部内向下运输,同时存在侧向运输。

107、什么是营养临界期及营养最大效率期?它们对作物产量形成有何影响?

营养临界期是指作物对于营养缺乏最为敏感的时期,是施肥的关键时期。该期如缺肥,则作物生长发育将受到显著影响,导致作物减产。一般为幼苗期,营养最大效率期是指作物一生中,对于生长发育尤其是产量形成,施肥效果最好、施肥量最大的时期,一般为生殖生长期。适时适量地控制这两个时期之营养供给,对于产量形成与高低有重要作用。

108、为什么说施肥增产的原因是间接的?主要表现在哪些方面?

施用肥料大部分是无机肥料,而作物的干物质和产品都是有机物,矿物质只占植株干重的小部分(百分之几到十几),大部分干物质都是通过光合作用形成的,所以,施肥增产的原因是间接的。主要表现在:施肥可增强光合性能,如增大光合面积,提高光合能力。延长光合时间,利于光合产物分配利用等等,可见施肥增产的实质在于改善光合性能。另外,施肥还能改善栽培环境,特别是土壤条件。

109、为使肥效充分发挥,生产上常采取哪些主要措施?

应分别阐述以下几点(1)适时灌溉(2)改善光照条件(3)适当深耕(4)控制微生物的有害转化(5)改善施肥方式。

110、必需矿质元素应具备哪几条标准?目前已知植物必需元素共有多少种?其中大量与微量元素各为多少种?各是指哪些元素?

三条标准:(1)缺乏之时发育障碍不能完成生活史;(2)除去该元素时表现出特异,可由加入该元素而恢复正常;(2)在营养生理上表现出直接效果,而不是由土壤性质或微生物的改变而间接作用产生。

大量元素9种:C、H、O、N|、P、K、Ca、Mg、S

微量元素7种:Fe、Mn、B、Zn、Cn、Mo、Cl

112、作物矿质元素是否缺乏,如何诊断?

(1)化学分析诊断法(2)病证诊断法(3)加入诊断法。

113、“植物对矿质元素的被动吸收是一不耗能量的过程,所以它只能顺其浓度梯度移动。因此被动吸收不会发生离子于细胞内的累积现象”。这种说法对吗?为会么?

不对。被动吸收有两种形式:一是简单扩散,矿质扩散的方向取决于浓度梯度和电势梯度之相对数值大小;二是杜南平衡。当细胞内存在不可移动的阴离子(或阳离子)时,当扩散达平衡时,正离子(负离子)将于胞内累积(即胞内浓度大于胞外浓度)。

114、根部吸收离子的数量总与土壤溶液(或培养液)中离子的数量成比例,对吗?为什么?

不对。

根部对离子的吸收具有选择性(即不同离子的载体数量不同)。

115、为什么在正常情况下植物体内亚硝酸盐(2N O -)不会积累?

不会积累。因为正常情况下,植物体组织中亚硝酸还原酶的含量及活性比硝酸还原酶高得多,因此,硝酸还原酶之产物亚硝酸盐(

2N O -)能很快在亚硝酸还原酶的作用下被还原成氨,然后进一步形成氨基酸和蛋白。

116、何以证明氨是固氮酶的最终产物?

将固氮菌(Agctobacter )培养在含15N2的空气中,迅速固氮,短期内细胞内的谷氨酸出现大量的15N ;若将该菌培养于合的15NH3培养基中,固氮能力立即停止,而吸入的氨态氮仍迅速转入谷氨酸中,(举另例亦可).

117、目前,生物因素氨的机理之主要内容是什么?

(1)固氮是还原过程,需还要剂Fd 还,224s o -等提供电子;

(2)因氮过程需Mg 参与,需要也只能是由A TP 提供能量。

(3)在固氮酶作用下,把N2还原成氨。

118、施肥如何才能做到合理?

合理施肥就是根据不同植物的需肥特点,适时适量施肥。即(1)根据不同作物特点及收获物的不同而施肥;(2)按作物不同生育期的需要施肥;(3)为使施肥适时适量,可根据某植物追肥之形态指标和生理指标才进行。形态指标包括“相貌”、“叶色”,生理指标包括营养元素,酰胺含量及某些酶活性的高低(各点加以阐述)。

119、为什么植物吸收的磷素,通常都是磷酸盐形式?

自然界的磷素很易被氧化成P2O5,它与水作用即成磷酸,自然界的磷就是对磷酸盐形式存在的。因此植物吸收的磷素通常都是磷酸盐形式。三价的磷酸盐难溶,一般不易被植物到利用。植物利用的大都是一、二价磷酸盐。

125、给出一般植物的光合作用光强曲线图,并对曲线各部分的特点加以说明。

光合作用的光强曲线如图4—3。从图可以看出,在光照极弱时,光合速率低于呼吸速率,当真正的光合速率等于呼吸速率时,这时的光强称为光补偿点,以后随光强增加,光合速率随之增加,达到一定限度后,再增加光强,光合速率不再增加,这时的光强称为光饱和点。

在弱光条件下,增加光强,光合速率亦迅速增加,因为这时的光强是光合作用的限制因子。光合作用所以有光饱和现象,一方面可能是光合色素不及吸收那么多光、另一方面则是暗反应系统来不及利用那么多光反应的产物。

126、从植物生理与作物高产角度试述你对光呼吸的评价

光呼吸对光合碳同化是有利还是有害,一直是当前争论的焦点,据推算,在正常的大气条件下,由乙醇酸途径放出的CO2占光合固定的CO214%。也有认为光呼吸所损失碳素占净光合率的30%左右。同时乙醇酸含成及其代谢又消耗了大量能量,因此,光呼吸是植物体内的“无效生化循环”,对光合作用原初生产量是不利的。然而近年研究发现,光呼吸对植物生理代谢并不是完全无效的,而是光合碳代谢所必需,至少是不可避免的。表现在:①光呼吸是光合作用的保护性反应。例如在强光和CO2不足环境下级和光抑制;②光呼吸与光合糖代谢有密切关系,有利于蔗糖和淀粉的合成;③光呼吸与氯代谢关系也很密切,既为硝酸盐还原提供还原剂,也是氨基酸(甘氨酸和丝氨酸)生物合成的补充途径。因而对光呼吸的抑制不能一概而论,研究发现,光呼吸被抑制20—30%的情况下,净光合效率可提高10—20%,如果抑制超过30%时,光合效率反而有所降低。

127、举出三种测定光合速率的方法,并简述其原理及优缺点。

(1)改良半叶法,选择生长健壮、对称性较好的叶片,在其一半打取小圆片若干,烘干称重,并用三

氯醋酸对叶柄进行化学环割,以阻止光合产物外运,到下午用同样方法对另一半叶片的相对称部位取相同数目的小圆片,烘干称重,两者之差,即为这段时间内这些小圆片累积的有机物质量。此法简便易行,不需贵重设备,但精确性较差。

(2)红外线CO2分析法原理是:气体CO2对红外线有吸收作用(尤其是对波长4260纳米的红外线有强烈的吸收),不同浓度的CO2对红外线的吸收强度不同,所以当红外线透过一定厚度的含CO2的气层之后,其能量会发生损耗,能量损耗的多少与CO2的浓度紧密相关。红外线透过气体CO2后的能量变化,绿过电容器吸收的能显转变为可以反映CO2浓度的电讯号,由仪器直接显示出来·植物进行光合作用始末时,其环境中CO2浓度的变化,可以通过红外线气体分析器的仪表迅速而准确地观察获得,实验前后仪表上所反映的CO2浓度之差,即为植物在该测定时间内叶片吸收CO2的量·因此可以计算出单位时间内单位叶而积吸收CO2的量,即植物的光合速率,此法迅速而准确,安全而灵敏,整体而连续测定是其优点,但仪器比较昂贵,目前基层还较难实现。

(3)氢电极法原理是:氧电极由嵌在绝缘律上的铀和银所构成,以0.5mol 氯化钾为电解质,覆盖一层15-20um 的聚乙烯或聚四氟乙烯薄膜,两极间加0.6~0.8伏的极化电压。溶氧可透过薄膜进入电极在铂阴极上还原,同时在极间产生扩微电流,此电流与溶解氧浓度成正比,记录此电流的变化,则能换算出相应的氧分压值。当膜的作度不变,温度恒定时,植物叶片在反应液中照光时释放的氧量,即为该叶片的光合速率。此法灵敏度高,操作简便,可以连续测定水溶液中溶解氧量及其变化过程,但只能测离体叶片。目前也受仪器限制。

128、叶色深浅与光合作用有何关系?为什么?

叶色深浅反映叶绿素含量的高低,在一定范围内,光合速率与叶绿素含量成正相关,超过一定范围时,叶绿素含量对光合作用的影响已不明显,因为这时叶绿素含量已有富余,已不再是光合作用的限制因子。叶色深的植物,利用弱光的能力较强,因此阴生植物一般叶色较深,但在强光照下,叶色深有利于收集光能的优点已不复存在。

129、是谁用什么方法证明光合作用释放的氧来源于水,而不是CO2?

大约在1930年以前,研究光合作用的学者都相信,光合作用释放的氧来源于CO2,碳最后被水还原为碳水化合物。

最先提出光合作用释放的氧来源于水,而不是CO2的学者是C.B.V an Niel ,他发现有些细菌如紫色硫细菌,在照光条件下利用H2S ,将CO2还原形成有机物,没有氧的释放,但有硫或硫酸的产生,根据的V an Niel 意见,光合作用可用下式表示:

A

O H O CH A H 2)(2CO 2222+++叶绿素光

对绿色植物来说,2A 就是氧,对紫色硫细菌则是硫,因此他推论光合作用释放的氧是来源于水而不是CO2。

第二个用实验证明光合放氧是来源于水的是英国剑桥大学的Hill ,他在叶绿体悬浮液中加入适当的电子受体如铁氰化钾,在照光时,则可在没有CO2还原的情况下释放氧。

真正证明光合作用释放的氧是来源于水的是Kamen 和Ruben ,他们将绿色细胞放在含18O2的水中,照光时释放的氧是18O2、而不与CO2中的氧相同,如果用18O2的CO2和普通的水进行光合试验,则释放的氧不是18O2,而是普通的氧,这就有力地证明光合放氧是来源于水,而不是CO2。

130、试述光对光合作用的影响。

光对光合作用的影响是多方面的。包括光强和光质,一方面影响叶绿素的生物合成,一方而影响光合速率。

光是叶绿素形成的必要条件,由原对绿素酸酯还原成叶绿素酸酯需要在光下才能进行。所以黑暗中生长的幼苗不能形成叶绿素而呈黄白色。过强的光照容易使叶绿素被光氧化破坏,对叶绿素形成也不利。实

验证明,光质对叶绿素形成有关,单色光不如全色光,单色光中又以红光最好,兰光次之,绿光最差。

光还影响叶绿体的发育,黑暗下,叶绿体发育是畸形,片层结构不发达或不能形成,见光后才能逐渐转入正常。

光影响气孔的开闭,进而影响叶片温度和CO2的吸收.

光是光合作用能量的来源,没有光,同化力(ATP 和NADPH +H+)不能形成,就不能同化CO2;除光强外,光质也影响光合速率。例如菜豆在红光下光合速率最快,兰光次之,绿光最差。水稻表现为兰光最好,红光次之,绿光最差。

131、扼要叙述光呼吸过程中乙醇酸的来源。

乙醇酸主要是通过RuBp 羧化酶一加氧酶的作用而形成,该酶有双重催化功能:即可催化RuBp 的羧化反应,也可催化RuBp 的加氧反应。当环境中O2分压高,CO2分压低时,此酶进行加氧反应,生成3—PGA 和磷酸乙醇酸,反应如下:

PGA

RuBP Mg O RuBp -→+

3,22加氧酶+磷酸乙醇酸 磷酸乙醇酸→

-+pi O

H 2乙醇酸

此外,也可通过光合碳循环中转酮酶的作用形成少量乙醇酸。

132、在一项试验中要比较两个处理的叶绿素含量。试简述叶绿素的提取和测定方法。要尽量减少试验误差,在提取及测定时,主要应注意哪些问题?

取两个处理的新鲜叶片剪碎,称重(0.5克),一份测干重,一份置研钵中,加少量碳酸钙和石英砂以及丙酮磨提取,过滤至容量瓶,定容。用分光光度计分别在波长645、663和652nm 下测定光密度,以80%丙酮为空白对照。按公式计算叶绿素a 、b 含量和总量。测定时,注意取样一致,称量准确,色素提取干净,比色时浓度在光密度(OD 值)0.05~0.5nm 范围内,并且最好用751分光光度计测定,才能减少试验误差。

134、何谓光合作用?用什么简便方法证明光合作用的存在。

光合作用是绿色植物吸收日光能,将CO2和H2O 同化为有机化合物并释放氧气的过程。光合产物主要是碳水化合物,故可用下式来表示:

++222221)(O O CH O H CO 绿色植物光

依据这一原理,可以用下列简便方法证明植物在光下的光合作用。

(1)用水生植物如金鱼藻,切断茎,切口向上,置于光下,则可见切口处有气泡放出,放出的气泡就是氧气,而在暗中则没有气泡的发生。

(2)将陆生植物叶片制成小圆片,放入水中通过减压抽气使其下沉,再放入约含1%的碳酸氢钠溶液中,置于直射光下,则小圆片很快就上浮,小圆片上有很多小气泡,是光合作用释放的氧,而在暗中则小圆片不上浮。

(3)有些在光下累积淀粉的植物叶片,可用剪有一定形状空洞的黑纸,夹在预先在暗处放置约两天的植物叶片上,放于直射光下,2小时后,剪下叶片,除去黑纸,用乙醇脱色后放入碘液中,则可见未被黑纸遮盖的部分变为兰黑色,证明有淀粉存在,而未爆光处则不变色。

135、试用化学渗透学说解释光合电子传递与磷酸化相偶联的机理。

光合磷酸化是在光合膜上进行的,光合膜上的光系统吸收光能后,启动电子在光合膜上传递。电子传递过程中,质子通过PQ 穿梭被泵入类囊体腔内,同时水的光解也在膜内侧释放出质子,因而形成了跨膜的质子梯度差和电位差,即膜内腔电位较正而外侧较负,两者合称为质子动力势差(△PMF )。按照P.Mitchell

的化学渗透学说,光合电子传递所形成的质子动力势是光合磷酸化的动力,质子有从高浓度的内侧反回到低浓度外侧的趋势,当通过偶联因子复合物(CF1—F0)反回到外侧时,释放出的能量被偶联因子捕获,使ADP 和无机磷形成ATP 。这一学说已经获得越来越多的实验的证实和支持。

136、根据光合作用碳素同化途径的不同,可以将高等植物分为哪三个类群?它们主

根据光合作用碳同化途径的不同,可以将高等植物区分为三个类群,即C3途径(卡尔文循环或光合碳循环)、C4—二羧酸途径及景天酸代谢途径。

C3途径是光合碳循环的基本途径,CO2的接受体为RuBp ,在RuBp 羧化酶催化下,形成两分子三碳化合物3-PGA 。

C4途径是六十年代中期在玉米、甘蔗、高梁等作物上发现的另一代谢途径。CO2与PEP 在PEP 羧化酶作用下,形成草酰乙酸,进而形成苹果酸或天冬氨酸等四碳化合物。

景天酸代谢途径又称CAM 途径。光合器官为肉质或多浆的叶片,有的退化为茎或叶柄。其特点是气孔昼闭夜开。夜晚孔开放时,CO2进入叶肉细胞,在PEP 羧化酶作用下,将CO2与PEP 羧化为草酰乙酸,还原成苹果酸,贮藏在液泡中。白天光照下再脱羧参与卡尔文循环。

137、用同位素示踪法研究光合作用。被试植物先在1% CO2中进行光合作用,而后将CO2浓度降到0.003%。测得14C 标记的3—磷酸甘油酸(PGA )和核酮糖二磷酸(RuBP )含量的变化如图6.3所示。从这项研究中能引出什么结论?

这项研究表明,PGA 是RuBP 羧化的产物,所以CO2浓度降低时,PGA 减少。同时也说明已经产生的PGA 还能转变成RuBP ,否则RuBP 的含量不会增加。

138、植物体内水分亏缺使光合速率减弱的原因何在?

(1)水分亏缺常导致叶片萎蔫,不能保持叶片正常状态。保卫细胞膨压降低,气孔关闭,CO2从叶表面透过气孔扩散到叶内气室及细胞间隙受阻,CO2吸收标减少,影响光合速率。

(2)水分亏缺,气孔关闭,蒸腾减弱,叶温升高,从而降低酶活性和破坏叶绿素,使光合速率降低.

(3)水分亏缺时,植物呼吸反常增强。

(4)水分亏缺时,影响蛋白质的水合度,从而影响蛋白质分子结构及排列以及酶系统的空间构型,从而影响光合速率。

(5)缺水时,影响叶片内光合原料供应和光合产物运输。

(6)水分亏缺,植株生长矮小,影响光合面积,从而影响光合速率.

由此可见,保证水分的正常供应,才有利于提高光合速率和作物产量。

139、假定同化1mol 的CO2为碳水化合物,实际吸收5mol 的650nm 的红光量子和5mol 的400nm 的紫光量子,已知1mol 的葡萄糖所含能量为686千卡,求光合作用的能量转化效率。

1)1mol 的CO2可同化为1/6mol 的葡萄糖,其固定的能量=686÷6=114千卡

2)5mol 的650nm 的红光量子和5mol 的400nm 的紫光量子所含能量可从下式求得。

爱因斯坦

千卡/28600

λλ===C

Nh NhV E

(1mol=1爱因斯坦)

式中E ——能量 λ——波长

5mol 的650nm 的红光量子为:

E=28600×5/650=220千卡

和5mol 的400nm 的紫光量子所含能量为: E=4005

28600?=357千卡

3)光合作用的能量转化效率

%

8.19%100577114

%100)357220(114=?=?+=千卡千卡

答:在吸收5mol 的650nm 的红光量子和5mol 的400nm 的紫光量子同化1mol 的CO2的情况下,其光能转化效率为19.8%。

140、假定测定温度为25℃,CO2浓度为330ppm 。根据图6.4,请回答:

(1)阳生植株的光饱和曲线是上部的两条虚曲线还是下部的两条实曲线?

(2)如果测定温度降低为15℃,你预期曲线有何变化?

(3)如果CO2浓度降低为100ppm 时,你预期曲线会有何变化。

A 、阳生植株的光饱和曲线是上部的两条虚曲线,实曲线则为阴生植株的光饱和曲线。

B 、温度降低后,由于热化学反应速率将成为光合速率的限制因子,所以将在较低的光照强度下达到光饱和点。

C 、由于CO2浓度将成为光合速率的限制因子,所以将在较低的光照强度下达到光饱和点。

141、哪些矿质元素影响光合作用速率?为了夺取作物高产,应该如何做到合理施肥?

植物生命活动所必需的矿质元素,都对光合作用速率有着直接或间接的影响,例如:

N 和Mg 是叶绿素的组成元素,Fe 、Mn 、Mg 是叶绿素形成所必需的,N 、P 、S 、Mg 等是构成叶绿体片层结构不可缺少的成分;

Fe 、Cu 等在光合电子传递中具有重大作用,水的光解反应需Cl -和Mn 的参加;

光合磷酸化需要P ;

K+调节气孔开闭;

Zn 是催化CO2水合反应的碳酸酐酶组成成分;光合碳循环中的所有糖类都是含磷酸式团的糖类; B 促进光合产物蔗糖的运输。

由此可见,为了夺取作物高产,在给作物施肥时,除了施用大量元素之外,还需要配合微量元素的施用。无机肥与有机肥配合施用,才能全面合理。

142、假定武汉地区的年辐射量为112千卡/厘米2,一年三熟,两季水稻共产2000斤/亩,一季小麦亩产350斤,经济系数均按0.5计算,农产品含水量为12%,每公斤干物质含能量按4000千卡计算,试求这一亩耕地的光能利用率。

1)一年内实际干物质产量为:

%)

121(22)

3502000(-??+

=2350×0.88=2068kg

2)一年内每亩地的辐射量为:

112×667×10000=7.47×108千卡

3)被固定的能量按1kg 干物质为4000千卡计算=4000×2068=8.34×105千卡

4)光能利用率

%16.1%1001047.710

34.886=???=

答:光能利用率为1.16%。

143、请计算每爱因斯坦波长分别为660和450nm 的红光和蓝光量子的能量。

红光:1.81×105J·Eistein -1

蓝光:2.65×105J·Eistein -1

144、假定在细胞内条件下从ADP 和无机磷生成ATP 的△G0为+41.8kJ·mol -1。

(1)请计算在吸收1量子紫光(420nm )、绿光(520nm )或红光(650nm )时所产生的ATP 分子的最大理论值。

(2)如果进行循环光合磷酸化,并假定A TP/2e -之比是1,请计算上述各种波长的光能转换化学能时

的转换效率。

波长(nm )

ATP 分子数(最大理论值) 转换效率(%) 420

520

650

6 5 4

7 9 11 145、假定还原1mol CO2需要8mol 光量子,请计算波长为400、500、600和700nm 的光的能量转换效率。 波长(nm )

400 500 600 700 能量转换

效率(%)

20 24 29 34 146、阳光下的蚕豆叶片细胞中,ATP :ADP :AMP=5:3:2,请计算其能荷并指出此值说明了蚕豆叶细胞可能处于什么代谢状态。

能荷为0.65,蚕豆叶细胞可能正在产生ATP 。

147、比较下列两种概念的异同点:

(1)光呼吸和暗呼吸

(2)光合磷酸化和氧化磷酸化

(1)光呼吸和暗呼吸

植物生理学问答题-整理

(2)光合磷酸化和氧化磷酸化

植物生理学问答题-整理

148、C3植物和C4植物有何不同之处?

C3植物和C4植物的差异

植物生理学问答题-整理

植物生理学问答题-整理

150、何谓光能利用率?光能利用率不高的原因有哪些?

光能利用率是指单位面积上的绿色植物光合产物中所累积的化学能量与照射在这块面积上的日光能的比率。以年来计算,一般作物的光能利用率不到1%,森林植物大概只有0.1%。

光能利用率不高的原因是很多的,主重有以下几方面。

(1)一部分光不能参加光合作用,可以参加光合作用的光是可见光,它只占到达地球表面的太阳辐射的45%左右。

(2)漏光,一年中即使种三季,也会有30%左右的光是没有照射到植物上的。

(3)反射与透射,照在植物叶片上的光大约有15—20%未补吸收,而是损失于反射和透射。

(4)量子需要量的损失,被叶绿体吸收的光,在光合作用能量转化过程中只有23%左右累积到光合产物中,77%都损失消耗了。

(5)呼吸消耗的损失,光合产物大约1/3是呼吸消耗了。

此外,还有许多因子影响光能利用率,例如光饱和点的损失、叶片衰老、CO2供给不足、病虫危害、水分亏缺、矿质营养不良等都会影响植物对光能的利用。

151、何谓限制因子律?是谁在什么时候提出来的?其主要意义何在?

限制因子律是英国生理学家F. F. Blackman于1905年提出来的,这个定律指出:当一个过程的进行受若干个独立因子所影响时,这个过程进行的速度受最低量因子的步伐所限制。例如在弱光下,很低的CO2浓度就达到了饱和,增加CO2浓度不能增加光合速率,因为限制因子是光,只有增加光强,才能提高光合速率,但当光强增加到一定程度后,CO2又变为不足,不能满足光合作用的需要,成了限制因子。

这一定律是光合作用研究史上的一个转折点,它说明象光合作用这样复杂的过程,任何一个因子都没有绝对不变的最适值,这些因子间是互为前提互相制约的,因此,这一定律是一切单因子研究的理论基础。关于光合作用的两步机理,也是受这一定律的启发提出来的。

152、如何证明叶绿体是光合作用的细胞器?

植物的绿色部分,包括叶片、茎杆、叶鞘、花萼、苞叶、果皮甚至穗、芒等,只要含叶绿体,就都能进行光合作用,而非绿色部分,因不含叶绿体,则不能进行光合作用。叶绿体是一完全的光合器,用分离出的完整叶绿体,将其悬浮在一定的缓冲液系统中,加入必需的辅助因子并照光,则可进行光合作用,并形成蔗糖及淀粉,这说明,光合作用的全过程,都是在叶绿体中进行的。

153、光合作用的光反应是在叶绿体哪部分进行的?产生哪些物质?暗反应在叶绿体哪部分进行?可分哪几个大阶段?产生哪些物质?

光合作用的光反应是在叶绿体的类囊体膜上进行的,可分为原初反应、水的光解和光合电子传递、光合磷酸化三大步骤,其产物除释放氧外,还形成高能化合物ATP和NADPH2,两者合称为同化力,光能就

累积在同化力中。

光合作的暗反就是指CO2的固定和还原,这一过程是在叶绿体的间质中进行的,可分为CO2的固定、初产物的还原、光合产物的形成和的CO2受体RuBP的再生这四大阶段。光反应形成的同化力即用于CO2固定后的初产物还原,光合碳循环的正常运转还需光的诱导,因为光合环的调节酶是在光下活化,暗中则失活的,因此光合碳循环实际上也是离不开光的。光合碳循环的产物如以脱离环后的产物来评价,则是葡萄糖,最后形成蔗糖或淀粉。

61、在无氧条件下,单独把丙酮酸加入绿豆提取液中,结果只有少量的乙醇形成。但是,如果在相同条件下加入大量的葡萄糖,则生成大量的乙醇,这是什么原因?

在由丙酮酸转变为乙醇的反应中,需要NADH和H+作为乙醇脱氢酶的供氢体。一分子葡萄糖经糖酵解转变成丙酮酸的过程中柯生成2分的NADH和H+,能直接作为乙醇脱氢酶的供氢体。因此加入葡萄糖可生成大量乙醇。

62、为什么C6/C1比值的变化可以反映呼吸途径的变化?

在糖酵解和三羧酸环途径中,所释放的CO2均等地来自C1和C6原子,所以C6/C1=1。而PPP途径中释放的CO2仅来自C1原子,所以C6/C1小于1。由此可见该比值越小,PPP途径所占比例越大。

63、在酵母提取液中葡萄糖发酵产生乙醇。如果向提取液中分别加入下列物质,对物质,对发酵速率有什么影响?请简要说明其原因。(1)碘代乙酸,(2)ATP,(3)ADP+无机磷,(4)NaF。

碘代乙酸是磷酸甘油醛脱氢酶的抑制,NaF是烯醇化酶的抑制剂,A TP抑制磷酸果糖激酶和丙酮酸激酶。所以(1)、(2)和(4)都降低发酵速率。ADP和无机磷可提高磷酸果糖激酶的活性,从而提高发酵速率。

64、为什么呼吸作用是一个多步骤的过程而不是葡萄糖的直接氧化?

葡萄糖的直接氧化就相当燃烧,能量会突然以热的形式全部释放出来。对植物而言,突然全部释放出这样多的能量是一种浪费。所以,植物通过多步骤的氧化作用使能量分为一小份一小份地释放,并能立即用于其他过程,比如用于合成ATP分子,从而防止了能量的浪费。

67、长时间的无氧呼吸为何会使植物受伤死亡?

长时间的无氧呼吸会使植物受伤死亡的原因:第一,无氧呼吸产生酒精,酒精使细胞质的蛋白质变性;第二,因为无氧呼吸利用每摩尔葡萄糖产生的能量很少,相当于有氧呼吸的百分之几(约8%),植物要维持正常的生理需要,就要消耗更多的有机物,这样,植物体内养料耗损过多;第三,没有丙酮酸氧化过程,许多由这个过程的中间产物形成的物质就无法继续合成。作物受涝死亡,主要原因就在于无氧呼吸时间过久。

68、机械损伤会显著加快植物组织呼吸速率的原因何在?

机械损伤会显著加快组织的呼吸速率,其理由如下:第一,原来氧化酶与其底物在构造上是隔开的,机械损伤使原来的间隔破坏,氧气供应充足,酚类化合物就迅速地被氧化;第二,细胞被破坏后,底物与呼吸酶接近,于是正常的糖酵解和氧化分解以及PPP代谢加强;第三是机械损伤使某些细胞转变为分生状态,以形成愈伤组织去修补伤处,这些生长旺盛的细胞的呼吸速率就比原来休眠或成熟组织的呼吸速率快得多。

69、呼吸作用于生理功能有哪些?

呼吸作用生理意义如下:(1)呼吸作用提供植物生命活动所需要的大部分能量。植株对矿质营养的吸收和运输,有机物的运输和合成,细胞的分裂和伸长等等,无一不需要能量。(2)呼吸过程为其他化合物合成提供碳架。呼吸过程产生的一系列的中间产物,是进一步合成植物体内各种重要化合物(蛋白质、脂肪、核酸)的原料。(3)呼吸作用与抗病性有关,旺盛的呼吸作用可以把病原菌分必的毒素氧化分解为二氧化碳和水或转化为无毒物质。另外,呼吸过程中还可心产生一些对病菌有毒的物质,如酚类化合物。70、呼吸代谢的多条途径对植物生存有何适应意义?

植物代谢受基因的控制,而代谢(包括过程、产物等)又对基因表达具控制作用,基因在不同时空的有序即表现为植物的生长发育过程,高等植物呼吸代谢的多条途径(不同底物、呼吸途径、呼吸链及末端

氧化等)使其能适应变化多端的环境条件。如植物遭病菌浸染时,PPP增强,以形成植保素,木质素提高其抗病能力,又如水稻根在淹水缺氧条件下,乙醇酸氧化途径和与氧亲和力高的细胞色素氧化酶活性增强以保持根的正常生理功能(任举二例说明)。

71、试从不同底物呼吸途径呼吸链和末端氧化举出呼吸代谢途径各三条。

呼吸作用可利用不同的底物如糖、蛋白质、脂肪等。经不同的呼吸途径如无氧条件下的形成酒精或乳酸;有氧条件下EMP-TCA、PPP、乙醛酸循环,乙醇酸途径以及不同的呼吸链如NADH链、FADH链,抗氰呼吸链等,不同的末端氧化酶如细胞色素氧化酶,抗氰氧化酶,多酸氧化酶,黄酶等。以形成不同的产物、构成不同的结构以适应变化多端的环境,从而利于植物的生长发育和种的繁衍。(回答问题时应得上述论点有机联系加以说明)

72、呼吸作用和光合作用之间的相互依存关系表现在哪些方面?

光合作用和呼吸作用是相互依存、共处于一个统一中的,没有光合作用提供的有机物,就不可能有呼吸作用,如果没有呼吸作用;光合过程也无法完成,两者相互依存的关系如下:

(1)光合作用所需的ADP和NADP+与呼吸作用所需的ADP和NADP+(PPP途径所需)是相同的,共用的。

(2)光合作用的碳循环与呼吸作用的戊糖磷酸途径基本上是可逆反应关系,它们的中间产物同样是三碳糖(磷酸甘油醛)、四碳糖(磷酸赤藓糖)、五碳糖(磷酸核糖、磷酸核酮糖、磷酸木酮糖)、六碳糖(磷酸果糖、磷酸葡萄糖)及七碳糖(磷酸景天庚酮糖)等,许多糖类是可以交替使用的。

(3)光合释放的O2可供呼吸利用,而呼吸作用释放的CO2亦能为光合作用所同化。

73、线粒体的超微结构是如何适应其呼吸作用这一特定功能的?

(1)线粒体具双层膜,外膜平滑透性比内膜高,内膜具高度选择性,保持线粒体内代谢的正常运行;(2)内膜里面的腔为克可溶性蛋白质的衬质,TCA环酶等聚集于此,此外不含少量DNA、RNA;(3)内膜内褶形成嵴以扩大面积,增大电子传递附着的表面,嵴的数目随呼吸的增强而增多;(4)内膜内则例具带柄的颗粒,为实现氧化磷酸化的酶等。

74、磷酸戊糖途径与EMP-TCA途径相比有何不同?

第一、磷酸戊糖途径中脱氢酶的辅酶是NADP+而非NAD+,生成物是NADPH而非NADH。

第二、磷酸戊糖途径中无底物水平磷酸化,所以无ATP生成,而有无机磷酸的生成物。

第三、葡萄糖直接氧化成葡萄糖酸等有机羧酸。

第四、在戊糖途径中有戊糖磷酸酯的互变,而EMP-TCA无,这种相互转变与光合碳循环相对映,称氧化的戊糖循环。戊糖是合成核苷酸的原料。

75、呼吸作用是怎样影响植物的水分收收,矿质营养等生理活动的?

(1)呼吸作用促进矿质吸收,降低根细的渗透势和水势,利用于根系渗透吸水。

(2)呼吸作用提供的中间活性物质和ATP等载体蛋白的形成、变构、旋转等促进对矿质元素的吸收。

(3)呼吸作用提供的ATP开动质膜上的质子泵造成膜内外动力势差,趋动矿质的吸收。

(4)呼吸作用促进根系的生长发育,不断“追逐”和吸收水吧。

76、呼吸作用对农业实践有何重要作用?

呼吸作用对农业实践中的意义,可从两个方面来说明。

在作物栽培中,许多农业措施都是为了保证呼吸作用的正常进行而制订的,如浸种催芽中要定时浇水和翻堆;秧田的湿润灌溉;旱作的中耕松土……

种子、果蔬的贮藏与呼吸作用息息相关,如在种子贮藏中必须注意种子的安全含水量,并要降低温度,以降低呼吸作用,延长种子的贮藏时间;又如果实和蔬菜的贮藏中要昼避免机械损伤的基础上,控制温度、湿度和空气三条件,以降低呼吸作用对有机物质的消耗,使果实和蔬菜保持色、得、味和新鲜状态。

有的果实具有呼吸跃变现象,控制温度和CO2浓度抑制呼吸,延缓呼吸跃变出现的时间,增加果实贮藏时间。

77、为什么种子入仓时间的含水量不能超过其临介含水量?

种子含水量超过临介含水量,种子内出现自由水,使蛋白质水含酶活化,呼吸速率提高,消耗种子内贮藏物,产生呼吸热提高库温,进一步促进呼吸作用,使种子变质。(2分)种子含水量增高,空气相对湿度相应增大,附于种子表面的微生物滋生繁衍,使种子霉变。(2分)只有在安全含水量范围内,种子中只有束缚水,空气相对湿度低,抑制呼吸等生化反应和微生物滋生,种子可安全贮藏。(1分)

78、白天在实验室测定植物茎叶的呼吸速率会受到什么影响?如何解决?

白天在实验室测植物茎叶的呼吸速率,由于有光绿色即分仍可进行光合作用,同化CO2并释放O2,因而会干扰测定结果。(2分)因此,应用黑布等遮光,消除光合作用影响的条件下来测定茎叶的呼吸作用。(2分)

79、萌发的大麦种子其RQ值等于0.97,而同一种子胚的RQ值等于0.23,为什么?如果将种浸入水中,发现RQ值可增加至6.5,为什么?

大麦种子的胚乳内含淀粉,水解后形成糖,以糖为呼吸底物,其呼吸商为1,故大麦种子的呼吸商接近于1。(2分)同一种子的胚内含较多的脂肪,因此呼吸商的值小于1,等于0.23。(2分)如将种子浸入水中,种子主要进行无氧呼吸,故呼吸商升至6.5或更高。(1分)

80、试述戊糖酸途径的出现意义。

PPP(HMP)途径定位于细胞质,形成的中间产物在生理活动中十分活跃,沟通各个代谢反应核酮糖-5-磷酸和核糖-5-磷酸是组成核酸的原料;(2分)丙糖、丁糖、巳糖和庚糖的磷酸酯也是卡乐文循环的中间产物,把光合作用和呼吸作用联系起来;(2分)甘油醛-3-磷酸为EMP相通;(1分)赤藓糖-4-磷酸和-3-磷酸甘油酸可通过莽草酸途径形成芳香族氨基酸,酚类物质(提高植物抗病能力);(2分)形成的NADPH 是脂肪合成所必需等。(1分)

61、呼吸作用与有机物代谢有何关系?

呼吸作用为有机物合成提供能量和中间活性物质;(2分)有机物是呼吸作用的底物,通过呼吸作用有机物在体内发生转变和循环;(2分)(3)呼吸作用的中间产物如丙酮酸,乙酰CoA、α- 戌二酸、草酰等一糖、脂肪、蛋白质代谢相联系枢纽作用;(2分)(4)核苷酸的核粮来源于PPP碱基由氨基酸等提供,使核酸代谢一糖代谢,氨基酸代谢关系密切;(2分)(5)类萜化合物来源于乙酰CoA酚类和生物碱的碳架由EMP和PPP提供,氨源由氨基酸提供因此与次生物代谢相关。(2分)

62、果树生产上常利用环剥提高产量,为什么?若在果树主茎下端剥较宽的环能提高果树的产量吗?为什么?

果树开花期对树干适当进行环剥,可阻止枝叶部分光合产物的下运,使更多的光合产物运往花果,从而利于增加有效花数,提高座果实吧大,提高产量和品质。(4分)

若在果树主干上切环太宽,切环下又未长出新枝叶,时间久了根系得不到地上部分提供的同化物和微量活性物质,而本身贮藏的又消耗殆尽,根部就会“饿死”,从而使根无法吸收水吧等,致死整个植物死亡。(4分)

63、细胞内含有多种多样的酶,为何各生理生化过程能有序而协调的进行?

植物细胞具有复杂的亚显微结构,细胞内不同的多酶体系分布于不同的亚显微结构中,这种区隔(域)人的分布避免了不同酶在反应间的相互干扰,如TCA和氧化磷酸化酶系分别分布于线粒体衬质和嵴;光合作用和淀粉合成分布于叶绿体等;(5分)同时也利于各种代谢物较易与相应的酶接触,缩短酶与代谢物相适的时间,维持酶作用所需要的较高的代谢浓度,以加速反应的进行,使各代谢过程相互联系又相互制约。(3分)

64、简述高等植物体内脂肪酸α-氧化的途径有生理意义。

α-氧化的底物是长链(13-18碳原子)的脂肪酸;(1分)氧化过程分为两步:首先由脂肪酸过氧化物酶催化使其脱羧、脂肪酸转变为少一个碳原子的醛类;(2分)然后在脱氢酶(以NAD+为抽酶)作用下,

加水脱氢氧化形成比原来少一个碳原子能脂肪酸;(2分)反应为:R-CH2-CH2-COOH该途径对植物体

内奇数碳原子脂肪酸的形成具有的作用。(2分)

65、植物体内有机物的运输受到哪些因素的影响?如何影响?

(1)温度适度一般20-30℃过低过高温度影响吸收速率,木本酶治理和原生质结构而影响运输,不同地温和气温影响到运输方向;(4分)(2)矿质元素;B能与糖结合形成具极性复合物利于通过质膜,促进糖的运输;P 光合速率蔗糖转变和A TP形成运输;K 碳水化合物转变形成淀粉,糖运输(3分)(3)植物激素如IAA、GA、CTK等提高植物呼吸作用,“吸引”有机物的输入。(1分)

66、试述植物体内有机物运输的途径、方向和形式,可用什么方法证明?

(1)有机物运输的途径:主要为韧皮部的筛管;研究方法;环剥同位素示躁(3分)

(2)运输的方向:同时双向运输,也可横向研究方法同位素示躁(3分)

(3)运输的形式:碳水化合物主要为蔗糖有些植物中可为毛蕊花糖水苏糖棉子糖及糖醇等。(2分)亦具少量的氨基酸酰胺,有机酸及微量的生长素等(1分)

研究方法:蚜虫吻刺法组合同位素示躁法。(1分)

67、什么叫次生植物物质?它们在植物生命活动和人类经济生活中有何意义?

由植物初级代谢产物如糖脂肪和氨基酸等衍生的物质如藻类、酸类、生物碱等称为次生物质;(2分)它们贮藏于液泡和细胞壁中,一般为代谢的终产物,一植物的生长发育和繁殖无直接关系;(2分)但某些次生物是植物必需的如植物激素,叶绿素类胡萝卜素、花色素、木质素等,使植物具一定的色香味,以吸引昆虫或动物来帮助传粉,利于种的繁衍,有些有御防天敌的作用,(3分)某些次生物质是重要的药物和工业原料如酸等。(1分)68、举例说明植物体内重要的类萜及其生理作用。

(1)挥发油多为类萜和倍半萜,广布于植物界,存在于腺细胞和表皮中,可引诱昆虫授粉和防止动物的侵袭;(2)树脂的主要成分为倍半萜、双萜和三萜,存在于树脂道和细胞壁,对植物有保护作用和防止病菌感染伤口,可作工业原料和药物;(3)类胡萝卜素是四萜的衍生物,包括胡萝卜、叶黄素、番茄红素等,能决定花果的颜色,类胡萝卜素能吸收光能,参与光合作用;(4)橡胶是多萜,橡胶树皮乳汁的主要成分;(5)混合萜如赤霉素(植物激素)和光合过程的重要电子传递体质体醌。(要求任答三点)

69、试述人幼嫩叶到衰老叶,同化物运输有何变化?

幼嫩叶生长尚未完成时,本身产生的光合产物较小,不向外运出,反而从别处输入光合产物,供幼叶生长用(2分)一俟叶片长成,形成大量光合产物,叶片就向外运送光合产物;(1分)老叶的光合产物形成渐少,输出的数量亦减少,(1分)叶片衰老时,细胞内物质包括组成物降解撤离最后剩下基本上是纤维素骨架,停止输出。(1分)

70、有机物质的运输在植物生活中有何意义?

物质运输,特别是有机物的运输,是维持植物整体生长的前提条件,各器官的分化生长,必须有物质的运输供给来保证。

高等植物是多器官的有机体,各器官之间有着明显的分工与协作关系,因此各器官之间,必然有物质和能量的交流,例如根的生长需要吸收叶片制造的同化物质,而叶的生长也要根部吸收的水分和矿质的供给,同时,一些微量的生理卫生活性物质,也是同大量营养物质一起运输的,由于光周期变化的诱导,可以合成促进开花和休眠芽的形成。同时地上地下部之间也有微量活性物质的交流,如根供给地上部的细胞分裂素,而地上部向根部运输生长素类物质,这种交流是维持地上部间的比例生长和发育所必不可少。71、如何脏乱实验证明植物体内同化物质的运输是个主动过程?

主动运输是一个消耗能量的过程,因此凡是影响呼吸作用的因素,如降低温度、减少氧的供给、施用呼吸抑制剂,都会由于呼吸作用的减弱,主动运输所需要的能量减少,从而使运输速率明显减弱,相反,如果用ATP处理,则可促进运输,使运输速率明显升高。这说明同化物质的运输是一个耗能的主动过程。

说明同化物质的运输是一个主动过程的事实还有下列几方面:如韧皮部的呼吸速率明显比其他组织快,筛细胞内有类似于动物肌动蛋白的P-蛋白,它利用水解A TP释放的能量进行有节奏的收缩蠕动来失去有机物质的运输。各种不同物质的运输速率不同,即具有选择性,都证明同化物质的运输是一个主动运输。72、何谓压力流动假说?它的主要内容和实验依据是什么?该学说还有哪些不足之处?

有机物质运输的压力流动假说是德国学者明希(Münch)1930年提出来的,这个学说的基本点是:认为有机物质在筛管内的流动是由于筛管的两端(即供应端和接纳端)所存在的压力差推动的,由于供应端的绿色细胞的光合产物,通过运输细胞向筛管内装载,从而使筛管肉的溶质浓度升高,而输出端由于溶质的输出,浓度降低,,从而造成筛管两端的溶质浓度不同,因而渗透势也不同,呼吸平衡后产生的压力势也就不同,因为这个压力势在筛管内是可以传导的,因而就产生了一个流体静压力,这种压力推动筛管的溶液向输出端流动。

73、如何用实验证明烟草中的烟碱不是叶片本身合成而是根部合成后再运到地上部分来的?

证明烟草烟叶中的烟碱是根部合成后再运到地上部来的最有力证明是嫁接试验。以烟草作砧木,以茄子作接穗进行嫁接,结出的茄子含有烟碱,茄子本来是不含烟碱的,它的烟碱只能来自烟草砧木,以烟草作接穗,则长出的烟叶没有烟碱,这说明烟叶本身不能合成烟碱。烟叶中的烟碱靠烟草的根来供应。

另外,将烟草地上部切去,将切口套上橡皮管,收集伤流液,分析其中有无烟碱存在,如果烟草的伤流液中有烟碱,并且在较长时间的伤流液中均有烟碱,也中说明烟草根有合成烟碱的能力,但它不能证明烟叶是否有合成烟碱的功能。

74、乙醛酸循环与TCA有什么联系和区别?

乙醛酸循环中含有某些和三羧酸循环相同的酶,但是二者是不同的体系,乙醛~SCoA首先和草酰乙酸合为柠檬酸,然后转变为异柠檬酸,催化这二步反应的酶和TCA循环是相同的。但是从发生部位看,GAC在乙醛酸体,TCA在线粒体中进行,从发生的范围来看,GAC只有在油料种子及某些其他种子萌发时进行,而TCA在生物界普遍存在。另外,GAC循环一次,接受2个乙酰CoA,形成分子琥珀酸,无CO2释放,而TCA循环一次,接受1个乙酰CoA,放出2个CO2。GAC具有两个特异的酶即异柠檬酸裂解酶和苹果酸合成酶,TCA无此两种酶。

75、简述油料种子萌发时油脂如何转变为糖的。

(1)种子中贮藏室脂类,在油质体内肪肪酶类的催化下,水解为甘油和脂肪酸等。

(2)在甘油激酶的催化下,甘油转变为α-磷酸酸甘油,进入线粒体,又在磷酸甘油氧化酶催化下,转变为磷酸二羟丙酮,进入细胞质,逆糖酵解途径转变为已糖,进而转变为蔗糖而运输,或者磷酸二羧丙酮经糖酵解和三羧酸循环而充分氧化分解。

(3)脂肪酸进入乙醛酸体,活化为脂酰辅酸A,再经β-氧化生成大量乙酸-COA,后者经乙醛进入细胞质,逆糖酵解途径异生为已糖,进而转变为蔗糖,运往正在生长的胚。或草酰乙酸脱羧成为烯醇式酮酸后,又返回线粒体,参加三羧酸循环而氧化。

76、一株马铃薯在100天内,其块茎增重达400克,块茎的含水量为70%,茎的韧皮部的横切面积为0.005cm2,求同化物质运输的比集运量。

比集运量,缩写为SMT,等于单位时间内运输的干物质量被韧皮部的横切面积。单位为干物质大克数/厘米2·小时。

将上述规定的数据代入公式:

SMT=

2 400(170%)1208

10/

0.005241000.0052400

g cm h

?-

==????

答:该马铃薯的比集运量为`10克/厘米2·小时。

77、为什么香蕉在10℃时不变甜而有些蔬菜只有冬季低温才变甜?

香蕉成熟时主要由淀粉酶催化使贮藏的淀粉水解而变甜,高温利于淀粉酶的活化,10℃时淀粉酶先活,香蕉不会甜;而有些蔬菜是由淀粉磷酸化酶催化淀粉降解,该酶的适温为0-9℃,因此只有在冬季低温下该酶活化催化淀粉降解而变甜。

78、蔗糖是植物体内运输的一种主要有机物质,其原因和优点是什么?

蔗糖是光合作用的主要产物,是比较稳定的贮藏能化合物,其水溶性高,非还原末端可保护葡萄糖不被分解,而其糖苷键在水解时产生的自由能又比较多。

蔗糖水溶液的物理特性如密度、粘度、表面张力、电解常数等与葡萄糖相似。

79、试说明有机物运输分配的规律。

总和来说是由源到库,植物在不同生长发育时期,不同部位组成不同的源库单位,以保证和协调植物的生长发育,总结其运输规律:(1)优先运往生长中心;(2)就近运输;(3)纵向同侧运输(与输导组织的结构有关);(4)同化物的再分配即衰老和过度组织(或器官)内的有机物可撤离以保证生长中心之需。

80、简述淀粉的合成与分解过程。

要点:(1)直链淀粉的合成主要有两条途径,即淀粉磷酸化酶途径与淀粉合酶途径(包括主要途径,即G的供体、交体,加在受体非还原端产物等,以下同)

(2)支链淀粉的合成主要通过Q酶,以直链淀粉为底物形成α-1,6-连接酸极点。

(3)淀粉的分解包括水解(α及β淀粉酶、麦芽糖酶作用)和磷酸解(淀粉磷酸化酶催化)打断α-1,4-连接。

支链淀粉的分支点(α-1,6-糖苷链)由R酶(脱支酶)催化分解。

99、植物体内有哪些因素决定了特定组织中生长素的含量?

(1)生长素的生物合成,(2)可逆可不可逆地形成束缚态生长素,(3)生长素的运输(输出或输入),(4)生长素的酶促氧化脱羧或光氧化,(5)生长素在生理活动中的消耗。

100、说明IAA极性运输的化学涌透模型(chemiosmotic mode)要点。

质膜上H+ -A TP酶催化ATP水解,为生长素的积累和极性运输提供,能源;(2)H+ -ATP酶将细胞溶质中的H+泵出到细胞壁中,使细胞溶质中的PH值在7左右,而细胞壁中的PH值在5左右,这种质膜内外的PH梯度可以作为IAA吸收的动力;(3)IAA既能以非解离态IAAH进入细胞,又能以解离态IAA-与2个H+一起,通过电致同向运输(electrogenic symport)进入细胞。质膜外侧为正的膜电势促进IAA 的吸收;(4)仅在细胞基部质膜上分布(极性分布的阴离子载体(AC)和输出载体(EC)使IAA从细胞内向基性地输出到细胞外。

101、各种赤霉素的共同点及相互区别是什么?

按1989年估计已发现76种GA、它们共同具有的基本结构为赤霉烷,各种不同GA间的相互区别主要有(1)碳原子数目,(2)A环上有无内酯,(3)A环上双键的有无和位置,(4)羟基的数目与位置。102、赤霉素在基因表达的哪一阶段或何种水平诱导α-淀粉酶的形成?

研究表明,糊粉层细胞中没有贮存的α-淀粉酶mRNA。α-淀粉酶mRNA是在GA诱导下重新合成、并被翻译成α-淀粉酶的。即GA在转录水平上诱导α-淀粉酶的形成。

103、M.V enis在1985年提出了激素受体的哪5条标准?

(1)受体与激素的结合的具有很高的亲和力,有一定的结合容量,而且是可逆的;(2)受体被激素所饱和的浓度范围一般与激素反应的饱和浓度范围相一致;(3)受体具有特具性;(4)受体与激素结合后,应引起激素的特异生物学反应;(5)受体与激素的结合一般限于对激素起反应的组织内。

104、用试验证明赤霉素诱导α-淀粉酶的形成。

禾谷类种子吸水萌发之后,胚乳的淀粉在α-淀粉酶的作用下水解成糖,遇碘不再呈现兰色反应,而α-淀粉酶的形成只有在有胚存在并释放赤霉素时才可实现。无胚的种子由于缺乏赤霉素而不能产生α-淀粉酶,淀粉不能水解为糖,因而遇碘呈现兰色反应。当向无胚种子中,添加不同浓度赤霉素后,培养即可产生α-淀粉酶,并能使淀粉降解成糖,因而遇碘不再呈现兰色反应。这样即可证明赤霉素对α-淀粉酶诱导形成的作用。

105、生长素的生理效应如何?合成生长素在农业生产上的应用如何?应注意些什么?

生长素的生理效应主要是促进细胞伸长。人工合成的生长素,如萘乙酸、2,4-D等已广泛应用于农业生产,主要有以下几个方面:①促进插枝生根,②阻止器官脱落,③促进菠萝开花,④促进黄瓜雌花分化。此外还可用于延长种子、块茎的休眠、单性结实、防止落花果、疏花疏果等等。

在应用生长素类于农业生产中时要注意生长素的双重活性及植物细胞、器官的敏感性。即稀浓度的生长素溶液可以促进植物生长,高浓度的生长素溶液则会使植物伤害致死。此外,不同的器官对同一浓度生

相关推荐
相关主题
热门推荐