文档库 最新最全的文档下载
当前位置:文档库 › 液压阀的种类

液压阀的种类

液压阀的种类
液压阀的种类

液压阀的种类(所有的)

溢流阀﹑减压阀、顺序阀、节流阀、集流阀、分流阀、调速阀、单向阀、换向阀、电磁阀、反向控制阀

压力控制阀:溢流阀﹑减压阀和顺序阀

流量控制阀:节流阀,集流阀,分流阀,调速阀

方向控制阀:单向阀和换向阀

压力控制阀按用途分为溢流阀﹑减压阀和顺序阀。

(1)溢流阀:能控制液压系统在达到调定压力时保持恆定状态。用於过载保护的溢流阀称为安全阀。当系统发生故障,压力昇高到可能造成破坏的限定值时,阀口会打开而溢流,以保证系统的安全。

(2)减压阀:能控制分支迴路得到比主迴路油压低的稳定压力。减压阀按它所控制的压力功能不同,又可分为定值减压阀(输出压力为恆定值)﹑定差减压阀(输入与输出压力差为定值)和定比减压阀(输入与输出压力间保持一定的比例)。

(3)顺序阀:能使一个执行元件(如液压缸﹑液压马达等)动作以后,再按顺序使其他执行元件动作。油泵產生的压力先推动液压缸1运动,同时通过顺序阀的进油口作用在面积A 上,当液压缸1运动完全成后,压力昇高,作用在面积A 的向上推力大於弹簧的调定值后,阀芯上昇使进油口与出油口相通,使液压缸2运动。

流量控制阀利用调节阀芯和阀体间的节流口面积和它所產生的局部阻力对流量进行调节,从而控制执行元件的运动速度。流量控制阀按用途分为5种。

(1)节流阀:在调定节流口面积后,能使载荷压力变化不大和运动均匀性要求不高的执行元件的运动速度基本上保持稳定。

(2)调速阀:在载荷压力变化时能保持节流阀的进出口压差为定值。这样,在节流口面积调定以后,不论载荷压力如何变化,调速阀都能保持通过节流阀的流量不变,从而使执行元件的运动速度稳定。

(3)分流阀:不论载荷大小,能使同一油源的两个执行元件得到相等流量的为等量分流阀或同步阀;得到按比例分配流量的为比例分流阀。

(4)集流阀:作用与分流阀相反,使流入集流阀的流量按比例分配。

(5)分流集流阀:兼具分流阀和集流阀两种功能。

方向控制阀按用途分为单向阀和换向阀。

单向阀:只允许流体在管道中单向接通,反向即切断。

换向阀:改变不同管路间的通﹑断关係﹑根据阀芯在阀体中的工作位置数分两位﹑三位等;根据所控制的通道数分两通﹑三通﹑四通﹑五通等;根据阀芯驱动方式分手动﹑机动﹑电动﹑液动等。当阀芯处於中位时,全部油口切断,执行元件不动;当阀芯移到右位时,P 与 A 通,B 与O 通;当阀芯移到左位时,P 与 B 通,A 与O 通。这样,执行元件就能作正﹑反向运动。

换向阀换向阀的作用是利用阀芯位置的改变,改变阀体上各油口的连通或断开状态,从而控制油路连通、断开或改变方向。生产销售换向阀的知名厂商有:Parker美国派克,DENISON美国丹尼逊,HAWE德国哈威,TOYOOKI日本丰兴,VICKERS美国威格士等。

电磁换向阀

(1)结构原理

1)WE型电磁换向阀图43、图44、图45和图46分别是不同通径的WE型电磁换向阀的结构原理图。

电磁换向阀的基本工作原理是相同的,通过电磁铁控制滑阀阀芯的不同位置,以改变形油液的流动方向。当电磁铁断电时,滑阀由弹簧保持在中间位置或初始位置(脉冲式阀除外)。若推动故障检查按钮可使滑阀阀芯移动。

图43 WE5型电磁换向阀结构原理图

1—阀体;2—电磁铁(左为交流电磁铁,右为直流电磁铁);3—滑阀;4—复位弹簧;5—推杆;6—故障检查

按钮;7—橡胶保护罩

图44 WE6型电磁换向阀结构原理图

1—阀体;2—电磁铁;3—滑阀;4—复位弹簧;5—推杆;6—故障检查按钮

图45 4WE10E10/A型湿式电磁换向阀结构原理图

1—阀体;2—湿示电磁铁;3—滑阀;4—复位弹簧;5—推杆;6—故障检查按钮

图46 4WE10E10/L…型干式交流电磁换向阀结构原理图

1—阀体;2—干式电磁铁;3—滑阀;4—复位弹簧;5—推杆;6—故障检查按钮DIRECTIONAL CONTROL VALVES

Miniature VALVES

Miniature 4-Way Directional Control Valves

4way 2 position

reversing valve

1. 两位四通电磁换向阀

4-Way Reversing Solenoid Valve

4-Way Reversing Solenoid

Valve

Product Description

4-way valve is used for heat-pump air conditioning system to control the direction of the refrigerant flow to realize heating and cooling cycle of system.

Refrigerant: R22, R40C7, R410a

Max working pressure: 4.15MPa

Power: 4.5KW-50KW

Connection: 5/16"to 1-1/8"(D); 3/8"to 1-3/8"(E, S, C)

Company:Shaoxing TLONG Electric Co., Ltd.

4-way directional control valves

Figures 8-11 to 8-15 show different configurations available in

4-way directional control valves. They range from the simple, two-position, single, direct solenoid, spring-return valve shown in Figure 8-11, to the more complex three-position, double solenoid, pilot-operated, spring-centered, external-pilot supply, external drain valve shown in Figure 8-15.

Figure 8-11.

4-way, 2-position

direct

solenoid-operated

spring return.

4-Way, 2-Position, Spool

4-Way,

2-Position, Spool Example Schematic ?Available with “normally open”, “normally closed” and reversing, with an array of spool options.

?Commonly used for directional control of motors or cylinders. Used in combination to duplicate a four-way, three-position valve, creating an

economical, compact and high flow function.

?Flow range: 8-60 l/min [2-16 US gal/min].

?Pressure capability up to 240 bar [3,500 psi].

SMC Valves

4-way 2 position single solenoid Bosch Rexroth

4-way 2 position single solenoid Valve Model 840 w/ Electrical

Spade Connectors

Internal View

Theory of

operation

电磁阀多是控制液体单向导通和关闭的,而四通阀是冷暖空调上专用的,是控制从压缩机

出来的制冷剂流动方向的设备,从而达到空调制冷或制热的目的。

来源:互联网作者:佚名日期:2009年12月01日访问次数:987

图一

图二

工作原理:

四通阀不同于普通直动式电磁阀,它必须在一定压力下才能正常工作,四通阀由三个部分组成:先导阀,主阀和电磁线以拆卸,先导阀与主阀焊接成一体。当电磁阀线圈处于断电状态,如图一,先导滑阀在右侧压缩弹簧驱动下左移,高压气体进入端活塞腔,另一方面,左端活塞腔的气体排出,由于活塞两端存在压差,活塞及主滑阀左移,使排气管(S管)与室外机接管(C管管相通,形成制冷循环。当电磁阀线圈处于通电状态,如图二,先导滑阀在电磁线圈产生的磁力作用下克服压缩弹簧的张力而右毛细管①后进入左端活塞腔,另一方面,右端活塞腔的气体排出,由于活塞两端存在压差,活塞及主滑阀右移,使排气管(S管)

管)相通,另两根接管相通,形成制热循环。

图三

结构:

中间位置,由四通阀结构不难发现,当主滑阀处于中间位置状态时,如上图所示,E、S、C三条接管相互通气,产生压缩机高压管内的冷媒可以直接流回低压管。设计中间流量的目的是当主滑阀处在中间位置时,能起到卸压的作用,使系统免

四通阀串气故障的形成:

四通换向的基本条件是活塞两端的压力差(F1—F2)必须大于摩擦阻力f,否则,四通阀将不会换向。换向所需的最低统流量来保证的(图三所示)。当左右活塞腔的压力差大于摩擦阻力f时,四通阀换向开始,当主滑阀运动到中间位置时,四通阀接管相互导通,压缩机排出的冷媒从四通阀D接管直接经E、C接管流向S接管(压缩机回气口),使压力差快速降低,形成瞬流量状态)。此时,若压缩机的排气流量远大于四通阀的中间流量,便可以建立足够大的换向压力差而使四通阀换向到位;反过气量小于四通阀的中间流量,则四通阀换向所需的最低动作压力差便不能建立,即F1-F2<f,四通阀不能继续换向而停在中间位

图四

具体的实物见图四。

四通换向阀是热泵空调器中的关键部件

空调四通阀的工作原理分析

换向型方向控制阀的分类及工作原理

时间:2007-8-30 14:29:17 来源:中国泵阀网发表评论进入论坛

换向型方向控制阀(简称换向阀),是通过改变气流通道而使气体流动方向发生变化,从而达到改变气动执行元件运动方向目的。它包括气压控制换向阀、电磁控制换向阀、机械控制换向阀、人力控制换向阀和时间控制换向阀等。

1、气压控制换向阀

气压控制换向阀,是利用气体压力来使主阀芯运动而使气体改变流向的。按控制方式不同分为加压控制、卸压控制和差压控制三种。加压控制是指所加的控制信号压力是逐渐上升的.当气压增加到阀芯的动作压力时,主阀便换向;卸压控制是指所加的气控信号压力是减小的,当减小到某一压力值时,主阀换向;差压控制是使主阀芯在两端压力差的作用下换向。

气控换向阀按主阀结构不同,又可分为截止式和滑阀式两种主要形式。滑阀式气控换向阀的结构和工作原理与液动换向阀基本相同。在此主要介绍截止式换向阀。

截止式换向阀的工作原理

图1所示为二位三通单气控截止式换向阀的工作原理图。图14—20a为及口没有控制信号时的状态。阀芯在弹簧与P腔气压作用下,使P与A断开,A与T通,阀处于排气状态。当K口有控制信号时(见图14—20b),P与A通,A与2、断开,A口进气。

图一、截止式换向阀的工作原理

图2所示为二位三通单气控截止式换向阀的结构图。当K口无信号时。A与T通、阀处于排气状态;

当K口有信号输入后,压缩空气进入活塞9的有端,使阀杆5左移、P与A通。图中所示的为常断型阀,如果P与T换接则成为常通型。

图二、截止式换向阀的结构图

2、先导式电磁换向阀

图三、直动式单电控电磁阀的工作原理

先导式电磁换向阀是由电磁铁首先控制气路,产生先导压力,再由先导压力去推动主阀阀芯,使其换向。适用于通径较大的场合。

图4所示为先导式双电控二位四通电磁换向阀。它由先导阀(Dl、D2)和主阀组成。而主阀又包括阀体1和活塞组件2两部分。图示的是Dl、D2均处于断电的状态。电磁阀的动铁芯5、6处于关闭状态。当Dl通电、D2断电时,动铁芯5被吸起,由P口来的压缩空气经孔a(虚线)进入阀的f腔。并从密封塞4(单向阀)的四周唇边进入孔‘,并进入。广腔,推动活塞组件2下移,使P与A通,B经阀芯中心孔h与T通(排气)。A口有压缩空气输出的同时,有一部分压缩空气流入孔g,其中一路经节流孔d 进入c腔使密封塞4下移封住排气孔b,另一路压缩空气进入f腔,作用在活塞组件2的上端。此时,即使Dl断电,活塞组件2也不会位即该阀具有记忆功能。

图四、先导式双电控二位四通电磁换向阀

当先导阀D2通电、Dl断电时,动铁芯6被吸起,c腔内的压缩空气经T1口排出。此时从P到A 的压缩空气作用在大、小活塞上,因大、小活塞的面积差而产生向上的作用力,使活塞组件2上移。与此同时,密封塞4也上移,并打开阀口3,使活塞组件2上端的压缩空气经孔6排掉。活塞组件2上移后,P与B通,A与T通(排气)。此时即使D2断电,因大小活塞面积差而产生向上的作用力依然存在,所以输出状态也不会改变,即具有记忆功能。气动电磁换向阀与液压电磁换向阀一样,有很多类型,其工作原理也相似,不再赘述。

Figure 2a: Components of an Air-source Heat Pump (Heating Cycle)

Figure 2b: Components of an Air-source Heat Pump (Cooling Cycle)

(四通换向阀)

?发布时间:2010-6-18 8:03:16

?参考价格:28.00 / 只

?公司:无锡市新艾柯制冷机电商行

1. ASCO电磁阀_ASCO_REXROTH_JOUCOMATIC电磁阀-上海乾拓贸易有限

公司

ASCO电磁阀选择使用时需要注意的特性

一、安全性:

1、腐蚀性介质:宜选用塑料王ASCO电磁阀和全不锈钢;对于强腐蚀的介质必须选用隔离膜片式。例CD-F. Z3CF。中性介质,也宜选用铜合金为阀壳材料的ASCO电磁阀,否则,阀壳中常有锈屑脱落,尤其是动作不频繁的场合。氨用阀则不能采用铜材。

2、爆炸性环境:必须选用相应防爆等级产品,露天安装或粉尘多场合应选用防水,防尘品种。

3、ASCO电磁阀公称压力应超过管内最高工作压力。

二、适用性:

1.介质特性

1.1质气,液态或混合状态分别选用不同品种的ASCO电磁阀,例ZQDF用于空气,ZQDF—Y用于液体,ZQDF—2(或-3)用于蒸汽,否则易引起误动作。ZDF系列多功能ASCO电磁阀则可通通于气.液体。最好订时告明介质状态,安装用户就不必再调式。

1.2介质温度不同规格产品,否则线圈会烧掉,密封件老化,严重影响寿命命。

1.3介质粘度,通常在50cSt以下。若超过此值,通径大于15mm用ZDF系列多功能ASCO电磁阀作特殊订货。通径小于15mm订高粘度ASCO电磁阀。

1.4介质清洁度不高时都应在ASCO电磁阀前配装反冲过滤阀,压力低时尚可选用直动膜片式ASCO电磁阀作例如CD—P。

1.5介质若是定向流通,且不允许倒流ZDF—N和ZQDF—N单需用双向流通,请作特殊要求提出。

1.6介质温度应选在ASCO电磁阀允许范围之内。

2.管道参数

2.1根据介质流向要求及管道连接方式选择阀门通口及型号。例如,用于一条管道向两条管道切换的,小通径的选CA5和Z3F,中等或大通径请选ZDF—Z1/2。又如控制两条管道汇流的,请选ZDF—Z2/1等。

2.2根据流量和阀门Kv值选定公称通径,也可选同管道内径。请注意有的厂家未标有Kv值,往往阀孔尺寸小于接口管径,切不可贪图价低而误事。

2.3工作压差

最低工作压差在0.04Mpa以上是可选用间接先导式;最低工作压差接近或小于零的必须选用直动式或分步直接式。

3.环境条件

3.1环境的最高和最低温度应选在允许范围之内,如有超差需作特殊订货提出。

3.2环境中相对湿度高及有水滴雨淋等场合,应选防水ASCO电磁阀

3.3环境中经常有振动,颠簸和冲击等场合应选特殊品种,例如船用ASCO电磁阀。

3.4在有腐蚀性或爆炸性环境中的使用应优先根据安全性要求选用耐发蚀

3.5环境空间若受限制,请选用多功能ASCO电磁阀,因其省去了旁路及三只手动阀且便于在线维修。

4.电源条件

4. 1根据供电电源种类,分别选用交流和直流ASCO电磁阀。一般来说交流电源取用方便。

4.2电压规格用尽量优先选用AC220V.DC24V。

4.3电源电压波动通常交流选用+%10%.-15%,直流允许±%10左右,如若超差,须采取稳压措施或提出特殊订货要求。

4.4应根据电源容量选择额定电流和消耗功率。须注意交流起动时VA值较高,在容量不足时应优先选用间接导式ASCO电磁阀。

5.控制精度

5.1普通ASCO电磁阀只有开、关两个位置,在控制精度要求高和参数要求平稳时请选用多位ASCO电磁阀;Z3CF三位常开ASCO电磁阀,具有微启,全开和关闭三种流量;

ZDF-Z1/1组合多功能ASCO电磁阀具有全开、大开、小开、全开四种流量。

5.2动作时间:指电信号接通或切断至主阀动作完成时间,只有本公司专利产品多功能ASCO电磁阀可对开启和关闭时间分别调节,不仅可满足控制精度要求,还可防止水锤破坏。

5.3泄漏量

样本上给出的泄漏量数值为常用经济等级,若嫌偏高,请作特殊订货。

常用液压阀的类型及出现的问题解答

1.常用液压阀一方向阀、压力阀、流量阀的类型 【答】 (1)方向阀方向阀的作用概括地说就是控制液压系统中液流方向的,但对不同类型的阀其具体作用有所差别。方向阀的种类很多,常用方向阀按结构分类如下:单向阀:l普通单向阀 2 液控单向阀普通单向阀换向阀:1 转阀式换向阀 液控单向阀 2 滑阀式换向阀:手动式换向阀、机动式换向阀、电动式换向阀、液动式换向阀、电液动换向阀。

手动式换向阀 电液动换向阀(2)压力控制阀 溢流阀:直动式、先导式溢流阀

直动式溢流阀 先导式溢流阀减压阀:直动式、先导式减压阀 顺序阀:直动式、先导式顺序阀 压力继电器 (3)流量控制阀 节流阀调速阀 …………. 2.换向阀的控制方式,换向阀的通和位

【答】换向阀的控制方式有手动式、机动式、电动式、液动式、电液动式五种。换向阀的通是指阀体上的通油口数,有几个通泊口就叫几通阀。换向阀的位是指换向阀阀芯与阀体的相互位置变化时,所能得到的通泊口连接形式的数目,有几种连接形式就叫做几位阀。如一换向阀有4个通油口,3种连接形式,且是电动的,则该阀全称为三位四通电磁(电动)换向阀。 3.选用换向调时应考虑哪些问题及应如何考虑 【答】选择换向阀时应根据系统的动作循环和性能要求,结合不同元件的具体特点,适用场合来选取。①根据系统的性能要求,选择滑阀的中位机能及位数和通数。②考虑换向阀的操纵要求。如人工操纵的用手动式、脚踏式;自动操纵的用机动式、电动式、液动式、电液动式;远距离操纵的用电动式、电液式;要求操纵平稳的用机动式或主阀芯移动速度可调的电液式;可靠性要求较高的用机动式。③根据通过该阀的最大流量和最高工作压力来选取(查表)。最大工作压力和流量一般应在所选定阀的范围之内,最高流量不得超过所选阀额定流量的120%,否则压力损失过大,引起发热和噪声。若没有合适的,压力和流量大一些也可用,只是经济性差一些。④除注意最高工作压力外,还要注意最小控制压力是否满足要求(对于液动阀和电液动换向阀)。⑤选择元件的联接方式一一管式(螺纹联接)、板式和法兰式,要根据流量、压力及元件安装机构的形式来确定。⑥流量超过63L/min时,不能选用电磁阀,否则电磁力太小,推不动阀芯。此时可选用其他控制形式的换向阀,如液动、电液动换向阀。 4.直动式溢流阀与先导式溢流阀的流量一压力特性曲线,曲线的比较分析 【答】溢流阀的特性曲线溢流阀的开启压力o当阀入口压力小于PK1时,阀处于关闭状态,其过流量为零;当阀入口压力大于k1时,阀开启、溢流,直动式溢流阀便处于工作状态(溢流 的同时定压)。图中pb是先导式溢流阀的导阀开启 压力,曲线上的拐点m所对应的压力pm是其主阀的 开启压力。当压力小于民。时, 导阀关闭,阀的流量为零;当压力大于pb(小于此 2)时,导阀开启,此时通过阀的流量只是先导阀的 泄漏量,故很小,曲线上pbm段即为导阀的工作段;当阀入口压力大于此2时,主阀打开,开始溢流,先导式溢流阀便进入工作状态。在工作状态下,元论是直动式还是先导式溢流阀,其溢流量都是随人口压力增加而增加,当压力增加到丸z时,阀芯上升到最高位置,阀口最大,通过溢流阀的流量也最大一为其额定流量毡,这时入

液压布管知识总结

液压布管规程 液压管道安装是液压设备安装的一项主要工程。管道安装质量的好坏是关系到液压系统工作性能是否正常的关键之一。 1、布管设计和配管时都应先根据液压原理图,对所需连接的组件、液压元件、管接头、法兰作一个通盘的考虑。 2、管道的敷设排列和走向应整齐一致,层次分明。尽量采用水平或垂直布管,水平管道的不平行度应≤2/1000;垂直管道的不垂直度应≤2/400。用水平仪检测。 3、平行或交*的管系之间,应有10mm以上的空隙。 4、管道的配置必须使管道、液压阀和其它元件装卸、维修方便。系统中任何一段管道或元件应尽量能自由拆装而不影响其它元件。 5、配管时必须使管道有一定的刚性和抗振动能力。应适当配置管道支架和管夹。弯曲的管子应在起弯点附近设支架或管夹。管道不得与支架或管夹直接焊接。 6、管道的重量不应由阀、泵及其它液压元件和辅件承受;也不应由管道支承较重的元件重量。 7、较长的管道必须考虑有效措施以防止温度变化使管子伸缩而引起的应力。 8、使用的管道材质必须有明确的原始依据材料,对于材质不明的管子不允许使用。 9、液压系统管子直径在50mm以下的可用砂轮切割机切割。直径50mm以上的管子一般应采用机械加工方法切割。如用气割,则必须用机械加工方法车去因气割形成的组织变化部分,同时可车出焊接坡口。除回油管外,压力由管道不允许用滚轮式挤压切割器切割。管子切割表面必须平整,去除毛刺、氧化皮、熔渣等。切口表面与管子轴线应垂直。10、一条管路由多段管段与配套件组成时应依次逐段接管,完成一段,组装后,再配置其后一段,以避免一次焊完产生累积误差。 11、为了减少局部压力损失,管道各段应避免断面的局部急剧扩大或缩小以及急剧弯曲。 12、与管接头或法兰连接的管子必须是一段直管,即这段管子的轴心线应与管接头、法兰的轴心是平行、重合。此直线段长度要大于或等于2倍管径。 13、外径小于30mm的管子可采用冷弯法。管子外径在30~50mm时可采用冷弯或热弯法。管子外径大于50mm时,一般采用热弯法。 14、焊接液压管道的焊工应持有有效的高压管道焊接合格证。 15、焊接工艺的选择:乙炔气焊主要用于一般碳钢管壁厚度小于等于2mm的管子。电弧焊主要用于碳钢管壁厚大于2mm 的管子。管子的焊接最好用氩弧焊。对壁厚大于5mm的管子应采用氩弧焊打底,电弧焊填充。必要的场合应采用管孔内充保护气体方法焊接。 16、焊条、焊剂应与所焊管材相匹配,其牌号必须有明确的依据资料,有产品合格证,且在有效使用期内。焊条、焊剂在使用前应按其产品说明书规定烘干,并在使用过程中保持干燥,在当天使用。焊条药皮应无脱落和显著裂纹。 17、液压管道焊接都应采用对接焊。焊接前应将坡口及其附近宽10~20mm处表面脏物、油迹、水份和锈斑等清除干净。 18、管道与法兰的焊接应采用对接焊法兰,不可采用插入式法兰。 19、管道与管接头的焊接应采用对接焊,不可采用插入式的形式。 20、管道与管道的焊接应采用对接焊,不允许用插入式的焊接形式。 21、液压管道采用对接焊时,焊缝内壁必须比管道高出0.3~0.5mm。不允许出现凹入内壁的现象。在焊完后,再用锉或手提砂轮把内壁中高出的焊缝修平。去除焊渣、毛刺,达到光洁程度。 22、对接焊焊缝的截面应与管子中心线垂直。 23、焊缝截面不允许在转角处,也应避免在管道的两个弯管之间。 24、在焊接配管时,必须先按安装位置点焊定位,再拆下来焊接,焊后再组装上整形。 25、在焊接全过程中,应防止风、雨、雪的侵袭。管道焊接后,对壁厚小于等于5mm的焊缝,应在室温下自然冷却,不得用强风或淋水强迫冷却。

液压阀图标符号

常用液压图标符号 表1常用液压图形符号(摘自GB/T786.1-1993) (1)液压泵、液压马达和液压缸 名称符号说明名称符号说明 液压泵 液压泵一般符号 双作用 缸不可调单 向缓冲缸 详细符号 单向定量液压泵单向旋转、 单向流动、 定排量 简化符号 双向定量液压泵双向旋转, 双向流动, 定排量 可调单向 缓冲缸 详细符号 单向变量液压泵单向旋转, 单向流动, 变排量 简化符号 双向变量液压泵双向旋转, 双向流动, 变排量 不可调双 向缓冲缸 详细符号 液压马达 液压马达一般符号简化符号 单向定量液压马达单向流动, 单向旋转 可调双向 缓冲缸 详细符号

双向定量液压马达 双向流 动,双向 旋转,定 排量 简化符号 单向变量液压马达 单向流 动,单向 旋转,变 排量 伸缩缸 双向变量液压马达 双向流 动,双向 旋转,变 排量 压力转 换器 气-液转 换器 单程作用 摆动马达 双向摆 动,定角 度 连续作用 泵-马达 定量液 压泵-马 达 单向流 动,单向 旋转,定 排量 增压器 单程作用 变量液 压泵-马 达 双向流 动,双向 旋转,变 排量,外 部泄油 连续作用 液压整 体式传 动装置 单向旋 转,变排 量泵,定 排量马达 蓄能器 蓄能器一般符号 单作用缸单活塞 杆缸 详细符号 气体隔 离式

简化符号 重锤式 单活塞杆缸(带 弹簧复位) 详细符号 弹簧式 简化符号 辅助气瓶 柱塞缸 气罐 伸缩缸 能量源 液压源 一般符号 双作用缸 单活塞杆缸 详细符号 气压源 一般符号 简化符号 电动机 双活塞杆缸 详细符号 原动机 电动机除外 简化符号 (2)机械控制装置和控制方法 名称 符号 说明 名称 符号 说明 机械控制件 直线运 动的杆 箭头可省略 先导压力控制 方法 液压先导加压控制 内部压力控制 旋转运动的轴 箭头可省略 液压先导加压控制 外部压力控制

液压系统安装工艺要求

液压系统安装工艺要求 1使用范围: 适用于特种设备液压系统安装 2作业条件: 本作业应在晴好的天气情况下进行,风力大于5级、雷、雨、雪、雾等恶劣天气时,严禁作业。 4作业人员 作业人员2人一组,配合作业。经专业培训并考试合格。作业人员应有岗位合格证。 5安全注意事项及危险控制措施: 5.1安全注意事项 5.1.1在清洗接头件时,应将汽油远离火源,并在清洗过程中严禁吸 烟。 5.2危险点控制措施

6作业步骤及要求: 液压元件组成:各液压元件之间由管道、接头和集成阀块等零部件有机地连接成一个完整的液压系统。因此,液压管道安装是否正确、牢固、可靠和整齐,将对液压系统工作性能有着重要的影响。 6.1液压管道安装要求 6.1.1管道安装质量的好坏是关系到液压系统工作性能是否正常的关键之一,管路上应尽量按使用说明书的图纸连接。并合理的配置管夹及支架。 a 安装时对已经酸洗过的管子还要用气吹净。 b安装时对管子接头、法兰件都要进行质量检查,发现有缺陷的接头或法兰件不准使用,应更换,并用煤油清洗和用气吹净。 c安装时要精心检查密封件质量,不合要求的密封件不准使用。安装密封件时要注意唇口方向,并仔细安装,切勿划伤或破损密封件,更不能漏装。 d各管子接头连接要牢固,各结合面密封要严密,不准有外漏。 e压力油管安装必须牢固、可靠和稳定。 6.1.2高压软管安装要求 a检查软管质量。要查明软管通径和成套软管的规格尺寸是否符合安装要求;检查胶管内外径表面是否有脱胶、老化、破损等缺陷,有严重缺陷的不准使用。

b 按使用说明书的液压图进行安装。 6.1.3管接头安装要求 a按照使用说明书的液压图进行安装管接头。 b 检查管接头的质量,发现有缺陷(如端面加工不平)应更换。 c 接头用煤油清洗,并用气吹净。 d接头体拧入油路板或阀体之前,将接头体的螺纹清洗干净,涂上密封胶或用聚四氟乙烯塑料带顺螺纹旋向缠上,以提高密封性,防止接头处漏油。但要注意,密封带的缠向必须顺着螺纹旋向,一般1-2圈。缠的层数多,工作过程中接头容易松动,反而会漏油。若用流态密封胶作为螺纹扣与扣之间的填料,温度不得超过60℃,否则会熔化,使液体从扣中溢出。拧紧时用力不宜过大,特别是锥管螺纹接头体,拧紧力过大会产生裂纹,导致泄漏。 e 接头体与管子端面应对准,不准有偏斜或弯曲现象,两平面接合良好后才能拧紧,并应有足够的拧紧力矩(或达到规定值),保证接合严密。 f 要检查密封圈质量,若有缺陷应更换,装配时要细心,不准装错或安装时把密封圈损坏。 6.1.4法兰盘安装要求 a 按照使用说明书的液压图要求安装法兰。 b 检查法兰盘和密封圈质量,若有异常应更换。 c法兰盘用煤油清洗干净,并用气吹干净。 d 拧紧螺钉时,各螺钉受力要均匀,并要有足够的拧紧力矩(或达到规定值),保证接合严密。 e对高压法兰的紧固螺钉要抽查螺钉所用的材料和加工质量,不合要求的螺钉不准使用。 6.1.5吸油管安装要求 a 按照使用说明书的液压图进行安装。 b 吸油管与液压泵吸入口连接处应密封严密,否则泵在工作时,会

液压阀的种类

液压阀的种类(所有的) 溢流阀﹑减压阀、顺序阀、节流阀、集流阀、分流阀、调速阀、单向阀、换向阀、电磁阀、反向控制阀 压力控制阀:溢流阀﹑减压阀和顺序阀 流量控制阀:节流阀,集流阀,分流阀,调速阀 方向控制阀:单向阀和换向阀 压力控制阀按用途分为溢流阀﹑减压阀和顺序阀。 (1)溢流阀:能控制液压系统在达到调定压力时保持恆定状态。用於过载保护的溢流阀称为安全阀。当系统发生故障,压力昇高到可能造成破坏的限定值时,阀口会打开而溢流,以保证系统的安全。 (2)减压阀:能控制分支迴路得到比主迴路油压低的稳定压力。减压阀按它所控制的压力功能不同,又可分为定值减压阀(输出压力为恆定值)﹑定差减压阀(输入与输出压力差为定值)和定比减压阀(输入与输出压力间保持一定的比例)。 (3)顺序阀:能使一个执行元件(如液压缸﹑液压马达等)动作以后,再按顺序使其他执行元件动作。油泵產生的压力先推动液压缸1运动,同时通过顺序阀的进油口作用在面积A 上,当液压缸1运动完全成后,压力昇高,作用在面积A 的向上推力大於弹簧的调定值后,阀芯上昇使进油口与出油口相通,使液压缸2运动。 流量控制阀利用调节阀芯和阀体间的节流口面积和它所產生的局部阻力对流量进行调节,从而控制执行元件的运动速度。流量控制阀按用途分为5种。 (1)节流阀:在调定节流口面积后,能使载荷压力变化不大和运动均匀性要求不高的执行元件的运动速度基本上保持稳定。 (2)调速阀:在载荷压力变化时能保持节流阀的进出口压差为定值。这样,在节流口面积调定以后,不论载荷压力如何变化,调速阀都能保持通过节流阀的流量不变,从而使执行元件的运动速度稳定。 (3)分流阀:不论载荷大小,能使同一油源的两个执行元件得到相等流量的为等量分流阀或同步阀;得到按比例分配流量的为比例分流阀。 (4)集流阀:作用与分流阀相反,使流入集流阀的流量按比例分配。 (5)分流集流阀:兼具分流阀和集流阀两种功能。 方向控制阀按用途分为单向阀和换向阀。 单向阀:只允许流体在管道中单向接通,反向即切断。 换向阀:改变不同管路间的通﹑断关係﹑根据阀芯在阀体中的工作位置数分两位﹑三位等;根据所控制的通道数分两通﹑三通﹑四通﹑五通等;根据阀芯驱动方式分手动﹑机动﹑电动﹑液动等。当阀芯处於中位时,全部油口切断,执行元件不动;当阀芯移到右位时,P 与 A 通,B 与O 通;当阀芯移到左位时,P 与 B 通,A 与O 通。这样,执行元件就能作正﹑反向运动。 换向阀换向阀的作用是利用阀芯位置的改变,改变阀体上各油口的连通或断开状态,从而控制油路连通、断开或改变方向。生产销售换向阀的知名厂商有:Parker美国派克,DENISON美国丹尼逊,HAWE德国哈威,TOYOOKI日本丰兴,VICKERS美国威格士等。 电磁换向阀 (1)结构原理 1)WE型电磁换向阀图43、图44、图45和图46分别是不同通径的WE型电磁换向阀的结构原理图。 电磁换向阀的基本工作原理是相同的,通过电磁铁控制滑阀阀芯的不同位置,以改变形油液的流动方向。当电磁铁断电时,滑阀由弹簧保持在中间位置或初始位置(脉冲式阀除外)。若推动故障检查按钮可使滑阀阀芯移动。

液压管道安装方案

曲靖双友钢铁630高炉工程液压系统安装 专业施工方案 一、工程概况 双友630高炉工程液压系统包括高炉炉顶液压站、高炉炉前液压站、矿焦储槽液压站、热风炉(重力除尘)液压站,共4个。其中炉顶液压站主要用于炉顶左右放散阀、均压放散阀、煤气放散阀、氧气均压发、挡料阀(DN300)、上下密封阀(DN500)等;炉前液压站主要用于左右泥炮和左右开口机,其配管主要为Φ34*5、Φ28*4和Φ18*3;矿焦储槽液压站主要用于烧结矿、球团矿、焦炭称量漏斗处的液压阀,其配管主要为Φ28*4和Φ18*3(2820kg);热风炉液压站主要用于煤气切断阀、空气切断阀、燃烧阀、热风阀、煤气放散阀、氧气吹扫阀、废气阀、冷风阀、冷风均压阀、烟道阀、倒流休风阀、混风切断阀,另有去重力除尘的煤气放散阀等,其配管主要为Φ28*4,约4000m。 二、主要技术依据 1、施工图纸及设计变更 2、YB207-85《冶金机械设备安装工程施工及验收规范》—液 压、气动和润滑系统部分 3、GB3766-83《液压系统技术条件》 4、GB50300—2001《建筑工程施工质量验收统一标准》 三、安装工艺流程

设备基础检查验收—设备开箱检查—阀、管材、管件准备—设备及元件安装—管道支架的制作安装—管道的切割下料—管道的丝接、卡接、焊接—管道安装—管道在线酸洗—系统循环酸洗—系统压力试验—调整与试运转 四、安装通用技术规程 1、构件按图纸要求制作完毕,检验合格。 2、构件除锈刷油完毕,检验合格。 3、构件按安装顺序运到指定位置。 4、出厂前物件编号清晰,准确无误。 5、构件安装前的前道专业工序施工完毕,检查合格,移交资料完整真实,复测合格。 6、施工用检测设备及仪表必须经计量鉴定,校验合格后方可使用。 7、构件安装完毕后,应清除表面焊疤,并修复平整,补刷油漆。 8、所使用的焊条、焊丝应具有出厂质量证明书。 五、安装施工技术要求 (一)安装前的技术准备 1.技术资料的熟悉与准备: 工程技术人员应熟悉液压系统安装图、管道走向布置图、液压元件、辅件、管件清单及元件样本等。 2.设备及管材、管材、管件、元件、辅件等的准备: 按照液压系统图及液压件清单,核对其数量,确认其规格、

液压阀的种类

液压阀的种类The final revision was on November 23, 2020

液压阀的种类(所有的) 溢流阀﹑减压阀、顺序阀、节流阀、集流阀、分流阀、调速阀、单向阀、换向阀、电磁阀、反向控制阀 压力控制阀:溢流阀﹑减压阀和顺序阀 流量控制阀:节流阀,集流阀,分流阀,调速阀 方向控制阀:单向阀和换向阀 压力控制阀按用途分为溢流阀﹑减压阀和顺序阀。 (1)溢流阀:能控制液压系统在达到调定压力时保持恆定状态。用於过载保护的溢流阀称为安全阀。当系统发生故障,压力昇高到可能造成破坏的限定值时,阀口会打开而溢流,以保证系统的安全。 (2)减压阀:能控制分支迴路得到比主迴路油压低的稳定压力。减压阀按它所控制的压力功能不同,又可分为定值减压阀(输出压力为恆定值)﹑定差减压阀(输入与输出压力差为定值)和定比减压阀(输入与输出压力间保持一定的比例)。 (3)顺序阀:能使一个执行元件(如液压缸﹑液压马达等)动作以后,再按顺序使其他执行元件动作。油泵產生的压力先推动液压缸1运动,同时通过顺序阀的进油口作用在面积A 上,当液压缸1运动完全成后,压力昇高,作用在面积A 的向上推力大於弹簧的调定值后,阀芯上昇使进油口与出油口相通,使液压缸2运动。 流量控制阀利用调节阀芯和阀体间的节流口面积和它所產生的局部阻力对流量进行调节,从而控制执行元件的运动速度。流量控制阀按用途分为 5种。 (1)节流阀:在调定节流口面积后,能使载荷压力变化不大和运动均匀性要求不高的执行元件的运动速度基本上保持稳定。

(2)调速阀:在载荷压力变化时能保持节流阀的进出口压差为定值。这样,在节流口面积调定以后,不论载荷压力如何变化,调速阀都能保持通过节流阀的流量不变,从而使执行元件的运动速度稳定。 (3)分流阀:不论载荷大小,能使同一油源的两个执行元件得到相等流量的为等量分流阀或同步阀;得到按比例分配流量的为比例分流阀。 (4)集流阀:作用与分流阀相反,使流入集流阀的流量按比例分配。 (5)分流集流阀:兼具分流阀和集流阀两种功能。 方向控制阀按用途分为单向阀和换向阀。 单向阀:只允许流体在管道中单向接通,反向即切断。 换向阀:改变不同管路间的通﹑断关系﹑根据阀芯在阀体中的工作位置数分两位﹑三位等;根据所控制的通道数分两通﹑三通﹑四通﹑五通等;根据阀芯驱动方式分手动﹑机动﹑电动﹑液动等。当阀芯处於中位时,全部油口切断,执行元件不动;当阀芯移到右位时,P 与A 通,B 与O 通;当阀芯移到左位时,P 与B 通,A 与O 通。这样,执行元件就能作正﹑反向运动。 换向阀换向阀的作用是利用阀芯位置的改变,改变阀体上各油口的连通或断开状态,从而控制油路连通、断开或改变方向。生产销售换向阀的知名厂商有:Parker美国派克,DENISON美国丹尼逊,HAWE德国哈威,TOYOOKI日本丰兴,VICKERS美国威格士等。 电磁换向阀 (1)结构原理1)WE型电磁换向阀图43、图44、图45和图46分别是不同通径的WE型电磁换向阀的结构原理图。电磁换向阀的基本工作原理是相同的,通过电磁铁控制滑阀阀芯的不同位置,以改变形油液的流动方向。当电磁铁断电时,滑阀由弹簧保持在中间位置或初始位置(脉冲式阀除外)。若推动故障检查按钮可使滑阀阀芯移动。

液压硫化机液压原理的设计

1140液压硫化机液压原理的设计 随着我国交通运输事业的迅速发展,高速公路不断铺设,这就对对汽车轮胎的均匀性提出了越来越高的要求,因此对硫化机的工作精度要求也随之提高。 目前我国轮胎行业广泛应用的是50年代发展起来的机械式硫化机,由于本身结构的原因,机械式硫化机存在如下问题: 1. 上下热板的平行度、同轴度、机械手卡爪圆度和对下热板内孔的同轴度等精度等级低,特别是重复精度低; 2. 连杆、曲柄齿轮等主要受力件上的运动副,是由铜套组成的滑动轴承,易磨损,对精度影响较大。 3. 上下模受到的合模力不均匀,对双模轮胎定型硫化机而言,两侧的受力,大于两内侧的受力; 4. 合模力是在曲柄销到达下死点瞬间由各受力构件弹性变形量所决定的,而温度变化使受力构件尺寸发生变化,合模力也随之发生变化,因此,生产过程中温度的波动将造成合模力的波动。 由于机械式轮胎硫化机存在的不可克服的弱点,已不能满足由于高速公路的发展,对汽车轮胎质量要求的日益提高。因而世界上主要轮胎公司已逐步采用液压式硫化机代替传统的机械式硫化机,这是因为液压式硫化机结构上具有如下特点: 1. 机体为固定的框架式,结构紧凑,刚性良好。虽然液压式硫化机也是双模腔,但从受力角度看,只是两台单模硫化机连结在一起,在合模力作用下,机架微小变形是以模具中心线对称的; 2. 开合模时,上模部分仅作垂直上下运动,可保持很高的对中精度和重复精度;另一方面,对保持活洛模的精度也较为有利; 3. 上下合模力均匀,不受工作温度影响; 4. 整机重量减轻,仅为机械式硫化机的1/3; 5. 由于取消了全部蜗轮减速器、大小齿轮、曲柄齿轮和连杆等运动部件和易损件,使维护保养工作量减少。 一、液压式轮胎定型硫化机的工作程序 液压硫化机工作时,升降油缸带动上模沿导向柱上升,在机架内形成空腔,装胎装置转进装胎,中心机构的上下环上升,胎胚定位,装胎装置卸胎后退出,升降油缸带动上模沿导向柱下降合模,胎胚定型后合模到位,在模座下面的4个短行程加力油缸作用下,产生要求的合模力。轮胎硫化结束后,加力油缸卸压,升降油缸带动上模上升,轮胎脱出上模,上模上升到位后,中心机构囊筒上升,轮胎脱下模,中心机构的上下环下降,胶囊收入囊筒中,同时,卸胎机构转进,囊筒下降,卸胎机构将轮胎翻转而出,送至后充气冷却。 从各国实践经验看,液压式硫化机在升降驱动装置、活络模装置、加力装置、中心机构、囊筒升降装置上采用液压驱动。可以说除卸胎装置和装胎装置采用气动控制外,其它均采用液压驱动。因此,作为动力源的液压系统设计十分重要。 二、硫化机液压动力源的设计 1140 液压式轮胎硫化机硫化胎圈直径范围12"~18",最大合模力为1360KN。合模力的获得完全来源于油压。一般采用低压力、较快速度、较长行程的油缸控制开合模。合模后,用高压、短行程的油缸使上下模受到合模力。由于负载和速度变化较大,要求相应的液压系统能提供较大范围变化的压力和流量。 液压系统各缸工作时所需流量计算如下: 缸的几何流量Q= 式中: Q-几何流量 l/min A-有效面积 S-缸的行程 m

一液压阀的作用及分类

一、液压阀的作用 液压阀是用来控制液压系统中油液的流动方向或调节其压力和流量的,因此它可分为方向阀、压力阀和流量阀三大类。一个形状相同的阀,可以因为作用机制的不同,而具有不同的功能。压力阀和流量阀利用通流截面的节流作用控制着系统的压力和流量,而方向阀则利用通流通道的更换控制着油液的流动方向。这就是说,尽管液压阀存在着各种各样不同的类型,它们之间还是保持着一些基本共同之点的。例如: (1)在结构上,所有的阀都有阀体、阀芯(转阀或滑阀)和驱使阀芯动作的元、部件(如 弹簧、电磁铁)组成。 (2)在工作原理上,所有阀的开口大小,阀进、出口间压差以及流过阀的流量之间的关系都符合孔口流量公式,仅是各种阀控制的参数各不相同而已。 二、液压阀的分类 液压阀可按不同的特征进行分类,如表5—1所示。 表5—1 液压阀的分类

(1)动作灵敏,使用可靠,工作时冲击和振动小。 (2)油液流过的压力损失小。 (3)密封性能好。 (4)结构紧凑,安装、调整、使用、维护方便,通用性大。 1 液压系统清洗的意义[1] 从使用的角度看,液压系统正常工作的首要条件是系统内部必须清洁。在新的设备运行之前,或一台设备经过大修之后,液压系统遭到污染是不可避免的,尽管液压元件的制造厂家很注意元件本身的内部清洁,但新元件中仍可能含有毛刺、切屑、飞边、灰尘、焊渣和油漆等污染物。元件也可能由于不良的储存、搬运而造成污染。在油箱的制作过程中,可能积聚锈、漆片和灰尘等,虽然油箱在使用前经过清理,但许多污染物肉眼难以看到。在软管、管道和管接头的安装过程中都有可能将污染物带入系统。即使新的油液也会含有一些令人意想不到的污染物。必须采取措施尽快将污染物滤出,否则在设备投入运行后不久就有可能发生故障,而且早期发生的故障往往都很严重,有些元件例如泵、马达有可能会遭到致命性的损 坏。 元件清洗和系统冲洗的目的就是消除或最大限度地减少设备的早期故障。冲洗的目标是提高油液的清洁度,使系统油液的清洁度保持在系统内关键液压元件的污染耐受度内,以保证液 压系统的工作可靠性和元件的使用寿命

液压系统检验规范

来料紧固件检验规范 文件编号: 版号: 编制: 批准: 受控状态: 分发号:

1、目的 为了确保本公司采购的液压系统符合技术设计的要求,特制订本检验规范,采购人员与检验人员需依此检验规范进行采购和验收。 2、范围 本检验规范规定了本公司采购的液压系统的技术要求、测试方法、验收规 则。 3、职责 检验员:负责依据检验规范及相关产品规格的标准资料执行各项目检验。 采购人员:负责依本规范的质量要求进行产品的采购。 仓库员:负责来料的液压系统报检和入库管理。 调试责任人:由电气设计部负责准备液压系统测试所需要的成套控制系(控制程序),同时把控制程序调试到与实际工况相一致,确保在测试过程中液压系统能按控制系统规定的要求运行; 检验责任人:负责审批相关检验记录表,协调处理质量异常问题。 4、工作程序 4.1来料检验员 取得公司质量检验员任职资格,了解液压系统的相关术语及要求,熟悉公 司流程。 4.2检验设备及工具 游标卡尺、卷尺、万用表 4.3检验前准备: 4.3.1确认液压系统、厂牌及图面资料,承认书及检验注意事项。 4.3.2核对液压系统型号与验收单的料号是否符合。 4.3.3设备验收记录表。 5.技术条件 5.1. 基本原则 5.1.1. 油箱、泵站、阀块、阀架、蓄能器架、滤油器和冷却器架的安装。管道的最终安装,必须在一个清洁的室内进行。近旁不允许进行喷沙和打磨等作业、 5.1.2. 制造油箱、阀块、管道的材料应符合图纸要求、其材质必须由明确的原始依据或自行理化检验报告和合格证。

5.1.3. 所有装再系统上的元件都必须有元件出厂合格证,并应存档保存或随系统总成付用户。对在保管和运输过程中因变形、锈蚀、污染等产品质量受影响 的元件不得用于装配。 5.1.4. 元件的内部清洁度都应符合相应各类液压元件质量分等标准中清洁度要求,如不符合表格中相应标准规定的,应重新清洗后方可应用。 5.1.5. 系统中所有元件必须按元件制造厂的规定应用和进行操作。 5.1. 6. 所有装在系统上的橡胶密封件,包括外购液压元件上已装上的橡胶密封件,都必须在有效使用期内。 5.1.7. 所有加工零件在装配前必须清除毛刺,并进行仔细清洗。 5.2. 一般要求 5.2.1. 装配时零件间的接缝应平整,不得有明显错边。 5.2.2.考虑到系统在制造完成后要进行耐压试验、循环冲洗、分回路功能试验。因此要预先拟出试验方法等;准备、冲洗板、盲盖、A、B口回路沟通板等配件。并准备好负载试验用的油缸(或油达、加载阀、调速阀等)。 5.2. 3.在产品每个独立台架上的明显和适当部分,牢固地装贴与该台架上有关的液压系统图。 5.2.4 .在产品的明显和适当部位,牢固地装贴产品标牌。该标牌内容至少应包括:系统名称、主要技术参数、制造厂家、设计单位、验收单位、出厂年月。 5.2. 5.装配完毕后的总成所有外露油口应用耐油塞子封口,禁用纸张、棉纱、木塞等封口。 5.2. 6.经过试验合格后的系统各组件、元件、外露表面应涂耐用油漆,涂液要求符合涂装规范、 5.2.7. 液压系统总成生产厂应对系统的使用、现场调试负责。在使用期限内凡因设计、制造质量上的问题(除了外购配套件)发生质量问题时,系统总成生 产厂应负责无偿地为用户修理或更换。 5.2. 8.液压系统的设计制造还应符合GB37766-83液压通用技术条件 5.2. 9.在产品的明显和适当部位,牢固地装贴每个回路和各外接油口的标牌。

液压控制阀的分类及作用

液压控制阀的分类及作用 液压控制阀是液压系统中控制油液方向、压力和流量的元件。借助于这些阀,便能对执行元件的启动、停止、方向、速度、动作顺序和克服负载的能力进行控制与调节,使各类液压机械都能按要求协调地进行工作。 液压阀的分类 A【按用途分】 液压阀可分为方向控制阀(如单向阀和换向阀)、压力控制阀(如溢流阀、减压阀和顺序阀等)和流量控制阀(如节流阀和调速阀等)。这三类阀还可根据需要相互组合成为组合阀,如单向川页序阀、单向节流阀、电磁溢流阀等,使得其结构紧凑,连接简单,并提高了效率。 B【按工作原理分】 液压阀可分为开关阀(或通断阀)、伺服阀、比例阀和逻辑阀。开关阀调定后只能在调定状态下工作,本章将重点介绍这一使用最为普遍的阀类。伺服阀和比例阀能根据输入信号连续地或按比例的控制系统的数据。逻辑阀则按预先编制的逻辑程序控制执行元件的动作。 C【按安装连接形式分】 按安装连接形式,液压阀可分为: (1)螺丝式(管式)安装连接。阀的油口用螺丝管接头和管道及其他元件连接,并由此固定在管路上。这种方式适用于简单液压系统。 (2)螺旋式安装连接。阀的各油口均布置在同一安装面上,并用螺丝固定在与阀有对应油口的连接板上,再用管接头和管道与其他元件连接;或者把这几个阀用螺丝固定在一个集成块 的不同侧面上,在集成块上打孔,沟通各阀组成回路。由于拆卸阀时无需拆卸与之相连的其他元件,故这种安装连接方式应用较广。 (3)叠加式安装连接。阀的上下面为连接结合面,各油口分别在这两个面上,且同规格阀的油口连接尺寸相同。每个阀除其自身的功能外,还起油路通道的作用,阀相互叠装便成回路,无需管道连接,故结构紧凑,阻力损失很小。 (4)法兰式安装连接。和螺丝式连接相似,只是法兰式代替螺丝管接头。用于通径!32_

液压阀块设计详细要求

液压阀块设计规范1.阀块体的外形一般为矩形六面体。 2.阀块体材料宜采用35钢锻件或连铸坯件。 3.阀块体的最大边长宜不大于600mm,所包含的二通插装阀插件数量宜不大于8。 4.当液压回路所含的插件多于8个时,应分解成数个阀块体,各阀块体之间用螺栓相互连接,结合面处的连接孔道用O型密封圈予以密封,组成整体的阀块组。连接螺栓的矩形性能应不低于12.9级。 5.设计阀块体的主级孔道时应考虑尽可能减小流阻损失及加工方便。 6.主级孔道的直径按公式(1)估算选取: 式中: D -孔道直径,mm; Q -孔道内可能流过的最大工作流量,L/min; vmax -孔道允许的最大工作液流速,m/s。 一般,对于压力孔道,vmax不大于6m/s;对于回油孔道,vmax不大于3m/s。(一般取压力孔道不超过8m/s,回油孔道不超过4 m/s) 按公式(1)估算出的孔道直径应园整至标准的通径值。 7.当主级孔道与多个插件贯通时,为减小贯通处的局部流阻损失,宜采用与插件孔偏贯通的方法(使主级孔道的中心线与插件孔的中心线偏移)。一般使主级孔道中心线与插件孔孔壁相切。同时也可以加大孔道通径,加大的通径应不超过GB2877的规定。 8.为改善深孔工艺性,设计时可考虑增大孔径或采用两端钻孔对接的方法。(为避免钻头损坏,通常钻孔深度不易超过孔径的25倍) 9.设计时应尽量避免在阀块体内设置复杂连接的控制孔道和三维斜孔,应充分利用控制盖板内的控制孔道,或采用先导控制块等专用的控制孔道连接体。先导孔道的直径应与GB2877的规定一致。若因工艺需要而减小先导孔道的直径时,应作验算,确认不至影响对主级阀的控制要求。 10. 应避免采用倾斜孔道。必须倾斜时,孔道的倾斜角度应不超过35°,并须保证孔口的密封良好。对主级斜孔,应在有关视图上标注出因斜孔加工而造成的椭园孔口的长轴尺寸。 11. 当较小孔道孔径不大于25mm时,两相邻孔道孔壁之间的距离应不小于5mm;较小孔道孔径大于25mm 时,两相邻孔道孔壁之间的距离应不小于10mm。 若较小孔径小于10mm时,孔壁间距离可以缩小到4mm(一般以该值为基准)。但在结构布局受限时,若孔内压力小于6.3MPa时,可以缩小到3mm。 也可按以下方式校核:(考虑到细长孔,钻孔时可能会偏,实际应在计算结果的基础上适当加大。) 孔间距计算公式:δ=P*d2*[σ] δ= (P*d)/(2*[σ])。([σ] =σb/n) 式中:P —最大工作压力,MPa ;[σ] —块体材料的许用应力,MPa ;σb —块体材料的抗拉强度,MPa ;n —安全系数。(取相邻两孔计算值的最大值) 12. 为避免污染物的沉积,对于相通的孔道,孔深一般应到与之相通的孔道的中心线为止。(这样加工孔道截面偏小,能损较大,钻尖建议到达孔对面壁上。) 13.主级孔道的外接油口一般采用法兰连接。对于通径为25mm以下的较小油口,也可采用螺纹连接。先导孔道的外接油口宜采用螺纹连接。 标准法兰。SAE J518法兰或Parker油口连接法兰采用.

常用液压元件符号大全

常用液压图形符号 (1)液压泵、液压马达和液压缸 名称符号说明名称符号说明 液压泵液压泵 一般符 号 双作 用缸 不可调 单向缓 冲缸 详细符号 单向定 量液压 泵 单向旋 转、单向 流动、定 排量 简化符号 双向定 量液压 泵 双向旋 转,双向 流动,定 排量 可调单 向缓冲 缸 详细符号 单向变 量液压 泵 单向旋 转,单向 流动,变 排量 简化符号 双向变 量液压 泵 双向旋 转,双向 流动,变 排量 不可调 双向缓 冲缸 详细符号 液压马达液压马 达 一般符 号 简化符号 单向定 量液压 马达 单向流 动,单向 旋转可调双 向缓冲 缸 详细符号 双向定 量液压 马达 双向流 动,双向 旋转,定 排量 简化符号 单向变 量液压 马达 单向流 动,单向 旋转,变 排量 伸缩缸

双向变量液压马达 双向流 动,双向 旋转,变 排量 压力 转换 器 气-液 转换器 单程作用 摆动马达 双向摆 动,定角 度 连续作用 泵-马达定量液 压泵- 马达 单向流 动,单向 旋转,定 排量 增压器 单程作用 变量液 压泵- 马达 双向流 动,双向 旋转,变 排量,外 部泄油 连续作用 液压整 体式传 动装置 单向旋 转,变排 量泵,定 排量马 达 蓄能 器 蓄能器一般符号 单作用缸单活塞 杆缸 详细符 号 气体隔 离式 简化符 号 重锤式 单活塞 杆缸 (带弹 簧复 位) 详细符 号 弹簧式 简化符 号 辅助气瓶柱塞缸气罐

伸缩缸 能量 源 液压源 一般符号 双作用缸 单活塞杆缸 详细符 号 气压源 一般符号 简化符号 电动机 双活塞杆缸 详细符号 原动机 电动机除外 简化符号 (2)机械控制装置和控制方法 名称 符号 说明 名称 符号 说明 机械控制件 直线运动的杆 箭头可省略 先导 压力控制方法 液压先导加压控制 内部压力控制 旋转运动的轴 箭头可省略 液压先导加压控制 外部压力控制 定位装置 液压二 级先导加压控制 内部压力控制,内部泄油 锁定装置 *为开锁的控制方法 气-液先导加压控制 气压外部控制,液压内部控制,外部泄 油 弹跳机构 电-液 先导加压控制 液压外部控制,内部泄油 机械控制方法 顶杆式 液压先导卸压控制 内部压力控 制,内部泄油 可变行 程控制式 外部压力控制(带遥控泄放 口)

力士乐液压阀分类以及特点介绍

力士乐液压阀分类以及特点介绍 力士乐液压阀的分类 液压传动中用来控制液体压力﹑流量和方向的元件。其中控制压力的称为压力控制阀,控制流量的称为流量控制阀,控制通﹑断和流向的称为方向控制阀。 压力控制阀:按用途分为溢流阀﹑减压阀和顺序阀。(1)溢流阀:能控制液压系统在达到调定压力时保持恒定状态。用於过载保护的溢流阀称为安全阀。当系统发生故障,压力升高到可能造成破坏的限定值时,阀口会打开而溢流,以保证系统的安全。(2)减压阀:能控制分支回路得到比主回路油压低的稳定压力。减压阀按它所控制的压力功能不同,又可分为定值减压阀(输出压力为恒定值)﹑定差减压阀(输入与输出压力差为定值)和定比减压阀(输入与输出压力间保持一定的比例)。(3)顺序阀:能使一个执行元件(如液压缸﹑液压马达等)动作以后,再按顺序使其他执行元件动作。油泵产生的压力先推动液压缸1运动,同时通过顺序阀的进油口作用在面积A 上,当液压缸1运动完全成后,压力升高,作用在面积A 的向上推力大於弹簧的调定值后,阀芯上升使进油口与出油口相通,使液压缸2运动。 流量控制阀:利用调节阀芯和阀体间的节流口面积和它所产生的局部阻力对流量进行调节,从而控制执行元件的运动速度。流量控制阀按用途分为 5种。(1)节流阀:在调定节流口面积后,能使载荷压力变化不大和运动均匀性要求不高的执行元件的运动速度基本上保持稳定。(2)调速阀:在载荷压力变化时能保持节流阀的进出口压差为定值。这样,在节流口面积调定以后,不论载荷压力如何变化,调速阀都能保持通过节流阀的流量不变,从而使执行元件的运动速度稳定。(3)分流阀:不论载荷大小,能使同一油源的两个执行元件得到相等流量的为等量分流阀或同步阀;得到按比例分配流量的为比例分流阀。(4)集流阀:作用与分流阀相反,使流入集流阀的流量按比例分配。(5)分流集流阀:兼具分流阀和集流阀两种功能。 方向控制阀:按用途分为单向阀和换向阀。单向阀:只允许流体在管道中单向接通,反向即切断。换向阀:改变不同管路间的通﹑断关系﹑根据阀芯在阀体中的工作位置数分两位﹑三位等;根据所控制的通道数分两通﹑三通﹑四通﹑五通等;根据阀芯驱动方式分手动﹑机动﹑电动﹑液动等。图2为三位四通换向阀的工作原理。P 为供油口,O 为回油口,A ﹑B 是通向执行元件的输出口。当阀芯处於中位时,全部油口切断,执行元件不动;当阀芯移到右位时,P 与A 通,B 与O 通;当阀芯移到左位时,P 与B 通,A 与O 通。这样,执行元件就能作正﹑反向运动。 力士乐液压阀的工作原理 力士乐液压阀基本工作原理:利用阀芯在阀体内作相对运动来控制阀口的通断及阀口的大小,实现压力、流量和方向的控制;且流经阀口的流量与阀口前后压力差和阀口面积有关,始终满足压力流量方程。 力士乐液压阀分类以及特点介绍 3力士乐液压阀的特点 1.动作灵敏,工作平稳可靠,冲击、振动和噪声尽可能小。 2.油液流经阀时的阻力损失要小。 3.密封性要好,泄漏量要小。 4.结构要简单紧凑,体积小,通用性大,寿命长。 4力士乐液压阀的作用 力士乐液压阀是用来控制液压系统中油液的流动方向或调节其压力和流量的,因此它可分为方向阀、压力阀和流量阀三大类。一个形状相同的阀,可以因为作用机制的不同,而具有不同的功能。压力阀和流量阀利用通流截面的节流作用控制着系统的压力和流量,而方向阀则利用通流通道的更换控制着油液的流动方向。这就是说,尽管力士乐液压阀存在着各种各样不同的类型,它们之间还是保持着一些基本共同之点的。 力士乐液压阀分类以及特点介绍

各种液压阀在液压系统中的作用

1.液压阀——方向控制阀 按用途分为单向阀和换向阀。单向阀:只允许流体在管道中单向接通,反向即切断。换向阀:改变不同管路间的通﹑断关系﹑根据阀芯在阀体中的工作位置数分两位﹑三位等;根据所控制的通道数分两通﹑三通﹑四通﹑五通等;根据阀芯驱动方式分手动﹑机动﹑电动﹑液动等。图2为三位四通换向阀的工作原理。P 为供油口,O 为回油口,A ﹑B 是通向执行元件的输出口。当阀芯处於中位时,全部油口切断,执行元件不动;当阀芯移到右位时,P 与A 通,B 与O 通;当阀芯移到左位时,P 与B 通,A 与O 通。这样,执行元件就能作正﹑反向运动。 60年代后期,在上述几种液压控制阀的基础上又研制出电液比例控制阀。它的输出量(压力﹑流量)能随输入的电信号连续变化。电液比例控制阀按作用不同,相应地分为电液比例压力控制阀﹑电液比例流量控制阀和电液比例方向控制阀等。 2.液压阀——流量控制阀 利用调节阀芯和阀体间的节流口面积和它所产生的局部阻力对流量进行调节,从而控制执行元件的运动速度。流量控制阀按用途分为 5种。(1)节流阀:在调定节流口面积后,能使载荷压力变化不大和运动均匀性要求不高的执行元件的运动速度基本上保持稳定。(2)调速阀:在载荷压力变化时能保持节流阀的进出口压差为定值。这样,在节流口面积调定以后,不论载荷压力如何变化,调速阀都能保持通过节流阀的流量不变,从而使执行元件的运动速度稳定。(3)分流阀:不论载荷大小,能使同一油源的两个执行元件得到相等流量的为等量分流阀或同步阀;得到按比例分配流量的为比例分流阀。(4)集流阀:作用与分流阀相反,使流入集流

阀的流量按比例分配。(5)分流集流阀:兼具分流阀和集流阀两种功能 3.液压阀——压力控制阀 按用途分为溢流阀﹑减压阀和顺序阀。(1)溢流阀:能控制液压系统在达到调定压力时保持恒定状态。用於过载保护的溢流阀称为安全阀。当系统发生故障,压力升高到可能造成破坏的限定值时,阀口会打开而溢流,以保证系统的安全。 (2)减压阀:能控制分支回路得到比主回路油压低的稳定压力。减压阀按它所控制的压力功能不同,又可分为定值减压阀(输出压力为恒定值)﹑定差减压阀(输入与输出压力差为定值)和定比减压阀(输入与输出压力间保持一定的比例)。(3)顺序阀:能使一个执行元件(如液压缸﹑液压马达等)动作以后,再按顺序使其他执行元件动作。油泵产生的压力先推动液压缸1运动,同时通过顺序阀的进油口作用在面积A 上,当液压缸1运动完全成后,压力升高,作用在面积A 的向上推力大於弹簧的调定值后,阀芯上升使进油口与出油口相通,使液压缸2运动。 4.液压阀的作用和简介 用于降低并稳定系统中某一支路的油液压力,常用于夹紧、控制、润滑等油路。有直动型、先导型、叠加型之分。 液压传动中用来控制液体压力﹑流量和方向的元件。其中控制压力的称为压力控制阀,控制流量的称为流量控制阀,控制通﹑断和流向的称为方向控制阀。5.液压工具相关介绍 液压工具相关介绍 动力元件的作用是将原动机的机械能转换成液体的压力能,指液压系统中的油泵,它向整个液压系统提供动力。液压泵的结构形式一般有齿轮泵、叶片泵和柱

液压阀块体设计规范

液压阀块体设计规范Q/ 1 范围 本标准规定了液压阀块体的设计规则、绘制阀块体零件工作图的要求。 本标准适用于液压阀块体(以下简称阀块体)的设计,其它六面体形液压控制阀阀块体的设计亦可参照本标准。 2 引用文件 GB2877-86 二通插装式液压阀安装连接尺寸 GB2878-90 油(气)口连接螺纹尺寸 GB4457~4458-92 机械制图 ZBJ22007-90 液压气动用球涨式堵头安装尺寸 3 术语 液压控制阀块(以下简称阀块) 将多个选定的液压控制阀件集成或组合安装在同一金属块体上,组成具有预定控制功能的装配体; 阀块体 用于安装选定的各类液压控制阀件,并加工有要求的油路孔道,以组成具有预定的液压控制功能的金属块体; 主级孔道 阀块体上动力传动油液流经的孔道,一般指与液压动力源、主回油以及液压执行机构工作

腔相连接的孔道; 先导孔道 阀块体上先导控制油液流经的孔道,指与先导控制回路对应的进油、回油、泄油、与受控连通、压力检测以及相应的工艺孔道等; 孔口结构 孔道口部用于安装其它零部件的结构。 Q/ 4 设计的一般原则 设计依据 阀块体设计时应有以下有关书面资料: a)正确、详细的阀块液压原理图; b)液压工作参数和控制要求; c)阀块的外形、油口布置及安装连接要求。 阀块体设计的一般规定 4.2.1 阀块体的外形一般为矩形六面体。 4.2.2 阀块体材料宜采用35钢锻件或连铸坯件。 4.2.3 阀块体的最大边长宜不大于600mm,所包含的二通插装阀插件数量宜不大于8。 4.2.4当液压回路所含的插件多于8个时,应分解成数个阀块体,各阀块体之间用螺栓相互连

相关文档