文档库 最新最全的文档下载
当前位置:文档库 › 偏微分方程实验报告

偏微分方程实验报告

偏微分方程实验报告
偏微分方程实验报告

3、培养编程与上机调试能力。

3、实验内容

一、 问题提出

一根长为L 的均匀导热细杆,侧面绝热,内部无热源。其热传导系数为k ,比热为c ,线密度为ρ。求细杆内温度变化的规律。

二、 模型建立

设杆长方向为x 轴,考虑杆上从x 到x+△x 的一段。

其质量为△m=ρ△x ,热容量为c △m 。设杆中的热流沿x 轴正向,热流强度为q(x,t),热量为Q(x,t),温度分布为 u(x,t)。

△x 内细杆吸收热量的来源只有热传导(无热源)。

由热传导的Fourier 定律,有

),(),(t x ku t x q x -= (1)

由能量守恒定律,在△t 内细杆[x,x+ △x]上的能量有

Q u m c ?=??

t t x x q t x q u x c ??+-=??)],(),([ρ

偏微分方程数值解期末试题及标准答案

偏微分方程数值解试题(06B ) 参考答案与评分标准 信息与计算科学专业 一(10分)、设矩阵A 对称,定义)(),(),(2 1)(n R x x b x Ax x J ∈-=,)()(0x x J λλ?+=.若0)0('=?,则称称0x 是)(x J 的驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是方程组 b Ax =的解 解: 设n R x ∈0是)(x J 的驻点,对于任意的n R x ∈,令 ),(2),()()()(2 000x Ax x b Ax x J x x J λλλλ?+-+=+=, (3分) 0)0('=?,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若n R x ∈0满足b Ax =0,则对于任意的x ,)(),(2 1)0()1()(00x J x Ax x x J >+==+??,因此0x 是)(x J 的最小值点. (4分) 评分标准:)(λ?的展开式3分, 每问3分,推理逻辑性1分 二(10分)、 对于两点边值问题:?????==∈=+-=0 )(,0)(),()('b u a u b a x f qu dx du p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ],[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈ 建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和Galerkin 形式的变分方程。 解: 设}0)(),,(|{11=∈=a u b a H u u H E 为求解函数空间,检验函数空间.取),(1b a H v E ∈,乘方程两端,积分应用分部积分得到 (3分) )().(),(v f fvdx dx quv dx dv dx du p v u a b a b a ==+=??,),(1 b a H v E ∈? 即变分问题的Galerkin 形式. (3分)

(完整版)偏微分方程的MATLAB解法

引言 偏微分方程定解问题有着广泛的应用背景。人们用偏微分方程来描述、解释或者预见各种自然现象,并用于科学和工程技术的各个领域fll。然而,对于广大应用工作者来说,从偏微分方程模型出发,使用有限元法或有限差分法求解都要耗费很大的工作量,才能得到数值解。现在,MATLAB PDEToolbox已实现对于空间二维问题高速、准确的求解过程。 偏微分方程 如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。 常用的方法有变分法和有限差分法。变分法是把定解问题转化成变分问题,再求变分问题的近似解;有限差分法是把定解问题转化成代数方程,然后用计算机进行计算;还有一种更有意义的模拟法,它用另一个物理的问题实验研究来代替所研究某个物理问题的定解。虽然物理现象本质不同,但是抽象地表示在数学上是同一个定解问题,如研究某个不规则形状的物体里的稳定温度分布问题,由于求解比较困难,可作相应的静电场或稳恒电流场实验研究,测定场中各处的电势,从而也解决了所研究的稳定温度场中的温度分布问题。 随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。从这个角度说,偏微分方程变成了数学的中心。

一、MATLAB方法简介及应用 1.1 MATLAB简介 MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。 1.2 Matlab主要功能 数值分析 数值和符号计算 工程与科学绘图 控制系统的设计与仿真 数字图像处理 数字信号处理 通讯系统设计与仿真 财务与金融工程 1.3 优势特点 1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来; 2) 具有完备的图形处理功能,实现计算结果和编程的可视化; 3) 友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握; 4) 功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,

偏微分方程数值解复习题(2011硕士)

偏微分方程数值解期末复习(2011硕士) 一、考题类型 本次试卷共六道题目,题型及其所占比例分别为: 填空题20%;计算题80% 二、按章节复习内容 第一章 知识点:Euler法、向前差商、向后差商、中心差商、局部截断误差、整体截断误差、相容性、收敛性、阶、稳定性、显格式、隐格式、线性多步法、第一特征多项式、第二特征多项式、稳定多项式、绝对稳定等; 要求: 会辨认差分格式, 判断线性多步法的误差和阶; 第二章 知识点:矩形网格、(正则,非正则)内点、边界点、偏向前(向后,中心)差商、五点差分格式、增设虚点法、积分插值法、线性椭圆型差分格式、极值原理、比较定理、五点差分格式的相容收敛和、稳定性等; 要求: 建立椭圆型方程边值问题的差分格式, 极值原理; 第四章 知识点:最简显格式、最简隐格式、CN格式、双层加权格式、Richardson 格式、网格比、传播因子法(分离变量法) 、传播因子、传播矩阵、谱半径、von Neumann条件、跳点格式、ADI格式、线性椭圆型差分格式、极值原理、比较定理、五点差分格式的相容收敛和稳定性等; 要求: 建立抛物型方程边值问题的差分格式, 计算局部截断误差; 第五章 知识点:左偏心格式、右偏心格式、中心格式、LF格式、LW格式、Wendroff 格式、跳蛙格式、特征线、CFL条件等; 要求: 建立双曲型方程边值问题的差分格式, 计算局部截断误差; 第七章 要求: 会用线性元(线性基)建立常微分方程边值问题的有限元格式

三 练习题 1、 已知显格式21131()22 n n n n u u h f f +++-=-,试证明格式是相容的,并求它的阶。 P39+P41 2、用Taylor 展开原理构造一元函数一阶导数和二阶导数的数值微分公式。 提示:向前、向后和中心差商与一阶导数间关系,二阶中心差商与二阶导数 之间的关系 课件 3、用数值微分方法或数值积分方法建立椭圆型方程 2222(,),(,),u u f x y x y x y ??--=?∈Ω?? :01,01x y Ω≤≤≤≤ 内点差分格式。 P75+课件 4、构造椭圆型方程边值问题的差分格式. P101 (4)题 5、构建一维热传导方程220,(0)u u Lu a a t x ??=-=>??的数值差分格式(显隐格式等)。 参考P132-135相关知识点 6、设有逼近热传导方程22(0)u u Lu a f a const t x ??≡-==>??的带权双层格式 ()()1111111122(1)2k k j j k k k k k k j j j j j j u u a u u u u u u h θθτ++++-+-+-??=-++--+?? 其中[0,1]θ∈,试求其截断误差。并证明当2 1212h a θτ=-时,截断误差的阶最 高阶为24()O h τ+。 P135+P165+课件 7、传播因子法证明抛物型方程22(0)u u Lu a f a const t x ??≡-==>??的最简显隐和六点CN 格式稳定性。 P156+课件 8、对一阶常系数双曲型方程的初边值问题 0,0,0,0,(,0)(),0,(0,)(),0, u u a t T x a t x u x x x u t t t T φψ???+=<≤<<∞>?????=≤<∞??=≤≤?

偏微分方程数值解期末试题及答案(内容参考)

偏微分方程数值解试题(06B) 参考答案与评分标准 信息与计算科学专业 一(10分)、设矩阵A 对称,定义)(),(),(2 1 )(n R x x b x Ax x J ∈-= ,)()(0x x J λλ?+=.若0)0('=?,则称称0x 是)(x J 的驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是方程组 b Ax =的解 解: 设n R x ∈0是)(x J 的驻点,对于任意的n R x ∈,令 ),(2 ),()()()(2 000x Ax x b Ax x J x x J λλλλ?+ -+=+=, (3分) 0)0('=?,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有 0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若 n R x ∈0满足 b Ax =0,则对于任意的 x ,)(),(2 1 )0()1()(00x J x Ax x x J >+ ==+??,因此0x 是)(x J 的最小值点. (4分) 评分标准:)(λ?的展开式3分, 每问3分,推理逻辑性1分 二(10分)、 对于两点边值问题:????? ==∈=+-=0 )(,0)() ,()(' b u a u b a x f qu dx du p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ] ,[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈ 建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和 Galerkin 形式的变分方程。 解: 设}0)(),,(|{11 =∈=a u b a H u u H E 为求解函数空间,检验函数空间.取),(1 b a H v E ∈,乘方程两端,积分应用分部积分得到 (3分) )().(),(v f fvdx dx quv dx dv dx du p v u a b a b a ==+=??,),(1 b a H v E ∈? 即变分问题的Galerkin 形式. (3分)

偏微分方程数值解法

一、 问题 用有限元方法求下面方程的数值解 2 u u u f t ?-?+=? in (]0,T Ω? 0u = on []0,T ?Ω? ()00,u x u = in Ω 二、 问题分析 第一步 利用Green 公式,求出方程的变分形式 变分形式为:求()()21 00,;u L T H ∈Ω,使得 ()())(2 ,,,,u v u v u v f v t ???+??+= ???? ()10v H ?∈Ω (*) 以及 ()00,u x u =. 第二步 对空间进行离散,得出半离散格式 对区域Ω进行剖分,构造节点基函数,得出有限元子空间:()12,,,h NG V span ???=???,则(*)的Galerkin 逼近为: []0,t T ?∈,求()()1 0,h h u t x V H ∈?Ω,使得 ()()()()() () )(2 ,,,,h h h h h h h d u t v u t v u t v f v dt +??+= h h v V ?∈ (**) 以及()0,0h h u u =,0,h u 为初始条件0u 在h V 中的逼近,设0,h u 为0u 在h V 中的插值. 则0t ?≥,有()()1 N G h i i i u t t ξ? == ∑,0,h u =01 N G i i i ξ?=∑,代人(**)即可得到一常微分方程组. 第三步 进一步对时间进行离散,得到全离散的逼近格式 对 du dt 用差分格式.为此把[]0,T 等分为n 个小区间[]1,i i t t -,其长度1i i T t t t n -?=-= ,n t T =. 这样把求i t 时刻的近似记为i h u ,0 h u 是0u 的近似.这里对(**)采用向后的欧拉格式,即 ()()() () )(2 11 11 1 ,,,,i i i i h h h h h h h i h u u v u v u v f v t ++++-+??+ = ? h h v V ?∈ (***) i=0,1,2…,n-1. 0 h u =0,h u 由于向后欧拉格式为隐式格式且含有非线性项,故相邻两时间步之间采用牛顿迭代,即:

北京理工大学数学专业偏微分方程期末试题2014级A卷(MTH17178)

课程编号:MTH17178 北京理工大学2016-2017学年第一学期 2014级偏微分方程期终考试(A ) 1.(10分)利用特征线方法求解一阶波动方程初值问题:()22,,0,0,t x x u u u x t u x e x -+=∈>???=∈?? 。 2.(10分)利用Fourier 变换方法求解:()() (),,,0,0,t x u bu cu f x t x t u x x x ?--=∈>???=∈?? 。 3.(10分)利用行波法求解:()()()()0,,,0,,0 tt xx u u t x u x x x x u x x x x ?ψ?-=>?-=?。 给出适当的相容性条件。如果?在(],0a -上给定,ψ在[)0,b 上给定,给出其决定区域。 4.(15分)求解初边值问题:()()()20,01,00,0,1,0,0,0,01 t xx x x u a u u x t u t u t t u x A x ?-+=<<>?==>??=<?==∈??=+=≥? 推导边界条件齐次化的公式(不需要解方程)。 6.(13分)对于有界区域()(],0,T Q a b T =?上的热方程()2 ,0t xx u a u c x t u -+=,其中(),c x t 下有界,证明如果(),u x t 在抛物边界上非正,则(),u x t 在T Q 上非正。 7.(15分)考虑波动方程初边值问题[]()()()()[]()()()20,0,,0,0,,0,0,0,0,,,0,0 tt xx t x x u a u x L t u x x u x x x L u t u L t u L t t ?ψσ?-=∈>?==∈??=+=≥?,其中 0σ>,令t 时刻的能量()()()22222011,22 L t x E t u a u dx a u L t σ=++?,证明()E t 守恒,并由此证明相应的一般非齐次方程非齐次初边值问题的解的唯一性。 8.(20分)设() ()1,02,1T T u C Q C Q ∈ 且满足初边值问题()()()()[]()()[] ,,,,0,0,0,,0,0,t xx T x u u f x t x t Q u x x x L u t u L t t T ??-=∈?=∈??==∈?,证明:[]()()()()22220000000,sup ,,,L T L L T L x t T u x t dx dt u x t dx M x dx dt f x t dx ?∈??+≤+??????????,其中M 仅依赖于T 。 提示:Gronwall 不等式:设(][]1 0,0,G C T C T ∈ ,()00G =,且对于任意的[]0,t T ∈,有()()()G t CG t F t '≤+,其中C>0,F 非负单调递增,则有 ()()()()()11,Ct Ct G t C e F t G t e F t -'≤-≤。

偏微分方程期末试题A卷

安徽大学20 08 —20 09 学年第 二 学期 《 偏微分方程 》考试试卷(A 卷) (闭卷 时间120分钟) 院/系 年级 专业 姓名 学号 一、填空题(每小题3分,共15分) 1.对常系数方程x y z u au bu cu du f ?++++=作未知函数的变换 可以将所有一阶微商消失. 2.设:R R Φ→是光滑凸函数,(,)u x t 是热传导放程0t u u -?=的解,则()u Φ是热传导方程 的 (下解;上解;解). 3.上半平面的Green 函数G(x,y)为 ,其中12(,)y y y =为上半平面中某固定点. 4.设函数u 在以曲面Γ为边界的区域Ω内调和,在ΩΓ 上有连续的一阶偏导数,则u dS n Γ ????= ,其中n 是Γ的外法方向. 5.热传导方程2()0t xx yy u a u u -+=的特征曲面为 .

二、计算题(每小题10分,共40分) 1.求解初值问题 0,(,)(0,)(,0),,t x u bu cu x t R u x g x R ++=∈?∞??=∈? 其中,,b c R ∈都是常数. 2.试用延拓法求解半有界直线上的热传导方程的边值问题: 200 0,0,0,|(), |0.t xx t x u a u x t u x u ?==?-=>>? =??=?

3.试求解 2 2 008(), |,|.tt xx yy zz t t t u u u u t u xy u z ==?-++=??==?? 4.写出定解问题: 200 (),0,0,|0,|0, |().t xx x x l t u a u f x x l t u u u g x ===?-=<<>? ==??=? 解的一般形式.

最新偏微分方程期末复习笔记

《偏微分方程》期末考试复习 一、波动方程(双曲型方程)U tt -a 2U xx 二f (x,t) (一)初值问题(柯西问题) < 2 U tt —a U xx = f(x,t) 1、一维情形 Ut t^a (x) (1) 解法(传播波法): 由叠加原理,原初值问题的解可表示为下述初值问题的解之 和, * 2 * 2 U tt —a U xx =o U tt —a U xx = f (x,t) (i) J U t^=

②决定区域:区间[x1,X2】的决定区域为:{(x,t)|捲? at込x込X2-at}

偏微分方程期末考试试题(06)

课程名称:偏微分方程数值解法 课程编号:24014110 适用专业(班级):数学 共1页 命题人:潘晓丽 教研室主任: 第1页 一、(15分)写出三类典型泛定方程并分别说明其名称和特点. 二、(10分)求一维波动方程()()()()()22 222 ,,0,0,,0t u u a x t t x u x x u x x ?ψ???=-∞<<+∞>?????==? 的通解. 三、(15分)写出达朗贝尔公式并利用公式求解 ()()()2,0,,0sin ,0cos tt xx t u a u t x u x x u x x ?=>-∞<<+∞? =?? =? 四、(10分)计算积分()32x J x dx -?. 五、(15分)设1,1≥≥n m ,证明 ()()()dx x p x m dx x p x n m n m n m ??--=++1 111 1 六、(15分)用分离变量法求解 ()()()()()20,0,0,00,,00,0,,0 tt xx t u a u x l t u x u x x u t u l t ?-=<<>? ==?? ==? 七、(10分)解固有值问题()()()''0,''0 y y l x l y l y l λ+=-<

课程名称:偏微分方程数值解法 课程编号:24014110 适用专业(班级):数学 共1页 命题人:潘晓丽 教研室主任: 第1页 一、解:波动方程:()22 2,u a u f t x t ?=?+? 热传导方程: ()2,u a u f t x t ?=?+? 位势方程:()u f x ?= ……………………….5分 其中()12,,,n x x x x = ,a 为常数,(),f t x 及()f x 为已知函数,在波动方程及 热传导方程中,未知函数u 是时间变量t 和空间坐标变量()12,,,n x x x x = 的函数,在位势方程中,未知函数u 是空间坐标变量()12,,,n x x x x = 的函数,而与时间t 无关,三类典型方程均为二阶线性偏微分方程。……………………….15分 二、解:首先判别方程的类型, 20a ?=> ………………………2分 即此方程在整个全平面上都是双曲型的。 特征方程为:()()2 2 20dx a dt -= () ()2 2 200dx a dt dx adt -=?= 特征曲线为1 2 x at c x at c -=??+=? ………………………6分 做变量替换,令x at x at ξη=-??=+?, 由链式法则得 0u ξη= 通解()()()()u f g f x at g x at ξη=+=-++ ……………………….10分

偏微分方程数值解法

“十二五”国家重点图书出版规划项目 信息与计算科学丛书 67 偏微分方程数值解法 陈艳萍鲁祖亮刘利斌编著

内 容 简 介 本书试图用较少的篇幅描述偏微分方程的几种数值方法. 主要内容包括:Sobolev空间初步, 椭圆边值问题的变分问题, 椭圆问题的有限差分方法, 抛物型方程的有限差分方法, 双曲型方程的有限差分方法, 椭圆型方程的有限元方法, 抛物及双曲方程的有限元方法, 椭圆型方程的混合有限元方法, 谱方法等. 本书内容丰富, 深入浅出, 尽可能地用简单的方法来描述一些理论结果, 并根据作者对有限差分、有限元、混合有限元、谱方法的理解和研究生教学要求, 全面、客观地评价各种数值计算方法,并列举一些数值计算的例子, 阐述许多新的学术观点. 本书可作为高等学校数学系高年级本科生和研究生的教材或参考书, 也可作为计算数学工作者和从事科学与工程计算的科研人员的参考书. 图书在版编目(CIP)数据 偏微分方程数值解法/陈艳萍, 鲁祖亮, 刘利斌编著. —北京:科学出版社, 2015.1 (信息与计算科学丛书67) ISBN 978-7-03-000000-0 Ⅰ. ①偏… Ⅱ. ①陈… ②鲁… ③刘… Ⅲ. ① Ⅳ.① 中国版本图书馆CIP数据核字(2014) 第000000号 责任编辑: 王丽平/责任校对: 彭涛 责任印制: 肖钦/封面设计: 陈敬 出版 北京东黄城根北街16号 邮政编码: 100717 https://www.wendangku.net/doc/2a14484047.html, 印刷 科学出版社发行 各地新华书店经销 * 2015年1月第一版开本: 720×1000 1/16 2015年1月第一次印刷印张: 14 字数: 280 000 定价: 88.00元 (如有印装质量问题, 我社负责调换)

偏微分方程期末考试试题(06)

黑龙江科技学院考试试题 课程名称:偏微分方程数值解法 课程编号:24014110适用专业(班级):数学 命题人:潘晓丽 教研室主任: 、(15分)写出三类典型泛定方程并分别说明其名称和特点 2 2 U 2 U 一、(10分)求一维波动方程 t 2 x 2 ,t 0 的通解 x u x,0 x , u t x,0 三、(15 分) 写出达朗贝尔公式并利用公式求解 u tt a 2 u xx , t 0, x u x,0 sinx U t x,0 cosx 四、(10分)计算积分 x 3 J 2 x dx . 五、(15分)设m 1,n 1,证明 六、(15分)用分离变量法求解 2 u tt a U xx 0, 0 x l,t 0 u x,0 0,u t x,0 x u 0,t 0,u l,t 0 八、(10分)叙述斯图模-刘维尔定理. 黑龙江科技学院考试试题答案 七、(10分)解固有值问题 y'' y 0, y' l y' l 第一套 共1页 第1页 n 1 0x m p n xdx 1 m 1 , m 0 x p n 1 x dx

2 一、解:波动方程:一a2u f t,x t - 热传导方程:汁a2 u f t,x 位势方程:u f x (5) 其中x X j,x2,L ,x n,a为常数,f t,x及f x为已知函数,在波动方程及热传导方程中,未知函数u是时间变量t和空间坐标变量x x1,x2,L ,x n的函数,在位势方程中,未知函数u是空间坐标变量x 为必,L ,人的函数,而与时间t无关,三类典型方程均为二阶线性偏微分方程。 (15) 二、解:首先判别方程的类型, a20 ............. 2 分 即此方程在整个全平面上都是双曲型的。 特征方程为:dx $ a2 dt $ 0 2 2 2 dx a dt 0 dx madt 0 x at 特征曲线为G x at C2 做变量替换,令 x at x at 由链式法则得u 0 通解u f g f x at g x at ....................... .10 ................................ 分

偏微分方程组解法

偏微分方程组解法 某厚度为10cm 平壁原温度为20C ?,现其两侧面分别维持在20C ?和120C ?,试求经过8秒后平壁温度分布,并分析温度分布随时间的变化直至温度分布稳定为止。 22x t a t ??=??τ 式中a 为导温系数,/s m c 2;2=a 。 解: 模型转化为标准形式: 2 21x t t a ??=??τ 初始条件为: ()200,=x t 边界条件为: ()120,0=τt ,()20,1.0=τt 函数: pdefun.m %偏微分方程(一维动态传热) function [c,f,s]=pdefun(x,t,u,dudx) c=1/2e-4;f=dudx;s=0; icbun.m %偏微分方程初始条件(一维动态传热) function u0=icbun(x) u0=20; bcfun.m %偏微分方程边界条件(一维动态传热) function [pl,ql,pr,qr]=bcfun(xl,ul,xr,ur,t) pl=ul-120;ql=0;pr=ur-20;qr=0; 命令: x=linspace(0,10,20)*1e-2; t=linspace(0,15,16); sol=pdepe(0,pdefun,icfun,bcfun,x,t); mesh(x,t,sol(:,:,1)) %温度与时间和空间位置的关系图 %画1、2、4、6、8、15s 时刻温度分布图

plot(x,sol(2,:,1)) 1s时刻,(因为本题sol第一行为0时刻) hold on plot(x,sol(3,:,1)) plot(x,sol(5,:,1)) plot(x,sol(7,:,1)) plot(x,sol(9,:,1)) plot(x,sol(16,:,1)) 计算结果: %第8秒时温度分布 x sol(9,:,1) 经过8秒时的温度分布为: x/cm 0 0.5263 1.0526 1.5789 2.1053 2.6316 3.1579 t/C ?120.0000 112.5520 105.1653 97.8994 90.8100 83.9477 77.3562 x/cm 3.6842 4.2105 4.7368 5.2632 5.7895 6.3158 6.8421 t/C ?71.0714 65.1202 59.5200 54.2784 49.3930 44.8518 40.6338 x/cm 7.3684 7.8947 8.4211 8.9474 9.4737 10.0000 t/C ?36.7095 33.0419 29.5877 26.2982 23.1207 20.0000 或者求第8秒时,x=0,2,4,,6,8,10cm处的温度 [uout,duoutdx]=pdeval(0,x,sol(9,:,:),[0,2,4,6,8,10]*1e-2) 120.0000 92.2279 67.5007 47.5765 32.3511 20.0000

金融工程期末复习题

一、简述题(30分) 1.金融工程包括哪些主要内容? 答:产品与解决方案设计,准确定价与风险管理是金融工程的主要内容P3 2.金融工程的工具都有哪些? 答:基础证券(主要包括股票和债券)和金融衍生产品(远期,期货,互换和期权)P4 3.无套利定价方法有哪些主要特征? 答:a.套利活动在无风险的状态下进行 b.无套利的关键技术是“复制”技术 c.无风险的套利活动从初始现金流看是零投资组合,即开始时套利者不需要任何资金的 投入,在投资期间也不需要任何的维持成本。P16 4.衍生证券定价的基本假设为何? 答:(1)市场不存在摩擦 (2)市场参与者不承担对手风险 (3)市场是完全竞争的 (4)市场参与者厌恶风险,且希望财富越多越好 (5)市场不存在无风险套利机会P20 5.请解释远期与期货的基本区别。 答:a.交易场所不同 b.标准化程度不同 c.违约风险不同 d.合约双方关系不同 e.价格确定方式不同 f.结算方式不同 g.结清方式不同P44 6.金融互换的主要有哪些种类? 答:利率互换与货币互换和其它互换(交叉货币利率互换、基点互换、零息互换、后期确定互换、差额互换、远期互换、股票互换等等)P104 7.二叉树定价方法的基本原理是什么? 答:二叉树图方法用离散的模型模拟资产价格的连续运动,利用均值和方差匹配来确定相关参数,然后从二叉树图的末端开始倒推可以计算出期权价格。P214 8.简要说明股票期权与权证的差别。 答:股本权证与备兑权证的差别主要在于: (1)有无发行环节; (2)有无数量限制; (3)是否影响总股本。 股票期权与股本权证的区别主要在于: (1)有无发行环节 (2)有无数量限制。P162 9.影响期权价格的因素主要有哪些?它们对欧式看涨期权有何影响? 答: 1)标的资产的市场价格(+) 2)期权的协议价格(—) 3)期权的有效期(?) 4)标的资产价格的波动率(+) 5)无风险利率(+) 6)标的资产收益(—) “+”表示对欧式看涨期权正向的影响,“—”表示反向的影响,“?”表示不确定P175 10.蒙特卡罗模拟法的主要优缺点。 答:优点:A.在大多数情况下,人们可以很直接地应用蒙特卡罗模拟法,而无需对期权定价模型有深刻的理解,所用的数学知识也很基本 B.为了获得更精确的答案,只需要进行更多的模拟 C.无需太多工作就可以转换模型。 缺点:A.难以处理提前执行的情形,因此难以为美式期权定价 B.为了达到一定的精确度,一般需要大量的模拟运算P226 11.用蒙特卡罗法确定期权价格的基本过程是什么? 答:由于大部分期权价值等于期权到期回报的期望值的贴现,因此先模拟风险中性世界中标的

偏微分方程考试重点与作业内容

偏微分方程考试重点与作业内容 记号说明: 第一个数字为章,第二个数字为节,第三个数字为小节。例如§3.1.2节就是第三章第一节的第二小节——Poisson公式。 考试重点: 1.§ 2.1节一阶线性方程的特征线解法(要求会用特征线法求解一阶线性偏微分方程, 计算题)灵活运用 2.§2.2.2节解的表达式(要求牢记解的表达式,会运用解的公式求解全平面上的波动方 程或者证明相关问题,计算题或证明题)灵活运用 3.§2.2.5节半无界问题(掌握奇延拓和偶延拓,计算题或证明题) 4.§2.4.1节分离变量法(掌握分离变量的方法,会用分离变量的方法求解波动方程和热 传导方程,计算题)灵活运用 5.§3.1.1节Fourier变换(牢记Fourier变换和Fourier逆变换的公式,会求函数的Fourier 变换和逆变换,判断题、填空题、选择题)灵活运用 6.§3.1.2节Poisson公式(牢记Poisson公式,填空题、选择题、计算题) 7.§3.1.3节广义函数简介(掌握广义函数的相关定义,会求广义函数以及广义函数的导 数,判断题、填空题、选择题)灵活运用 8.§3.3.1节弱极值原理(书上例题和作业题很重要,证明题) 9.§4.1.1节基本解与Green公式(Green公式的应用,判断题、填空题、选择题) 10.§4.2.1节极值原理(书上例题和作业很重要,证明题) 11.§4.2.4节调和函数的性质(熟记调和函数的相关性质,判断题、选择题、填空题) 作业内容: 第一章29页16题(1) 第二章100页第三题;101页10题;102页11题、12题;104页23题的(1)(3)小题; 26题的(2)(3)小题; 第三章161页2题、3题、4题;162页5题;163页9题;166页18题; 第四章212页1题;213页4题;218页25题; 考试说明: 1.考试内容:考试内容出自上述重点章节,主要是书上例题、作业题;要求灵活运用的内 容,会在例题作业题的基础上做微小改动,比例不超过期末考试的30%。 2.考试分数:平时成绩20分(国培计划的自动满分);期末考试80分。 3.考试题型:判断题;选择题;填空题;计算题;证明题 4.考试难度:考虑到大四学生实习的辛苦、找工作的焦虑、考研的烦躁,考试内容会尽量 简单。

偏微分方程数值解法答案

1. 课本2p 有证明 2. 课本812,p p 有说明 3. 课本1520,p p 有说明 4. Rit2法,设n u 是u 的n 维子空间,12,...n ???是n u 的一组基底,n u 中的任一元素n u 可 表为1n n i i i u c ?==∑ ,则,11 11()(,)(,)(,)(,)22j n n n n n n i j i j j i j j J u a u u f u a c c c f ???=== -=-∑∑是12,...n c c c 的二次函数,(,)(,)i j j i a a ????=,令 () 0n j J u c ?=?,从而得到12,...n c c c 满足1 (,)(,),1,2...n i j i j i a c f j n ???===∑,通过解线性方程组,求的i c ,代入1 n n i i i u c ?==∑, 从而得到近似解n u 的过程称为Rit2法 简而言之,Rit2法:为得到偏微分方程的有穷维解,构造了一个近似解,1 n n i i i u c ?== ∑, 利用,11 11()(,)(,)(,)(,)22j n n n n n n i j i j j i j j J u a u u f u a c c c f ???===-=-∑∑确定i c ,求得近似解n u 的过程 Galerkin 法:为求得1 n n i i i u c ? == ∑形式的近似解,在系数i c 使n u 关于n V u ∈,满足(,)(,) n a u V f V =,对任 意 n V u ∈或(取 ,1j V j n ?=≤≤) 1 (,)(,),1,2...n i j i j i a c f j n ???===∑的情况下确定i c ,从而得到近似解1 n n i i i u c ?==∑的过程称 Galerkin 法为 Rit2-Galerkin 法方程: 1 (,)(,)n i j i j i a c f ???==∑ 5. 有限元法:将偏微分方程转化为变分形式,选定单元的形状,对求解域作剖分,进而构 造基函数或单元形状函数,形成有限元空间,将偏微分方程转化成了有限元方程,利用 有效的有限元方程的解法,给出偏微分方程近似解的过程称为有限元法。 6. 解:对求解区间进行网格剖分,节点01......i n a x x x x b =<<<<=得到相邻节点1,i i x x -

偏微分方程数值解法试题与答案

x 1 ?若步长趋于零时,差分方程的截断误差 R m 0,则差分方程的解 U i m 趋近于微分方 程的解U m ?此结论 ________ (错或对); 1 2.一 阶 Sobolev 空间 H ( ) f (x,y) f , f x , f y L ?() 关于内积(f,g )1 _____________________________________ 是Hilbert 空间; 3 ?对非线性(变系数)差分格式,常用 ____________ 系数法讨论差分格式的 ________ 稳定性; 4?写出y x 3在区间[1,2]上的两个一阶广义导数: ______________________________________ _____ ____ ______________ _ ____ ________ ; 5 ?隐式差分格式关于初值是无条件稳定的 ?此结论 ________ (错或对)。 (13分)设有椭圆型方程边值问题 0.1作正方形网格剖分 。 (1) 用五点菱形差分格式将微分方程在内点离散化; (2) 用截断误差为 O (h 2)的差分法将第三边界条件离散化; (3) 整理后的差分方程组为 U C 三.(12)给定初值问题 u x,0 x 1 取时间步长 0.1,空间步长h 0.2。试合理选用一阶偏心差分格式(最简显格式) 2 u ~2 x 2 u ~2 y 0 x 0.3 0.2 x 0.3 2y 1, — u n 2x y 0.2

并以此格式求出解函数u(x,t)在x 0.2,t 0.2处的近似值。 x

1.所选用的差分格式是: 2 .计算所求近似值: 1 a k 1 四.(12分)试讨论差分方程 u l 1 k k k 1 u | r u | 1 u | , r h a 1 h 逼近微分方程 u a u 0 t x 的截断误差阶R 。 思路一:将r 带入到原式,展开后可得格式是在点( l+1/2,k+1/2 )展开的。 思路二:差分格式的用到的四个点刚好是矩形区域的四个顶点,可由此构造中心点的差分格 式。 2 —2 ,考虑 Du Fort-Frankel 格式 X 试论证该格式是否总满足稳定性的 Von-Neumann 条件? 六. (12分)(1 )由Green 第一公式推导 Green 第二公式: (2) 对双调和方程边值问题 n 2 选择函数集合(空间)为: 推导相应的双线性泛函和线性泛函: A (u,v ) F (v ) 相应的虚功问题为: 极小位能问题为 七. ( 12分)设有常微分方程边值问题 y y f (x ) , a x b y a 1, y b 1 五.(12分) 对抛物型方程 U |k1 U |k 2 |k 1 (U |k1 U |k1) U |k 1 ) 2 (u)vdxdy G (u) u vdxdy :[v v u ]ds n f (x,y) (x,y) g 1(x , y), g 2(x, y) (x,y),

偏微分方程数值解复习题(2013硕士)

偏微分方程数值解期末复习(2012硕士) 一、考题类型 本次试卷共六道题目,题型及其所占比例分别为:填空题20%;计算题80% 二、按章节复习内容 第一章 知识点:Euler法、向前差商、向后差商、中心差商、局部截断误差、整体截断误差、相容性、收敛性、阶、稳定性、显格式、隐格式、线性多步法、第一特征多项式、第二特征多项式、稳定多项式、绝对稳定等; 要求: 熟练一元函数的数值微分公式;会辨认差分格式, 计算线性多步法的局部截断误差和阶; 第二章 知识点:矩形网格、(正则,非正则)内点、边界点、偏向前(向后,中心)差商、五点差分格式、增设虚点法、积分插值法、线性椭圆型差分格式、极值原理、比较定理、五点差分格式的相容、收敛和稳定性等; 要求: 熟练多元函数的数值微分公式;会建立椭圆型方程边值问题的差分格式;计算局部截断误差;了解极值原理讨论格式的收敛性和稳定性; 第四章 知识点:最简显格式、最简隐格式、CN格式、双层加权格式、Richardson 格式、网格比、传播因子法(分离变量法) 、传播因子、传播矩阵、谱半径、von Neumann条件、跳点格式、ADI格式等; 要求: 会建立抛物型方程边值问题的经典差分格式;计算局部截断误差; 会计算格式的传播因子或传播矩阵;会讨论格式的稳定性; 第五章 知识点:依赖区域、左偏心格式、右偏心格式、中心格式、LF格式、LW 格式、Wendroff格式、跳蛙格式、特征线、CFL条件等; 要求: 建立双曲型方程边值问题的差分格式;计算局部截断误差; 会计算格式的传播因子或传播矩阵;讨论格式的稳定性; 第七章 知识点:单元、线性元、线性基、(单元)刚度矩阵、(单元)荷载向量等;

偏微分方程期末复习笔记

2 ②决定区域:区间[X i ,X 2】的决定区域为:{(X,t)|X i at x X 2 at } 《偏微分方程》期末考试复习 一、波动方程(双曲型方程)U tt a 2U xx f(x,t) (一) 初值问题(柯西问题) U tt a 2U xx f(x,t) 1、一维情形 U t 0 (x) U t t 0 (x) (1)解法(传播波法): 由叠加原理,原初值问题的解可表示为下述初值问题的解之和, 2 a U xx f (x,t) 从而问题(n)的解为: (2)依赖区间、决定区域、影响区域、特征线: ①依赖区间:点(x , t)的依赖区间为:[x-at , x+at ]; U t t a U xx 0 U tt u (x) (n) U t 0 U t t 0 (x) U t t (I) 其中,问题(I )的解由达朗贝尔公式 给出: (x at) 2 U(x,t) (x at) 1 2a x at x at ()d 由齐次化原理,问题(n)的解为: u(x,t) t W(x,t ; )d 其中,W(x,y,z,t;)是下述初值问题的解: W W t W tt a 2W xx 0 0 f(x,) 利用达朗贝尔公式得W(x,t;) a(t 2a x a(t ) )f( , )d U(x,t) J 2a x a(t x a(t ) ) f( , )d d 综上所述,原初值问题的解为: (x at) U(x,t) (x at) J 2a x at x at ()d 1 2a t x a(t 0 x a(t

1 f(, u(x,y, z,t) dS 4 a t S M at ,t 丄) 乳dV r ③影响区域:区间[为,乂 2]的影响区域为:{(x,t )|x 1 at x x 2 at } ④特征线:x x 0 at (3)解的验证:见课本 P10, P14 (1)解法(球面平均法): 由叠加原理,原初值问题的解可表示为下述初值问题的解 之和, 其中,问题(i )的解由泊松公式给出: 从而问题(n )的解为: 综上所述,原初值问题的解为: U tt a (U xx U yy U zz ) f(X 』,Z,t) 2、三维情形 U (x, y, z) U t t 0 (x,y,z) U tt a (U xx U yy U zz ) 0 U tt a 2(U xx U yy U zz ) f (x,y, z,t) (I ) U (x, y,z) U t (x,y,z) U t u(x,y, z,t) ____ t 4 a 2 t S M dS 1 4 a 2t S M dS 由齐次化原理,问题(n )的解为: u (x, y,z,t ) t W (x,y,z,t ;)d W tt (W xx W yy W zz ) 其中,W (x,y,z,t;)是下述初值问题的解: t W tt f (x, y,z,) 1 利用泊松公式得 W(x, y,z,t;) — 4 a s M S f(,, r a(t dS ) u(x, y,乙t) 1 4 a 2 r at f(,, ,t ) ~dV

相关文档
相关文档 最新文档