文档库 最新最全的文档下载
当前位置:文档库 › G7_how-to_v6[final]

G7_how-to_v6[final]

G7_how-to_v6[final]
G7_how-to_v6[final]

Calibrating, Printing and Proofing by the G7? Method

Version 6

August 2006

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to IDEAlliance, except as needed for the purpose of developing IDEAlliance specifications, in which case the procedures for copyrights defined in the IDEAlliance Intellectual Property Policy document must be followed, or as required to translate it into languages other than English. The limited permissions granted above are perpetual and will not be revoked by IDEAlliance or its successors or assigns.

C O N T E N T S

1Introduction (5)

1.1About this document (5)

1.2Changes to this version (5)

1.3What is GRACoL 7? (5)

1.4What is G7? (6)

1.5GRACoL 7 and ISO print standards (6)

1.6Solving the TVI problem (6)

1.7In search of international unity (7)

2New Variables and Definitions (8)

2.1Neutral Print Density Curve (NPDC) (8)

2.2Highlight Range (HR) (8)

2.3Shadow Contrast (SC) (9)

2.4Highlight Contrast (HC) (10)

2.5HR, SC and HC aim values vs. dynamic range (11)

2.6Gray balance (11)

2.7Benefits and limitations of the new method (12)

2.8When to Use TVI (12)

2.9G7 TVI curves and calculations (13)

3G7 Calibration / Profiling Summary (14)

3.1Prepare the equipment and materials (14)

3.2Print a Calibration target (14)

3.3Compare ‘found NPDC’ to reference NPDC (14)

3.4Compare ‘natural gray balance’ to reference gray balance (14)

3.5Calibrate the RIP or device driver (14)

3.6Verify the calibration (14)

3.7Print a Characterization target (optional) (14)

3.8Verify the Characterization (optional) (14)

4Time, Materials, and Tools (15)

4.1Time (15)

4.2Paper (15)

4.3Inks (15)

4.4Test targets and images (15)

4.5Tools for graph paper method (16)

4.6Tools for software method (16)

4.7Dot Meter (recommended) (16)

4.8Hand-held spectro-densitometer (16)

4.9D-50 viewing conditions (16)

5Preparation (17)

5.1Secure all materials (17)

5.2Assemble the press form (17)

5.3Press control bars (18)

5.4Set up the RIP (19)

5.5Check plate-making system (19)

5.6Exotic screening or continuous-tone systems (20)

5.7Pre-adjust the plate-making system at 50% (optional) (20)

5.8Make plates for the calibration run (20)

5.9Record an un-calibrated plate curve (20)

5.10Check press setup (20)

5.11Check measurement tools and viewing conditions (20)

6Calibration Test (21)

6.1Ink sequence, drying, and coating (21)

6.2Print to nominal solid ink values (21)

6.3Check CMYK TVI (21)

6.4Adjust device-level gray balance (optional) (22)

6.5Adjust cross-sheet evenness (22)

6.6Run stabilizing speed-cycle (22)

6.7Automated press control systems (23)

6.8Record wet and dry ink values (23)

7Adjusting NPDC Curves (24)

7.1Allow sample sheets to dry (24)

7.2Measure the P2P target (24)

7.3Plot the curves (24)

7.4Find nearest target graph with same D-max (25)

7.5Choose the optimum curve points (25)

7.6Calculate the RIP curve correction values (25)

7.7Correcting gray balance in RIP curves (26)

7.8Apply new aim values to RIP or CtP device (26)

8Achieving Gray Balance in RIP Curves (27)

8.1Find the 'most neutral' patch in the C = 50% block (27)

8.2Repeat for other cyan percentages (27)

8.3Draw new curves for Magenta and Yellow (28)

8.4Find new aim values for Cyan, Magenta and Yellow (28)

8.5Correcting Gray Balance in IDEAlink Curve (29)

8.6Apply new aim values to RIP or CtP device (29)

8.7When NOT to apply gray balance in RIP curves (29)

9Verification/Characterization Test (30)

9.1Make new characterization plates to G7 spec (30)

9.2Print the characterization target (30)

9.3Characterization tolerances (30)

9.4Confirm goal curves (30)

9.5Verify gray balance and other parameters (31)

9.6Select samples (31)

9.7Measure characterization data (31)

9.8Realistic expectations (31)

10Proofer Calibration and Profiling (32)

10.1What proofers are compatible with G7? (32)

10.2Workflow summary (32)

10.3Qualify the proofing system (32)

10.4Optimize the proofing system (32)

10.5Print the proofing form target (33)

10.6Measure the Press2Proof (P2P) target (33)

10.7Plot the curves (33)

10.8Align end-points at 100% (33)

10.9Choose the optimum curve points (33)

10.10Calculate the RIP curve correction values (33)

10.11Evaluate and adjust gray balance (33)

10.12Apply new aim values to RIP (33)

10.13Evaluate accuracy in neutral gray areas (34)

10.14Evaluate match in colored areas (34)

10.15Solve remaining color errors via ICC profiles (if needed) (34)

10.16Testing ICC profiles before installing in a RIP (34)

11Custom-Calibrated and Non ICC-Compatible Proofers (35)

12Soft Proofing (Video Proofing) (36)

12.1Basic requirements (36)

12.2Soft proofing in Adobe Photoshop (36)

12.3Remote soft proofing (37)

Appendix A:Production Press Control (38)

A.1Run press up to nominal ink levels (38)

A.2Adjust gray balance, HR_cmy and SC_cmy (38)

A.3Adjust HR_k and SC_k (38)

A.4Nominal HR, SC and HC aim values (38)

A.5HR, SC and HC aim values for other dynamic ranges (39)

A.6Maintaining gray balance by CIELab (39)

A.7Maintaining gray balance by CMY density (39)

Appendix B:G7 FanGraph Paper (40)

B.1Changes since the last edition (40)

B.2NPDC FanGraphs (CMY and K) (40)

B.3Possible future changes (40)

B.4Matching the black NPDC to the CMY NPDC (40)

Appendix C:Example Graph (43)

Appendix D:Fractional Percentage Calculations (44)

D.1The problem with integer percentages (44)

D.2Converting integer percentage to integer 8-bit (Excel) (44)

D.3Converting integer 8-bit to fractional percentage (Excel) (44)

D.4Converting integer percentage to fractional percentage (44)

D.5GRACoL fractional percentage conversion chart (45)

Appendix E:Gray Balance and NPDC (46)

E.1G7 specified gray balance (46)

E.2Nominal target a* and b* values for standard papers (47)

E.3Printing on non-standard paper color (48)

E.4Determining 'natural' CtP curves (49)

E.5Relationship of NPDC to TVI (49)

Appendix F: Introduction to CIELab (50)

Appendix G:Tolerance Notes (51)

G.1Introduction (51)

G.2When tight pressroom tolerances are NOT appropriate (51)

G.3When tight pressroom tolerances ARE appropriate (51)

G.4GRACoL 7 tolerances vs. custom user tolerances (51)

G.5Characterization vs. production tolerances (52)

G.6Printing vs. proofing tolerances (52)

Appendix H:ISO 12647-2 Solid Ink Values (53)

Glossary (54)

Calibrating, Printing and Proofing by the G7? Method

Version 6, August 2006

1 Introduction

1.1 About this document

This document describes how to calibrate a printing press, proofing system, or any CMYK imaging device to the new GRACoL 7 specifications, and how to maintain those specifications during production. The calibration process is broken into two stages. The first stage uses ISO-standard colorants and substrate, and the new G7? method to match the NPDC (Neutral print Density Curve) and gray balance of neutral gray tones. The second stage uses ICC (International Color Consortium) or similar color management to optimize the match to a reference characterization data based on ISO-standard print conditions, such as produced by FOGRA, GRACoL, SWOP, etc.

Simply using the G7 calibration method will often be enough to match multiple devices to each other, at least in neutral gray tones. But in other cases, for example with non-standard colorants, to set up a digital proofer, or when repurposing from one print method to another, additional color management will be needed, with G7 acting as an optimized and repeatable calibration basis.

1.2 Changes to this version

Version 6 of this document corrects a number of small errors and omissions in earlier versions and adds several new items. The main changes between version 6 and versions 4 or earlier are;

?Adds new variables 'SC' (Shadow Contrast) and 'HC' (Highlight Contrast)

?Broader tolerances for ink color and press gray balance

?Minor changes to gray balance formula and NPDC curve shape

?New 'fan-type' graph paper simplifies re-drawing graphs

?Adds references to the new IDEAlink? Curve software

?Expanded or revised illustrations, charts and glossary

?Clarifies the use of CIE-based (instead of density-based) TVI curves

?Corrected errors in some charts and formulae

1.3 What is GRACoL 7?

GRACoL 7 is the seventh edition of the GRACoL specification. GRACoL 7 differs from previous editions of the GRACoL specification by;

?Defining substrate and colorants in colorimetry rather than status T density

?Defining tonality in 'Neutral Print Density Curves' (NPDC) instead of TVI

?Defining gray balance as a primary colorimetric variable, rather than a secondary function of CMY TVI

?Defining a GRACoL 7 characterization data set that represents an ideal printed sheet

1.4 What is G7?

G7? is a new calibration method developed to support the GRACoL 7 specification, and described in detail in this document. The 'G' refers to calibrating Gray values, while the '7' refers to the seven primary color values defined in the ISO 12647-2 printing standard; Cyan, Magenta, Yellow, Black (K), Red (M+Y), Green (C+Y) and Blue (C+M). Although originally intended for commercial offset printing, the G7 method is applicable to virtually any CMYK imaging process, and has been successfully tested on a wide range of processes, including coated and uncoated offset, newsprint, gravure, flexography, dye-sublimation, ink-jet, and electrophotography, as well as a wide range of AM and FM screening methods.

1.5 GRACoL 7 and ISO print standards

NOTE: GRACoL IS NOT A STANDARDS ORGANIZATION AND DOES NOT CREATE STANDARDS, however as far as possible GRACoL 7 and this document are based on existing ISO standards.

ISO is the International Standards Organization governing all industries including printing. ISO 12647-2 is a standard for "Graphic technology - Process control for the production of half-tone colour separations, proof and production prints - Part 2: Offset lithographic processes". ISO 12647-2 is remarkably valid today, but its reliance on a small number of solid ink colors and TVI (Tone Value Increase) curves limits its value in ICC workflows. The main problem is that ISO 12647-2 is ambiguous due to the use of multiple TVI curves, and the lack of a colorimetric definition for gray balance.

Today's users want a printing standard to define the

'appearance' of the final image more precisely than is

guaranteed with ISO 12647-2. A good way to define print

'appearance' is with a characterization data set containing

colorimetric (CIE or spectral reflectance) values from a

standard characterization target like the IT8.7/4 shown here.

The IT8.7/4 characterization target (Visual)

At the time of writing, an ISO TC 130 subcommittee is

working to define a characterization data set that will be

acceptable by all member countries. Meanwhile, several

national organizations including Germany's FOGRA, Japan

Standards Institute, and USA's GRACoL and SWOP, have

already produced their own characterization sets based on their own interpretations of ISO 12647-2. The question is how to interpret an ambiguous standard? Specifically, on which (if any) of the six TVI curves in ISO 12647-2 will the final data set be based? And is TVI even a sound metric in a colorimetric standard?

1.6 Solving the TVI problem

GRACoL's research indicates that TVI is a poor basis for a colorimetric standard because different TVI curves can be necessary on different devices to produce a consistent visual appearance. Part of the problem is that TVI is based on densitometry, which has no fixed relationship to colorimetry. This might be solved by a new TVI formula based on CIEXYZ or ?E, but GRACoL 7 eliminates the TVI problem entirely by replacing ISO 12647-2's multiple TVI curves with the new concept of a single 'NPDC' (Neutral print Density Curve) that can be derived unambiguously from any characterization data, and which, if used as a basis for device calibration, eliminates much of the work normally done by ICC color management.

To help promote unified printing worldwide, GRACoL has attempted to represent in its characterization data and NPDC curves the 'natural' behavior of typical CtP printing, i.e. what happens with no RIP curve correction. This approximately correlates to a TVI curve shape between the legacy-positive and legacy-negative curves in ISO 12647-2 for paper type 1 coated.

1.7 In search of international unity

The two most widely-promoted characterization data sets for commercial printing come from FOGRA and GRACoL 7. The visual differences are quite small, as shown by the illustrations below, in spite of significantly different TVI curves shown below each image. This is not surprising as the GRACoL 7 Beta 02 Characterization Data was based largely on FOGRA39, but adjusted to fit the GRACoL NPDC and gray balance definitions.

The final TC 130 data (see 1.5) will probably be similar to both, but remember that this will then have to be ratified by all the TC 130 delegates before becoming an official ISO standard.

IMPORTANT: Although closely tied to ISO 12647-2, the GRACoL 7 Characterization Data and NPDC curves are NOT an official standard, but simply one of several possible 'appearances' allowed under ISO 12647-2. Any future ISO characterization data may lead to a change in the GRACoL 7 or FOGRA data.

Interpretations of ISO 12647-2 by the TVI method (left) and the G7 method (right) and their relative CIEXYZ-based TVI curves (below). Remember these SCID images have no 'right' or 'wrong'

appearance. (Color and density may vary depending on viewing and reproduction conditions.) NOTE: The TVI curves shown above are calculated from CIEXYZ data (see 2.9) - NOT density readings, and are intended for comparative purposes only.

2 New Variables and Definitions

This section explains some new variables introduced with the G7 method, including 'NPDC', 'HR', 'SC', and 'HC', and some new definitions or uses for old variables such as gray balance and TVI.

2.1 Neutral Print Density Curve (NPDC)

A new concept introduced with G7 is the definition of a 'Neutral Print Density Curve' (NPDC), which is the relationship between measured neutral density and original halftone percentages on a printed gray scale. Because neutral density is an absolute value, while TVI is a relative function, NPDC ensures a better contrast and density match between multiple devices.

Two NPDC curves are specified, one for a combined CMY gray scale and one for a black-ink gray scale. NPDC calibration compares a printed gray scale to a reference scale and calculates RIP correction values in dot percentage terms that force the press (or other imaging device) to the desired NPDC shape. Curve correction values are calculated either manually by plotting graphs on special graph paper (see Appendix B), or automatically in the IDEAlink?Curve software available from https://www.wendangku.net/doc/2d12430285.html,.

2.1.1 Determining 'natural' CtP curves

To determine the 'natural' print curves of commercial CtP-based printing, the GRACoL technical committee analyzed multiple ISO-standard press runs made with a variety of plates imaged on un-calibrated CtP systems, set up to manufacturer specifications.

While every press run is unique, we believe the G7 NPDC formula represents what an average press running to ISO 12647-2 specifications would produce with typical un-calibrated CtP plates, on high quality commercial stock.

For an explanation of how the NPDC curves were mathematically smoothed, see Appendix E.4 REMEMBER: G7 NPDC curves are NOT an official ISO standard. Other valid interpretations of ISO 12647-2 may produce slightly different NPDC curves.

2.2 Highlight Range (HR)

HR is a single measurement that quickly tests the mid-tone density of a previously-calibrated device during production, for example while a press is running or after each proof is made. HR replaces individual TVI readings as the primary measure of overall print darkness and gray balance, however TVI is still a useful press control metric - (see 2.8 When to Use TVI).

HR is computed twice, once for CMY ('HR_cmy') and again for black ('HR_k'). Just two measurements are required for each, or just one each (total 2) in absolute mode (see2.2.3),compared to three measurements each for C, M, Y and K TVI (total 12), yet HR gives a more reliable indication of pictorial darkness and contrast because HR is absolute while TVI is only a relative measurement.

For convenience, HR is expressed in neutral density (ND), which can be measured with a densitometer set to the black channel, or 'Visual density'. ND can also be computed from CIEXYZ_Y, in fact GRACoL officially defines Neutral Density as ;

ND = Log10(100/Y); (where Y > 0 < 100)

2.2.1 Measuring HR_cmy

HR_cmy is computed by measuring the neutral density (ND) of a combined CMY gray patch (50c, 40m, 40y) and subtracting the neutral density of paper.

HR_cmy = ND(50c,40m,40y) - ND(paper) = 0.54 (typical)

For devices with a dynamic range of about 1.3 ND or higher, HR_cmy is effectively a constant of 0.54. For low dynamic range devices, such as newsprint, HR_cmy may be lower. (See Appendix A.5 for a graph of HR_cmy vs. dynamic range.) HR_cmy is calculated automatically by IDEAlink Curve.

2.2.2 Measuring HR_k

HR_k is computed by measuring the ND of a 50k patch and subtracting the neutral density of paper.

HR_k = ND(50K) - ND(paper) = 0.50 (typical)

For devices with a dynamic range of about 1.3 ND or higher, HR_k is effectively a constant of 0.50. For low dynamic range devices, such as newsprint, HR_k may be lower. (See Appendix A.5 for a graph of HR_k vs. dynamic range.) HR_k is calculated automatically by IDEAlink Curve.

NOTE: Prior to February 2006 GRACoL 7 proposed that HR_k = HR_cmy, but the HR_k value was lowered in February 2006 to 0.50 to remain ‘legal’ to the current ISO 12647-2 TVI curves. Users who prefer to calibrate their black NPDC to match the CMY NPDC should use the HR_cmy value (0.54) instead of 0.50 for HR_k.

2.2.3 Absolute HR

Only a single measurement of the gray patch is needed to control HR if the paper density is added to HR to get the 'Absolute' HR density for that particular paper. For example,

If paper ND = 0.09, and HR = 0.54

Absolute HR = 0.09 + 0.54 = 0.63 (for that paper)

2.2.4 Absolute HR in L* units

A single Lab reading can be used to measure gray balance and lightness simultaneously if Absolute HR is expressed in L* instead of density. The Absolute L* HR values for a standard paper lightness of L* 95 and maximum darkness at 300% CMY of at least 25 L* (1.35 ND) or a maximum darkness at 100k of at least 16 L* (1.7 ND) are, (rounded to one decimal);

Absolute HR_cmy = L* 57.5

Absolute HR_k = L* 59.9

Absolute L* HR values for other papers are calculated automatically by IDEAlink Curve.

NOTE: Expressing or measuring HR in ‘relative’ L* Is not recommended as most spectrophotometers do not allow calibration on an arbitrary base and it is not trivial to calculate a new relative L* value if the paper varies from the standard 95 L* value.

2.3 Shadow Contrast (SC)

A new G7 variable introduced in this edition is Shadow Contrast ('SC'). SC is a, quick way of checking the NPDC in neutral shadow tones during production. SC is an optional replacement for individual CMY Print Contrast readings. SC is computed twice, once for CMY ('SC_cmy') and again for black ('SC_k').

2.3.1 Measuring SC_cmy

SC_cmy is computed by measuring the neutral density (ND) of a combined CMY gray patch (75c, 66m, 66y) and subtracting the neutral density of the paper.

SC_cmy = ND(75c,66m,66y) - ND(paper)

The value of SC_cmy depends on the dynamic range of each device, and is calculated automatically by IDEAlink Curve. (See Appendix A.5 for a graph of SC_cmy vs. dynamic range.)

2.3.2 Measuring SC_k

SC_k is computed by measuring the ND of a 75% Black patch and subtracting the neutral density of the paper.

SC_k = ND(75k) - ND(paper)

The value of SC_k depends on the dynamic range of each device, and is calculated automatically by IDEAlink Curve. (See Appendix A.5 for a graph of SC_k vs. dynamic range.)

2.3.3 Absolute SC

By adding the paper density to SC to get the 'Absolute' SC density for that particular paper, only a single measurement of the gray patch is needed to control SC. For example,

If paper ND = 0.09 and SC = 0.97

Absolute SC = 0.09 + 0.97 = 1.06 (for that paper)

2.3.4 Absolute SC in L* units

A single Lab reading can be used to measure gray balance and lightness simultaneously if Absolute SC is expressed in L* instead of density. Absolute L* SC is calculated automatically by IDEAlink Curve. NOTE: Expressing or measuring SC in ‘relative’ L* Is not recommended as most spectrophotometers do not allow calibration on an arbitrary base and it is not trivial to calculate a new relative L* value if the paper varies from the standard 95 L* value.

2.4 Highlight Contrast (HC)

Another new G7 variable introduced in this edition is Highlight Contrast or 'HC'. HC is a quick way of checking the NPDC in neutral highlight tones during production. HC is computed twice, once for CMY ('HC_cmy') and again for black ('HC_k'). HC is a virtual constant for dynamic ranges above about 0.8 ND.

2.4.1 Computing HC_cmy

HC_cmy is computed by measuring the ND of a combined CMY gray patch (25C, 19M, 19Y) and subtracting the neutral density of the paper. HC_cmy is calculated automatically by IDEAlink Curve. (See Appendix A.5 for a graph of HC_k vs. dynamic range.)

HC_cmy = ND(25c,19m,19y) - ND(paper) = 0.25

2.4.2 Computing HC_k

HC_k is computed by measuring the ND of a 25% Black patch and subtracting the neutral density of the paper. HC_cmy is calculated automatically by IDEAlink Curve. (See Appendix A.5 for a graph of HC_k vs. dynamic range.)

HC_k = ND(25k) - ND(paper) = 0.22

NOTE: Users who prefer to calibrate their black NPDC to match the CMY NPDC should use the HC_cmy value (0.25) instead of 0.22 for HC_k.

2.4.3 Absolute HC

By adding the paper density to HC to get the 'Absolute' HC density for that particular paper, only a single measurement of the gray patch is needed to control HC. For example,

If paper ND = 0.09 and HC = 0.25

Absolute HC = 0.09 + 0.25 = 0.34 (for that paper)

2.4.4 Absolute HC in L* units

A single Lab reading can be used to measure gray balance and lightness simultaneously if Absolute HC is expressed in L* instead of density. The Absolute L* HC values for a standard paper lightness of L* 95 and a standard dynamic range of at least 0.8 ND are, (rounded to one decimal);

Absolute HC_cmy = L* 75.7

Absolute HC_k = L* 77.7

Absolute L* HC values for other papers are calculated automatically by IDEAlink Curve.

NOTE: Expressing or measuring HC in ‘relative’ L* Is not recommended as most spectrophotometers do not allow calibration on an arbitrary base and it is not trivial to calculate a new relative L* value if the paper varies from the standard 95 L* value.

2.5 HR, SC and HC aim values vs. dynamic range

The graph in Appendix A.5 shows that HR and HC are effectively constants for normal offset density ranges, but SC (and to a less extent HR and HC) do vary as a function of high dynamic range.

2.6 Gray balance

GRACoL 7 breaks with tradition by raising gray balance to a more important status than TVI, but this raises the question; how do you define 'gray balance'? Gray balance was traditionally defined as the CMY percentages needed to match the color of a 50% black ink tint, or the color of paper, but these definitions are too vague for today's ICC workflows. To avoid these ambiguities GRACoL 7 defines an arbitrary table of CMY percentage 'triplets' based on the generic 50c, 40m, 40y ratio, and pre-defined a* and b* values for each triplet.

In previous versions of this document gray balance was an arbitrarily constant of 0 a*, -2 b* throughout the whole CMY gray scale, regardless of paper color. As of version 5, gray balance is now calculated by a paper-dependent formula (see Appendix E) based on ideas from several public forums. CAUTION: The new paper-dependent gray balance definition means that gray tones in a CMYK file will shift in gray balance towards paper color. Separations and proofs made for one paper may therefore not exactly match a proof created for another paper type.

2.6.1 Abbreviated Gray Balance chart

The following chart lists some CMY percentage values and approximate a* b* values for a paper white of 0 a*, -2 b*. Note how the b* values converge towards zero at higher CMY percentages. (See Appendix E for full gray balance formulae and chart of the P2P23 target gray balance.)

C%*M% Y% a*b*

0.00.00.00 -2

12.59.09.00 -1.7

25.118.818.80 -1.5

37.329.029.00 -1.2

49.840.040.00 -1

62.752.952.90 -0.70

75.366.366.30 -0.5

87.581.281.20 -0.2

1001001000 0

Nominal gray balance percentages and a*,b* values for a paper white of 0 a* and -2 b*

*NOTE: For precision purposes GRACoL 7 expresses all percentage values as their nearest 8-bit fractional value. (See Appendix D.)

2.6.2 Calibrating Gray Balance

Gray balance can be calibrated either by adjusting the device itself (for example with modified ink densities) or by creating separate CMY RIP curves (see Section 8 'Achieving Gray Balance in RIP Curves'.)

NOTE: Whenever possible, separate RIP curves should be AVOIDED when calibrating an offset press, as most offset gray balance errors are unstable or inconsistent. The reverse is true when calibrating a more stable device such as a proofing system or ink jet printer, where gray balance is more consistent.

2.6.3 Controlling Gray Balance in production

For process control purposes, measuring a single gray patch of (nominally) 50c, 40m, 40y is usually enough to confirm a previously - calibrated device is still 'in balance'. Measuring gray balance also on the SC patch (75c, 66m, 66y) and (optionally) on the HC patch (25c, 19m, 19y) may reveal run-specific

errors due to temporary variations in performance that are difficult or impossible to correct on inherently unstable devices like an offset press. In live production a compromise may sometimes be necessary in meeting the target Lab values of HR, SC and HC patches.

2.7 Benefits and limitations of the new method

The primary advantage of the G7 calibration method and the use of HR, SC, HC and gray balance to monitor production, is that the visual appearance of neutral tones and near-neutral colors is more effectively controlled than by traditional TVI-based methods. The main disadvantage is that gray balance can be a challenge to maintain in offset lithography.

2.7.1 Benefits

?NPDC, HR and SC measure visual lightness and darkness directly, independent of SID, but TVI is a dependent variable of SID, and therefore an unreliable measure of visual lightness.

?The G7 method and values are equally valid in proofing or printing, unlike TVI-based calibration, which requires different aim values for proofing systems than for presses.

?NPDC, HR and SC are independent of screening variables, hence one specification can apply to all types of imaging system, regardless of dot type, or even if there is no dot at all.

?Reading the color of a CMY gray patch is the most efficient way to control gray balance, because the combined effects of all variables are measured at once, but gray balance cannot be defined by separate CMY TVI readings, if hue and trapping effects are not also precisely controlled.

?Press control is faster because only 2 instrument 'clicks' are needed to monitor gray balance and absolute HR - one for a CMY gray patch and one for a 50% black tint - instead of the 12 clicks needed to measure CMYK TVI.

?Separating the two critical attributes of NPDC and gray balance, allows each to be adjusted independently of the other.

?Even if ICC profiles are used, G7 calibration establishes a consistent neutral scale performance which can expand the value and extend the life of standardized device profiles.

?Even if gray balance remains hard to control on press, applying the G7 method to every proofing system (and to every ‘standard’ characterization data set) will yield more consistent proofs, more interchangeable CMYK files, and will ultimately make every printer’s job easier.

2.7.2 Limitations

?Gray balance is generally harder to control on a typical offset press than single-ink performance, due to wet trapping and other issues (see Appendix G.6).But that's really the whole point - focusing on the most unstable variable helps stabilize the whole process.

?If the average job contains few gray areas, gray balance control may not be worth the effort.

?Calibrating an unstable device with different CMY curves may solve a one-time gray balance error but cause a different gray balance problem on subsequent work, if the calibration test was not typical. The use of ‘smoothed’ gray correction curves helps reduce this problem.

2.8 When to Use TVI

Although dot sizes and TVI are unreliable for controlling appearance, they continue to serve as valuable process control metrics for offset lithography.

?After reaching nominal solid ink levels check TVI to be sure each unit is printing normally, otherwise curve corrections may be introduced to correct for physical or chemical anomalies that should have been corrected on press (see 6.3).

?Whenever color problems during a run cannot be solved by simple SID adjustments, individual-ink TVI values will indicate if one or more plates are printing incorrectly.

?Individual-ink TVI values should be monitored, as well as gray balance and HR, as part of any thorough process control program.

?On very stable devices whose individual colorants and trapping effects are highly predictable, it may be possible to learn device-specific CMY TVI values that, if individually measured, will control gray balance and NPDC on that device. This will typically NOT be true in offset lithography, and offers little advantage over direct gray-patch readings.

2.9 G7 TVI curves and calculations

Because the G7 solid ink colors, NPDC curves, gray balance and characterization data are either expressed in, or based on, colorimetric values, (even the NPDC curves are derived from CIEY, not actual densitometry) it is anachronistic and problematic to include traditional Density-based TVI values in the G7 specification. However at times it is useful to show comparative TVI curves, for example to check on the relative “health” of individual plates on an offset press.

To solve this dilemma, GRACoL 7 and the IDEAlink Curve software have taken the logical (if not yet “standard”) decision to calculate a modified form of TVI from CIEXYZ values, instead of from traditional densitometry. This produces slightly different TVI values and curves for C, M and Y than you may be familiar with, but makes TVI a more useful metric in an all-colorimetric specification, and eliminates the need for physical density readings of any status. (G7 TVI values or curves for neutral black ink are theoretically identical to those produced by densitometry.)

CAUTION: TVI numbers and graphs shown in this document for CMY inks are NOT the same as produced by a traditional densitometer, regardless of filtration or polarization status.

Other CIE-based TVI formulae may be equally valid, for example calculating from ?E*ab reflectance values, and GRACoL will gladly move to such a formula when and if it becomes an official standard. 2.9.1 CIEXYZ-based TVI formulae used by G7 and IDEAlink Curve

For n = 0 to 100%;

TVI_c = (paper_X – nc_X) / (paper_X – 100c_X) x 100 – n;

TVI_m = (paper_Y – nm_Y) / (paper_Y – 100m_Y) x 100 – n;

TVI_y = (paper_Z – ny_Z) / (paper_Z – 100y_Z) x 100 – n;

TVI_k = (paper_Y – nk_Y) / (paper_Y – 100k_Y) x 100 – n;

2.9.2 Using traditional density-based TVI measurements

Printers who want to continue using traditional density-based TVI as a process control metric are perfectly able to do so while remaining faithful to the G7 specification. All you have to do is calibrate your device using G7’s colorimetric aim points (NPDC, HR, gray balance, etc.) then take TVI readings on a calibrated sample with your own densitometer and the filtration and polarization status of your choice. These TVI readings can then be used as process control aims for that device/media combination, or the remainder of that production run.

3 G7 Calibration / Profiling Summary

A complete G7 calibration and profiling workflow consists of the following steps;

3.1 Prepare the equipment and materials

The first step is to make sure the device being calibrated is operating to manufacturer’s specifications and using the correct consumables.

3.2 Print a Calibration target

The second step is to print a GRACoL P2P target (see 5.2.1) on standard paper with colorants specified for the process being calibrated, e.g. # 1 coated sheet and ISO – compliant inks. This target provides a snapshot of the natural NPDC and gray balance of the device being calibrated.

3.3 Compare ‘found NPDC’ to reference NPDC

The third step is to compare the NPDC of the calibration target to the pre-defined G7 NPDC curves, by measuring two gray scales from the P2P target – one printed in CMY only and another printed in black only, and either drawing graphs on special G7 graph paper (see Appendix B) or entering the values into IDEAlink? Curve software.

3.4 Compare ‘natural gray balance’ to reference gray balance

Next the natural gray balance of the device is compared either manually, using the GrayFinder target (see 5.2.2), or automatically by IDEAlink Curve and the P2P target.

3.5 Calibrate the RIP or device driver

Correction values are read from the graph, or from the Create Curves window of IDEAlink Curve software, and entered into the CtP RIP or driver as ‘wanted’ CMYK percentage values.

3.6 Verify the calibration

A new P2P target is printed through the newly-calibrated RIP or driver and the resulting NPDCs for CMY and black, and gray balance, are checked for accuracy.

3.7 Print a Characterization target (optional)

Once gray balance and NPDCs are calibrated, an optional ICC profile can be created, if needed. In the case of a digital proofer, an ICC profile (or equivalent color management system) is normally essential for best results, but when calibrating an actual press, if NPDC and gray balance calibration was successful and if standard inks and paper are used, a standardized characterization data set (appropriate for that printing type) should avoid the need for a custom press profile.

3.8 Verify the Characterization (optional)

The last step in a full workflow is to create a hard-copy (or soft) proof that simulates the reference characterization data via ICC or other color management, and compare it to a proof or press sheet made in step 3.7.

4 Time, Materials, and Tools

NOTE: The G7 method is applicable to any printing process, so long as the correct materials and target values are used. In the following description, emphasis is given to commercial print calibration on high quality coated paper. If calibrating another process, for example SWOP, uncoated web printing, or a proofing system, substitute the appropriate materials and colorimetric aim points as needed.

4.1 Time

The full press calibration method requires two press runs, each approximately one to two hours long, with a short break between (approximately 30 minutes to 1 hour) for plate calibration. Both runs should be scheduled for the same day, with the same equipment and press crew. Experienced users may reduce subsequent calibrations (for example for different papers or screening) to a single run, omitting the second ‘qualification’ or ‘characterization’ run.

4.2 Paper

Approximately six-to-ten thousand sheets of paper will be needed, depending on run efficiency. For commercial printing use ISO Paper type 1 with as little fluorescence as possible and a nominal white point of 95 L* (+ 3), 0 a* (+ 2), -2 b* (+ 2) (measured with white backing). For other processes, use the appropriate paper specifications in ISO 12647-2.

4.3 Inks

Like most printing specifications, GRACoL 7 defines ink color according to ISO 2846-1, however in practice it is more important that the inks, when printed on the actual substrate being calibrated, measure as close as possible to the ISO 12647-2 values for that paper type.

4.3.1 Commercial Ink Colors

The optimum printed solid values for ISO paper grades 1 & 2 (equivalent to a US #1 sheet) are;

Base C M Y K MY CY MC CMY L*95 55 48 89 16 47 50 24 23

a*0 -37 74 -5 0 68 -68 17 0

b*-2 -50 -3 93 0 48 25 -46 0 ?E*ab(See 4.2) 5 5 5 5 5 5 5 (N/A)

Solid values for ISO 12647-2 paper types 1&2 (proposed November 2005) – white backing NOTE: These values refer to measurements taken with no back-printing, with the sample lying on a white backing material with an approximate CIELab value of L*98, a*0, b*0.

4.3.2 Ink Colors for other paper types

For a chart of ink colors on all ISO paper types with both white and black backing, (see Appendix H).

4.4 Test targets and images

A pre-assembled GRACoL 7 Calibration Press Form may be purchased from https://www.wendangku.net/doc/2d12430285.html,, or you can assemble your own form (see 5.2.)

4.5 Tools for graph paper method

4.5.1 Graph paper

Several sheets of the G7 K Curve Graph Paper and several sheets of the G7 CMY Curve Graph Paper (See Appendix B).

4.5.3 Pocket calculator

For calculating target gray values.

4.5.4 Hand-held spectro-densitometer

For measuring the P2P target and GrayFinder target

4.6 Tools for software method

4.6.1 Curve calculating software

IDEAlink? Curve software - available at https://www.wendangku.net/doc/2d12430285.html,

4.6.2 Automated software for measuring the P2P target

ONE OF:

?GretagMacbeth MeasureTool - available at https://www.wendangku.net/doc/2d12430285.html,(free version has enough functionality for this purpose)

?X-Rite ColorPort - available at https://www.wendangku.net/doc/2d12430285.html,

4.6.2 Automated measuring device

ONE OF:

?GretagMacbeth Spectroscan, EyeOne Pro, EyeOne IO

?X-Rite DTP-70

4.7 Dot Meter (recommended)

A video dot meter for measuring plates.

4.8 Hand-held spectro-densitometer

A spectrophotometer or spectro-densitometer is needed to control device performance during production. If you are not familiar with CIELab, see Appendix F for a brief overview.

4.9 D-50 viewing conditions

A D50 light booth or light source conforming to ISO 3664.

5 Preparation

NOTE: This section refers mainly to press calibration, but is also applicable to other devices such as proofers or desktop printers

5.1 Secure all materials

Make sure all materials outlined in Section 4 are available. Remember the correct inks and paper are the most critical components to achieve the intended appearance of a GRACoL 7 commercial sheet.

5.2 Assemble the press form

A standard GRACoL 7 press form, illustrated here, can be purchased from https://www.wendangku.net/doc/2d12430285.html,.

GRACoL 7 press form (be sure you have the most recent version)

If you want to make up your own form it should ideally contain;

5.2.1 P2P Target

The P2P23x target or later version. On devices with uncertain evenness, for example an offset press, include two P2P targets, rotated 180° from each other, as shown in the press form above.

GRACoL P2P23xn Target

5.2.2 GrayFinder Target

For the manual graph method, include the GrayFinder20 target (or a later version). This is not needed when using IDEAlink Curve software.

GrayFinder Target

5.2.3 IT8.7/4 Characterization Target (or equivalent)

If you plan on using the same form for characterizing or ICC-profiling the device, include at least one copy of the IT8.7/4 characterization target (or equivalent). On devices with uncertain evenness, include at least two IT8.7/4 targets rotated 180° and in line with, each other, as shown in 5.2.

IT8.7/4 Printer Characterization Target, Visual layout (Left) and Random layout (Right)

5.2.4 Gray Bars

A ? inch (1 cm) bar of 50c, 40m, 40y across the whole sheet.

A ? inch (1 cm) bar of 50K across the whole sheet.

5.2.5 Test Images

Some typical CMYK images, for example from the SCID image library.

5.3 Press control bars

Many existing press control bars can be adapted for use with the G7 method, or you can make up your own bar especially for G7 press control. Control bars fall into three general categories, Non-G7 complaint, Minimum G7-complaint, and Optimum G7-compliant, as follows;

5.3.1 Non G7-compliant control bars

Virtually every basic press control bar provides 100% CMYKRGB patches for solid ink measurement, and 50% CMYK patches for mid-tone dot gain (TVI) measurements. If these are the only patches available, the control bar would lack the essential 3-color gray patches necessary for G7 press control.

Basic press control bar color patches – layout may vary – (not suitable for G7 press control

NOTE: If your automated press control system or digital press does NOT permit some form of gray-balanced control, ask the supplier how this can be achieved, or add separate gray balance (HR) patches alongside the bar for manual measurement.

5.3.2 Minimum G7-compliant control bars

To make a basic press bar G7-compliant, add a mid-tone gray balance patch (HR patch) of 50c, 40m, 40y – ideally at ink-key intervals. The HR patch can replace one RGB or 50 CMY patch at each ink key. If your press control bar already has gray balance patches with slightly different values (e.g. 50c, 41m, 41y), see 5.3.4 – Bars with non-G7 gray patches.

Minimum G7-compliant press control bar – layout may vary – (HR_cmy patches are notched)

5.3.3 Optimum G7-compliant control bars

For maximum G7 compliance, add at least one SC (shadow contrast patch) of 75c, 66m, 66y, and at least one HC (Highlight Contrast) patch of 25C, 19M, 19Y. These patches can be added less often than the HR patch. For example after placing SID CMYK and HR patches at each ink-key, use the remaining spaces to repeat a sequence of R, G, B, 50c, 50m, 50y, SC, HC, as shown below.

Optimum G7 press control bar – layout may vary – (note SC and HC patches repeat less often than HR)

5.3.4 Bars with non-G7 gray patches

Some existing color bars already contain gray balance patches with slightly different values. For example the Brunner System Instrument Flight Colorbar uses a gray balance ratio of 50c, 41m, 41y. These control bars can be used with the G7 method so long as the target CIELab values (or target CMY density values) are modified to produce the same gray balance as if the patches were the official GRACoL 7 balance. The new target values can be determined by balancing the press on a true G7 gray patch, then measuring the non-G7 gray patch and recording it’s actual CIELab or density values. 5.4 Set up the RIP

Set up the plate making RIP exactly as you would for a normal job, but clear out any values in the current calibration table, or begin with a new, empty table. The first press run is best made with ‘un-calibrated’ plates – i.e. no calibration values in the RIP.

IMPORTANT: Do NOT linearize the plate-setter so that measured dot values on plate exactly match original file percentages. Contrary to common belief, this may reduce accuracy of subsequent steps. 5.4.1 Screening

For commercial work, halftone screen ruling should be at least 150 lines/inch and nominally 175 lines/inch. Common screen angles are 15 C, 75 M, 0 Y, and 45 K (symmetrical dot) or 15 C, 75 M, 0 Y, and 135 K (asymmetrical dot) with K and M interchangeable.

For other printing systems check the relevant standard for suggested screen conditions.

Note that unlike TVI-based calibration, the G7 method is perfectly compatible with ANY screening system (e.g. FM or ‘stochastic’) without change to target values.

5.5 Check plate-making system

Check that plate-making hardware, chemistry, and RIP are within manufacturer’s specs.

5.6 Exotic screening or continuous-tone systems

Exotic screening systems such as stochastic or ‘FM’ screening can be calibrated with the G7 method as easily as traditional AM halftone screening, but remember that color gamut is sometimes affected by screening. Continuous-tone devices can also be calibrated by the G7 NPDC method so long as separate CMYK calibration tables are available in the device RIP or driver.

5.7 Pre-adjust the plate-making system at 50% (optional)

If possible, adjust the CtP exposing unit’s focus, exposure energy, or other physical parameters (including plate development) until a 50% file value measures 50% on plate. CAUTION: Do not adjust the CtP calibration curves to achieve this condition unless delta calibration values can be added to the pre-calibration values after the calibration run. (This is easier in some RIPs than others.)

Note that it is usually simpler to leave the CtP system in a completely un-calibrated state for the first run, even if 50% does not measure exactly 50% on plate.

5.8 Make plates for the calibration run

Produce a set of ‘un-calibrated’ plates of the calibration form using exactly the same workflow as you would for regular work.

5.9 Record an un-calibrated plate curve

Measure dot sizes on a test plate at 5% or 10% intervals with a video-based halftone meter, to record the baseline condition of the plate making system. These values can be used to check raw plate-maker performance any time in the future, for this particular plate type and screen ruling. Don’t panic if the actual plate values Do NOT match the halftone file values at this stage. This is normal.

5.10 Check press setup

Check that the press (or whatever device you are calibrating) and its associated consumables are adjusted correctly including ink tack, ink opacity, blanket condition, blanket tension, packing, impression, fountain solution, temperature control, etc. Listing all press variables is beyond the scope of this document. Suffice it to say that the press should be in optimum physical and chemical condition. WARNING: The G7 method will calibrate virtually any stable, repeatable device to match the pre-defined G7 NPDC and gray balance, NO MATTER WHAT IT’S CONDITION, but remember that good calibration may mask, or inadvertently encourage, ‘bad’ printing. For example, excessive dot gain (TVI) on one unit of a press can be compensated for by RIP curves, but the root problem will remain and may lead to poor image structure, instability, or other undesirable results.

5.11 Check measurement tools and viewing conditions

Check measuring devices are in spec and calibrated, and that press-side lighting conditions are D50. All onboard and hand-held spectrophotometers and densitometers must be calibrated and in agreement.

finalcutpro7快捷键大全(l两种查找方式)

Final Cut Pro 苹果非编快捷键创建新的媒体夹【Cmd】+【B】 选择标准窗口布局【Ctrl】+【U】 显示叠层【Ctrl】+【Option】+【W】 切换轨道高度选择【Shift】+【T】 选择缩放工具【Z】 选种默认“选择”工具【A】 隐藏界面【Cmd】+【H】 慢动作向前播放【K】+【L】 慢动作向后播放【K】+【J】 设置一个入点【I】 设置一个出点【O】 标记这个片段长度【X】 移动播放头到入点位置【Shift】+【I】 移动播放头到出点位置【Shift】+【O】 删除入点【Option】+【I】 删除出点【Option】+【O】 将入点和出点一起删除【Option】+【X】 播放片段播放头到出点之间的部分【Shift】+【P】 播放入点到出点之间的部分【Shift】+【\】 在时间线上显示整个序列【Shift】+【Z】 启用循环播放【Ctrl】+【L】 选择序列中所有片段【Cmd】+【A】 取消对片段的选择【Shift】+【Cmd】+【A】 打开或关闭吸附功能【N】 将所有的音频轨道锁定或解锁【Shift】+【F5】 将时间线上视频轨道的片段和音频连接在一起【Cmd】+【L】 切换“链接选择”的开和关【Shift】+【L】 把选顶的编辑点扩展到播放头所在的位置【E】 选择“波纹”工具【RR】 选择“刀片切割”工具【B】 滑移【S】 卷动【R】 滑动【SS】 打开“用户编好设置”窗口【Option】+【Q】 打开“系统设置”窗口【Shift】+【Q】 打开“简易设置”窗口【Ctrl】+【Q】 打开“音频/视频设置”窗口【Cmd】+【Option】+【Q】 打开“记录和采集”窗口【Cmd】+【8】

(员工手册)新鸿基地产员工手册

(员工手册)新鸿基地产员工手册

新鴻基地產員工管理手冊 新鴻基地產於1972 年上市,為香港最大地產發展商之一,致力興建優質住宅及商業項目供銷售及投資。本集團:?擁有僱員超過31,500 名 ?擁有從事買地、規劃、建築、工程及物業管理的專業人才,有利控制成本之餘,亦同時確保物業質素符合最高標準。集團業務 本集團的核心業務為發展物業供銷售和投資,以及經營多項地產相關業務,包括: ?酒店 ?金融服務 ?保險 ?物業管理 另外,本集團亦有投資以下行業:

?電訊 ?資訊科技 ?運輸、基建及物流 這些業務投資風險低,長遠可增加集團的經常性收益。 土地儲備及物業組合 本集團是香港擁有最多土地儲備的公司之一,達4,190 萬平方呎,包括: ?發展中物業1,590 萬平方呎 ?投資物業2,600 萬平方呎 ?在新界擁有超過2,400 萬平方呎農地,大部分正申請更改土地用途,主要用作發展住宅物業本集團的投資物業組合多元化,在2008/09 財政年度,為集團帶來97.63 億港幣的總租金收益。

集團財務 本集團堅持穩健經營政策,維持高水平流動資金及低借貸比率,絕大部分借貸均為港元,故外匯風險極低,因而獲得得以下權威評級機構很高的外幣信貸評級: 標準普爾- A 級信貸評級 ?穆迪- A1 級信貸評級 顧客服務 本集團恪守以客為先的宗旨,經常聆聽顧客的需要,在不同範圍提供最適切的服務。 ?新地會的成立,旨在加強顧客服務,促進雙向溝通。目前會員29 萬人。 ?屬下物業管理公司提供優質售後服務,屢獲殊榮。 第一部份組織系統 房地產開發有限公司各部門職能說明書 五、新鴻基地產崗位編制一覽表

新鸿基地产笔试经验总结

新鸿基地产笔试经验总结 参加了新鸿基地产的,第一次参加,呵呵,说出来都丢人。废话不多说,把内容说说就行。 考试为全英题目,简单,但是耗时间,试题是1999年KP Consulting CO.给他们出的题,到现在还一直用。06年广州的考试分两部分,part1: numerical and part2 velbal 地产笔试经验1: 计算,30题左右,25分钟,全部都是看图计算,例如去年跟今年几 个公司的产量对比,让你算哪个多哪个少,增加了多少,选项有:ABCDEFGH,所以, 蒙的机会太小了,好好拿计算器算就是了。正常速度算不完,倒数5分钟时我还剩10多 题没做,恐慌,没办法,因为有一道汇率换算购买货物的题因为自己想错了,所以倒回去做,浪费了很多时间。反正,以中国学生的英文水平,要做完很难。因为有一些比率的换算或者专业用语需要细致的看才不会对错,简单,但是不容易作出来。 地产笔试经验2:velbal,判断题,44题,20分钟。每个section有几句话,大概50 个字的篇幅,然后三个问题,选项均是A-B-C,ture-fault-could not conclude,全部是商业 方面的内容, 例如:某公司A收购了公司B,规定员工和老总必须在一个月后走人,C专家说,这次收购让业界很意外,因为B公司不止这么多钱。 问题1:公司A用××钱买了公司B这件事surprise了许多人。 问题2:B公司老总将在年底离开 问题3:B公司的价值大概多少millions 笔试经验总结:如果充分读题的话,绝对做不完,只能考猜。因为考过许多英文考试,对这种题不是很怕,直接看关键词,看转折词,对应问题看短文,所以基本上都知道讲什么。比较难的就是判断究竟是错了还是无法推断。如果文中给出肯定,而问题是否定的,哪就是错的,如果问题给的跟文章不一样,但是文中没有明确表明反义,那就要选C,无法推断。例如刚刚问题2,文中只说一个月后离开,但是没有说时间,因此B是选无法推断。 这部分我狂做也只能做到41题,居然发现试卷上有人留下了最后四道题的答案,呵呵,我就照抄上去了,不管那么多了。

桥梁下部结构通用图计算书

目录 第一部分项目概况及基本设计资料 (1) 1.1 项目概况 (1) 1.2 技术标准与设计规范 (1) 1.3 基本计算资料 (1) 第二部分上部结构设计依据 (3) 2.1 概况及基本数据 (3) 2.1.1 技术标准与设计规范 (3) 2.1.2 技术指标 (3) 2.1.3 设计要点 (3) 2.2 T梁构造尺寸及预应力配筋 (4) 2.2.1 T梁横断面 (4) 2.2.2 T梁预应力束 (5) 2.2.3 罗望线T梁构造配筋与部颁图比较 (6) 2.3 结构分析计算 (6) 2.3.1 活载横向分布系数与汽车冲击系数 (6) 2.3.2 预应力筋计算参数 (6) 2.3.3 温度效应及支座沉降 (7) 2.3.4 有限元软件建立模型计算分析 (7) 第三部分桥梁墩柱设计及计算 (8) 3.1 计算模型的拟定 (8) 3.2 桥墩计算分析 (8) 3.2.1 纵向水平力的计算 (8) 3.2.2 竖直力的计算 (9) 3.2.3 纵、横向风力 (10) 3.2.4 桥墩计算偏心距的增大系数 (11)

3.2.5 墩柱正截面抗压承载力计算 (12) 3.2.6 裂缝宽度验算 (13) 3.3 20米T梁墩柱计算 (13) 3.3.1 计算模型的选取 (13) 3.3.2 15米墩高计算 (14) 3.3.3 30米墩高计算 (18) 3.4 30米T梁墩柱计算 (22) 3.4.1 计算模型的选取 (22) 3.4.2 15米墩高计算 (23) 3.4.3 30米墩高计算 (27) 3.4.4 40米墩高计算 (32) 3.5 40米T梁墩柱计算 (36) 3.5.1 计算模型的选取 (36) 3.5.2 15米墩高计算 (37) 3.5.3 30米墩高计算 (41) 第四部分桥梁抗震设计 (47) 4.1 主要计算参数取值 (47) 4.2 计算分析 (47) 4.2.1 抗震计算模型 (47) 4.2.2 动力特性特征值计算结果 (48) 4.2.3 E1地震作用验算结果 (49) 4.2.4 E2地震作用验算结果 (49) 4.2.5 延性构造细节设计 (51) 4.3 抗震构造措施 (53)

FinalCut最新最全快捷键(可编辑修改word版)

Final Cut 最新最全键盘快捷键 您可以使用键盘快捷键在Final Cut Pro 中快速完成许多任务。若要使用键盘快捷键,请同时按快捷键中的所有键。下表列出了常用命令的快捷键。 应用程序 隐藏应用程序 Command-H 隐藏Final Cut Pro 隐藏其他应用程序 Option-Command-H 隐藏除Final Cut Pro 之外的所有应用程序 键盘自定 Option-Command-K 打开命令编辑器 最小化 Command-M 最小化Final Cut Pro 打开资源库 Command-O 打开现有资源库或新资源库 偏好设置 Command-逗号(,) 打开Final Cut Pro 的“偏好设置”窗口 退出 Command-Q 退出Final Cut Pro 重做更改 Shift-Command-Z 重做上一个命令 撤销更改 Command-Z 撤销上一个命令 编辑

调整音量(绝对) Control-Option-L 将所有所选片段的音频音量调整为特定的dB 值 调整音量(相对) Control-L 使用相同的dB 值来调整所有所选片段的音频音量 追加到故事情节 E 将所选部分添加到故事情节的结尾 试演:添加到试演 Control-Shift-Y 将所选片段添加到试演 试演:复制并粘贴效果 Option-Command-Y 复制试演中的片段并添加效果 试演:复制为试演 Option-Y 使用时间线片段和该片段(包括应用的效果)的复制版本创建试演,试演:复制原始项 Shift-Command-Y 复制选定的试演片段,但不包括应用的效果 试演:替换并添加到试演 Shift-Y 创建试演并使用当前所选部分替换时间线片段 切割 Command-B 剪切浏览条或播放头位置处的主要故事情节片段(或所选部分) 全部切割 Shift-Command-B 剪切浏览条或播放头位置的所有片段 将片段项分开 Shift-Command-G 将所选项拆分为其组件部分 更改时间长度 Control-D

Final Cut Pro 快捷键大全

精心整理 FinalCutPro 快捷键大全软件和界面控制 Command+S 保存项目 Command+O 打开项目 Command+I 输入文件 Command+B 创建新媒体夹 Command+H 隐藏界面 Command+Q 退出界面 Control+U 打开标准窗口布局 Control+Option+H Option+J A G GG GGG T TT TTT TTTT TTTTT R 卷动工具 RR 波纹工具 S 滑移工具 SS 滑动工具 SSS 时间重映射工具 B 刀片切割工具 BB 刀片切割全部工具 Z 放大工具 ZZ 缩小工具 H 抓手工具 HH 搓擦工具 C 裁剪工具 CC 变形工具 P 钢笔工具 PP 删除点工具 PPP 平滑点工具 F 检视器与时间线互找 Shift+F 素材与检视器互找 移动播放头和播放序列 →播放头向右一帧 ←播放头向左一帧 ↑检视器上,播放头后退到片段开 头或前一个编辑点 X 在片段开头结尾标记入出点 Shift+I 播放头到入点 Shift+O 播放头到出点 Option+I 删除入点 Option+O 删除出点 Option+X 删除入出点 编辑素材片段 F9插入编辑 F10覆盖编辑 F11替换编辑 F12叠加编辑

精心整理 Shift+F9插入带转场 Shift+F10覆盖带转场 Shift+F11适配填充 Command++放大(针对时间线窗口) Command+-缩小(针对时间线窗口) Option++放大(针对时间线窗口) Option+-缩小(针对时间线窗口) Shift+Z 在时间线上显示整个序列 Command+A 选择所有片段 Command+shift+A 取消片段选择 N 切换吸附工具 Shift+L 切换所有视音链接 Option+W Shift+T E Option+Option+Shift+V Delete `或M Shift+M Option+M Shift+Shift+Control+`Option+`Shift+`把标记向前移动到播放头处 转场设置 Command+T 添加默认转场 Option+command+T 添加默认音频转场 Option+P 逐帧预览转场 Option+F 保存常用转场 渲染设置 Command+R 渲染所选转场 Option+R 渲染所有转场 运动属性设置 Shift+K 移到下一个关键帧 Option+K 移到上一个关键帧 Shift+N 在播放头处创建静帧 W 切换图像模式、图像线框模式和线框模式 工具台窗口中的工具 Option+8打开quickview 工具 Option+7打开帧检视器工具 Option+6打开混音器工具 Option+9打开视频示波器工具 Option+0打开配音工具 其他 Command+L 切换已选中的视音链接 Command+option+L 音频增量或视频透明度

连续梁 下部结构计算书

**公路二期工程*大桥 3×30m连续梁下部结构计算书 1.工程概况 桥梁上部为3×30m跨预应力混凝土连续梁,主梁总宽度为12m,梁高为1.6m。主梁采用单箱双室断面,其中主梁悬臂长 2.0m,标准断面箱室顶板厚0.22m,底板厚0.2m,腹板厚0.45m,中支点及边支点断面箱室顶板厚0.37m,底板厚0.32m,腹板厚0.65m,两断面间设长2.5m的渐变段。混凝土主梁采用C50混凝土现场浇注,封端采用C45混凝土。主梁中墩采用两根直径1.6m圆柱,下接直径1.8m桩基,左侧中墩高7m,右侧墩柱高8.5m。主梁边墩采用盖梁+直径1.6m双柱中墩,下接直径1.8m桩基形式;中、边墩横桥向中心距均为5.6m。 主梁边支点采用普通板式橡胶支座,中墩与主梁固结。 2.设计规范 《城市桥梁设计准则》(CJJ11—93); 《城市桥梁设计荷载标准》(CJJ77—98); 《公路工程技术标准》(JTGB01-2003); 《公路桥涵设计通用规范》(JTG D60-2004); 《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)); 《公路桥涵地基与基础设计规范》(JTG D63—2007); 《公路桥梁抗震设计细则》(JTG/T B02-01-2008); 《公路桥涵施工技术规范》(JTJ041-2000); 3.静力计算 3.1 计算模型 由于主梁支撑中心与其中心线斜正交,且主梁平面基本为直线,因此建立平面杆系模型计算结构的内力及变形。桥梁内力及位移的计算均采用桥梁博士3.0有限元程序进行,其中边支点仅采用竖向支撑,中墩底部采用弹性支撑,其支撑刚度根据m法计算(m0=1.2×105kN/m4,K水平=2.4×106kN/m,K弯曲=1.1×107kN.m/rad)。 根据桥梁结构受力特点,其计算模型见下图。

新鸿基地产之香港YOHOTOWN项目

新鸿基地产之香港YOHOTOWN项目 YOHOTown是当前香港地产市场最热的一个项目,也是新鸿基地产(下文称SHKP)近10年来在香港元朗投资100多亿元推出的重头住宅项目。 看到YOHO的第一眼让我想起在北京置地工作时有所接触的SOHO现代城,这个以提倡SOHO生活(SmallOfficeHomeOffice)的楼盘曾经一度成为中国房地产界的殿堂之作,潘石屹也因此赚了个盆满钵满。YOHOTown给我留下深刻印象的是两件与卖楼不太相关的事情,一是在华润大厦马路对面的星巴克喝咖啡时看到YOHOTown与Starbucks合作的宣传册子,另一个是后来从电视得知YOHOTown与Microsoft的MSN合作为住户提供全球首创的“YOHOSmartAlerts”服务,这两件事都超出了一般地产人的思维范围。 YOHOTown是个值得一说的例子,因为它代表着一种地产商选地、做项目和推广的操作模式,更学术一点说,它代表了最新的为客户创造价值的地产操作模式,而这种模式内地依然在摸索。中国人做事说话喜欢追根溯底,为了说清这个项目,香港的房地产背景也要老生常谈了。 过去5年来,香港一直是房地产商的噩梦。1997年之前,香港这个弹丸之地主要由三大行业支撑整体经济,即转口贸易、地产、金融;1997年之后,特别是中国加入WTO之后,香港的贸易地位受到严重威胁,长期积累的房地产泡沫开始爆发,与两大行业关联度甚高的金融业也陷入了举步维艰的地步,香港经济走入低谷。 5年前,香港开始了痛苦的经济结构转型。2003年5月,“大红筹”中远和裕兴工业取代原香港主要地产商新世界地产和信和置业在恒生指数成分股的“大蓝筹”地位,标志着香港原有的以地产行业为主的经济结构初步转型。 查查近几年来的香港地产业的发展资料,我发现香港的楼市其实形成了对发展商很不利的恶性循环。香港是个楼市“通道”——一、二手房市场做得很好。在香港,新楼盘价格一般比旧楼盘高出2成左右。近几年来,整个新楼盘市场价格都在不断往下跌,小业主们拥有的二手房为了留住客户也跟着往下调,所以在这样的背景下,新楼为了吸引客户的眼光,往

9米路宽30m连续箱梁下部结构计算书

桥涵通用图 30米现浇预应力混凝土箱梁 下部构造(路基宽9.0米,R=80m) 计 算 书 计算:汪晓霞 复核: 审核: 二〇一九年八月

第一部分基础资料 一、计算基本资料 1技术标准与设计规范: 1)中华人民共和国交通部标准《公路工程技术标准》(JTG B01-2014) 2)中华人民共和国交通部标准《公路桥涵设计通用规范》(JTG D60-2015) 3)中华人民共和国交通部标准《公路钢筋混凝土及预应力混凝土桥涵设计规 范》(JTG 3362-2018) 4)交通部标准《公路桥涵地基与基础设计规范》(JTG D63-2007) 2桥面净空:净-8.0米 3汽车荷载:公路Ⅰ级,结构重要性系数1.1 4材料性能参数 1)混凝土C30砼:墩柱、墩柱系梁, 主要强度指标: 强度标准值f ck=20.1MPa,f tk=2.01MPa 强度设计值f cd=13.8MPa,f td=1.39MPa 弹性模量E c=3.0x104Mpa 2)普通钢筋 a)HPB300钢筋其主要强度指标为: 抗拉强度标准值f sk=300MPa 抗拉强度设计值f sd=250MPa 弹性模量E s=2.1x105MPa b)HRB400钢筋其主要强度指标为: 抗拉强度标准值f sk=400MPa 抗拉强度设计值f sd=330MPa 弹性模量E s=2.0x105MPa c)HRB500钢筋其主要强度指标为: 抗拉强度标准值f sk=500MPa

抗拉强度设计值f sd=415MPa 弹性模量E s=2.0x105MPa 5主要结构尺寸 上部结构为2×30m~4×30m一联,现浇连续预应力箱形梁。每跨横向设2个支座。 桥墩墩柱计算高取10、15、17米,直径1.4、1.6米。因无法预计各桥的实际布置情况及地形、地质因素,墩顶纵向水平力,分别按2跨一联、3跨一联、4跨一联,墩柱取等高度及等刚度计算。应用本通用图时,应根据实际分联情况,核实桥墩构造尺寸及配筋是否满足受力要求。本次验算不含桩基计算。 二、计算采用程序 下部结构计算数据采用桥梁博士对上部结构的分析结果。 三、计算说明与计算模型 1.计算说明 计算中,外荷载数据取自上部结构电算结果。 2.桥墩计算模型 根据上部箱梁计算所得相关数据,进行手工计算。 第二部分墩柱计算结果 Ⅰ、墩柱计算 按2跨一联、3跨一联、4跨一联分别进行计算,一联两端为桥台,中间为双柱式墩桥台上设活动支座,桥墩墩顶均为盆式橡胶支座,一排支座为2个。桥墩墩柱D1=1.4、1.6m。 经核算2X30米箱梁下部因水平力(主要是制动力、离心力)过大,采用双圆柱墩无法满足受力要求,故墩柱形式拟采用花瓶墩,不进行本次双圆柱墩计算分析。经对3X30米及4X30米箱梁下部受力分析比较,以3跨一联下部构造双圆柱墩计

渡槽结构计算书

目录 1. 工程概况.............................................. 错误!未定义书签。2.槽身纵向内力计算及配筋计算............................ 错误!未定义书签。 (1)荷载计算..........................................错误!未定义书签。 (2)内力计算..........................................错误!未定义书签。 (3)正截面的配筋计算..................................错误!未定义书签。 (4)斜截面强度计算....................................错误!未定义书签。 (5)槽身纵向抗裂验算..................................错误!未定义书签。3.槽身横向内力计算及配筋计算............................ 错误!未定义书签。 (1)底板的结构计算....................................错误!未定义书签。 (2)渡槽上顶边及悬挑部分的结构计算 ....................错误!未定义书签。 (3)侧墙的结构计算....................................错误!未定义书签。 (4)基地正应力验算....................................错误!未定义书签。

1. 工程概况 重建渡槽带桥,原渡槽后溢洪道断面下挖,以满足校核标准泄洪要求。目前,东方红干渠已整修改造完毕,东方红干渠设计成果显示,该渡槽上游侧渠底设计高程为165.50m,下游侧渠底设计高程为165.40m。本次设计将现状渡槽拆除,按照上述干渠设计底高程,结合溢洪道现状布置及底宽,在原渡槽位重建渡槽带桥,上部桥梁按照四级道路标准,荷载标准为公路-Ⅱ级折减,建筑材料均采用钢筋砼,桥面总宽5m。 现状渡槽拆除后,为满足东方红干渠的过流要求及溢洪道交通要求,需重建跨溢洪道渡槽带桥。新建渡槽带桥轴线布置于溢洪道桩号0+,同现状渡槽桩号,下底面高程为165.20m,满足校核水位+0.5m超高要求,桥面高程167.40m,设计为现浇结合预制混凝土结构,根据溢洪道设计断面,确定渡槽带桥总长51m,8.5m×6跨。上部结构设计如下:渡槽过水断面尺寸为×1.6m,同干渠尺寸,采用C25钢筋砼,底及侧壁厚20cm,顶壁厚30cm,筒型结构,顶部两侧壁水平挑出1.25m,并在顺行车方向每隔2m设置一加劲肋,维持悬挑板侧向稳定,桥面总宽5m,路面净宽4.4m,设计荷载标准为公路-Ⅱ级折减,两侧设预制C20钢筋砼栏杆,基础宽0.5m。下部结构设计如下:下部采用C30钢筋混凝土双柱排架结构,并设置横梁, 由于地基为砂岩,基础采用人工挖孔端承桩,尺寸为×1.2m,基础深入岩层弱风化层1.0m,盖梁尺寸为4××1.2m。 2.槽身纵向内力计算及配筋计算 根据支承形式,跨宽比及跨高比的大小以及槽身横断面形式等的不同,槽身应力状态与计算方法也不同,对于梁式渡槽的槽身,跨宽比、跨高比一般都比较大,故可以按

finalcutpro快捷键大全

Final Cut Pro 快捷键大全 软件和界面控制 Command + S 保存项目Command + O 打开项目Command + I 输入文件Command + B 创建新媒体夹Command + H 隐藏界面Command + Q 退出界面Control + U 打开标准窗口布局 Control + 点按(或右键)打开快捷菜单 Command + 1/2/3/4 分别切换final 窗口 Command + 7 在修建编辑窗口打开选 定编辑点Command + 8 打开记录和采集窗口Command + 9 打开子项属性窗口Command + 0 打开序列设置窗口Command + Z 撤销Command + shift + Z 还原 Command + N 新建序列Option + H 自定义快捷键Option + J 设置按钮 Command + U 将检视器素材以出入 点生成子片段 工具调板中的工具 A 选择工具G 编辑点选择工具GG 组选择工具GGG 范围选择工具T 向前选定轨道工具TT 向后选定轨道工具TTT 选定轨道工具TTTT 向前选定所有轨道工具TTTTT 向后选定所有轨道工具R 卷动工具RR 波纹工具S 滑移工具SS 滑动工具SSS 时间重映射工具 B 刀片切割工具BB 刀片切割全部工具Z 放大工具ZZ 缩小工具 H 抓手工具HH 搓擦工具C 裁剪工具CC 变形工具P 钢笔工具PP 删除点工具PPP 平滑点工具F 检视器与时间线互找Shift + F 素材与检视器互找 移动播放头和播放序列 →播放头向右一帧←播放头向左一帧↑检视器上,播放头后退到片段开 头或前一个编辑点 时间线上,播放头移到前一个编 辑的第一帧 ↓检视器上,播放头前进到片段结 尾或后一个编辑点 时间线上,播放头移到后一个编 辑的第一帧 J 后退播放JJ 加速后退播 放 K 停止播放L 向前播放LL 加速向前播放K + L 慢速向前播放K + J 慢速后退播放Home 移到头一帧End 移到尾一帧,移动选定片段向前一帧。移动选定片段向后一帧\ 以时间线处开始播放Shift + P 播放时间线与出点之间

finalcutpro7快捷键大全(l两种查找方式)

袂膄芆袁肁螄膈Final Cut Pro 苹果非编快捷键芇螇蝿薂薃蚈羂创建新的媒体夹【Cmd】+【B】 芈蚈肃蚆腿袁莂选择标准窗口布局【Ctrl】+【U】 螁薄薅莆虿螃膅显示叠层【Ctrl】+【Option】+【W】 肄莃袇薈芄羄螈切换轨道高度选择【Shift】+【T】 薆莇蚁薁肇艿薀选择缩放工具【Z】 袈蒀羁羅蒆蒈芁选种默认“选择”工具【A】 莈蒂螄羇薁螂莅隐藏界面【Cmd】+【H】 羃羇蒇蒀芃芄荿慢动作向前播放【K】+【L】 螆羈艿螃莆薆蒁慢动作向后播放【K】+【J】 葿莁膄膅肆莀蒄设置一个入点【I】 芀蒁肄薇腿羄蚄设置一个出点【O】 羂膇肈莁膁蒃蚅标记这个片段长度【X】 肅葿膀蚂薆膆聿移动播放头到入点位置【Shift】+【I】 罿聿膃蒅蚇节莂移动播放头到出点位置【Shift】+【O】 膂蚃莃肈肀袃袄删除入点【Option】+【I】 膄蒆蕿罿莄肇芆删除出点【Option】+【O】 芅聿肂薁袆蚇羀将入点和出点一起删除【Option】+【X】 芆袁肁螄膈衿莁播放片段播放头到出点之间的部分【Shift】+【P】 蝿薂薃蚈羂袂膄播放入点到出点之间的部分【Shift】+【\】 肃蚆腿袁莂芇螇在时间线上显示整个序列【Shift】+【Z】 薅莆虿螃膅芈蚈启用循环播放【Ctrl】+【L】 袇薈芄羄螈螁薄选择序列中所有片段【Cmd】+【A】 蚁薁肇艿薀肄莃取消对片段的选择【Shift】+【Cmd】+【A】 羁羅蒆蒈芁薆莇打开或关闭吸附功能【N】 螄羇薁螂莅袈蒀将所有的音频轨道锁定或解锁【Shift】+【F5】 蒇蒀芃芄荿莈蒂将时间线上视频轨道的片段和音频连接在一起【Cmd】+【L】 艿螃莆薆蒁羃羇切换“链接选择”的开和关【Shift】+【L】 膄膅肆莀蒄螆羈把选顶的编辑点扩展到播放头所在的位置【E】 肄薇腿羄蚄葿莁选择“波纹”工具【RR】 肈莁膁蒃蚅芀蒁选择“刀片切割”工具【B】 膀蚂薆膆聿羂膇滑移【S】 膃蒅蚇节莂肅葿卷动【R】 莃肈肀袃袄罿聿滑动【SS】 蕿罿莄肇芆膂蚃打开“用户编好设置”窗口【Option】+【Q】 肂薁袆蚇羀膄蒆打开“系统设置”窗口【Shift】+【Q】 肁螄膈衿莁芅聿打开“简易设置”窗口【Ctrl】+【Q】 薃蚈羂袂膄芆袁打开“音频/视频设置”窗口【Cmd】+【Option】+【Q】

新鸿基地产管理培训生面试经历

新鸿基地产管理培训生面试经历 您需要登录后才可以回帖登录 | 注册发布 我的新鸿基之旅:一面加二面面经zz 不说废话了,主要是给明年面试新鸿基的后人们一个参考,之前我搜过,发现新鸿基的面试题目是一样的,所以应该有用。我想80%题目和内容我都记住了,不过如果全部都说了,似乎你就没有发挥才能的机会,所以只说流程和概要吧,如真的要知道更详细的,再跟我说,我无偿提供,呵呵。 1、一面 中大培训公寓,面我的是hr的主管,ivy,面试主要围绕你的简历开始,中文,粤语更好,问你的兴趣、职业选择,过往的经历,聊天为主,最后用英文问一些简单的问题。不会有老土的自我介绍,不过问题中渗透着你对社会的看法和一些价值取向。规定是30分钟,我大概面了40分钟,没什么好怕的,ivyis a nice women:) 这一轮主要是从shl的考试中筛选出来的,不知道有多少个人进了,反正我就是去了。 2、二面 凯旋美华达,呵呵,这是一个我一直想进去看看的酒店,今日一见,果然不错。去之前用20分钟搜网页,知道了大概的流程。 流程:

(1)group discussion praperation 15min,主要是看材料,关 于一个公司要与另外一个公司合并,小组要讨论出一个businessplan,两周后做汇报; (2)group discussion 30min开始展开讨论,这时候所有的面 试官环坐在后面,看大家的表演; (3)presentation praperation 45min,去另外一个房间准备, 看材料,是关于一个总裁的儿子接管公司,提出一个3年的计划,要你作一个evaluation和阐释一下公司目前的问题和挑战; (4)presentation 10min,给你一个画板,大白纸,你可以写东西,然后跟面试官演讲,我把presen分成analysis,problem, challenge, stratergy plan, execution,具体的内容比较常规,只 要是用我们做规划的分析方法,因为做过很多次,所以比较熟悉。有意思的是我算出一个结论,就是公司已经进入亏损期,需要调整,这一点让面试官比较吃惊,呵呵。其实我一点也不懂,包括之前的公司合并,基本都是傻眼的看试题,不过其实知识都是互通的,只要你能发现问题,分析得当,提出解决方案,任何试题你都会答。这比公务院考试有意思多了。 (5)q and a, 10min,面试官针对你的pre 进行提问,你回答 (6)writing test,一个小时,两篇文章,一篇中文一篇英文, 中文的是你写一份邀请客户加入俱乐部的商业邀请信,英文是写一个楼盘的promotionplan;

简支梁桥下部结构计算书

计算书 工程名称: 设计编号: 计算内容:桥梁计算书 共页 计算年月日校核年月日审核年月日专业负责年月日

目录 一、计算资料.......................................... 错误!未定义书签。 二、桥梁纵向荷载计算.................................. 错误!未定义书签。 1.永久作用........................................... 错误!未定义书签。 2.可变作用........................................... 错误!未定义书签。 三、桥墩、桥台盖梁抗弯、抗剪承载力计算及裂缝宽度计算.. 错误!未定义书签。 四、墩台桩基竖向承载力计算............................ 错误!未定义书签。 五、桥台桩身内力计算.................................. 错误!未定义书签。 1、桥台桩顶荷载计算................................... 错误!未定义书签。 2、桥台桩基变形系数计算............................... 错误!未定义书签。 3、m法计算桥台桩身内力............................... 错误!未定义书签。 六、桥墩桩身内力计算.................................. 错误!未定义书签。 1、桥墩墩柱顶荷载计算................................. 错误!未定义书签。 2、桥墩桩基变形系数计算............................... 错误!未定义书签。 3、m法计算桥墩桩身内力............................... 错误!未定义书签。 七、桥台、桥墩桩基桩身强度校核........................ 错误!未定义书签。 1、桥台桩基桩身强度校核............................... 错误!未定义书签。 2、桥墩桩基桩身强度校核............................... 错误!未定义书签。 一、计算资料

Final cut pro 快捷键大全

一:文件菜单 新序列 command+n 新媒体夹 command+b 新项目 shift+command+n 打开 command+o 关闭窗口 command+w 关闭标签 control+w 储存 command+s 储存为 command+shift+s 全部储存 shift+command+s 导入文件 command+i 导出quicktime影片 command+e 批采集 control+c 记录和传输 shift+command+8 记录和采集 command+8

打印至视频 control+m 二:编辑菜单 还原 command+z 重做 shift+command+z 剪切 command+x 拷贝 command+c 粘贴 command+v 插入粘贴 shift+v 复制 option+d 粘贴属性 option+v 去掉属性 option+command+v 全选 command+a 去掉全选 shift+command+a 链接选择 shift+l 查找 command+f

查找下一个 command+g 项目属性 command+9 三:显示菜单 查找匹配帧 f 查找源中匹配帧 option+command+f 查找主片段 shift+f 时间线显示全部片段 shift+z 开关范围检查 control+z 显示叠层 shift+w 循环播放 control+l 音频撮擦 shift+s 吸附 n 刷新a/v设备 option+f12 在外部视频上显示当前画面 shift+f12

四:标记菜单 标记入点 i 标记出点 o 标记视频入点 control+i 标记视频出点 control+o 标记音频入点 option+command+i 标记音频出点 option+command+o 标记片段 x 在标记处做整个片段的入点和出点 control+a 所选片段打入点和出点 shift+a 选定入点到出点 option+a 设置标志帧 control+p 清除入点和出点 option+x 清除入点 option+i 清除出点 option+o

桥梁下部结构通用图计算书

第一部分项目概况及基本设计资料 (1) 1.1 项目概况 (1) 1.2 技术标准与设计规范 (1) 1.3 基本计算资料 (1) 第二部分上部结构设计依据 (3) 2.1 概况及基本数据 (3) 2.1.1 技术标准与设计规范 (3) 2.1.2 技术指标 (3) 2.1.3 设计要点 (3) 2.2 T梁构造尺寸及预应力配筋 (4) 2.2.1 T 梁横断面 (4) 2.2.2 T 梁预应力束 (5) 2.2.3 罗望线T梁构造配筋与部颁图比较 (6) 2.3 结构分析计算 (6) 2.3.1 活载横向分布系数与汽车冲击系数 (6) 2.3.2 预应力筋计算参数 (6) 2.3.3 温度效应及支座沉降 (7) 2.3.4 有限元软件建立模型计算分析 (7) 第三部分桥梁墩柱设计及计算 (8) 3.1 计算模型的拟定 (8) 3.2 桥墩计算分析 (8) 3.2.1 纵向水平力的计算 (8) 3.2.2 竖直力的计算 (9) 3.2.3 纵、横向风力 (10)

3.2.4 桥墩计算偏心距的增大系数................. 错误!未定义书签。

3.2.5 墩柱正截面抗压承载力计算. (12) 3.2.6 裂缝宽度验算. (13) 3.3 20 米T 梁墩柱计算 (13) 3.3.1 计算模型的选取. (13) 3.3.2 15 米墩高计算 (14) 3.3.3 30 米墩高计算 (18) 3.4 30 米T 梁墩柱计算 (22) 3.4.1 计算模型的选取. (22) 3.4.2 15 米墩高计算 (23) 3.4.3 30 米墩高计算 (27) 3.4.4 40 米墩高计算 (32) 3.5 40 米T 梁墩柱计算 (36) 3.5.1 计算模型的选取. (36) 3.5.2 15 米墩高计算 (37) 3.5.3 30 米墩高计算 (41) 第四部分桥梁抗震设计 (47) 4.1 主要计算参数取值. (47) 4.2 计算分析. (47) 4.2.1 抗震计算模型. (47) 4.2.2 动力特性特征值计算结果. (48) 4.2.3 E1 地震作用验算结果 (49) 4.2.4 E2 地震作用验算结果 (49) 4.2.5 延性构造细节设计. (51) 4.3 抗震构造措施. (53) 第一部分项目概况及基本设计资料 1.1 项目概况 贵州省余庆至安龙高速公路罗甸至望谟段,主线全长77.4 公里,项目地形起伏大,山高坡陡,地质、水文条件复杂,桥梁工程规模大,高墩大跨径桥梁较多,通过综合比选,考虑技术、经济、结构耐久、施工方便、维修便利及施工标准化等因素。主线普通桥梁结构主要选择20m 30m 40m装配式预应力砼T梁。

预应力简支板桥下部结构计算书

第四章下部结构计算书 4.1 设计资料 设计荷载:公路Ⅱ级;桥面净空:12.5+2×0.5=13.5m 计算跨径: 09.6 l m 上部构造:钢筋混凝土空心板桥 4.1.2 水文地质条件 本桥桥位处地下水位埋深较浅,当采用天然地基挖方时将揭露地下水,且表层一般为发育软土层,施工难度较大,建议本段桥梁采用桩基础。 4.1.3 材料 钢筋:盖梁主筋用HRB335钢筋,其他均用R235钢筋 混凝土:盖梁用C30混凝土,桥台桩基用C25混凝土 4.1.4 桥墩尺寸 考虑原有标准图,选用下图所示结构尺寸: 图4—1 4.1.5 设计依据 《公路桥涵地基与基础设计规范》(JTG D6—2007) 4.2 盖梁计算 上部结构荷载及支座反力表4—1 每片边梁自重(KN/m)每片中梁自重 (KN/m)一孔上部构造自重 (KN) 每一个支座恒载反力(KN) 1、13号2—12号边板1、13号中板2—12号 18.60 16.46 2182.6 93.0 82.3 4.2.2 盖梁自重及内力计算 图4—2 盖梁内力计算表表4—2

截面编号 自重弯矩剪力(KN)(KN/m)(K N·m)Q左Q右 1-1 截面 -15.6-15.6 2-2 截面 -54-54 3-3 截面 -73.797.6 4-4 截面 81.181.1 5-5 截面 6.02 6.02 6-6 截面 -69.06-69.06 7-7 截面 -85.6-85.6

4.2.3 活载计算 (1)活载横向分配系数计算,荷载对称布置时用杠杆原理法,非对称布置 时用铰接板法 1)对称布置时 a) 单列车对称布置时 图4—3 b) 双列车对称布置时 图4—4 c)三列车对称布置时 图4—5 d) 四列车对称布置时 图4—6 2) 非对称布置时 a) 单列车非对称布置时 b) 双列车非对称布置时 c) 三列车非对称布置时 d) 四列车非对称布置时 (2)按顺桥向活载移动情况,求得支座活载反力的最大值 本桥计算跨径为9.6m ,考虑到桥面连续处也可布载,布载长度为: 图4—7 a) 单孔荷载 单列车时:11.0150+9.8 1.07.875=188.592 B KN =???? 当为两列车时,则:22188.59=377.18B KN =? 当为三列车时,则:33188.59=565.77B KN =? 当为四列车时,则:44188.59=754.36B KN =? b )双孔荷载

finalcutro快捷键大全

a l CutPro 苹果非编快捷键创建新的媒体夹【Cmd +【B】 Dock 隐藏【Cmd +【Option 】+D 撤销【Cmd +Z 隐藏界面【Cmd +【H】(界面最小化) 选择序列中所有片段【Cmd +【A】 渲染选定文件【Cmd +【R】 选择标准窗口布局【Ctrl】+【U】 显示叠层【Ctrl】+ [ Option】+【W 切换轨道高度选择【Shift】+【T】(可把轨道拉长。缩小) 选择缩放工具【Z】 选种默认“选择”工具【A J 慢动作向前播放【K】+ [ L】

慢动作向后播放【K】+ [ J】 设置一个入点【I】 设置一个出点【O】 标记这个片段长度【X】 移动播放头到入点位置【Shift】+【I】 移动播放头到出点位置【Shift】+【0】 在时间线上显示整个序列【Shift】+【Z】 删除入点【Option】+【I】 删除出点【Option】+【0】 将入点和出点一起删除【Option】+【X】 播放片段播放头到出点之间的部分【Shift】+【P】播放入点到出点之间的部分【Shift】+【】 启用循环播放【Ctrl】+【L】 取消对片段的选择【Shift】+【Cmd +【A】 打幵或关闭吸附功能【N】

将所有的音频轨道锁定或解锁【Shift】+【F5】 将时间线上视频轨道的片段和音频连接在一起【Cmd +【L】切换“链接选择”的幵和关【Shift】+【L】 把选顶的编辑点扩展到播放头所在的位置【E 选择“波纹”工具【RR 选择“刀片切割”工具【B】 滑移【S】 卷动【R】 滑动【SS】 打幵“用户编好设置”窗口【option】+【ca 打幵“系统设置”窗口【Shift】+【d 打幵“简易设置”窗口【Ctrl】+【d 打幵“音频/视频设置”窗口【Cmd + [Option】+【C】

新鸿基地产集团是香港最大的地产发展公司之一

新鸿基地产集团是香港最大的地产发展公司之一,自建立以来一直坚持“植根香港、以心建家”的信念,热心公益事业,成立了非牟利团体“新鸿基地产郭氏基金会”,基金会本着育才树人、教育兴国的理念,通过各种灵活的形式资助和参与教育、文化及文物三方面的项目,培育国家未来快速发展所需的人才,引进国际的新科技知识及弘扬中国悠久珍贵的文化。香港新鸿基地产郭氏基金有限公司为在提高中国人民教育水平和培训人才上作出贡献,该助学金旨在帮助我校家庭经济困难的优秀大学本科生顺利完成学业。 从小我就有一个梦想:希望我能读大学。这也是我全家人的梦想,他们连初中都没有上过,我父亲在病患中对我说:“你不用担心我,你要好好读书。”这句话一直铭记在我的心中。进入大学以后,高昂的学费已使我家入不敷出了。幸运的是,大一的时候我就得到了国家助学金的资助。俗话说:滴水之恩,应当涌泉相报。天空感恩大地,因为有它才显示出天空的辽阔;树木感恩雨露,因为有它才会使它茁壮成长;大地也同时感恩小草,因为有了它才回让大地一片新绿;我也同时感恩一切衬托我和为我付出的人、也有同时帮助过我关爱过我的人。青春是如花火般灿烂的年华,年华过处无烟云,浪费青春无异于自杀,珍惜年青的求学时光是对自己的负责,是对家庭的负责,但贫寒学子是无奈的,因为他们没有选择,只有靠自己的双手挣取生活,挣取学习的时间,明知事倍功半却无从改变。 国家助学金我带来了希望,也让那些如我一样的贫困孩子可以在我们魂牵梦萦的校园静下心来好好学习。我们应该在拥有这笔钱的同时学会感恩,所以我们要用实际行动回报,从现在做起,从身边的一点一滴做起。努力学习不做无用之人,不求最好但求更好!坐在明亮的教室里学习是幸福的,而得到助学金又是幸运地,它犹如雪中送炭,它是那么的及时,那么的温馨!助学金助我成长、成才,让我梦想成真。我也明白这份助学金的份量有多大,它不仅是一笔财富,更是一份沉甸的责任与义务。所以,我要好好学,将来有能力回报国家为社会做贡献。助学金给了我们贫困学子一条求学之路,让我们的理想不再迷惘,人生不再彷徨。解决我们的生活烦恼;给了我们扶持与依靠;给了我们努力向上的动力;给了我们一双坚硬的翅膀,任我们翱翔奔向远方。怀着一颗感恩的心,这颗心就如同一双美丽的眼睛,眼睛里的一切都是美好的。这一爱心政策,帮助我们成长,让我们的成长之路多了一份平坦,少了一份坎坷。虽然,现实的生活中充满了许多的无奈、悲伤,许多的困难、挫折,但面对这份真挚的关爱,我们又有什么理由轻易放弃呢?为了我们自己,更为了那些关爱我们的人,我们更应该坚强的面对人生,更应乐观的迎接挑战,用坚定的步伐走好我们的每一步!更应该用实际行动去回报这份关爱,让它体现应有的价值。等到有一天,当我们回顾这一切时我们可以无怨亦无悔!得到了这次助学金,我要更加努力学习,绝不辜负党和国家,以及学校领导和老师们对我的期望。

相关文档