文档库 最新最全的文档下载
当前位置:文档库 › 蒸发计算方法综述

蒸发计算方法综述

蒸发计算方法综述
蒸发计算方法综述

蒸发

摘要:蒸发是地球表面水量和能量平衡中的重要分量,对于区域气候、旱涝变化趋势,水资源形成及变化规律,水资源评价等方面的研究有着重要作用。本文列举了常用的几种蒸发计算方法,对每种方法的优缺点进行了简要概括,并提出了未来蒸发计算方法的发展方向。

关键词:蒸发 计算方法

1 关于蒸发的几个概念

蒸发(Evaporation )是水循环和水平衡的基本要素之一。水分从液态变为汽态的过程称为蒸发。它涉及地球表层中能量循环和物质转化最为强烈的活动层——土壤-植物-大气系统(SPAC ),常受下垫面条件(如地形、土壤质地、土壤水分状况等)、植物生理特性(如植物种类、生长过程等)和气象因素(如太阳辐射、温度、湿度、风速等)等诸多因素的影响。因此,蒸发蒸腾问题成为水文学、气象学、农学等多个学科领域的关注焦点。

发生在海洋、江河、湖库等水体表面的蒸发,称为水面蒸发,它仅受太阳辐射等气象因素的热能条件制约,故又可称为蒸发能力。发生在土壤表面或岩体表面的蒸发,通常称为土壤蒸发。发生在植物表面的蒸发,称为植物蒸腾或植物蒸散发。发生在一个流域或区域内的水面蒸发、土壤蒸发和植物蒸腾的总和称为流域蒸散发或陆地蒸发。陆地蒸发不仅取决于热能条件,还取决于可以供应蒸发的水分条件,即供水条件。

蒸发蒸腾(Evaportranspiration ,简称ET )包括土壤蒸发和植被蒸腾,在全球水文循环中起着重要的作用。

参考作物蒸发蒸腾量(0ET ):为一种假想参考作物的蒸发蒸腾速率。假想作物的高度为0.12m ,固定的叶面阻力为70s/m ,反射率为0.23,非常类似于表面开阔、高度一致、生长旺盛、完全覆盖地面且不缺水的绿色草地蒸发蒸腾量。0ET 的计量单位以水深表示,单位为mm ;或用一定时段内的日平均值表示,单位为mm/d 。

2 直接测定法

2.1 蒸发皿测定法

1687年英国天文学家Halley 使用蒸发器测定蒸发量揭开了水面蒸发观测的序幕。蒸发皿测定法主要包括大型蒸发池和小型蒸发器。大型蒸发池(20E 面积20m 2或100E 面积100m 2)的蒸发资料虽然能够代表大水体的实际水面蒸发,但由于造价太高,不可能所

有蒸发站网都推广使用;而小型蒸发器具有代表性(与自然水体蒸发量接近)、稳定性(偶然误差小)和实用性(经济实用易于推广)的特点。建国前我国曾广泛采用80Φ型有套盆及无套盆蒸发器和20Φ型小型称重式蒸发器。20世纪60年代,在前苏联ΓΓN 3000型蒸发器的基础上,结合我国的实际情况,研制出601E 型(8.61Φcm)蒸发器在全国水文部门统一采用。不同直径的蒸发皿观测的蒸发量与天然水面蒸发量是有差别的,因此,在计算水面蒸发损失时,应根据蒸发折算系数的时空变化规律和各地对比观测资料的分析成果,乘以水面蒸发折算系数使用。

2.2 蒸渗仪法

蒸渗仪法是一种基于水量平衡原理发展起来的植物蒸发蒸腾量测定方法。所谓蒸渗仪法,就是将蒸渗仪(装有土壤和植物的容器)埋设于土壤中,并对土壤水分进行调控,有效地反映实际的蒸发蒸腾过程;再通过对蒸渗仪的称量,就可以得到蒸发蒸腾量。目前,常用的蒸渗仪主要有称重型和渗漏型两种。

蒸渗仪法是一种直接测定的方法,其误差来源较多。蒸渗仪内外土壤的空间变异性、植物种类及其密度分布差异直接影响蒸渗仪法的精度。蒸渗仪法的一个显著优点就在于它能直接测定蒸发蒸腾耗水量。

3 蒸发计算公式

3.1 Dalton 公式

1802年,英国的道尔顿(Dalton )根据乱流扩散理论,综合考虑风速、空气温度、湿度对蒸发量的影响,提出了道尔顿模型,该模型对近代蒸发理论的创立起到了决定性的作用。

()()W e e E φ?-=21 (1)

式中:E —水面蒸发量;1e —水面水汽压;2e —地面一定高度处水汽压;()W φ—风速函数。(1)式说明:水汽压力差反映了蒸发面的湿度和一定高度上的湿度梯度。又因温度的层结作用直接影响到湿度梯度,所以()21e e -综合反映了湿、温两项要素的作用。()W φ反映涡旋的动力作用和水汽交换的强弱。应用道尔顿这个模式,可以根据各地大型蒸发池的观测结果求出各地水面蒸发的经验公式。

3.2 水量平衡法

水量平衡法是计算陆面蒸发的最基本方法,在一个闭合流域内,如不考虑相邻区域的水量调入与调出,其水量平衡方程可以写作:

±

-

E?

=(2)

P

W

R

式中:E—陆面蒸发量;P—降雨量;R—径流量;W

?—蓄水变量。对于多年平均情况0

=(3)

E-

P

?W,则:R

因此,只要知道多年平均降水量和径流量,就可以求得多年平均陆面蒸发量。由于降水量和径流量都可以实测,所以这是计算区域多年平均陆面蒸发量较为可靠的方法。

水量平衡法常用来对其他测定或估算方法进行检验或校核。它可以适用于非均匀下垫面条件和各种天气条件,不受微气象学法中许多条件的制约。该方法的另一个优点是充分考虑了水量平衡各个要素间的相互关系,遵循物质不灭原则,可以宏观地控制各要素的计算,计算误差较小。

这种方法也存在一些不足之处,它要求水量平衡方程中各分量的测定值足够精确,且要弄清计算区域边界范围内外的水分交换量,而这些又往往难以做到很精确。这种方法用于测定一小块地或一个小流域时精度较高;但当流域较大时,计算的区域边界很难确定,流域内雨量站分布不均等容易导致计算精度降低。另外,这种方法得到的只是一个时段内(通常一周以上)流域总的蒸发蒸腾量,因而不能反映蒸发蒸腾量的动态变化过程。

3.3 水热平衡法

水热平衡法是综合考虑水量和热量计算蒸发量的一种方法。决定陆面蒸发的主要因索是水分供应条件或蒸发面的湿润程度及蒸发能力,降水量是反映陆面水分供应条件的指标,辐射平衡是代表可能供应蒸发的潜在热能,可以近似地反映蒸发能力的大小,这是水热平衡法的基本思路。代表性的公式有:斯拉伯公式、奥里杰科普公式和布德科公式等。

3.4 微气象学方法

随着计算机科学和气象科学的迅速发展,数据的自动采集与处理系统日益先进,在此基础之上,微气象学方法已发展成为常见的蒸发蒸腾测量测定方法。微气象学方法主要包括波文比-能量平衡法、涡度相关法、空气动力学法等。

3.4.1 波文比-能量平衡法

1926年Bowen 从能量平衡方程出发,提出了计算水面蒸发的波文比-能量平衡模型。该方法的两大理论支柱是能量平衡原理和边界层扩散理论。假定植物和土壤是一个蒸发界面,水分子可以从此界面逸出而进入大气,那么,对于这个面的垂直方向上的能量收支平衡可用下式描述:

ET H G R n ?+=-λ

(4) 式中:n R —太阳净辐射;G —土壤热通量;H —感热通量;ET ?λ—潜热通量,λ—水汽化潜热,ET —植物蒸发蒸腾量。

波文比定义为 ET

H ?=

λβ (5) 综合式(4)和(5)可得: βλ+-=?1G R ET n (6) 式(6)即为用波文比-能量平衡法估算植物蒸发蒸腾量的公式,其关键在于波文比β的确定。

根据经验关系,感热通量、潜热通量可表示为: z

T k C H h p a ??-=ρ (7) z

e k C ET v p

a ??-=?γρλ (8) 式中:a ρ—空气密度;P C —空气定压比热;h k —感热交换系数;v k —潜热交换系数;γ—湿度计常数。

根据雷诺相似原理,假定感热和潜热的交换系数相等,即h k =v k ,合并式(5)、式(7)和式(8)可得:

e

T z e z T ??=????=γγβ// (9) 利用波文比系统测得n R ,G ,T ?和e ?后,就能够计算出该区域的潜热通量和相应的植物蒸发蒸腾量。

波文比-能量平衡法素以物理概念明确、计算方法简单而著称,且对大气层没有特别的要求和限制。该法只需要两个高度的要素观测值,不用求湍流交换系数,而且精度

较高,可作为其他蒸发蒸腾量测定方法的准判别标准。但是,使用波文比系统观测的区域要具有开阔、均一的下垫面,且天气平稳少变,辐射和风速都没有过于剧烈的变化。该模型长期以来得到了较好的应用,但在下垫面极为潮湿或平流逆温条件下,计算结果偏低,精度下降。

3.4.2 涡度相关法

涡度相关法建立在澳大利亚微气象学家Swinbank 在1951年提出的涡度相关理论的基础之上,是一种通过直接测定和计算下垫面感热和潜热的湍流脉动值而求得植物蒸发蒸腾量的方法。计算公式如下:

T w C H p a ''=ρ (10)

ET a ''=?λρλ (11)

式中:λ—水汽化潜热;H —感热通量;ET ?λ—潜热通量;a ρ—空气密度;p C —空气的定压比热;T ',w ',q '—垂直温度、风速和湿度脉动值。

涡度相关法的误差可能来源于理论假设与客观实际的偏差,也可能由仪器设备本身或使用不当造成。由于感应头、记录仪的频率响应特性限制及有限的观测时间,不可能观测到对垂直通量起作用的整个湍流频率范围,主要表现在对高频部分的截断,其高频损失程度还与仪器架设高度、大气稳定度有关。另外,测量垂直风速脉动量时,仪器安装倾斜也可能导致误差。

与其他方法相比,涡度相关法不是建立在经验关系基础之上的,而是严格依据空气动力学理论推导而来,其物理学基础最为完备。它通过直接测量各种物理属性的湍流脉动值来确定交换量,不受平流限制,具有较高的精度和良好的稳定性。它只需要在一个高度上进行观测,作业非常灵活,而且仪器的可移动性强,在森林等高杆植物或高粗糙度地表安装很方便,使其应用更加广泛。但是,由于是一种直接测定技术,所以不能解释植物蒸发蒸腾的物理过程和影响机制。另外,对干旱缺水地区,因空气中水汽含量较少,测出的植物蒸发蒸腾量往往误差较大。

3.4.3 空气动力学法

空气动力学法(紊流扩散法或质量迁移法)是基于地面边界层梯度扩散理论,由Holzman 和Thornthwaise 于1939年首次提出。它认为:近地面层温度、水气压和风速等各种物理属性的垂直梯度受大气传导性制约,可根据温度、湿度和风速的梯度及廓线方

程,求解出潜热和热通量。

该方法的假定只在均匀下垫面条件下成立,且需要能够正确地测定植物上方不同高度处的气压,对下垫面及空气稳定度要求严格,否则误差较大;在测定范围上受到极大的限制,不适宜大面积的应用。但该方法对于了解蒸发的物理过程、机制以及蒸发的动态变化过程有深远影响。

3.5 Penman-Monteith 方法

3.5.1 1948 Penman

1948 Penman 法是依据能量平衡和紊流扩散原理导出的计算参考作物腾发量的方法。目前该方法仍为湿润下垫面蒸散计算的主要方法。该方法需要气温、相对湿度、日照时数、风速等资料计算参考作物腾发量, 具体计算公式为:

()()()λμγγγ??

????-++?+-+??=a s n e e G R ET 20537.0143.6 (12) 式中:n R —净辐射,()d m MJ ?2;G —土壤热通量,()

d m MJ ?2;a

e ,s e —气温为T 时的水汽压和饱和水汽压,a kp ;2μ—高度2m 处的风速,s m /;λ—水的汽化潜热,kg MJ /。 3.5.2 FAO-24 Penman

FAO-24 Penman 法是1948 Penman 方程的一个修正式,它包含了一个更敏感的风函数,需要资料与1948 Penman 法相同,具体计算公式如下: ()()()λμγγγ??

????-++?+-+??=a s n e e G R ET 20862.0143.6 (13) 3.5.3 Penman-Monteith 方法

Penman-Monteith 法以能量平衡和水汽扩散理论为基础,既考虑了空气动力学和辐射项的作用,又涉及了作物的生理特征,弥补了Penman 法忽略土壤对水汽传输的表面阻力作用的缺点;同时也不用改变任何参数即可适用于世界各个地区,估值精度较高且具有较好的可比性,只是所需参数过多,需要专门的气象站进行观测。1998年联合国粮农组织(FAO)推荐将其作为计算参考作物腾发量的唯一标准方法,该方法和1948 Penman 法需要相同的数据资料,具体计算公式为:

()()()

22034.01273900408.0u e e T G R ET a s n ++?-++-?=γμγ (14) 3.6 红外遥感法

20世纪70年代以来,随着遥感技术的不断发展,利用遥感遥测技术计算植被蒸发蒸腾量ET 的红外遥感法应运而生。遥感蒸发蒸腾量的估算主要是利用可见光、近红外及热红外波段的反射和辐射信息及其变化规律进行相关地表参数(如地表反照率、植被指数等)的反演后,结合近地层大气的风速、温度和湿度等信息,建立模型进行求取。

目前所发表的模型主要归为统计模型和物理模型两大类。各模型的共同点在于都需要首先反演地表反照率和地表温度,再求得地表可利用能量,然后或者利用简单的参考蒸发蒸腾量计算公式计算,或者进一步推算感热通量,再利用能量平衡方程求得植被蒸发蒸腾量。

随着遥感技术的发展及遥感信息定量化研究的不断深入,遥感技术在计算植被蒸发蒸腾量,特别是大、中尺度范围的ET 时空分布中,其优越性已日益彰显。主要表现在:

(1)由于遥感技术可以不断地提供不同时空尺度的地表特征信息,因而利用这些信息可以将ET 计算模型外推扩展到缺乏详尽气象资料的区域尺度,反映出区域同一时刻的ET 分布。(2)由于它是通过植被的光谱特性、红外信息结合微气象参数来计算蒸发蒸腾量,从而摆脱了微气象学法因下垫面条件的非均一性而带来的以“点”代“面”的局限性,进而为区域蒸发蒸腾计算开辟了新途径。(3)相对于在地面布设一些稀疏点来进行观测而言,应用遥感技术进行区域尺度植被蒸发蒸腾量的监测计算较为经济和高效。

近些年来,虽然在非均匀及稀疏植被下垫面能量传输机制的研究方面取得了较大的进展,但在遥感信息与蒸发蒸腾机理模型的链接中仍存在一些问题:

(1)地表温度的反演问题。热红外传感器探测的是地表辐射温度,又称为地球表面的“皮肤”温度(Skin Temperature)。然而,地表远非“皮肤”状或均一的二维实体,各样的组分及其各异的几何结构均增加了地表真实温度的反演难度。蒸发蒸腾模型中利用遥感地表温度或代替较难获得的空气动力学温度计算感热通量,或进行一些参数的计算(如W D I )。因而,地表温度的反演准确度直接影响着蒸发蒸腾量估算的精确度。

(2)尺度问题。包括时间延拓和空间延拓两方面。在将瞬时蒸发蒸腾量进行日蒸发蒸腾量的扩展时所要求的“绝对晴天”在现实中出现的几率不会很大。空间延拓主要

指蒸发蒸腾模型中所需的气象参数由点测资料标定遥感像元面的数据,进而再从像元面扩展到“区域”甚至“全球”;另外,用来进行模型结果比较的局地观测数据与计算时所利用的遥感数据的尺度也存在差异。然而,不同尺度信息之间往往是非线性、不确定的,时空尺度的延拓应是未来的研究重点。

(3)阻力问题。“面”上的气孔阻力、表面阻力(对于植被下垫面,常称为冠层阻力)及空气动力学阻力等对于区域蒸发蒸腾量估算关键的参数仍然需要依靠冠层高度及风速等“点”上资料来推算得到平均信息。如何充分利用遥感数据而建立机理性较强的辅助性的阻力模型,是今后需要进一步探讨的问题。

(4)各种模型均有一定的假设条件,且大多数模型只在晴空无云、风速稳定、地形平缓的条件下有较好的效果。

4 结语

蒸发计算方法多种多样,每种方法都有其独特的学科背景、理论基础、假设条件以及适用范围,因而各种方法之间的相关性、可比性和可检验性比较复杂,从而为各种方法之间的同步比较研究和准确标定带来了困难。因此,在计算蒸发量时,可以根据各地区的客观实际情况,结合各种方法的特点及适用范围,选取适宜的蒸发计算方法。

随着数字流域信息平台框架的建立和发展,“3S”技术为蒸发研究提供了新的研究手段和技术支持。如何将已有研究理论、成果与高科技手段有机地结合起来,同时建立具有普遍适用性的蒸发模型应是今后蒸发研究的重点。

参考文献:

数值计算方法学习指导书内容简介

数值计算方法学习指导书内容简介 数值计算方法学习指导书内容简介《数字信号处理学习指导》是浙江省高等教育重点建设教材、应用型本科规划教材《数字信号处理》(唐向宏主编,浙江大学出版社出版,以下简称教材)的配套学习指导书,内容包括学习要求、例题分析、教材习题解答、自测练习以及计算机仿真实验等。学习指导书紧扣教材内容,通过例题讲解,分析各章节的学习重点、难点以及需要理解、掌握和灵活运用的基本概念、基本原理和基本方法。全书共有66例例题分析、121题题解、2套自测练习和6个mat1ab计算机仿真实验。 数值计算方法学习指导书目录绪论 第1章离散时间信号与系统 1.1 学习要点 1.2 例题 1.3 教材习题解答 第2章离散系统的变换域分析与系统结构 2.1 学习要点 2.2 例题 2.3 教材习题解答 第3章离散时间傅里叶变换

3.1 学习要点 3.2 例题 3.3 教材习题解答 第4章快速傅里叶变换 4.1 学习要点 4.2 例题 4.3 教材习题解答 第5章无限长单位冲激响应(iir)数字滤波器的设计5.1 学习要点 5.2 例题 5.3 教材习题解答 第6章有限长单位冲激响应(fir)数字滤波器的设计6.1 学习要点 6.2 例题 6.3 教材习题解答 第7章数字信号处理中的有限字长效应 7.1 学习要点 7.2 例题 7.3 教材习题解答 第8章自测题 8.1 自测题(1)及参考答案 8.2 自测题(2)及参考答案 第9章基于matlab的上机实验指导 9.1 常见离散信号的matlab产生和图形显示

9.2 信号的卷积、离散时间系统的响应 9.3 离散傅立叶变换 9.4 离散系统的频率响应分析和零、极点分布 9.5 iir滤波器的设计 9.6 fir滤波器的设计 数值计算方法学习指导书内容文摘第1章离散时间信号与系统 1.1 学习要点 本章主要介绍离散时间信号与离散时间系统的基本概念,着重阐述离散时间信号的表示、运算,离散时间系统的性质和表示方法以及连续时间信号的抽样等。本章内容基本上是“信号与系统”中已经建立的离散时间信号与系统概念的复习。因此,作为重点学习内容,在概念上需要明白本章在整个数字信号处理中的地位,巩固和深化有关概念,注意承前启后,加强葙关概念的联系,进一步提高运用概念解题的能力。学习本章需要解决以下一些问题: (1)信号如何分类。 (2)如何判断一个离散系统的线性、因果性和稳定性。 (3)线性时不变系统(lti)与线性卷积的关系如何。 (4)如何选择一个数字化系统的抽样频率。 (5)如何从抽样后的信号恢复原始信号。 因此,在学习本章内容时,应以离散时间信号的表示、离散时间系统及离散时间信号的产生为主线进行展开。信号的离散时间的表示主要涉及序列运算(重点是卷积和)、常用序列、如何判

数值分析综述-《数值分析与算法》徐士良

第2章矩阵与线性代数方程组 一般的线性代数方程组,A非奇异可根据Cramer法则求解方程唯一解但是它的计算量很大。 高斯消元法的算法时间复杂度是O(n3),可以解一系列的线性方程;所占数据空间符合原地工作的原则。但是算法对数值计算不稳定(当分母为0或很小时)。可以用在计算机中来解决数千条等式及未知数。不过,如果有过百万条等式时,这个算法会十分费时。 解决高斯法中的不稳定性,在每次归一化前增加选主元(列选主元、全选主元)过程。但是列选主元法仍不稳定,不适求解大规模线性代数方程组。全选主元的高斯消去法,则在复杂度降低的同时能够避免舍入误差,保证数值稳定性。 高斯-约当消去法算法产生出来的矩阵是一个简化行梯阵式,而不是高斯消元法中的行梯阵式。相比起高斯消元法,此算法的效率比较低,却可把方程组的解用矩阵一次过表示出来。线性代数方程组的迭代解法 简单迭代法:迭代格式发散但迭代值序列不一定发散,但收敛格式收敛,迭代值序列收敛于方程组的准确解与选取迭代初值无关。 雅可比迭代法: 计算公式简单,且计算过程中原始矩阵A始终不变,比较容易并行计算。但是收敛速度较慢,而且占据的存储空间较大,所以工程中一般不直接用雅克比迭代法,而用其改进方法。 高斯-赛德尔迭代法:较上面的迭代复杂,但是矩阵的条件相对宽松。 松弛法:需要根据经验去调整,收敛速度依赖松弛参数的选择,收敛条件的要求更宽松。共轭梯度法:是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse矩阵并求逆的缺点,在各种优化算法中,共轭梯度法是非常重要的一种。其优点是所需存储量小,具有步收敛性,稳定性高,而且不需要任何外来参数。共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。 第3章矩阵特征值 乘幂法计算绝对值最大的特征值:其收敛速度受限于最大与次大特征值比值绝对值的大小,实际应用中采用加速技术。 求对称特征值的雅克比方法96:每进行一次选装变换钱都需要在飞对角线的元素中选取绝对值最大的元素,很费时间,雅克比过关法对此做了改进。 QR方法求一般实矩阵的全部特征值98下100下:重复多次进行QR分解费时,计算工作量很大。一般先进行相似变换然后进行QR分解。但是这样仍然收敛速度慢,一般是线性收敛。实际应用中使用双重步QR变换将带原点的QR算法中相邻两步合并一步,加速收敛避免复数运算。 第4章非线性方程与方程组 二分法:每次运算后,区间长度减少一半,是线形收敛。优点是简单,但是不能计算复根和重根。 简单迭代法:直接的方法从原方程中隐含的求出x,从而确定迭代函数 (x),这种迭代法收敛速度较慢,迭代次数多。 埃特金迭代法113中:对简单迭代进行改进,使在其不满足收敛条件下迭代过程也收敛,在其收敛时加快收敛速度,减少迭代次数降低时间复杂度。 牛顿迭代法:其最大优点是在方程f(x) = 0的单根附近具有平方收敛,收敛速度快。而且该法还可以用来求方程的重根、复根。缺点:初值的选择会影响收敛结果。 牛顿下山法:保证函数值稳定下降,且有牛顿法的收敛速度。

数值计算方法学习心得

数值计算方法学习心得 ------一个代码的方法是很重要,一个算法的思想也很重要,但 在我看来,更重要的是解决问题的方法,就像爱因斯坦说的内容比 思维本身更重要。 我上去讲的那次其实做了挺充分的准备,程序的运行,pdf文档,算法公式的推导,程序伪代码,不过有一点缺陷的地方,很多细节 没有讲的很清楚吧,下来之后也是更清楚了这个问题。 然后一学期下来,总的来说,看其他同学的分享,我也学习到 许多东西,并非只是代码的方法,更多的是章胜同学的口才,攀忠 的排版,小冯的深入挖掘…都是对我而言比算法更加值得珍惜的东西,又骄傲地回想一下,曾同为一个项目组的我们也更加感到做项 目对自己发展的巨大帮助了。 同时从这些次的实验中我发现以前学到的很多知识都非常有用。 比如说,以前做项目的时候,项目导师一直要求对于要上传的 文件尽量用pdf格式,不管是ppt还是文档,这便算是对产权的一种 保护。 再比如代码分享,最基础的要求便是——其他人拿到你的代码 也能运行出来,其次是代码分享的规范性,像我们可以用轻量级Ubuntu Pastebin,以前做过一小段时间acm,集训队里对于代码的分享都是推荐用这个,像数值计算实验我觉得用这个也差不多了,其 次项目级代码还是推荐github(被微软收购了),它的又是可能更 多在于个人代码平台的搭建,当然像readme文档及必要的一些数据 集放在上面都更方便一些。

然后在实验中,发现debug能力的重要性,对于代码错误点的 正确分析,以及一些与他人交流的“正规”途径,讨论算法可能出 错的地方以及要注意的细节等,比如acm比赛都是以三人为一小组,讨论过后,讲了一遍会发现自己对算法理解更加深刻。 然后学习算法,做项目做算法一般的正常流程是看论文,尽量 看英文文献,一般就是第一手资料,然后根据论文对算法的描述, 就是如同课上的流程一样,对算法进一步理解,然后进行复现,最 后就是尝试自己改进。比如知网查询牛顿法相关论文,会找到大量 可以参考的文献。 最后的最后,想说一下,计算机专业的同学看这个数值分析, 不一定行云流水,但肯定不至于看不懂写不出来,所以我们还是要 提高自己的核心竞争力,就是利用我们的优势,对于这种算法方面 的编程,至少比他们用的更加熟练,至少面对一个问题,我们能思 考出对应问题的最佳算法是哪一个更合适解决问题。 附记: 对课程的一些小建议: 1. debug的能力不容忽视,比如给一个关于代码实现已知错误的代码给同学们,让同学们自己思考一下,然后分享各自的debug方法,一步一步的去修改代码,最后集全班的力量完成代码的debug,这往往更能提升同学们的代码能力。 2. 课堂上的效率其实是有点低的,可能会给学生带来一些负反馈,降低学习热情。 3. 总的来说还是从这门课程中学到许多东西。 数值分析学习心得体会

数值计算方法教学大纲

《数值计算方法》教学大纲 课程编号:MI3321048 课程名称:数值计算方法英文名称:Numerical and Computational Methods 学时: 30 学分:2 课程类型:任选课程性质:任选课 适用专业:微电子学先修课程:高等数学,线性代数 集成电路设计与集成系统 开课学期:Y3开课院系:微电子学院 一、课程的教学目标与任务 目标:学习数值计算的基本理论和方法,掌握求解工程或物理中数学问题的数值计算基本方法。 任务:掌握数值计算的基本概念和基本原理,基本算法,培养数值计算能力。 二、本课程与其它课程的联系和分工 本课程以高等数学,线性代数,高级语言编程作为先修课程,为求解复杂数学方程的数值解打下良好基础。 三、课程内容及基本要求 (一) 引论(2学时) 具体内容:数值计算方法的内容和意义,误差产生的原因和误差的传播,误差的基本概念,算法的稳定性与收敛性。 1.基本要求 (1)了解算法基本概念。 (2)了解误差基本概念,了解误差分析基本意义。 2.重点、难点 重点:误差产生的原因和误差的传播。 难点:算法的稳定性与收敛性。 3.说明:使学生建立工程中和计算中的数值误差概念。 (二) 函数插值与最小二乘拟合(8学时) 具体内容:插值概念,拉格朗日插值,牛顿插值,分段插值,曲线拟合的最小二乘法。 1.基本要求 (1)了解插值概念。 (2)熟练掌握拉格朗日插值公式,会用余项估计误差。 (3)掌握牛顿插值公式。 (4)掌握分段低次插值的意义及方法。

(5)掌握曲线拟合的最小二乘法。 2.重点、难点 重点:拉格朗日插值, 余项,最小二乘法。 难点:拉格朗日插值, 余项。 3.说明:插值与拟合是数值计算中的常用方法,也是后续学习内容的基础。 (三) 第三章数值积分与微分(5学时) 具体内容:数值求积的基本思想,代数精度的概念,划分节点求积公式(梯形辛普生及其复化求积公式),高斯求积公式,数值微分。 1.基本要求 (1)了解数值求积的基本思想,代数精度的概念。 (2)熟练掌握梯形,辛普生及其复化求积公式。 (3)掌握高斯求积公式的用法。 (4)掌握几个数值微分计算公式。 2.重点、难点 重点:数值求积基本思想,等距节点求积公式,梯形法,辛普生法,数值微分。 难点:数值求积和数值微分。 3.说明:积分和微分的数值计算,是进一步的各种数值计算的基础。 (四) 常微分方程数值解法(5学时) 具体内容:尤拉法与改进尤拉法,梯形方法,龙格—库塔法,收敛性与稳定性。 1.基本要求 (1)掌握数值求解一阶方程的尤拉法,改进尤拉法,梯形法及龙格—库塔法。 (2)了解局部截断误差,方法阶等基本概念。 (3)了解收敛性与稳定性问题及其影响因素。 2.重点、难点 重点:尤拉法,龙格-库塔法,收敛性与稳定性。 难点:收敛性与稳定性问题。 3.说明:该内容是常用的几种常微分方程数值计算方法,是工程计算的重要基础。 (五) 方程求根的迭代法(4学时) 具体内容:二分法,解一元方程的迭代法,牛顿法,弦截法。 1.基本要求 (1)了解方程求根的对分法和迭代法的求解过程。 (2)熟练掌握牛顿法。 (3)掌握弦截法。 2.重点、难点 重点:迭代法,牛顿法。

数值分析作业思考题汇总

¥ 数值分析思考题1 1、讨论绝对误差(限)、相对误差(限)与有效数字之间的关系。 2、相对误差在什么情况下可以用下式代替 3、查阅何谓问题的“病态性”,并区分与“数值稳定性”的不同点。 4、取 ,计算 ,下列方法中哪种最好为什么(1)(3 3-,(2)(2 7-,(3) ()3 1 3+ ,(4) ()6 1 1 ,(5)99- , 数值实验 数值实验综述:线性代数方程组的解法是一切科学计算的基础与核心问题。求解方法大致可分为直接法和迭代法两大类。直接法——指在没有舍入误差的情况下经过有限次运算可求得方程组的精确解的方法,因此也称为精确法。当系数矩阵是方的、稠密的、无任何特殊结构的中小规模线性方程组时,Gauss消去法是目前最基本和常用的方法。如若系数矩阵具有某种特殊形式,则为了尽可能地减少计算量与存储量,需采用其他专门的方法来求解。 Gauss消去等同于矩阵的三角分解,但它存在潜在的不稳定性,故需要选主元素。对正定对称矩阵,采用平方根方法无需选主元。方程组的性态与方程组的条件数有关,对于病态的方程组必须采用特殊的方法进行求解。 数值计算方法上机题目1 1、实验1. 病态问题 实验目的: 算法有“优”与“劣”之分,问题也有“好”和“坏”之别。所谓坏问题就是问题本身的解对数据变化的比较敏感,反之属于好问题。希望读者通过本实验对此有一个初步的体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 $ r e x x e x x ** * ** - == 141 . ≈)61

蒸发计算方法综述

蒸发计算方法综述 摘要:蒸发是地球表面水量和能量平衡中的重要分量,对于区域气候、旱涝变化趋势,水资源形成及变化规律,水资源评价等方面的研究有着重要作用。本文列举了常用的几种蒸发计算方法,对每种方法的优缺点进行了简要概括,并提出了未来蒸发计算方法的发展方向。 关键词:蒸发计算方法 1 关于蒸发的几个概念 蒸发(Evaporation)是水循环和水平衡的基本要素之一。水分从液态变为汽态的过程称为蒸发。它涉及地球表层中能量循环和物质转化最为强烈的活动层——土壤-植物-大气系统(SPAC),常受下垫面条件(如地形、土壤质地、土壤水分状况等)、植物生理特性(如植物种类、生长过程等)和气象因素(如太阳辐射、温度、湿度、风速等)等诸多因素的影响。因此,蒸发蒸腾问题成为水文学、气象学、农学等多个学科领域的关注焦点。 发生在海洋、江河、湖库等水体表面的蒸发,称为水面蒸发,它仅受太阳辐射等气象因素的热能条件制约,故又可称为蒸发能力。发生在土壤表面或岩体表面的蒸发,通常称为土壤蒸发。发生在植物表面的蒸发,称为植物蒸腾或植物蒸散发。发生在一个流域或区域内的水面蒸发、土壤蒸发和植物蒸腾的总和称为流域蒸散发或陆地蒸发。陆地蒸发不仅取决于热能条件,还取决于可以供应蒸发的水分条件,即供水条件。 蒸发蒸腾(Evaportranspiration,简称ET)包括土壤蒸发和植被蒸腾,在全球水文循环中起着重要的作用。 ET):为一种假想参考作物的蒸发蒸腾速率。假想作物的参考作物蒸发蒸腾量( 高度为0.12m,固定的叶面阻力为70s/m,反射率为,非常类似于表面开阔、高度一致、 ET的计量单位以水深表示,生长旺盛、完全覆盖地面且不缺水的绿色草地蒸发蒸腾量。 单位为mm;或用一定时段内的日平均值表示,单位为mm/d。 2 直接测定法 蒸发皿测定法 1687年英国天文学家Halley使用蒸发器测定蒸发量揭开了水面蒸发观测的序幕。蒸

数值分析综述报告

淮阴工学院 《数值分析》考试 ──基于Matlab的方法综合应用报告 班级:金融1121 姓名:姚婷婷 学号:1124104129 成绩: 数理学院 2014年6月7日

《数值分析》课程综述报告 前言: 数值分析也称计算方法,它与计算工具的发展密切相关。数值分析是一门为科学计算提供必需的理论基础和有效、实用方法的数学课程,它的任务是研究求解各类数学问题的数值方法和有关的理论。 正文: 第一章 近似计算与误差分析 1、产生误差的原因:①模型误差;②观测误差;③截断误差;④舍入误差。 2、四则运算的误差: ①加减法运算 ()()()****x y x y δδδ±=+ ②乘法运算 ()()() ****** *** ******xy x y xy xy xy x y x y y y x x x y x y y x δδδ-=-+-≤-+-?=+ ③ 除法运算: ()()() () () ***** ******* * * ** * * ** * *2 ** x x xy x y y y yy xy x y x y x y yy x x y y y x yy x y y x x y y δδ δ--=-+-=-+-= +?? ?≈ ??? 3、科学表示法、有效数字、近似值的精度 任何一个实数都可以表示成如下的形式: 其中:是正整数,是整数, 如果是数的近似值 并且 则称该近似值具有位有效数字(significant digit )。

此时,该近似值的相对误差为 另一方面,若已知 ()() *111 1021n r x a δ-≤ + 那么, ()()***1112110.10 211 102 r m n n m n x x x x a a a a δ----≤?=+≤ 即:*x 至少有n 位有效数字。 例: 3.141592653589793...π= 取其近似值如下: x*=3.14 x * =3.14159 x*=3.1415 x*=3.141 **213 100.314 110.0016...0.005101022 x x π--=?-=<=?=? **516 100.314159 110.0000026...0.00000510102 2 x x π--=?-=<=?=? **314 100.31415 110.000092...0.0001101022 x x π--=?-=<

蒸发量计算的基础知识

冷却塔蒸发量计算的基础知识 总冷却循环水量的蒸发量=E + C ☆基础热力学☆基础空气调节学 E=72 × Q × ( X1 – X2)=L ×△t /600 E : 蒸发量kg/h Q : 风量CMM X1 : 入口空气的绝对湿度kg/kg (absolute humidity) X2 : 出口空气的绝对湿度kg/kg (absolute humidity) △t : 冷却水出入口的温度差℃ L : 循环水量kg/h §局部蒸发量C 这是由冷却水塔本身结构上所引起。当冷却循环水的压力<相同条件下水的蒸发压力,冷却循环水的系统会有闪烁(flash)发生,造成局部蒸发现象(cavitation),这种蒸发量通常仅为冷却循环水量的0.1%以下。在计算局部蒸发量C 时,我们均假设局部蒸发量 C 占全部冷却循环水量的0.1%。 凉水塔补水=蒸发量+排污量+飘散损失+泄漏一般凉水塔内水份的蒸发量不大,约为进水量的1~2.5%. 1、蒸发量计算的基础知识 总冷却循环水量的蒸发量=E + C ☆基础热力学☆基础空气调节学 E=72 × Q × ( X1 – X2)=L ×△t /600 E : 蒸发量kg/h Q : 风量CMM X1 : 入口空气的绝对湿度kg/kg (absolute humidity) X2 : 出口空气的绝对湿度kg/kg (absolute humidity) △t : 冷却水出入口的温度差℃ L : 循环水量kg/h §局部蒸发量C 这是由冷却水塔本身结构上所引起。当冷却循环水的压力<相同条件下水的蒸发压力,冷却循环水的系统会有闪烁(flash)发生,造成局部蒸发现象(cavitation),这种蒸发量通常仅为冷却循环水量的0.1%以下。在计算局部蒸发量C 时,我们均假设局部蒸发量 C 占全部冷却循环水量的0.1%。

导数的数值计算方法[文献综述]

毕业论文文献综述 信息与计算科学 导数的数值计算方法 一、 前言部分 导数概念的产生有着直觉的起源,与曲线的切线和运动质点的速度有密切的关系.导数用于描述函数变化率,刻画函数的因变量随自变量变化的快慢程度.比如说,物理上考虑功随时间的变化率(称为功率),化学上考虑反应物的量对时间的变化率(称为反应速度),经济学上考虑生产某种产品的成本随产量的变化率(称为边际成本)等等,这些变化率在数学上都可用导数表示. 导数由于其应用的广泛性,为我们解决所学过的有关函数问题提供了一般性的方法,导数是研究函数的切线、单调性、极值与最值等问题的有力工具;运用它可以简捷地解决一些实际问题,导数的概念是用来研究函数在一点及其附近的局部性质的精确工具,而对于函数在某点附近的性质还可以应用另一种方法来研究,就是通过最为简单的线性函数来逼近,这就是微分的方法.微分学是数学分析的重要组成部分,微分中值定理作为微分学的核心,是沟通导数和函数值之间的桥梁, Rolle 中值定理, Lagrange 中值定理, Cauchy 中值定理, Taylor 公式是微分学的基本定理, 统称为微分学的中值定理,这四个定理作为微分学的基本定理,是研究函数形态的有力工具 ] 1[.在微分学中,函数的导数是通过极限定义的,但 当函数用表格给出时,就不可用定义来求其导数,只能用近似方法求数值导数] 2[.最简单 的数值微分公式是用差商近似地代替微商,常见的有 [3] . ()()() 'f x h f x f x h +-≈ , ()()() 'f x f x h f x h --≈, ()()() '2f x h f x h f x h +--≈ . 需要注意的是微分是非常敏感的问题,数据的微小扰动会使结果产生很大的变化] 4[.

数值分析实验报告总结

数值分析实验报告总结 随着电子计算机的普及与发展,科学计算已成为现代科 学的重要组成部分,因而数值计算方法的内容也愈来愈广泛和丰富。通过本学期的学习,主要掌握了一些数值方法的基本原理、具体算法,并通过编程在计算机上来实现这些算法。 算法算法是指由基本算术运算及运算顺序的规定构成的完 整的解题步骤。算法可以使用框图、算法语言、数学语言、自然语言来进行描述。具有的特征:正确性、有穷性、适用范围广、运算工作量少、使用资源少、逻辑结构简单、便于实现、计算结果可靠。 误差 计算机的计算结果通常是近似的,因此算法必有误差, 并且应能估计误差。误差是指近似值与真正值之差。绝对误差是指近似值与真正值之差或差的绝对值;相对误差:是指近似值与真正值之比或比的绝对值。误差来源见表 第三章泛函分析泛函分析概要 泛函分析是研究“函数的函数”、函数空间和它们之间 变换的一门较新的数学分支,隶属分析数学。它以各种学科

如果 a 是相容范数,且任何满足 为具体背景,在集合的基础上,把客观世界中的研究对象抽 范数 范数,是具有“长度”概念的函数。在线性代数、泛函 分析及相关的数学领域,泛函是一个函数,其为矢量空间内 的所有矢量赋予非零的正长度或大小。这里以 Cn 空间为例, Rn 空间类似。最常用的范数就是 P-范数。那么 当P 取1, 2 ,s 的时候分别是以下几种最简单的情形: 其中2-范数就是通常意义下的距离。 对于这些范数有以下不等式: 1 < n1/2 另外,若p 和q 是赫德尔共轭指标,即 1/p+1/q=1 么有赫德尔不等式: II = ||xH*y| 当p=q=2时就是柯西-许瓦兹不等式 般来讲矩阵范数除了正定性,齐次性和三角不等式之 矩阵范数通常也称为相容范数。 象为元素和空间。女口:距离空间,赋范线性空间, 内积空间。 1-范数: 1= x1 + x2 +?+ xn 2-范数: x 2=1/2 8 -范数: 8 =max oo ,那 外,还规定其必须满足相容性: 所以

蒸发量计算

玻璃钢冷却塔技术手册之二(玻璃钢冷却塔性能参数) 发布者:admin 发布时间:2010-10-31 10:30:26 二、 玻璃钢冷却塔性能参数 2.1 冷却效能 部分人有一个错误的概念,就是以冷幅作为玻璃钢冷却塔效能的标准,并以着来选择合适的散热量,其实冷幅是冷却水塔运作的反映与效能是没有直接之关系。 热量是循环系统内所产生的负荷,它的单位为千卡/小时(Kcal/HR)计算公式如下: 热量=循环水流量×冷幅×比热系数 热量负荷和玻璃钢冷却塔的效能是没有直接关系,所以无论玻璃钢冷却塔的体积大小,当热量负荷和循环水流量不变而运作下,在理论上冷幅都是固定的。 若一座玻璃钢冷却塔能适合以下之条件而运作: i)出水温度为32℃及37℃ ii)循环水流量为 200L/S iii)环境湿球温度为 27℃ iv)逼近=32-27=5℃ v)冷幅=37-32=5℃ 计算其热量应为3600000Kcal/HR 此玻璃钢冷却塔也能适合以下之条件有效地运作: i)出水温度为33℃及43℃ ii)循环水流量为 200L/S iii)环境湿球温度为 23℃ iv)逼近=33-23=10℃ v)冷幅=43-33=10℃ 计算其热量应为7200000Kcal/HR

从上述举例可显示出相同玻璃钢冷却塔可在不同热量下运作,而热量的差别示极大,所以不能单靠冷幅来衡量玻璃钢冷却塔的效能。 前文提及玻璃钢冷却塔的散热量直接受环境湿球温度影响,而以上两列因环境湿球温度有差别,导致逼近不同,所以同一冷却水塔能在以上两条件下运作如常,证明玻璃钢冷却塔的效能是直接与逼近有密切关系而不能单以冷幅计算。 2.2 蒸发耗损量 当冷却回水和空气接触而产生作用,把其水温降时,部分水蒸发会引起冷却回水之损耗,而其损耗量和入塔空气的湿球温度及流量有关,以数学表达式作如下说明: 令:进水温度为 T1℃,出水温度为T2℃,湿球温度为Tw,则 *:R=T1-T2 (℃)------------(1) 式中:R:冷却水的温度差,对单位水量即是冷却的热负荷或制冷量Kcal/h 对式(1)可推论出水蒸发量的估算公式 *:E=(R/600)×100% ------------ (2) 式中:E----当温度下降R℃时的蒸发量,以总循环水量的百分比表示%,600-----考虑了各种散热因素之后确定之常数。 如:R=37-32=5℃ 则E={(5×100)/600}=0.83%总水量 或e=0.167%/1℃,即温差为1℃时的水蒸发量 *:A=T2-T1 ℃ ---------- (3) 式中:A-----逼近度,即出水温度(T2)逼近湿球温度的程度℃,按热交换器设计时冷端温度差取值的惯例,宜取A≥3℃(CTI推进A≥5 oF即2.78℃)A<不是做不到,而是不合理和不经济。 2.3 漂水耗损量 漂水耗损量的大小是和玻璃钢冷却塔(是否取用隔水设施),风扇性能(包括风量、风机及风扇叶角度的调整以及它们之间的配合等),水泵的匹配以及水塔的安装质量等因素有关,通常它的耗损量是很少的,大约在冷却器水总流量的0.2%以下。 2.4 放空耗损量 由于冷却回水不断的蒸发而令其变化(使水质凝结)这凝结了的冷却回水能使整个循环系统内产生腐蚀作用及导致藻类生长,所以部分的冷却回水要定期排出,以便补充更新,而这

数值计算方法教学大纲(本)

数值计算方法教学大纲(本) 本着“崇术重用、服务地方”的办学理念和我校“高素质应用型人才”的培养目标,特制定了适合我校工科专业本科生的新教学大纲。 一、课程计划 课程名称:数值计算方法Numerical Calculation Method 课程定位:数学基础课 开课单位:理学院 课程类型:专业选修课 开设学期:第七学期 讲授学时:共15周,每周4学时,共60学时 学时安排:课堂教学40学时+实验教学20学时 适用专业:计算机、电科、机械等工科专业本科生 教学方式:讲授(多媒体为主)+上机 考核方式:考试60%+上机实验30%+平时成绩10% 学分:3学分 与其它课程的联系 预修课程:线性代数、微积分、常微分方程、计算机高级语言等。 后继课程:偏微分方程数值解及其它专业课程。 二、课程介绍 数值计算方法也称为数值分析,是研究用计算机求解各种数学问题的数值方法及其理论的一门学科。随着计算科学与技术的进步和发展,科学计算已经与理论研究、科学实验并列成为进行科学活动的三大基本手段,作为一门综合性的新科学,科学计算已经成为了人们进行科学活动必不可少的科学方法和工具。 数值计算方法是科学计算的核心内容,它既有纯数学高度抽象性与严密科学性的特点,又有应用的广泛性与实际实验的高度技术性的特点,是一门与计算机使用密切结合的实用性很强的数学课程.主要介绍插值法、函数逼近与曲线拟合、线性方程组迭代解法、数值积分与数值微分、非线性方程组解法、常微分方程数值解以及矩阵特征值与特征向量数值计算,并特别加强实验环节的训练以提高学生动手能力。通过本课程的学习,不仅能使学生初步掌握数值计算方法的基本理论知识,了解算法设计及数学建模思想,而且能使学生具备一定的科学计算能力和分析与解决问题的能力,不仅为学习后继课程打下良好的理论基础,也为将来从事科学计算、计算机应用和科学研究等工作奠定必要的数学基础。 科学计算是21世纪高层次人才知识结构中不可缺少的一部分,它潜移默化地影响着人们的思维方式和思想方法,并提升一个人的综合素质。

数值计算方法设计论文

课程设计(论文) 题目: 三次样条插值问题 学院: ___ 理学院 _ 专业: __ _ 数学与应用数学 班级:数学08-2班 学生姓名: 魏建波 学生学号: 080524010219 指导教师:李文宇 2010年12月17日

课程设计任务书

目录 摘要……………………………………………………………………… 一、前言………………………………………………………………… (一)Lagrange插值的起源和发展过程……………………………………… (二)本文所要达到的目的……………………………………………………… 二、插值函数…………………………………………………………… (一)函数插值的基本思想…………………………………………………… (二)Lagrange插值的构造方法……………………………………………… 三、MATLAB程序………………………………………………………… (一)Lagrange程序…………………………………………………………… (二)龙格程序………………………………………………………………… 四、理论证明…………………………………………………………… 五、综述……………………………………………………………………谢辞………………………………………………………………………参考文献…………………………………………………………………

摘要

前言 要求:500字以上,宋体小四,行距20磅,主要内容写该算法的产生及发展、应用领域等。 题目 整体要求:报告页数,正文在8页以上 字体:宋体小四(行距20磅) 内容:1、理论依据 2、问题描述 3、问题分析 4、求解计算(程序) 5、结论 注:(1)页码编号从正文页开始 (2)标题可根据情况自己适当改动 示例见下: 2判别…………………… 2.1 判……………… 2.1.1 判别……………… 所谓的判别分析,………………………………………………方法[3]。 2.1.2 判………………………… 常用的有四种判别方法:…………………………………………………步判别法[6]。 1. 马氏………………

蒸发计算方法综述

蒸发 摘要:蒸发是地球表面水量和能量平衡中的重要分量,对于区域气候、旱涝变化趋势,水资源形成及变化规律,水资源评价等方面的研究有着重要作用。本文列举了常用的几种蒸发计算方法,对每种方法的优缺点进行了简要概括,并提出了未来蒸发计算方法的发展方向。 关键词:蒸发 计算方法 1 关于蒸发的几个概念 蒸发(Evaporation )是水循环和水平衡的基本要素之一。水分从液态变为汽态的过程称为蒸发。它涉及地球表层中能量循环和物质转化最为强烈的活动层——土壤-植物-大气系统(SPAC ),常受下垫面条件(如地形、土壤质地、土壤水分状况等)、植物生理特性(如植物种类、生长过程等)和气象因素(如太阳辐射、温度、湿度、风速等)等诸多因素的影响。因此,蒸发蒸腾问题成为水文学、气象学、农学等多个学科领域的关注焦点。 发生在海洋、江河、湖库等水体表面的蒸发,称为水面蒸发,它仅受太阳辐射等气象因素的热能条件制约,故又可称为蒸发能力。发生在土壤表面或岩体表面的蒸发,通常称为土壤蒸发。发生在植物表面的蒸发,称为植物蒸腾或植物蒸散发。发生在一个流域或区域内的水面蒸发、土壤蒸发和植物蒸腾的总和称为流域蒸散发或陆地蒸发。陆地蒸发不仅取决于热能条件,还取决于可以供应蒸发的水分条件,即供水条件。 蒸发蒸腾(Evaportranspiration ,简称ET )包括土壤蒸发和植被蒸腾,在全球水文循环中起着重要的作用。 参考作物蒸发蒸腾量(0ET ):为一种假想参考作物的蒸发蒸腾速率。假想作物的高度为0.12m ,固定的叶面阻力为70s/m ,反射率为0.23,非常类似于表面开阔、高度一致、生长旺盛、完全覆盖地面且不缺水的绿色草地蒸发蒸腾量。0ET 的计量单位以水深表示,单位为mm ;或用一定时段内的日平均值表示,单位为mm/d 。 2 直接测定法 2.1 蒸发皿测定法 1687年英国天文学家Halley 使用蒸发器测定蒸发量揭开了水面蒸发观测的序幕。蒸发皿测定法主要包括大型蒸发池和小型蒸发器。大型蒸发池(20E 面积20m 2或100E 面积100m 2)的蒸发资料虽然能够代表大水体的实际水面蒸发,但由于造价太高,不可能所

数值计算方法第4次作业

第四章 问题一 一、问题综述 在离地球表面高度为y处的重力加速度如下: 计算高度y=55000m处的重力加速度值。 二、问题分析 以高度y作为自变量,重力加速度的值为因变量。得到以下信息: f(0)=9.8100; f(30000)=9.7487; f(60000)=9.6879; f(90000)=9.6278; f(120000)=9.5682; 本题要求的就是f(55000)的值。 以下将采用课堂中学到的Lagrange插值多项式法、Newton插值多项式法、分段低次插值法和样条插值法求解该问题。 三、问题解决 1. lagrange插值多项式法 对某个多项式函数,已知有给定的k+ 1个取值点: 其中对应着自变量的位置,而对应着函数在这个位置的取值。 假设任意两个不同的x j都互不相同,那么应用拉格朗日插值公式所得到的拉格朗日插值多项式为:

其中每个为拉格朗日基本多项式(或称插值基函数),其表达式为: 拉格朗日基本多项式的特点是在上取值为1,在其它的点上取值为0。 源程序lagrange.m function [c,f]=lagrange(x,y,a) % 输入:x是自变量的矩阵;y是因变量的矩阵;a是要计算的值的自变量; % 输出:c是插值多项式系数矩阵;f是所求自变量对应的因变量; m=length(x); l=zeros(m,m); % l是权矩阵 f=0; for i=1:m v=1; for j=1:m if i~=j v=conv(v,poly(x(j)))/(x(i)-x(j)); % v是l_i(x)的系数矩阵 end end l(i,:)=v; % l矩阵的每一行都是x从高次到低次的系数矩阵 end c=vpa(y*l,10); % 对应阶次的系数相加,乘以y,显示10位有效数字 for k=1:m f=f+c(k)*a^(m-k); end 输入矩阵 x=[0 30000 60000 90000 120000] y=[9.81 9.7487 9.6879 9.6278 9.5682] a=55000 再运行源函数,可得: c = [ -2.057613169e-23, 4.938271605e-18, -3.703703702e-14, -0.000002046111111, 9.81] f = 9.6979851723251649906109417384537

数值计算方法总结计划复习总结提纲.docx

数值计算方法复习提纲 第一章数值计算中的误差分析 1 2.了解误差 ( 绝对误差、相对误差 ) 3.掌握算法及其稳定性,设计算法遵循的原则。 1、误差的来源 模型误差 观测误差 截断误差 舍入误差 2误差与有效数字 绝对误差E(x)=x-x * 绝对误差限x*x x* 相对误差E r (x) ( x x* ) / x ( x x* ) / x* 有效数字 x*0.a1 a2 ....a n10 m 若x x*110m n ,称x*有n位有效数字。 2 有效数字与误差关系 ( 1)m 一定时,有效数字n 越多,绝对误差限越小; ( 2)x*有 n 位有效数字,则相对误差限为E r (x)1 10 (n 1)。 2a1 选择算法应遵循的原则 1、选用数值稳定的算法,控制误差传播; 例 I n 11n x dx e x e I 0 1 1 I n1nI n1 e △ x n n! △x0 2、简化计算步骤,减少运算次数; 3、避免两个相近数相减,和接近零的数作分母;避免

第二章线性方程组的数值解法 1.了解 Gauss 消元法、主元消元法基本思想及算法; 2.掌握矩阵的三角分解,并利用三角分解求解方程组; (Doolittle 分解; Crout分解; Cholesky分解;追赶法) 3.掌握迭代法的基本思想,Jacobi 迭代法与 Gauss-Seidel 4.掌握向量与矩阵的范数及其性质, 迭代法的收敛性及其判定。 本章主要解决线性方程组求解问题,假设n 行 n 列线性方程组有唯一解,如何得到其解? a 11x 1 a 12 x 2... a 1n x n b1 a 21x 1 a 22 x 2... a 2n x n b2 ... a n1x 1 a n 2 x 2... a nn x n b n 两类方法,第一是直接解法,得到其精确解; 第二是迭代解法,得到其近似解。 一、Gauss消去法 1、顺序G auss 消去法 记方程组为: a11(1) x1a12(1) x2... a1(1n) x n b1(1) a21(1) x1a22(1) x2... a2(1n) x n b2(1) ... a n(11) x1a n(12) x2... a nn(1) x n b n(1) 消元过程: 经n-1步消元,化为上三角方程组 a11(1) x1b1(1) a 21(2) x1a22(2 ) x2b2( 2 ) ... a n(1n) x1a n(n2) x2...a nn(n ) x n b n( n ) 第k步 若a kk(k)0 ( k 1)( k) a ik(k )(k )( k 1)( k )a ik(k )( k) a ij a ij a kk(k ) a kj b i b i a kk(k )b k k 1,...n 1 i, j k 1,....,n 回代过程:

(整理)数值分析计算方法超级总结

工程硕士《数值分析》总复习题(2011年用) [由教材中的习题、例题和历届考试题选编而成,供教师讲解和学生复习用] 一. 解答下列问题: 1)下列所取近似值有多少位有效数字( 注意根据什么? ): a) 对 e = 2.718281828459045…,取* x = 2.71828 b) 数学家祖冲之取 113355 作为π的近似值. c) 经过四舍五入得出的近似值12345,-0.001, 90.55000, 它们的有效 数字位数分别为 位, 位, 位。 2) 简述下名词: a) 截断误差 (不超过60字) b) 舍入误差 (不超过60字) c) 算法数值稳定性 (不超过60字) 3) 试推导( 按定义或利用近似公式 ): 计算3 x 时的相对误差约等于x 的相对 误差的3倍。 4) 计算球体积3 34r V π= 时,为使其相对误差不超过 0.3% ,求半径r 的相对 误差的允许范围。 5) 计算下式 341 8 )1(3)1(7)1(5)1(22345+-+---+---=x x x x x x P )( 时,为了减少乘除法次数, 通常采用什么算法? 将算式加工成什么形式? 6) 递推公式 ?????=-==- ,2,1,1102 10n y y y n n 如果取 * 041.12y y =≈= ( 三位有效数字 ) 作近似计算, 问计算到 10y 时误差为初始误差的多少倍? 这个计算过程数值稳定吗 ? 二. 插值问题: 1) 设函数 )(x f 在五个互异节点 54321,,,,x x x x x 上对应的函数值为 54321,,,,f f f f f ,根据定理,必存在唯一的次数 (A ) 的插值多项式 )(x P ,满足插值条件 ( B ) . 对此,为了构造Lagrange 插值多项式 )(x L ,由5个节点作 ( C ) 个、次数均为 ( D ) 次的插值基函数

作物蒸发蒸腾量计算公式

作物蒸发蒸腾量计算公式 一、采用彭曼—蒙蒂斯(Penman —Monteith )法计算参考作物蒸发蒸腾量(ET 0) 1、彭曼—蒙蒂斯(Penman —Monteith )公式 彭曼—蒙蒂斯(Penman —Monteith )公式是联合国粮农组织(FAO ,1998)提出的最新修正彭曼公式,并已被广泛应用且已证实具有较高精度及可使用性。P-M 公式对参考作物的蒸发蒸腾量定义如下:参考作物的蒸发蒸腾量为一种假想的参考作物冠层的蒸发蒸腾速率,假想作物的高度为0.12m ,固定的叶面阻力为70s/m ,反射率为0.23,非常类似于表面开阔、高度一致、生长旺盛、完全覆盖地面且不缺水的绿色草地蒸发蒸腾量。 Penman ——Monteith 公式: )34.01()(273900)(408.0220U e e U T G R ET d a n ++?-++-?= γγ (1) 式中 0ET ——参考作物蒸发蒸腾量,mm/d ; ?——温度~饱和水汽压关系曲线在T 处的切线斜率,kPa?℃-1; 2 )3.237(4098+?=?T e a (2) T ——平均气温,℃ e a ——饱和水汽压,kpa ; ()3.23727.17ex p 611.0+=T T a e (3) R n ——净辐射,MJ/(m 2·d ); nl ns n R R R -= (4) R ns ——净短波辐射,MJ/(m 2·d ); R nl ——净长波辐射,MJ/(m 2·d ); a ns R N n R )/5.025.0(77.0+= (5) n ——实际日照时数,h ; N ——最大可能日照时数,h ; Ws N 64.7= (6)

相关文档