文档库 最新最全的文档下载
当前位置:文档库 › 锂离子电池充放电机理的探索

锂离子电池充放电机理的探索

锂离子电池充放电机理的探索
锂离子电池充放电机理的探索

锂离子电池充放电机理的探索

及“锂亚原子”模型的建立

贵州航天电源科技有限公司张忠林杨玉光

摘要:锂离子电池的研究和发展一直都是以“摇椅理论”为指导,由于受该理论的影响,很多现象很难用传统的电化学理论进行解释。作者在生产实践中通过对一些现象的观察,并做了大量的试验和研究,提出“锂亚原子”的模型,并在此模型的基础上,对锂离子电池的充放电反应机理和一些现象用电化学理论进行了解释。

主题词:锂离子电池、反应机理、锂亚原子

一、前言

锂离子电池是在锂金属电池基础上发展起来的。由于锂金属电池在充放电时出现锂枝晶,刺破隔膜造成短路,出现爆炸等现象,这一问题长期困扰锂金属电池的发展,目前仍很难投入到民用市场。锂离子电池研究始于20世纪80年代,1991年首先由日本索尼公司推出了批量民用产品,由于其具有比能量高、体积小、重量轻、工作电压高、无记忆效应、无污染、自放电小等优点,受到市场欢迎,并迅速占领市场,广泛用于移动通讯、笔记本电脑、移动DVD、摄像机、数码相机、蓝牙耳机等便携式电子产品。目前主要产地集中在日本、中国和韩国,预计2004年全球需求量将达到10亿只。

由于锂离子电池从开始研究到现在才20多年时间,真正投入应用也只有十多年的时间,基础理论的研究还不是十分成熟,对锂离子电池的生产和发展很难起到全面指导作用,特别是对电池充放电反应机理的认识还存在很大分歧,有些现象用目前的理论和机理还很难解释。本文对锂离子电池充放电反应机理提出了一些看法,并对生产中存在的现象进行了解释,希望与锂电池同行共同探讨。二、基本原理

目前锂离子电池公认的基本原理为“摇椅理论”,该理论认为锂离子电池充放电反应机理不是通过传统氧化还原反应来实现电子转移,而是通过锂离子在层状物质的晶格中嵌入和脱出,发生能量变化。

充电时,“锂亚原子”失去电子变成离子后进入溶液,锂离子在电场作用下到达负极,与从外电路过来的电子在石墨的作用下形成“锂亚原子”,存在于负极材料中。放电则相反,“锂亚原子”失去电子变成锂离子进入溶液,在电场作用下迁移到正极,与外电路过来的电子在COO2作用下形成“锂亚原子”存在于正极材料中。充放电时正负极能量变化是由“锂亚原子”得失电子形成的,即在正负极上发生氧化还原反应,只是在两极发生反应为同一种物质。层状物质COO2和石墨(6n个C)能对锂原子产生强烈作用,使电子远离原子核,形成相对稳定类似于共价键化合物的物质LiCOO2和LiC6n。

因此,LiCOO2不能叫为钴酸锂,应该叫“锂钴氧化物”更合适,“锂离子电池”名称也不合适,应该叫“锂蓄电池”。

华讯传通媒体有限公司2004? 版权所有分支机构: 香港广州深圳台北迪拜(中东)

网址:https://www.wendangku.net/doc/2b16994417.html,电邮:cic@https://www.wendangku.net/doc/2b16994417.html,

https://www.wendangku.net/doc/2b16994417.html,/allmagazine/tc/main-titledetail.php?id=572

、“锂亚原子”形态的存在和充放电反应机理“假说”

锂在锂离子电池的正负极材料中存在形态不是离子形态,但又不是原子形态,而是介于原子与离子的中间形态,暂定为“锂亚原子”,锂原子核和电子形

成一对类似于共价化合物的稳定的化学键,既具有锂离子稳定性,又具有一定的

锂原子活性。在没有外界条件激活时是比较稳定的,表现出锂离子性能,一但遇

到适合的条件,又可以发生反应,表现出锂原子的性能。“锂亚原子”的活性同

电子与原子核距离有关,距离越远,稳定性越好。而锂的电子与原子核距离是由

其存在材料属性决定的,COO2和石墨能对锂原子产生强烈作用,使其电子远离

原子核形成“锂亚原子”。COO2对锂原子作用比石墨更强,电子与原子核距离

更远,因此COO2中的“锂亚原子”比石墨中的“锂亚原子”更稳定。

根据这种假设推断,锂离子电池在充放电过程中应该是“锂亚原子”发生氧化还原反应,而不是锂离子嵌入——脱出。

、锂离子电池存在的现象及疑问

(一)荷电态的石墨负极在空气中自燃

将锂离子电池在荷电状态下进行解剖,取出正负极片放在空气中观察,经过几分钟(荷电量多,时间短;荷电量少,时间长)发现负极表面出现白色物质,

并伴有气泡产生,极片有发热现象,随后气泡逐渐加剧,严重时出现燃烧。

(二)钴酸锂在空气中长期存放发生变质

正极材料钴酸锂放在NMP和PVDF中搅拌均匀后存放15天,发现钴酸锂变成“豆腐脑状”。如果放在水中搅拌均匀存放,几天时间即出现此现象。用“变质”的钴酸锂制作电池容量很低。

根据摇椅理论,锂在正负极中是以离子状态存在的,应该是非常稳定的,COO2和石墨本身也是非常稳定的物质,很难同空气中的物质发生反应。分析以上两种现象很像是锂同水发生了反应,如果是锂,它又是从何而来,如果锂不是以离子形态在正负极材料中存在,那它又为什么相对稳定呢?看来很难用摇椅理论来解释此现象。为了解释上述现象,本文提出一些新的“观点”,并据此推断锂离子电池充放电反应机理,解释一些锂离子电池存在的现象,供锂电池同行参考。五、分析与讨论

(一)荷电态负极片在空气中自燃现象解释

在充电时,石墨的6n个碳原子对锂原子产生了强烈作用,形成具有稳定化学键的LixC6n化合物,其中Li是以亚原子形态存在,相对比较稳定,因此电池刚解剖时极片没什么反应,由于锂不是离子态,而且碳对其引力也不是很强大,因此仍具有一定活性,可以与空气中水发生反应:

Li+H2O ===== LiOH+H2↑

此反应是放热反应,反应放出热量进一步激活“锂亚原子”,使其具有更高活性,反应进一步加剧,因此存放几分钟后会有气泡产生,并有白色LiOH产生。如果荷电量比较大,“锂亚原子”数量较多,反应量很大,就会产生自燃现象。如果存在Li与H2O反应,应生成强碱性LiOH。用PH纸测试白色物质是为强碱性,而LiPF6电解液为弱酸性,这也进一步证实了LiOH存在。

(二)钴酸锂在空气中长期存放发生变质的解释

锂由于受到氧化钴强烈作用形成“锂亚原子”,氧化钴比石墨对锂的作用更大,因此,锂的电子距离锂原子核更远,更接近于离子态。因此,它是比较稳定,但它毕竟不是离子,还具有一定的活性,长期存放时NMP逐渐吸收空气中水份与“锂亚原子”缓慢发生反应,逐渐发生变化并放出一定热量,豆腐脑状物质就是钴酸锂失去部分锂后和反应生成LiOH的混合物。在水溶液中由于水份充分,反应比在NMP中快。由此引出纯钴酸锂长期在空气中存放也会有部分锂损失,为验证此说法,将钴酸锂在空气中存放1个月后再配料制作电池比容量比正常低5%左右。

(三)锂离子电池过流充电会发生爆炸

锂离子电池充电5倍率以上容易发生爆炸,这主要是锂与石墨中6n个碳形成LiC6n化合物的反应是有一定反应速度的。在小电流充电时,Li++e→Li反应速度比Li+6nC→LiC6n结合速度慢,不会形成锂原子堆积,因此比较安全。在过流(5C以上)时形成锂原子速度会比形成LiC6n速度快,因此会造成锂原子堆积,形成锂枝晶,刺穿隔膜,致使电池内阻短路,电池短路会使放电电流瞬间增加很大,放出大量热量,使电解液分解产生大量气体,内压急剧上升造成电池爆炸。

(四)锂离子电池过热(150℃以上)会发生爆炸

由于锂在氧化钴和石墨中是以亚原子状态存在,在受热条件下其活性大大增加,在超过150℃以上时氧化钴和石墨对锂作用大大减弱,锂的电子与锂原子核距离很近,基本接近或达到锂原子状态,锂原子与电解液能发生反应,产生大量气体,内压迅速上升,造成电池爆炸。

六、结论

(一)氧化钴和石墨等层状物质能对锂原子产生强烈作用,使其变成介于原子和离子状态之间的形态———亚原子,锂在氧化钴和石墨中是以亚原子形态存在的,而不是以离子形态存在。

(二)“锂亚原子”的活性同锂原子核与电子之间距离有关,距离越近,活性越高,锂的电子与原子核的距离是由其存在材料属性决定的。

(三)锂离子电池充放电机理也是氧化还原反应,只是正负极参加反应为同一种物质。

(四)钴酸锂应该叫“锂钴氧化物”,锂离子电池应该叫“锂蓄电池”。

锂离子电池原理

本文由艾克博士贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 锂离子电池的原理及应用 陈硕冰 徐林楠 傅虹桥 李为真 卢云杨 摘要:分析了锂离子电池的原理,简明分析了锂离子电池的基本结构和组成单元,分析了锂 离子电池正负极材料的晶体结构, 简单介绍了锂离子电池的应用范围和前景以及正确使用锂 离子电池的方法。 关键词:锂离子电池;原理;结构;应用 1 引言 无论是军用还是民用,都迫切需要重量轻、体积小、性能高的电源系统,当前各种化学 电源的研制、 开发和投入使用正在不断地满足这方面的要求。 我们知道一个化学电源的电动 + 势 E=φ —φ ,从这个式子中可以看出要获得高的电池电动势就必须使正极的相对电极电 势很正而负极的相对电极电势很负,从周期表上看,则应尽量选用活泼金属为负极,活泼非 金属为正极,正是基于这一点,锂电池的研制引起了人们很大的关注。锂离子电池是在锂金 属电池的基础上发展起来的。由于锂金属电池在充放电时出现锂枝晶,刺破隔膜造成短路, 出现爆炸等现象,其发展受到了一定限制,而锂离子电池则较好地解决了这些问题。锂离子 电池研究始于 20 世纪 80 年代,1991 年首先由日本索尼公司推出了批量民用产品。锂离子 电池目前有液态锂离子电池(LIB)和聚合物锂离子电池(PLB)两类。其中液态锂离子电 池按正极材料又可分为 LiCoO2、LiNiO2、LiMn2O4 等种类。由于锂离子电池具有比能量高、 体积小、重量轻、工作电压高、循环寿命高、基本无记忆效应、无污染、自放电小等优点, 受到市场欢迎并迅速占领市场,广泛用于移动通讯、笔记本电脑、移动 DVD、摄像机、数 码相机、蓝牙耳机等便携式电子产品,大容量锂离子电池已在电动汽车中开始试用,预计它 将成为 21 世纪电动汽车的主要动力电源之一,并将在人造卫星、航空航天和储能方面得到 广泛应用。 2 锂离子电池的原理 锂离子电池的电化学表达式为: (-)Cn|LiClO4-EC+DEC|LiMO2(+) 正极反应:LiMO2 Li1-xMO2+xLi++xe- 或 Li1+yMn2O4 Li1+y-xMn2O4+xLi++xe- 负极反应:nC+xLi++xe- LixCn 电池反应:LiMO2+nC Li1-xMO2+LixCn 或 Li1+yMn2O4+nC Li1+y-xMn2O4+LixCn 式中,M 为 Co,Ni,Fe,W 等;正极化合物有 LiCoO2,LiNiO2,LiMn2O4,LiFeO2,LiWO2 等; 负极化合物有 LixC6,TiS2,WO3,NbS2,V2O5 等。 锂离子电池实际上是一种锂离子浓差电池, 正负电极由两种不同的锂离子嵌入化合物组 + 成。充电时,Li 从正极脱嵌经过电解质嵌入负极,负极处于富锂态,正极处于贫锂态,同 时电子的补偿电荷从外电路供给到碳负极,保证负极的电荷平衡。放电时则相反,Li+ 从负 极脱嵌,经过电解质嵌入正极,正极处于富锂态。在正常充放电的情况下,锂离子在层状结 构的碳材料和层状结构氧化物的层间嵌入和脱出, 一般只引起层面间距变化, 不破坏晶体结 构,在充放电过程中,负极材料的化学结构基本不变。因此,从充放电反应的可逆性看,锂 离子电池反应是一种理想的可逆反应。 锂离子电池的工作电压与构成电极的锂离子嵌入化合物和锂离子浓度有关。 目前, 用作 锂离子电池的正极材料是过渡金属和锰离子嵌入化合物,负极材料是锂离子嵌入碳化合物, 常用的碳材料有石油焦和石墨等。 图1 锂离子电池的充放电 目前已商品化的锂离子电池正极是 LiCoO2,负极是层状石墨,电池的电化学表达式为 -1 (-)C6|1mol?L LiPF6-EC+DEC|LiCoO2(+) 电池的充放电反应为 LiCoO2+6C Li1-xCoO2+LixC6 正极材料 LiCoO2,LiNiO2,LiMn2O4 和负极材料碳的理论容量见表 1

锂离子电池原理(基础篇)

锂离子电池原理及工艺流程 化学电源在实现能量的转换过程中,必须具有两个必要的条件: 一. 组成化学电源的两个电极上进行的氧化还原过程,必须分别在两个分开的区域进行,这一点区别于一般的氧化还原反应。 二. 两电极的活性物质进行氧化还原反应时所需电子必须由外线路传递,这一点区别于金属腐蚀过程的微电池反应。 为了满足以上的条件,任何一种化学电源均由以下四部分组成: 1、电极电池的核心部分,它是由活性物质和导电骨架所组成。活性物质是指正、负极中参加成流反应的物质,是化学电源产生电能的源泉,是决定化学电源基本特性的重要部分。对活性物质的要求是: 1)组成电池的电动势高; 2)电化学活性高,即自发进行反应的能力强; 3)重量比容量和体积比容量大; 4)在电解液中的化学稳定性高; 5)具有高的电子导电性; 6)资源丰富,价格便宜。 2、电解质电池的主要组成之一,在电池内部担负着传递正负极之间电荷的作用,所以势一些具有高离子导电性的物质。对电解质的要求是: 1)稳定性强,因为电解质长期保存在电池内部,所以必须具有稳定的化学性质,使储藏期间电解质与活性物质界面的电化学反应速率小,从而使电池的自放电容量损失减小;2)比电导高,溶液的欧姆压降小,使电池的放电特性得以改善。对于固体电解质,则要求它只具有离子导电性,而不具有电子导电性。 3、隔膜也叫隔离物。置于电池两极之间。隔膜的形状有薄膜、板材、棒材等。其作用是防止正负极活性物质直接接触,造成电池内部短路。对于隔膜的要求是: 1)在电解液中具有良好的化学稳定性和一定的机械强度,并能承受电极活性物质的氧化还原作用; 2)离子通过隔膜的能力要大,也就是说隔膜对电解质离子运动的阻力要小。这样,电池内阻就相应减小,电池在大电流放电时的能量损耗减小; 3)应是电子的良好绝缘体,并能阻挡从电极上脱落活性物质微粒和枝晶的生长; 4)材料来源丰富,价格低廉。常用的隔膜材料有棉纸、微孔橡胶、微孔塑料、玻璃纤维、水化纤维素、接枝膜、尼龙、石棉等。可根据化学电源不同系列的要求而选取。 一、原理 1.0 正极构造 LiCoO2(钴酸锂)+导电剂(乙炔黑)+粘合剂(PVDF)+集流体(铝箔)正极2.0 负极构造 石墨+导电剂(乙炔黑)+增稠剂(CMC)+粘结剂(SBR)+ 集流体(铜箔)负极3.0工作原理 3.1 充电过程 一个电源给电池充电,此时正极上的电子e从通过外部电路跑到负极上,正锂离子Li+从正极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达负极,与早就跑过来的电子结合在一起。 正极上发生的反应为 LiCoO2=充电=Li1-xCoO2+XLi++Xe(电子)

锂离子电池工作原理

锂离子电池工作原理 正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。 负极反应:放电时锂离子脱插,充电时锂离子插入。 电池总反应 以炭材料为负极,以含锂的化合物作正极的锂电池,在充放电过程中,没有金属锂存在,只有锂离子,这就是锂离子电池。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。回正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。在Li-ion的充放电过程中,锂离子处于从正极→负极→正极的运动状态。Li-ion Batteries就像一把摇椅,摇椅的两端为电池的两极,而锂离子就象运动员一样在摇椅来回奔跑。所以Li-ion Batteries又叫摇椅式电池。 一般锂电池充电电流设定在0.2C至1C之间,电流越大,充电越快,同时电池发热也越大。而且,过大的电流充电,容量不够满,因为电池内部的电化学反应需要时间。就跟倒啤酒一样,倒太快的话会产生泡沫,反而不满。 正极 正极材料:可选正极材料很多,目前主流产品多采用锂铁磷酸盐。 正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。 充电时:LiFePO?→ Li1-xFePO? + xLi + xe

放电时:Li1-xFePO?+ xLi + xe →LiFePO? 负极 负极材料:多采用石墨。新的研究发现钛酸盐可能是更好的材料。 负极反应:放电时锂离子脱插,充电时锂离子插入。 充电时:xLi + xe + 6C →LixC6 放电时:LixC6 → xLi + xe + 6C 锂离子电池是一种二次电池(充电电池),它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+ 在两个电极之间往返嵌入和脱嵌:充电池时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。电池一般采用含有锂元素的材料作为电极,是现代高性能电池的代表。 组成部分 钢壳/铝壳/圆柱/软包装系列: (1)正极——活性物质一般为锰酸锂或者钴酸锂,镍钴锰酸锂材料,电动自行车则普遍用镍钴锰酸锂(俗称三元)或者三元+少量锰酸锂,纯的锰酸锂和磷酸铁锂则由于体积大、性能不好或成本高而逐渐淡出。导电集流体使用厚度10--20微米的电解铝箔。 (2)隔膜——一种经特殊成型的高分子薄膜,薄膜有微孔结构,可以让锂离子自由通过,而电子不能通过。 (3)负极——活性物质为石墨,或近似石墨结构的碳,导电集流体使用厚度7-15微米的电解铜箔。

锂电池的充放电系统

本科毕业论文(设计、创作) 题目:锂电池的充放电系统 学生姓名:学号:1002149 所在院系:专业:电气工程及其自动化入学时间:2010 年9 月导师姓名:职称/学位:副教授/硕士导师所在单位: 完成时间:2014 年 5 月安徽三联学院教务处制

锂电池的充放电系统 摘要:随着时代的发展,便携化设备应用的越来越广泛,而锂电池则成为便携化设备的主要的电源支持。锂电池与其他二次电池不同的是更需更安全高效的充电控制要求,因为这些特点让锂电池在实际的使用中有很多不便。因此,基于特征的锂离子电池的充电和放电特性,锂离子电池充电的充电过程和控制单元的的发展趋势,本文设计出了一款智能充放电系统。本文设计的控制单元大部分是由基于MAX1898的充电电路和AT89C51的控制单元构造而成。以LM7805 为MAX1898与AT89C51提供电源支持。本文还提供了用于锂离子电池的充电和放电控制系统的程序框图和功能。 锂离子充电电池和锂离子电池,微控制器,发电,转换和电压隔离光耦部分,放电特性充电芯片,锂离子电池充电电路设计,锂离子电池的程序设计充电作为主要内容本文。 关键词:单片机、MAX1898、AT89C51

Li-ion battery charge and discharge system Abstract:With the progress of the times, portable device applications more widely, and lithium battery becomes more portable equipment's main power supply support. Lithium secondary batteries with other difference is safer and more efficient charging needs control requirements , because these features make lithium batteries have a lot of inconvenience in actual use . Therefore, The body on the characteristics of lithium ion rechargeable electric discharge pool,the development trend of lithium-ion battery charging process and control unit , the paper designed an intelligent charging and discharging system . This design of the control unit is constructed from long MAX1898 -based charging circuit and a control unit from AT89C51 . Provide power supply support for LM7805 MAX1898 with AT89C51. This article also provides a block diagram and function for lithium-ion battery charge and discharge control system. Lithium- ion battery characteristics , charge and discharge characteristics of lithium -ion batteries , the introduction of lithium-ion battery charging circuit design, rechargeable lithium-ion battery is designed to generate part of the program the microcontroller parts, power supply , voltage conversion and opto-isolated part of the charging chip , etc. as the main content of the paper . Key words: SCM,STC89c51, MAX1898

锂离子电池充放电过程

涓流充电是用来弥补电池在充满电后由于自放电而造成的容量损失。一般采用充电来实现上述目的。为补偿自放电,使蓄电池保持在近似完全充电状态的连续小电流充电。又称维护充电。电信装置、信号系统等的直流电源系统的蓄电池,在完全充电后多处于涓流充电状态,以备放电时使用。 的充电过程可以分为四个阶段:涓流充电(低压预充)、恒流充电、恒压充电以及充电终止。 池的充电方式是限压恒流,都是由IC芯片控制的,典型的充电方式是:先检测待充电电池的电压,如果电压低于3V,要先进行预充电,充电电流为设定电流的1/10,电压升到3V后,进入标准充电过程。标准充电过程为:以设定电流进行恒流充电,电池电压升到时,改为恒压充电,保持充电电压为。此时,充电电流逐渐下降,当电流下降至设定充电电流的1/10时,充电结束。下图为充电曲线。 阶段1:涓流充电——涓流充电用来先对完全放电的电池单元进行预充(恢复性充电)。在电池电压低于3V左右时采用涓流充电,涓流充电电流是恒流充电电流的十分之一即(以恒定充电电流为1A举例,则涓流充电电流为100mA), 阶段2:恒流充电——当电池电压上升到涓流充电阈值以上时,提高充电电流进行恒流充电。恒流充电的电流在至之间。电池电压随着恒流充电过程逐步升高,一般单节电池设定的此电压为阶段3:恒压充电——当电池电压上升到时,恒流充电结束,开始恒压充电阶段。电流根据电芯的饱和程度,随着充电过程的继续充电电流由最大值慢慢减少,当减小到时,认为充电终止。(C是以电池标称容量对照电流的一种表示方法,如电池是1000mAh 的容量,1C就是充电电流1000mA。) 阶段4:充电终止——有两种典型的充电终止

锂离子电池工作原理

锂离子电池工作原理

正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。 负极反应:放电时锂离子脱插,充电时锂离子插入。 电池总反应 以炭材料为负极,以含锂的化合物作正极的锂电池,在充放电过程中,没有金属锂存在,只有锂离子,这就是锂离子电池。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。回正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。在Li-ion的充放电过程中,锂离子处于从正极→负极→正极的运动状态。Li-ion Batteries就像一把摇椅,摇椅的两端为电池的两极,而锂离子就象运动员一样在摇椅来回奔跑。所以Li-ion Batteries又叫摇椅式电池。 一般锂电池充电电流设定在0.2C至1C之间,电流越大,充电越

快,同时电池发热也越大。而且,过大的电流充电,容量不够满,因为电池内部的电化学反应需要时间。就跟倒啤酒一样,倒太快的话会产生泡沫,反而不满。 正极 正极材料:可选正极材料很多,目前主流产品多采用锂铁磷酸盐。 正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。 充电时:LiFePO?→ Li1-xFePO? + xLi + xe 放电时:Li1-xFePO?+ xLi + xe →LiFePO? 负极 负极材料:多采用石墨。新的研究发现钛酸盐可能是更好的材料。 负极反应:放电时锂离子脱插,充电时锂离子插入。 充电时:xLi + xe + 6C →LixC6 放电时:LixC6 → xLi + xe + 6C

锂电池组保护板均衡充电基本工作原理

成组锂电池串联充电时,应保证每节电池均衡充电,否则使用过程中会影响整组电池的性能和寿命。常用的均衡充电技术有恒定分流电阻均衡充电、通断分流电阻均衡充电、平均电池电压均衡充电、开关电容均衡充电、降压型变换器均衡充电、电感均衡充电等。而现有的单节锂电池保护芯片均不含均衡充电控制功能;多节锂电池保护芯片均衡充电控制功能需要外接CPU,通过和保护芯片的串行通讯(如I2C总线)来实现,加大了保护电路的复杂程度和设计难度、降低了系统的效率和可靠性、增加了功耗。 本文针对动力锂电池成组使用,各节锂电池均要求充电过电压、放电欠电压、过流、短路的保护,充电过程中要实现整组电池均衡充电的问题,设计了采用单节锂电池保护芯片对任意串联数的成组锂电池进行保护的含均衡充电功能的电池组保护板。仿真结果和工业生产应用证明,该保护板保护功能完善,工作稳定,性价比高,均衡充电误差小于50mV。 锂电池组保护板均衡充电基本工作原理 采用单节锂电池保护芯片设计的具备均衡充电能力的锂电池组保护板示意图如图1所示。其中:1为单节锂离子电池;2为充电过电压分流放电支路电阻;3为分流放电支路控制用开关器件;4为过流检测保护电阻;5为省略的锂电池保护芯片及电路连接部分;6为单节锂电池保护芯片(一般包括充电控制引脚CO,放电控制引脚DO,放电过电流及短路检测引脚VM,电池正端VDD,电池负端VSS等);7为充电过电压保护信号经光耦隔离后形成并联关系驱动主电路中充电控制用MOS管栅极;8为放电欠电压、过流、短路保护信号经光耦隔离后形成串联关系驱动主电路中放电控制用MOS管栅极;9为充电控制开关器件;10为放电控制开关器件;11为控制电路;12为主电路;13为分流放电支路。单节锂电池保护芯片数目依据锂电池组电池数目确定,串联使用,分别对所对应单节锂电池的充放电、过流、短路状态进行保护。该系统在充电保护的同时,通过保护芯片控制分流放电支路开关器件的通断实现均衡充电,该方案有别于传统的在充电器端实现均衡充电的做法,降低了锂电池组充电器设计应用的成本。

锂离子电池充放电机理的探索

锂离子电池充放电机理的探索 及“锂亚原子”模型的建立 贵州航天电源科技有限公司张忠林杨玉光 摘要:锂离子电池的研究和发展一直都是以“摇椅理论”为指导,由于受该理论的影响,很多现象很难用传统的电化学理论进行解释。作者在生产实践中通过对一些现象的观察,并做了大量的试验和研究,提出“锂亚原子”的模型,并在此模型的基础上,对锂离子电池的充放电反应机理和一些现象用电化学理论进行了解释。 主题词:锂离子电池、反应机理、锂亚原子 一、前言 锂离子电池是在锂金属电池基础上发展起来的。由于锂金属电池在充放电时出现锂枝晶,刺破隔膜造成短路,出现爆炸等现象,这一问题长期困扰锂金属电池的发展,目前仍很难投入到民用市场。锂离子电池研究始于20世纪80年代,1991年首先由日本索尼公司推出了批量民用产品,由于其具有比能量高、体积小、重量轻、工作电压高、无记忆效应、无污染、自放电小等优点,受到市场欢迎,并迅速占领市场,广泛用于移动通讯、笔记本电脑、移动DVD、摄像机、数码相机、蓝牙耳机等便携式电子产品。目前主要产地集中在日本、中国和韩国,预计2004年全球需求量将达到10亿只。 由于锂离子电池从开始研究到现在才20多年时间,真正投入应用也只有十多年的时间,基础理论的研究还不是十分成熟,对锂离子电池的生产和发展很难起到全面指导作用,特别是对电池充放电反应机理的认识还存在很大分歧,有些现象用目前的理论和机理还很难解释。本文对锂离子电池充放电反应机理提出了一些看法,并对生产中存在的现象进行了解释,希望与锂电池同行共同探讨。二、基本原理 目前锂离子电池公认的基本原理为“摇椅理论”,该理论认为锂离子电池充放电反应机理不是通过传统氧化还原反应来实现电子转移,而是通过锂离子在层状物质的晶格中嵌入和脱出,发生能量变化。

锂电池充放电系统的设计毕业设计

题目:锂电池充放电系统的设计 所在院系:信息与通信技术系专业:电气工程及其自动化

摘要 随着电子技术的快速发展使得各种各样的电子产品都朝着便携化和小型轻量化的方向发展,也使得更多的电气化产品采用基于电池的供电系统。目前为止,较多使用的电池有镍镉、镍氢、铅蓄电池和锂电池。由于不同类型电池的充电特性不同,通常对不同类型,甚至不同电压、容量等级的电池使用不同的充电器,但这在实际使用中有很多不便。 本设计是一种基于单片机的锂离子电池充电器,在设计上,选择了简洁、高效的硬件,设计稳定可靠的软件,说明了系统的硬件组成,包括单片机电路、充电控制电路、电压转换及光耦隔离电路,并对充电器的核心器件MAX1898充电芯片、AT89C2051单片机进行了较详细的介绍。阐述了系统的软硬件设计。以C 语言为开发工具,进行了设计和编码。保证了系统的可靠性、稳定性、安全性和经济性。 该充电器具有检测锂离子电池的状态;自动切换充电模式以满足充电电池的充电需求;充电器短路保护功能;充电状态显示的功能。在生活中更好的维护了充电电池,使电池更好被运用到生活中。 关键词:单片机、MAX1898、AT89C51

Abstract Electronic technology's fast development causes various electronic products develops toward portable and the small lightweight direction, It also causes the more electrification products to use based on battery's power supply system. At present, the many use's batteries have the nickel cadmium, the nickel hydrogen, the lead accumulator and the lithium battery. Their respective characteristic had decided they will coexist in a long time develop. Because the different type battery's charge characteristic is different, usually to different type, even different voltage, capacity rank battery use different battery charger, but this has many inconveniences in the actual use. This topic design is one kind lithium ion battery charger which is based on Single Chip, in the design, it has chosen succinctly, the highly effective hardware, the design stable reliable software, explained in detail system's hardware composition, including the monolithic integrated circuit electric circuit, the charge control electric circuit, the voltage transformation and the light pair isolating circuit, and to this battery charger's core component - MAX1898 charge chip, at89C2051 monolithic integrated circuit has carried on the detailed introduction. Elaborated system's software and hardware design. Take the C language as the development kit, has carried on the detailed design and the code. Has realized system's reliability, the stability, the security and the efficiency. The intelligence battery charger has the examination lithium ion battery's condition; The automatic cut over charge pattern meets when rechargeable battery's charge needs; Battery charger has short circuit protection function; The charge condition demonstration's function. The battery charger has made the better maintenance rechargeable battery in the life,and lengthened the rechargeable battery’s service life. Key words: SCM,STC89c51, MAX1898

锂离子电池的过充电和过放电产生的问题讲课稿

针对锂离子电池过充电、过放电问题 过充电:锂离子电池过充时,电池电压随极化增大而迅速上升,会引起正极活性物质结构的不可逆变化及电解液的分解,产生大量气体,放出大量的热,使电池温度和内压急剧增加,存在爆炸、燃烧等隐患。 过放电:电池放完内部储存的电量,电压达到一定值后,继续放电就会造成过放电,电池过放电可能会给电池带来灾难性的后果,特别是大电流过放,或反复过放对电池影响更大。一般而言,过放电会使电池内压升高,正负极活性物质可逆性受到破坏,电解液分解,负极锂沉积,电阻增大,即使充电也只能部分恢复,容量也会有明显衰减。 解决措施: 1、改变正极材料:目前钴酸锂正极活性材料在小电芯方面是很成熟 的体系,但是充满电后,仍旧有大量的锂离子留在正极,当过充时,残留在正极的锂离子将会涌向负极,在负极上形成枝晶(使其晶面的半高宽变大,导致某一方向的晶粒尺寸变小,晶体结构的改变导致碳材料出现裂纹,进而破坏负极表面的 SEI 膜并促进 SEI 膜的修复,SEI 膜的过度生长消耗活性锂,因此造成了电池的不可逆容量衰减。如图1所示)这是采用钴酸锂材料的电池过充时必然的结果。甚至在正常充放电过程中,也有可能会有的产生多余的锂离子游离到负极形成枝晶(由于石墨的嵌脱锂电位较低,接近锂的还原电位,因此在某些条件下负极容易出现锂沉积,锂沉积会消耗活性锂,产生不可逆容量损失)。因此寻求高能量密度、高安全、环保和价格便宜的电极材料是动力电池发展的关键。目前国家选择的安全正极材料有锰酸锂、磷酸铁锂等。 分子结构上面可以保证在满电状态,正极的锂离子已经完(锰酸锂LiMnO 4 全嵌入到负极炭孔中,从根本上避免了枝晶的产生。同时锰酸锂稳固的结构使其氧化性能远远低于钻酸锂,分解温度超过钴酸锂10O℃,即使由于外力发生内部短路、外部短路、过充电时,也完全能够避免了由于析出金属锂引发燃烧、爆炸

锂离子电池存储与自放电的关系

自放电的分类:从自放电对电池的影响,可以将自放电分为两种:损失容量能够可逆得到补偿的自放电;损失容量无法可逆补偿的自放电。按照这两种分类,我们可以大约轮廓性的给出一些自放电的原因。自放电的原因: 1.造成可逆容量损失的原因:可逆容量损失的原因是发生了可逆放电反应,原理跟电池正常放电反应一致。不同点是正常放电电子路径为外电路、反应速度很快;自放电的电子路径是电解液、反应速度很慢。 2.造成不可逆容量损失的原因:当电池内部发生了不可逆反应时,所造成的容量损失即为不可逆容量损失的。所发生不可逆反应的类型主要包括:A:正极与电解液发生的不可逆反应(相对主要发生于锰酸锂、镍酸锂这两种易发生结构缺陷的材料,例如锰酸锂正极与电解液中锂离子的反应:LiyMn2O4+xLi++xe-→Liy+xMn2O4 等);B:负极材料与电解液发生的不可逆反应(化成时形成的SEI膜就是为了保护负极不受电解液的腐蚀,负极与电解液可能发生的反应为:LiyC6→Liy-xC6+xLi++xe等);C:电解液自身所带杂质引起的不可逆反应(例如溶剂中CO2可能发生的反应:2CO2+2e+2Li+→Li2CO3+CO;溶剂中O2发生的反应:1/2O2+2e+2Li+→Li2O )。类似的反应不可逆的消耗了电解液中的锂离子,进而损失了电池容量。D:制成时杂质造成的微短路所引起的不可逆反应。这一现象是造成个别电池自放电偏大的最主要原因。空气中的粉尘或者制成时极片、隔膜沾上的金属粉末都会造成内部微短路。生产时绝对的无尘是做不到的,当粉尘不足以达到刺穿隔膜进而使正负极短路接触时,其对电池的影响并不大;但是当粉尘严重到刺穿隔膜这个“度”时,对电池的影响就会非常明显。由于有是否刺穿隔膜这个“度”的存在,因此在测试大批电池自放电率时,经常会发现大部分电池的自放电率都集中在一个不大的范围内,而只有小部分电池的自放电明显偏高且分布离散,这些应该就是隔膜被刺穿的电池。最后需要说明的是,锂离子电池内部发生的副反应是非常复杂的,文武虽然查了些资料,但由于水平有限精力有限,暂时只能分析道这个程度,大家凑合着看吧。自放电的测试方法: 1.测量电池搁置一段时间后的容量损失:自放电研究的本初目的就是研究电池搁置后的容量损失。但是,以下原因造成测试容量损失在实施上困难重重:A.充电过程中的不可逆程度过大,即使充电后马上进行放电,放电容量/充电容量值都很难保证在100%±0.5%以内。如此大的误差,就要求测试之间的搁置时间必须非常长。而这很显然不符合日常生产的需求。B.测试容量时需要大量电力和人力物力,过程复杂且增加了成本。基于以上两个考虑,一般不会将“测量搁置后放电容量对比之前充电容量的损失”来作为电池的自放电标准。 2.测量一段时间内的K值:衡量自放电程度的一个非常重要的指标K值=△OCV/△t。K值常见单位为mV/d,当然这跟厂子自己的标准(或者厂子老大的个人喜好)、电池本身的性能、测量条件等有关。测量两次电压计算K值的方法更为简便且误差更小,因此K值是衡量电池自放电的常规性方法。以下文字可能会将K值与自放电混用,请大家注意。自放电及K值的影响因素: 1.正负极材料、电解液种类、隔膜厚度种类:由于自放电很大程度上是发生于材料之间,因此材料的性能对自放电有很大的影响。但是材料的各个具体参数(比如正负极的粒径、电解液的电导率、隔膜的孔隙率等)对自放电的影响到底有多大、有影响的原因是什么?这一问题不是研究的重点。一是问题本身太过复杂,二是对量产、搞研究皆没有太大意义。不过好在文武的同事曾经做过实验,发现三元电池的自放电率要高于钴酸锂电池。但是再多的,就不知道了(子曰:知之为知之,不知为不知,是智也)。 2.存储的时间:存储时间变长,一方面是使压降的绝对值增大(废话),另一方面则变相的减少了“仪器绝对误差/压降值”,从而使结果更为准确。文武通过实验发现,使用精度为0.1mV的仪器测试自放电,当测试时间超过14天时,才能够将问题电芯(什么是问题电芯将在下面的文字中回答)与正常电芯区分出来(当然文武那批电池K值很小,0.13mV/d左右)。 3.存储的条件:温度和湿度的增加,会增大自放电程度。这点很好理解且论坛里下载的文献中也见过这

浅谈锂离子电池充放电

浅谈锂离子电池充放电 【摘要】本文浅析了锂离子电池充放电的原理,及其对电池寿命的影响。 【关键词】锂离子电池;充放电深度 0.引言 锂离子电池因其端电压高、比能量大、充放电寿命长、放电性能稳定、自放电率低和无污染等优点[1-2],得到了广泛的应用。在日常生活的使用中,超长时间充电和完全用空电量会造成过度充电和过度放电,将对锂离子电池的正负极造成永久的损坏。从分子层面看,过度放电将导致负极碳过度释出锂离子而使得其片层结构出现塌陷,而过度充电将把太多的锂离子硬塞进负极碳结构里去,使得其中一些锂离子再也无法释放出来。因此对锂离子电池充放电过程的研究,有助于对锂电池进行合理的充电控制、对锂电池质量检测及延长锂电池的使用寿命等。 1.锂离子电池的充放电原理 目前锂电池公认的基本原理是所谓的”摇椅理论”。锂电池的充放电不是通过传统的方式实现电子的转移,而是通过锂离子在层状物质的晶体中的出入,发生能量变化。在正常充放电情况下,锂离子的出入一般只引起层间距的变化,而不会引起晶体结构的破坏,因此从充放电反映来讲,锂离子电池是一种理想的可逆电池。在充放电时锂离子在电池正负极往返出入,正像摇椅一样在正负极间摇来摇去,故有人将锂离子电池形象称为摇椅池。 电池由正极锂化合物、中间的电解质膜及负极碳组成。当电池充电时,锂离子从正极中脱嵌,在负极中嵌入,放电时反之。一般采用嵌锂过渡金属氧化物做正极,如LiCoO2、LiNiO2、LiMn2O4。做为负极的材料则选择电位尽可能接近锂电位的可嵌入锂化合物,如各种碳材料包括天然石墨、合成石墨、碳纤维、中间相小球碳素等和金属氧化物,包括SnO、SnO2、锡复合氧化物SnBxPyOz等。电解质采用LiPF6的乙烯碳酸脂(EC)丙烯碳酸脂、(PC)和低粘度二乙基碳酸脂(DEC)等烷基碳酸脂搭配的高分子材料。隔膜采用聚烯微多孔膜如PE、PP 或它们复合膜。外壳采用钢或铝材料,具有防爆的功能。锂离子电池的额定电压为3.6V。电池充满时的电压(称为终止充电电压)一般为 4.2V;锂离子电池终止放电电压为2.5V。如果锂离子电池在使用过程中电压已降到2.5V后还继续使用,则称为过放电,对电池有损害。 锂离子电池的特性是通过其充放电过程中端电压的变化反映出来的。电池端电压的变化间接体现了电池的充放电容量、内阻、表面升温、充放电平台、电极极化程度、寿命等指标随时间变化的规律。因此,充放电电压特性一致的电池在电化学特性上具有很好的一致性[3]。利用电池的动态特性配组的结果也会相应不同。

锂离子电池保护原理

电 池管理单元及电池保护 基于阻抗跟踪技术的电池管理单元(BMU)会在整个电池使用周期内监控单元阻抗和电压失衡,并有可能检测电池的微小短路(micro-short),防止电池单元造成火灾乃至爆炸。对于锂离子电池包制造商来说,针对电池供电系统构建安全且可靠的产品是至关重要的。电池包中的电池管理电路可以监控锂离子电池的运行状态,包括了电池阻抗、温度、单元电压、充电和放电电流以及充电状态等,以为系统提供详细的剩余运转时间和电池健康状况信息,确保系统作出正确的决策。此外,为了改进电池的安全性能,即使只有一种故障发生,例如过电流、短路、单元和电池包的电压过高、温度过高等,系统也会关闭两个和锂离子电池串联的背靠背(back-to-back)保护MOSFET,将电池单元断开。 锂离子电池安全 过高的工作温度将加速电池的老化,并可能导致锂离子电池包的热失控(thermal run-away) 及爆炸。对于锂离子电池高度活性化的含能材料来说,这一点是备受关注的。大电流的过度充电及短路都有可能造成电池温度的快速上升。锂离子电池过度充电期间,活跃得金属锂沉积在电池的正极,其材料极大的增加了爆炸的危险性,因为锂将有可能与多种材料起反应而爆炸,包括了电解液及阴极材料。例如,锂/碳插层混合物(intercalated compound)与水发生反应,并释放出氢气,氢气有可能被反应放热所引燃。阴极材料,诸如LiCoO2,在温度超过175℃的热失控温度限(4.3V单元电压)时,也将开始与电解液发生反应。 锂离子电池使用很薄的微孔膜(micro-porous film)材料,例如聚烯烃,进行电池正负极的电子隔离,因为此类材料具有卓越的力学性能、化学稳定性以及可接受的价格。聚烯烃的熔点范围较低,为135℃至165℃,使得聚烯烃适用于作为热保险(fuse)材料。随着温度的升高并达到聚合体的熔点,材料的多孔性将失效,其目的是使得锂离子无法在电极之间流动,从而关断电池。同时,热敏陶瓷(PCT)设备以及安全排出口(safety vent)为锂离子电池提供了额外的保护。电池的外壳,一般作为负极接线端,通常为典型的镀镍金属板。在壳体密封的情况下,金属微粒将可能污染电池的内部。随着时间的推移,微粒有可能迁移至隔离器,并使得电池阳极与阴极之间的绝缘层老化。而阳极与阴极之间的微小短路将允许电子肆意的流动,并最终使电池失效。绝大多数情况下,此类失效等同于电池无法供电且功能完全终止。在少数情况下,电池有可能过热、熔断、着火乃至爆炸。这就是近期所报道的电池故障的主要根源,并使得众多的厂商不得不将其产品召回。 电 池管理单元(BMU)以及电池保护 电池材料的不断开发提升了热失控的上限温度。另一方面,虽然电池必须通过严格的UL安全测试,例如UL16?2,但提供正确的充电状态并很好的应对多种有可能出现的电子原件故障仍然是系统设计人员的职责所在。过电压、过电流、短路、过热状态以及外部分立元件的故障都有可能引起电池突变的失效。这就意味着需要采取多重的保护――在同一电池包内具有至少两个独立的保护电路或机制。同时,还希望具备用于检测电池内部微小短路的电子电路以避免电池故障。 图1展示了电池包内电池管理的单元方框图,其组成包括了电量计集成电路(IC)、模拟前端

锂离子电池充放电安全检测设计

锂离子电池充放电安全检测设计 手机的锂离子电池充电安全性日益受到消费者重视,因此充电器制造商在设计产品时,须掌握锂离子电池的相关规格和特性,并使用具备完善电池检测及保护功能的充电芯片,以降低过电流、过电压或过温等状况所造成的危险。 随着科技进步、生活质量提升,电子产品的踪迹到处可见,其中又以手机为人类生活中不可或缺的必需品。不论是早期黑金刚手机或现今功能强大的智能手机,皆需要电源才能运作。 早期手机的电池主要有二种,一是镍氢、镍镉电池,二是锂离子电池,但现在使用镍氢、镍镉电池来做为电源的手机,已经是非常的少见,绝大部分都是使用锂离子电池,尤其消费者希望手机待机时间更长,且体积要更小,所以镍氢、镍镉电池已经慢慢不能符合消费者的期望而被淘汰。虽然镍氢、镍镉电池在价格以及替代电池取得的便利性优于锂离子电池,在其他电子产品上仍旧可看到镍氢、镍镉电池的踪迹;但是,在体积、重量及容量方面,镍氢、镍镉电池皆不如锂离子电池,所以现今标榜着轻薄短小的电子产品,几乎都是使用锂离子电池。 智能型手机因其功能强大、屏幕耗电量大,更是需要电池容量大及电力更耐久的锂离子电池。当手机电池电量不足时,使用者通常会以充电器或搭配一组移动电源随时对电池进行充电。 体积/容量兼具锂离子电池为电子产品首选 充电电池依其材质的不同可分为四类:铅酸电池、镍镉电池、镍氢电池和锂离子电池。

表1 充电电池比较表 由表1优缺点看来,镍镉、镍氢及锂离子电池较适合使用在电子产品上;而锂离子电池无论是在体积、重量及容量(电子产品的使用时间)较优于镍镉、镍氢电池,也无记忆效应的问题,所以锂离子电池在电子产品使用上似乎方便许多。 延长使用寿命锂离子电池充/放电压成关键 一般来说,锂离子电池会有电性安全的范围限制。由于锂离子电池的特性,当电池电压在充电时上升到最高设定电压后,要立即停止充电,避免电池因过充电造成电池损毁而产生危险;电池供电(放电)时,电池电压如果降至最低设定电压以下便要停止放电,避免因过放电而降低使用寿命。 此外,为确保电池使用上的安全,锂离子电池还必须要加装短路保护,以避免发生危险;即使大多数的锂离子电池都有加装保护电路,然而在选择优质的充电器或移动电源时,这仍然是一项重要的考量因素。

锂离子电池的过充电和过放电产生的问题

针对锂离子电池过充电、过放电问题过充电:锂离子电池过充时,电池电压随极化增大而迅速上升,会引起正极活性物质结构的不可逆变化及电解液的分解,产生大量气体,放出大量的热,使电池温度和内压急剧增加,存在爆炸、燃烧等隐患。 过放电:电池放完内部储存的电量,电压达到一定值后,继续放电就会造成过放电,电池过放电可能会给电池带来灾难性的后果,特别是大电流过放,或反复过放对电池影响更大。一般而言,过放电会使电池内压升高,正负极活性物质可逆性受到破坏,电解液分解,负极锂沉积,电阻增大,即使充电也只能部分恢复,容量也会有明显衰减。 解决措施: 1、改变正极材料:目前钴酸锂正极活性材料在小电芯方面是很成熟的体 系,但是充满电后,仍旧有大量的锂离子留在正极,当过充时,残留在正极的锂离子将会涌向负极,在负极上形成枝晶(使其晶面的半高宽变大,导致某一方向的晶粒尺寸变小,晶体结构的改变导致碳材料出现裂纹,进而破坏负极表面的 SEI 膜并促进 SEI 膜的修复,SEI 膜的过度生长消耗活性锂,因此造成了电池的不可逆容量衰减。如图1所示)这是采用钴酸锂材料的电池过充时必然的结果。甚至在正常充放电过程中,也有可能会有的产生多余的锂离子游离到负极形成枝晶(由于石墨的嵌脱锂电位较低,接近锂的还原电位,因此在某些条件下负极容易出现锂沉积,锂沉积会消耗活性锂,产生不可逆容量损失)。因此寻求高能量密度、高安全、环保和价格便宜的电极材料是动力电池发展的关键。目前国家选择的安全正极材料有锰酸锂、磷酸铁锂等。 (锰酸锂LiMnO 4 分子结构上面可以保证在满电状态,正极的锂离子已经完全嵌入到负极炭孔中,从根本上避免了枝晶的产生。同时锰酸锂稳固的结构使其氧化性能远远低于钻酸锂,分解温度超过钴酸锂10O℃,即使由于外力发生内部短路、外部短路、过充电时,也完全能够避免了由于析出金属锂引发燃烧、爆炸的危险。 磷酸铁锂(LiFePO 4)及其充电(脱锂)后形成FePO 4 的热稳定性非常好,其在 210~410℃的温度范围内所放出的热量仅为210J/g:而普遍使用的LiCoO2的充电态

相关文档
相关文档 最新文档