文档库 最新最全的文档下载
当前位置:文档库 › 立体几何中的建系设点

立体几何中的建系设点

立体几何中的建系设点
立体几何中的建系设点

立体几何解答题的建系设点问题

在如今的立体几何解答题中,有些题目可以使用空间向量解决问题,与其说是向量运算,不如说是点的坐标运算,所以第一个阶段:建系设点就显得更为重要,建立合适的直角坐标系的原则有哪些?如何正确快速写出点的坐标?这是本文要介绍的内容。 一、基础知识:

(一)建立直角坐标系的原则:如何选取坐标轴

1、z 轴的选取往往是比较容易的,依据的是线面垂直,即z 轴要与坐标平面xOy 垂直,在几何体中也是很直观的,垂直底面高高向上的即是,而坐标原点即为z 轴与底面的交点

2、,x y 轴的选取:此为坐标是否易于写出的关键,有这么几个原则值得参考:

(1)尽可能的让底面上更多的点位于,x y 轴上

(2)找角:,x y 轴要相互垂直,所以要利用好底面中的垂直条件 (3)找对称关系:寻找底面上的点能否存在轴对称特点 3、常用的空间直角坐标系满足,,x y z 轴成右手系,所以在标

,x y 轴时要注意。

4、同一个几何体可以有不同的建系方法,其坐标也会对应不同。但是通过坐标所得到的结论(位置关系,角)是一致的。

5、解答题中,在建立空间直角坐标系之前,要先证明所用坐标轴为两两垂直(即一个线面垂直 底面两条线垂直),这个过程不能省略。

6、与垂直相关的定理与结论: (1)线面垂直:

① 如果一条直线与一个平面上的两条相交直线垂直,则这条直线与该平面垂直 ② 两条平行线,如果其中一条与平面垂直,那么另外一条也与这个平面垂直 ③ 两个平面垂直,则其中一个平面上垂直交线的直线与另一个平面垂直 ④ 直棱柱:侧棱与底面垂直 (2)线线垂直(相交垂直):

① 正方形,矩形,直角梯形

② 等腰三角形底边上的中线与底边垂直(三线合一) ③ 菱形的对角线相互垂直

④ 勾股定理逆定理:若222

AB AC BC +=,则AB AC ⊥

(二)坐标的书写:建系之后要能够快速准确的写出点的坐标,按照特点可以分为3类 1、能够直接写出坐标的点

(1) 坐标轴上的点,例如在正方体(长度为1)中的,,'A C D 点,坐标特点如下:

x 轴:(),0,0x y 轴:()0,,0y z 轴:()0,0,z

规律:在哪个轴上,那个位置就有坐标,其余均为0

(2)底面上的点:坐标均为(),,0x y ,即竖坐标0z =,由于底面在作立体图时往往失真,所以要快速正确写出坐标,强烈建议在旁边作出底面的平面图进行参考:以上图为例: 则可快速写出,H I 点的坐标,位置关系清晰明了

111,,0,,1,022H I ???? ? ?????

2、空间中在底面投影为特殊位置的点:

如果()'

11,,A x y z 在底面的投影为()22,,0A x y ,那么

1212,x x y y ==(即点与投影点的横纵坐标相同)

由这条规律出发,在写空间中的点时,可看下在底面的投影点,坐标是否好写。如果可以则直接确定了横纵坐标,而竖坐标为该点到底面的距离。例如:正方体中的'

B 点,其投影为B ,而()1,1,0B 所以()'

1,1,B z ,而其到底面的距离为1,故坐标为()'

1,1,1B

以上两个类型已经可以囊括大多数几何体中的点,但总还有一些特殊点,那么就要用到第三个方法: 3、需要计算的点

① 中点坐标公式:()()111222,,,,,A x y z B x y z ,则AB 中点121212

,,222x x y y z z M +++??

??

?

,图中的,,,H I E F 等中点坐标均可计算

② 利用向量关系进行计算(先设再求):向量坐标化后,向量的关系也可转化为坐标的关系,

进而可以求出一些位置不好的点的坐标,方法通常是先设出所求点的坐标,再选取向量,利用向量关系解出变量的值,例如:求'

A 点的坐标,如果使用向量计算,则设()',,A x y z ,

可直接写出()()()'

1,0,0,1,1,0,1,1,1A B B ,观察向量''

AB A B = ,而()0,1,0AB = ,

()''1,1,1A B x y z =--- 101110101x x y y z z -==????

∴-=?=????-==??

()'1,0,1A ∴

二、典型例题:

例1:在三棱锥P ABC -中,PA ⊥平面ABC ,BAC ∠=棱,,AB BC CD 的中点,1,2AB AC PA ===坐标系并确定各点坐标

例2:在长方体1111ABCD A B C D -中,

,E F 分别是棱1,BC CC 上的点,2CF AB CE ==,1::1:2:4AB AD AA =,建立适当的直角坐标系并写出点的坐标。

例3:如图,在等腰梯形ABCD 中,AB CD ∥,

1,60AD DC CB ABC ===∠= ,CF ⊥ 平面ABCD ,

且1CF =,建立适当的直角坐标系并确定各点坐标。 小炼:建立坐标系的最重要的条件就是线面垂直(即z 轴),对于,x y 轴的选取,如果没有已知线段,可以以垂足所在的

某一条直线为坐标轴,然后作这条轴的垂线来确定另一条轴。

B

B

1

D

例4:已知四边形ABCD 满足1

,2

AD BC BA AD DC BC a ===

=∥,E 是BC 中点,将BAE 翻折成1B AE ,使得平面1B AE ⊥平面

A E C D ,F 为1

B D 中点

思路:在处理翻折问题时,首先要确定在翻折的过程中哪些量与位置关系不变,这些都是作为已知条件使用的。

例5:如图,已知四棱锥P ABCD -的底面是菱形,对角线,AC BD 交于点,4,3,4O OA OB OP ===,且OP ⊥平面ABCD ,点M 为PC 的三等分点(靠近P ),建立适当的直角坐标系并求各点坐标 小炼:(1)底面是菱形时要注意对角线相互垂直的性质

(2)对于一条线段上的某点分线段成比例,可以利用向量关系将该点坐标计算出来

B

立体几何中的向量公式

向量法解立体几何 用传统的方法解立体几何需要烦琐的分析、复杂的计算。而用向量法解题思路清晰、过程简洁。对立体几何的常见问题都可以起到化繁为简,化难为易的效果。 一. 证明两直线平行 已知两直线a 和b , b D C a B A ∈∈,,,,则?b a //存在唯一的实数λ使CD AB λ= 二. 证明直线和平面平行 1.已知直线αα∈∈?E D C a B A a ,,,,,且三点不共线,则a ∥?α存在有序实数 对μλ,使CE CD AB μλ+= 2.已知直线,,,a B A a ∈?α和平面 α的法向量n ,则a ∥n AB ⊥?α 三.证明两个平面平行 已知两个不重合平面βα,,法向量分别为n m ,,则α∥n m //?β 四.证明两直线垂直 已知直线b a ,。b D C a B A ∈∈,,,,则0=??⊥CD AB b a 五.证明直线和平面垂直 已知直线α和平面a ,且A 、B a ∈,面α的法向量为m ,则m AB a //?⊥α 六.证明两个平面垂直 已知两个平面βα,,两个平面的法向量分别为n m ,,则n m ⊥?⊥βα 七.求两异面直线所成的角 已知两异面直线b a ,,b D C a B A ∈∈,,,,则异面直线所成的角θ 为:CD AB ?=θcos 八.求直线和平面所成的角 A B

已知A,B 为直线a 上任意两点,n 为平面α的法向量,则a 和平面α所成的角θ为: 1. 当??? ? ??2, 0π 时?-=2πθ 2. 当??? ??∈?ππ,2 时2πθ-?= 九.求二面角 1.已知二面角βα--l ,且l CD l AB D C B A ⊥⊥∈∈,,,,且βα,则二面角的平面角θ 的大小为:=θ 2.已知二面角,βα--l n m ,分别为面βα,的法向量,则二面角的平面角θ的 大小与两个法向量所成的角相等或互补。即-=πθ 注:如何判断二面角的平面角和法向量所成的角的关系。 (1)通过观察二面角锐角还是钝角,再由法向量的成的角求之。 (2)通过观察法向量的方向,判断法向量所成的角与二面角的平面角相等还是互补。 十.求两条异面直线的距离 已知两条异面直线b a ,,m 是与两直线都垂直的向量,b B a A ∈∈,则两条 异面直线的距离d = 十一.求点到面的距离 已知平面α和点A,B 且αα∈?B A ,,m 为平面α的法向量,则点A 到平面 α 的距离d =

空间立体几何建系教学设计

教学设计《向量法解决几何问题的综合应用》 教材分析: 向量法的好处在于克服传统立体几何以纯几何解决问题带来的高度的技巧性和随机性.向量法可操作性强.运算过程程序化,公式化,有效地突破了立体几何教学和学习中的难点,是解决立体几何问题的重要工具,充分体现出向量法的优越性.本节课的主要内容是在已给的条件下准确建系,之后正确求角。 学情分析: 本节课之前,学生已经掌握了利用向量法求空间中各种角的基本方法,但在没有已知的三垂直下建系会存在一定的困难 教学重点:准确建系 教学难点: 建系前的证明 教学过程: 引入:前面几节课我们以向量作为工具研究了空间中各种角的求法。其基本步骤可分为哪几步? (生: 分为三步: 一建系,写坐标 二.进行向量运算. 三将向量运算的结果翻译成几何意义)如果我们认为向量法的前提是“向量运算”,那前提就是“建系”而建系的条件是三垂直。之前,我们给的题目都有明显的三垂直,目的是让大家掌握求角的方法,所以容易建系。现在我们可以再上一个台阶。请看练习: 例一:如图,在四棱锥ABCD P -中,平面PAD ⊥平面 ABCD ,AB=AD ,∠BAD=60°,F 是AD 的中点. 提问1 :如果给出线段长,之后让求角。那需要我们作什么工作? 建系 提问2:有现成的三垂直吗? 引导:如果我们完成这两个证明之后,能否建系呢? 求证:(1)BF ⊥平面PAD ;(2)若PA=PD,求证: 平面PF ⊥平面ABCD 补充(3)若PA=AB=2,在(2)的条件下建系,写出P 、A 、B 、D 四点的坐标 变式:如图,在四棱锥ABCD P -中,平面PAD ⊥平面 ABCD ,若PA=PD ,FC BF ⊥, F 是AD 的中点,试建立恰当的坐标系。(不用写坐标) 设计意图: 1.若题目给出面面垂,必然由此得到线面垂,强化面面垂直的性质定理,并明确书写的规范程

立体几何—建系难

例1 (2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如图,四棱锥中,,, 为的中点,. (1)求的长; (2)求二面角的正弦值. 【答案】 解:(1)如图,联结BD 交AC 于O ,因为BC =CD ,即△BCD 为等腰三角形,又AC 平分∠BCD ,故AC ⊥BD .以O 为坐标原点,OB →,OC →,AP → 的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz ,则OC =CD cos π3=1,而AC =4,得AO =AC -OC =3.又OD =CD sin π 3= 3,故A (0,-3,0),B (3,0,0),C (0,1,0),D (-3,0,0). 因PA ⊥底面ABCD ,可设P (0,-3,z ),由F 为PC 边中点,得F ? ????0,-1,z 2,又AF →= ? ????0,2,z 2,PB →=(3,3,-z ),因AF ⊥PB ,故AF →·PB →=0,即6-z 2 2=0,z =2 3(舍去-2 3),所以|PA → |=2 3. (2)由(1)知AD →=(-3,3,0),AB →=(3,3,0),AF → =(0,2,3).设平面FAD 的法向量为1=(x 1,y 1,z 1),平面FAB 的法向量为2=(x 2,y 2,z 2). 由1·AD →=0,1·AF → =0,得 ?? ?-3x 1+3y 1=0, 2y 1+3z 1=0, 因此可取1=(3,3,-2). 由2·AB →=0,2·AF → =0,得 ?? ?3x 2+3y 2=0, 2y 2+3z 2=0, 故可取2=(3,-3,2). 从而向量1,2的夹角的余弦值为 cos 〈1,2〉=n 1·n 2|n 1|·|n 2|=1 8 . 故二面角B -AF -D 的正弦值为3 7 8 . 例2(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))如图,四 棱锥P ABCD -中,902,ABC BAD BC AD PAB ∠=∠==?o ,与PAD ?都是等边

高考数学专题 立体几何中的建系设点问题

O y x z F E G H I J O y x z A'C'B B'C D' A 第63炼 立体几何解答题的建系设点问题 在如今的立体几何解答题中,有些题目可以使用空间向量解决问题,与其说是向量运算,不如说是点的坐标运算,所以第一个阶段:建系设点就显得更为重要,建立合适的直角坐标系的原则有哪些?如何正确快速写出点的坐标?这是本文要介绍的内容。 一、基础知识: (一)建立直角坐标系的原则:如何选取坐标轴 1、z 轴的选取往往是比较容易的,依据的是线面垂直,即z 轴要与坐标平面xOy 垂直,在几何体中也是很直观的,垂直底面高高向上的即是,而坐标原点即为z 轴与底面的交点 2、,x y 轴的选取:此为坐标是否易于写出的关键,有这么几个原则值得参考: (1)尽可能的让底面上更多的点位于,x y 轴上 (2)找角:,x y 轴要相互垂直,所以要利用好底面中的垂直条件 (3)找对称关系:寻找底面上的点能否存在轴对称特点 3、常用的空间直角坐标系满足,,x y z 轴成右手系,所以在标,x y 轴时要注意。 4、同一个几何体可以有不同的建系方法,其坐标也会对应 不同。但是通过坐标所得到的结论(位置关系,角)是一致的。 5、解答题中,在建立空间直角坐标系之前,要先证明所用 坐标轴为两两垂直(即一个线面垂直+底面两条线垂直),这个过程不能省略。 6、与垂直相关的定理与结论: (1)线面垂直: ① 如果一条直线与一个平面上的两条相交直线垂直,则这条直线与该平面垂直 ② 两条平行线,如果其中一条与平面垂直,那么另外一条也与这个平面垂直 ③ 两个平面垂直,则其中一个平面上垂直交线的直线与另一个平面垂直 ④ 直棱柱:侧棱与底面垂直 (2)线线垂直(相交垂直): ① 正方形,矩形,直角梯形 ② 等腰三角形底边上的中线与底边垂直(三线合一) ③ 菱形的对角线相互垂直 ④ 勾股定理逆定理:若2 2 2 AB AC BC +=,则AB AC ⊥ (二)坐标的书写:建系之后要能够快速准确的写出点的坐标,按照特点可以分为3类 1、能够直接写出坐标的点 (1) 坐标轴上的点,例如在正方体(长度为1)中的,,'A C D 点,坐标特点如下: x 轴:(),0,0x y 轴:()0,,0y z 轴:()0,0,z 规律:在哪个轴上,那个位置就有坐标,其余均为0

立体几何与平面几何计算公式

立体几何与平面几何计算公式 初中数学几何中,不论是平面几何还是立体几何,他们的计算公式是我们进行数学试题计算的基础,因此,希望中考考生积极的做好几何计算公式的复习。下面是初中数学几何计算公式,一起了解一下: 1 、正方形 C:周长S:面积:a:边长 周长=边长×4 C=4a 正方形面积=边长×边长S= a a 2 、长方形C:周长S:面积a:边长 周长=(长+宽)×2 C = 2(a+b) 长方形面积=长×宽S = a b 3 、三角形s:面积a:底h:高 三角形面积=底×高÷2 s = ah÷2 4 、平行四边形s:面积a:底h:高 平行四边形面积=底×高s = ah 5、梯形s面积a上底b下底h高 梯形面积=(上底+下底)×高÷2 s = (a+b) h÷2 6 、圆形r:半径d:直径c:周长s:面积 半径=直径÷2 r = d/2 半径=周长÷圆周率÷2 r = c/2π 直径=半径×2 d = 2r 直径=周长÷圆周率d = c/π

周长=圆周率×直径 c = πd 周长=圆周率×半径×2 c = 2πr 圆面积=圆周率×半径×半径s = πr r 圆环面积=圆周率×(大圆半径×大圆半径-小圆半径×小圆半径) s=π(R R-r r) 7 、长方体V:体积s:面积a:长b: 宽h:高 体积=长×宽×高V = abh 8、正方体V:体积a:棱长 总棱长=棱长×12 C = 12a 表面积=棱长×棱长×6 S表= a a6 体积=棱长×棱长×棱长V = a a a 9、圆柱体V:体积s:底面积h:高 圆柱体侧面积=底面周长×高s= c h 圆柱体体积=底面积×高V= sh 圆柱体体积=圆周率×半径×半径×高V =πr r h 圆柱体体积=1/2×侧面积×半径V =1/2s侧r 10、圆锥体V:体积s:底面积h:高 圆锥体体积=1/3×底面积×高V = 1/3sh 圆锥体体积=1/3×圆周率×半径×半径×高V = 1/3×πr r h

立体几何建系方法

立体几何建系方法 熟悉几个补形建系的技巧 基本模型:长方体 ; 下面几个多面体可考虑补成长方体建系: (1)三棱锥P ABC -,其中,2 PA ABC ABC π⊥∠=. 特点:BC PAB ⊥面;四个面均为直角三角形。 建系方法: (2)四棱锥P-ABCD,其中,PA ABCD ⊥面ABCD 为矩形。 建系方法: P A B C A C D P

(3)正四面体A-BCD 建系方法: (4)两个面互相垂直建系方法 1、(2011年高考重庆卷文科20)如题(20) 图,在四面体ABCD中,平面ABC⊥平 面,,2,1 ⊥==== AB BC AC AD BC CD (Ⅰ)求四面体 ABCD的体积; (Ⅱ)求二面角 C-AB-D的平面角的 正切值。

2、(06山东),已知四棱锥P-ABCD的底面ABCD为等腰梯形,AB∥DC,AC⊥BD,AC与BD相交于点O,且顶点P在底面上的射影恰为O点, 又BO=2,PO=2,PB⊥PD. (Ⅰ)求异面直线PD与BC所成角的余弦值;(Ⅱ)求二面角P-AB-C的大小;

3、在直三棱柱ABC -A 1B 1C 1中,AB =BC , D 、 E 分别为BB 1、AC 1的中点. (Ⅰ)证明:ED 为异面直线BB 1与AC 1的公垂线; (Ⅱ)设AA 1=AC =2AB ,求二面角A 1-AD -C 1的大小. A B C D E A 1 B 1 C 1

4.如图,已知四棱锥P ABCD -,底面ABCD为菱 形,PA⊥平面ABCD,60 ABC ∠=o,E F,分别是BC PC ,的中点. (Ⅰ)证明:AE PD ⊥; (Ⅱ)若H为PD上的动点,EH与平 面PAD所成最大角的正切值 为 2E AF C --的余弦值. P B E C D F A

空间几何中的角和距离的计算

空间角和距离的计算(1) 一 线线角 1.直三棱柱A 1B 1C 1-ABC ,∠BCA=900,点D 1,F 1分别是A 1B 1和A 1C 1的中点,若BC=CA=CC 1,求BD 1与AF 1所成角的余弦值. 2.在四棱锥P-ABCD 中,底面ABCD 是直角梯形,∠BAD=900,AD ∥BC ,AB=BC=a ,AD=2a ,且PA ⊥面ABCD ,PD 与底面成300角. (1)若AE ⊥PD ,E 为垂足,求证:BE ⊥PD ; (2)若AE ⊥PD ,求异面直线AE 与CD 所成角的大小. 二.线面角 1.正方体ABCD-A 1B 1C 1D 1中,E ,F 分别为BB 1、CD 的中点,且正方体的棱长为2. (1)求直线D 1F 和AB 和所成的角; (2)求D 1F 与平面AED 所成的角. F 1D 1B 1 C 1A 1 B A C A B C D P E C D E F D 1 C 1 B 1 A 1 A B

2.在三棱柱A 1B 1C 1-ABC 中,四边形AA 1B 1B 是菱形,四边形BCC 1B 1是矩形,C 1B 1⊥AB ,AB=4,C 1B 1=3,∠ABB 1=600,求AC 1与平面BCC 1B 1所成角的大小. 三.二面角 1.已知A 1B 1C 1-ABC 是正三棱柱,D 是AC 中点. (1)证明AB 1∥平面DBC 1; (2)设AB 1⊥BC 1,求以BC 1为棱,DBC 1与CBC 1为面的二面角的大小. 2.ABCD 是直角梯形,∠ABC=900,SA ⊥面ABCD ,SA=AB=BC=1,AD=0.5. (1)求面SCD 与面SBA 所成的二面角的大小; (2)求SC 与面ABCD 所成的角. 3.已知A 1B 1C 1-ABC 是三棱柱,底面是正三角形,∠A 1AC=600,∠A 1AB=450,求二面角B —AA 1—C 的大小. B 1 C 1 A 1 B A C D B 1 C 1 A 1B A C B A D C S B 1 C 1 B C A 1

高三一轮:立体几何中的建系设点

立体几何解答题的建系设点问题 在如今的立体几何解答题中,有些题目可以使用空间向量解决问题,与其说是向量运算,不如说是点的坐标运算,所以第一个阶段:建系设点就显得更为重要,建立合适的直角坐标系的原则有哪些?如何正确快速写出点的坐标?这是本节要介绍的内容。 一、基础知识: (一)建立直角坐标系的原则:如何选取坐标轴 1、轴的选取往往是比较容易的,依据的是线面垂直,即轴要与坐标平面垂直,在几何体中也是很直观的,垂直底面高高向上的即是,而坐标原点即为轴与底面的交点 2、轴的选取:此为坐标是否易于写出的关键,有这么几个原则值得参考: (1)尽可能的让底面上更多的点位于轴上 (2)找角:轴要相互垂直,所以要利用好底面中的垂直条件 (3)找对称关系:寻找底面上的点能否存在轴对称特点 3、常用的空间直角坐标系满足轴成右手系,所以在标轴时要注意。 4、同一个几何体可以有不同的建系方法,其坐标也会对应不同。但是通过坐标所得到的结论(位置关系,角)是一致的。 5、解答题中,在建立空间直角坐标系之前,要先证明所用坐标轴为两两垂直(即一个线面垂直底面两条线垂直),这个过程不能省略。 6、与垂直相关的定理与结论: (1)线面垂直: ① 如果一条直线与一个平面上的两条相交直线垂直,则这条直线与该平面垂直 ② 两条平行线,如果其中一条与平面垂直,那么另外一条也与这个平面垂直

③ 两个平面垂直,则其中一个平面上垂直交线的直线与另一个平面垂直 ④ 直棱柱:侧棱与底面垂直 (2)线线垂直(相交垂直): ① 正方形,矩形,直角梯形 ② 等腰三角形底边上的中线与底边垂直(三线合一) ③ 菱形的对角线相互垂直 ④ 勾股定理逆定理:若,则 (二)坐标的书写:建系之后要能够快速准确的写出点的坐标,按照特点可以分为3类 1、能够直接写出坐标的点 (1) 坐标轴上的点,例如在正方体(长度为1)中的点,坐标特点如下: 轴: 轴: 轴: 规律:在哪个轴上,那个位置就有坐标,其余均为0 (2)底面上的点:坐标均为,即竖坐标,由于底面在作立体图时往往失真,所以要快速正确写出坐标,强烈建议在旁边作出底面的平面图进行参考:以上图为例: 则可快速写出点的坐标,位置关系清晰明了 2、空间中在底面投影为特殊位置的点: 如果在底面的投影为,那么(即点与投影点的横纵坐标相同) 由这条规律出发,在写空间中的点时,可看下在底面的投影点,坐标是否好写。如果可以则直接确定了横纵坐标,而竖坐标为该点到底面的距离。例如:正方体中的点,其投影为,而所以,而其到底面的距离为,故坐标为 以上两个类型已经可以囊括大多数几何体中的点,但总还有一些特殊点,那么就要用到第三个方法: 3、需要计算的点

空间立体几何建系练习题

空间立体几何建系设点专题 引入空间向量坐标运算,使解立体几何问题避免了传统方法进行繁琐的空间分析,只需建立空间直角坐标系进行向量运算,而如何建立恰当的坐标系,成为用向量解题的关键步骤之一?所谓“建立适当的坐标系”,一般应使尽量多的点在数轴上或便于计算1、如图所示,四棱锥P—ABCD中,AB_AD,CD _ AD,PA_底面ABCD, PA=AD=CD=2AB=2,M 为PC 的中点。 (1) 求证:BM //平面PAD; (2) 在侧面PAD内找一点N,使MN _平面PBD; (3) 求直线PC与平面PBD所成角的正弦。 19.(本題满分直分) 正方形曲与矩形ABCD所在平面互相垂直,AB=2AD=2t 点E%AB的中点. (1 )求证:轲"平面A^DEt (H)求二面角DSE①的大卜 (III)求多面体AyDyDBE的休积*

3. 已知多面体 ABCDE 中,AB 丄平面 ACD , DE 丄平面ACD, AC = AD = CD = DE =2a , AB = a , F 为 CD 的中点. 4. 如图,四边形 ABCD 是正方形,PB 丄平面ABCD , MA//PB , PB=AB=2MA , (I) 证明:AC//平面PMD ; (U)求直线BD 与平面PCD 所成的角的大小; (川)求平面PMD 与平面ABCD 所成的二面角(锐角)的大小。 所成二面角的大小 (I)求证:AF 丄平面CDE ; (U)求异面直线AC , BE 所成角余弦值; (

5. 已知斜三棱柱ABC - AB。, . BCA =90“ , AC 二BC =2, A在底面ABC上 的射影恰为AC的中点D,又知BA _ AC i (I) 求证:AC i _平面ABC ; (II) 求CC i到平面AAB的距离; (III )求二面角A-AB-C的大小。 6. (湖南卷理科第18题)已知两个正四棱锥P—ABCD与Q—ABCD 的高都为2, AB= 4. (1)证明:PQ丄平面ABCD; (2)求异面直线AQ与PB所成的角;

N维空间几何体质心的计算方法.

N维空间几何体质心的计算方法 摘要:本文主要是求一个图形或物体的质心坐标的问题,通过微积分方面的知识来求解,从平面推广到空间,问题也由易到难。首先提出质心或形心问题,然后给出重心的定义,再由具体的例子来求解相关问题。 关键字:质心重心坐标平面薄板二重积分三重积分 一.质心或形心问题: 这类问题的核心是静力矩的计算原理。 1.均匀线密度为M的曲线形体的静力矩与质心: 静力矩的微元关系为 , dMx yudl dMy xudl ==. 其中形如曲线L( (, y f x a x b =≤≤的形状体对x轴与y轴的静力矩分别 为( b

a y f x S = ? , ( b y a M u f x =? 设曲线AB L 的质心坐标为( ,x y,则,, y x M M x y

M M == 其 中( b a M u x d x u l == ? 为AB L 的质量,L为曲线弧长。若在式 y M x M

= 与式 x M y M = 两端同乘以2π,则可得 到22( b a y xl f x S ππ == ? ,

22( b a x yl f x S ππ == ? ,其中x S 与y S 分别表示曲线AB L 绕x轴与y轴旋转而成的旋转体的侧面积。 2.均匀密度平面薄板的静力矩与质心: 设f(x为 [],a b 上的连续非负函数,考虑形如区域 {} (,,0(

D x y a x b y f x =≤≤≤≤ 的薄板质心,设M为其密度,利用微元法,小曲边梯形MNPQ的形心坐标为1 (,(, 2 y f y x y x x ≤≤+? ,当分割无限细化时,可当小曲边梯形MNPQ的质量视为集中于点 1 (,( 2 x f x 处的一个质点,将它对x轴与y轴分别取静力矩微元可有 1 (( 2 x dM u f x f x dx

立体几何的计算

教案 教师姓名授课班级授课形式 授课日期年月日第周授课时数 授课章节名称立体几何的计算 教学目的计算立体几何中的有关角度和距离以及一些体积问题教学重点二面角和几何体的体积 教学难点二面角的计算 更新、补充、 删节内容 使用教具三角板 课外作业补充 课后体会注意立体图形与平面图形的转化

授课主要内容或板书设计

一、复习知识点 1. 有关角的计算 ⑴异面直线所成的角 a . 定义:设,a b 是异面直线,过空间任一点o 引'',a a b b ,则'a 与'b 所成的锐角(或直角)叫异面直线,a b 所成的角。 b .范围(0,90] c . 求法:作平行线,将异面转化成相交 ⑵线面所成的角 a . 定义:平面的一条斜线和它在平面上的射影所成的锐角,叫这条斜线和这个平面所成的角。 b .范围:[0,90] c . 求法:作垂线,找射影 ⑶二面角 a . 定义:从一条直线出发的两个半平面所组成的图形叫二面角,其大小通过二面角的平面角来度量。 b .二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线所成的角叫二面角的平面角。 c . 范围:[0,]π d .作法: 1定义法:过棱上任一点o 在两个半平面内分别引棱的两条垂线,OA OB ,则 AOB ∠为二面角的平面角 2三垂线定理法:过二面角的一个半平面内一点A ,作棱l 的垂线,垂足为O , 作另一个面的垂线,垂足为B ,连接OB ,则AOB ∠为二面角的平面角。 β α O B A 3作棱的垂面法:过二面角内任意一点O ,分别向两个平面作垂线,垂足为,A B 则,AO BO 所确定的平面与棱l 交于P ,则APB ∠为二面角的平面角。

立体几何向量法建系难

立体几何(向量法)—建系难 例1 (2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如图,四棱锥P ABCD -中,PA ABCD ⊥底面,2,4,3 BC CD AC ACB ACD π ===∠=∠=,F 为PC 的中 点,AF PB ⊥. (1)求PA 的长; (2)求二面角B AF D --的正弦值. 【答案】 解:(1)如图,联结BD 交AC 于O ,因为BC =CD ,即△BCD 为等腰三角形,又AC 平分∠BCD ,故AC ⊥BD .以O 为坐标原点,OB →,OC →,AP → 的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz ,则OC =CD cos π3=1,而AC =4,得AO =AC -OC =3.又OD =CD sin π 3=3,故A (0,-3,0),B (3,0,0),C (0,1,0),D (-3,0,0). 因P A ⊥底面ABCD ,可设P (0,-3,z ),由F 为PC 边中点,得F ????0,-1,z 2,又AF → =????0,2,z 2,PB →=(3,3,-z ),因AF ⊥PB ,故AF →·PB →=0,即6-z 2 2 =0,z =2 3(舍去-2 3),所以|P A → |=2 3. (2)由(1)知AD →=(-3,3,0),AB →=(3,3,0),AF → =(0,2,3).设平面F AD 的法

向量为1=(x 1,y 1,z 1),平面F AB 的法向量为2=(x 2,y 2,z 2). 由1·AD →=0,1·AF →=0,得 ?? ?-3x 1+3y 1=0, 2y 1+3z 1=0, 因此可取1=(3,3,-2). 由2·AB →=0,2·AF →=0,得 ?? ?3x 2+3y 2=0, 2y 2+3z 2=0, 故可取2=(3,-3,2). 从而向量1,2的夹角的余弦值为 cos 〈1,2〉=n 1·n 2|n 1|·|n 2|=1 8 . 故二面角B -AF -D 的正弦值为3 7 8 . 例2(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))如图,四 棱锥P ABCD -中,902,ABC BAD BC AD PAB ∠=∠==?o ,与PAD ?都是等边三角形. (I)证明:;PB CD ⊥ (II)求二面角A PD C --的大小. 【答案】解:(1)取BC 的中点E ,联结DE ,则四边形ABED 为正方形. 过P 作PO ⊥平面ABCD ,垂足为O . 联结OA ,OB ,OD ,OE . 由△P AB 和△P AD 都是等边三角形知P A =PB =PD , 所以OA =OB =OD ,即点O 为正方形ABED 对角线的交点, 故OE ⊥BD ,从而PB ⊥OE . 因为O 是BD 的中点,E 是BC 的中点,所以OE ∥CD .因此PB ⊥CD .

立体几何的(向量法)—建系讲义

立体几何(向量法)—建系引入空间向量坐标运算,使解立体几何问题避免了传统方法进行繁琐的空间分析,只需 建立空间直角坐标系进行向量运算,而如何建立恰当的坐标系,成为用向量解题的关键步骤之一.所谓“建立适当的坐标系” ,一般应使尽量多的点在数轴上或便于计算。一、利用共顶点的互相垂直的三条线构建直角坐标系 例1(2012 高考真题重庆理19 )(本小题满分12 分如图,在直三棱柱ABC A1B1C1中,AB=4,AC=BC=,3 D 为AB的中点 Ⅰ)求点C到平面A1ABB1的距离; (Ⅱ)若AB1 A1C 求二面角的平面角的余弦值. 【答案】解:(1)由AC=BC,D为AB的中点,得CD⊥AB.又 CD⊥AA1,故CD⊥面A1ABB1,所以点 C 到平面A1ABB1 的距离为CD=BC2-BD2= 5. (2)解法一:如图,取D1 为A1B1的中点,连结DD1,则DD1∥AA1∥CC1.又由(1)知CD⊥面A1ABB1,故CD⊥A1D,CD⊥DD1,所以∠ A1DD 1为所求的二面角A1-CD-C1 的平面角. 因A1D 为A1C 在面A1ABB1 上的射影,又已知AB1⊥A1C,由三垂线定理的逆定理得AB1⊥A1D,从而∠ A1AB1、∠A1DA 都与∠ B1AB互余,因此∠ A1AB1=∠A1DA,所以Rt△A1AD∽Rt△B1A1A.因此A A A D1=A A1A B1,即AA21=AD·A1B1=8,得AA1=2 2.

从而 A 1D = AA 12+ AD 2=2 3. 所以,在 Rt △A 1DD 1 中, DD 1 = AA1 = 6. A 1D =A 1D = 3 . 解法二:如图,过 D 作 DD 1∥AA 1交A 1B 1于点 D 1,在直三棱柱中,易知 DB , DC ,DD 1两两垂直.以 D 为原点,射线 DB ,DC ,DD 1分别为 x 轴、y 轴、z 轴 的正半轴建立空间直角坐标系 D -xyz. 设直三棱柱的高为 h ,则 A (-2,0,0),A 1(-2,0,h ),B 1(2,0,h ), C (0, 5, 0),C 1(0, 5,h ),从而 A →B 1=(4,0,h ),A → 1C =(2, 5,- h ). 由 A → B 1⊥ A →1 C ,有 8- h 2=0,h =2 2. 故 D →A 1= (-2,0,2 2),C →C 1=(0,0,2 2),D → C = (0, 5,0). 设平面 A 1C D 的法向量为 m =(x 1, y 1,z 1),则 m ⊥D →C ,m ⊥D →A 1,即 5y 1=0, -2x 1+ 2 2z 1= 0, 取 z 1= 1,得 m = ( 2,0,1), 设平面 C 1CD 的法向量为 n = (x 2,y 2, z 2),则 n ⊥D →C ,n ⊥C → C 1,即 5y 2=0, 2 2z 2= 0, 取 x 2=1,得 n = (1,0,0),所以 m ·n 2 6 cos 〈 m , n 〉= = = . |m ||n | 2+ 1·1 3 所以二面角 A 1-CD -C 1 的平面角的余弦值为 6. 、利用线面垂直关系构建直角坐标系 cos ∠A 1DD 1

文科立体几何知识点、方法总结高三复习

立体几何知识点整理(文科) 一.直线和平面的三种位置关系: 1. 线面平行 l 符号表示: 2. 线面相交 符号表示: 3. 线在面内 符号表示: 二.平行关系: 1.线线平行: 方法一:用线面平行实现。 m l m l l // // ? ? ? ? ? ? = ? ? β α β α 方法二:用面面平行实现。 m l m l// // ? ? ? ? ? ? = ? = ? β γ α γ β α 方法三:用线面垂直实现。 若α α⊥ ⊥m l,,则m l//。 方法四:用向量方法: 若向量和向量共线且l、m不重合,则m l//。 2.线面平行: 方法一:用线线平行实现。 α α α// // l l m m l ? ? ? ? ? ? ? ? 方法二:用面面平行实现。 α β β α // // l l ? ? ? ? ? 方法三:用平面法向量实现。 若为平面α的一个法向 量,⊥且α ? l,则 α // l。 3.面面平行: 方法一:用线线平行实现。 β α α β // ' ,' , ' // ' // ? ? ? ? ? ? ? ? ? ? 且相交 且相交 m l m l m m l l 方法二:用线面平行实现。 β α β α α // , // // ? ? ? ? ? ? ?且相交 m l m l 三.垂直关系: 1. 线面垂直: 方法一:用线线垂直实现。 α α ⊥ ? ? ? ? ? ? ? ? ? = ? ⊥ ⊥ l AB AC A AB AC AB l AC l , 方法二:用面面垂直实现。 l

αββαβα⊥??? ? ?? ?⊥=?⊥l l m l m , 2. 面面垂直: 方法一:用线面垂直实现。 βαβα⊥?? ?? ?⊥l l 方法二:计算所成二面角为直角。 3. 线线垂直: 方法一:用线面垂直实现。 m l m l ⊥?? ?? ?⊥αα 方法二:三垂线定理及其逆定理。 PO l OA l PA l αα⊥? ? ⊥?⊥???? 方法三:用向量方法: 若向量和向量的数量积为0,则m l ⊥。 三.夹角问题。 (一) 异面直线所成的角: (1) 范围:]90,0(?? (2)求法: 方法一:定义法。 步骤1:平移,使它们相交,找到夹角。 步骤2:解三角形求出角。(常用到余弦定理) 余弦定理: ab c b a 2cos 2 22-+= θ (计算结果可能是其补角) 方法二:向量法。转化为向量的夹角 (计算结果可能是其补角): = θcos (二) 线面角 (1)定义:直线l 上任取一点P (交点除外),作PO ⊥ α于O,连结AO , 则AO 为斜线PA 在面α内的射影,PAO ∠(图中θ)为直线l 与面α所成的角。 (2)范围:]90,0[?? 当?=0θ时,α?l 或α//l 当?=90θ时,α⊥l (3)求法: 方法一:定义法。 步骤1:作出线面角,并证明。 步骤2:解三角形,求出线面角。 (三) 二面角及其平面角 (1)定义:在棱l 上取一点P ,两个半平面内分别作l 的垂线(射线)m 、n ,则射线m 和n 的夹角θ为二面角 α—l —β的平面角。 θ c b a

高中数学立体几何建系设点专题

2009-2010学年高三立几建系设点专题 引入空间向量坐标运算,使解立体几何问题避免了传统方法进行繁琐的空间分析,只需建立空间直角坐标系进行向量运算,而如何建立恰当的坐标系,成为用向量解题的关键步骤之一.所谓“建立适当的坐标系”,一般应使尽量多的点在数轴上或便于计算。 一、建立空间直角坐标系的三条途径 途径一、利用图形中的对称关系建立坐标系:图形中虽没有明显交于一点的三条直线,但有一定对称关系(如正三棱柱、正四棱柱等),利用自身对称性可建立空间直角坐标系. 例1(卷理科第18题)已知两个正四棱锥P -ABCD 与 Q -ABCD 的高都为2,AB =4. (1)证明:PQ ⊥平面ABCD ; (2)求异面直线AQ 与PB 所成的角; (3)求点P 到平面QAD 的距离. 简解:(1)略; (2)由题设知,ABCD 是正方形,且AC ⊥BD .由(1),PQ ⊥平面ABCD ,故可分别以直线 CA DB QP ,,为x ,y ,z 轴建立空间直角坐标系(如图1),易得(2202)(0222)AQ PB =--=-,,,,,,1 cos 3 AQ PB AQ PB AQ PB <>= = ,.所求异面直线所成的角是1arccos 3 . (3)由(2)知,点(0220)(22220)(004)D AD PQ -=--=-, ,,,,,,,. 设n =(x ,y ,z )是平面QAD 的一个法向量,则00AQ AD ?=??=??,,n n 得200x z x y ?+=??+=??, ,取x =1,得 (112)--,,n =.点P 到平面QAD 的距离22PQ d = =n n . 途径二、利用面面垂直的性质建立坐标系:图形中有两个互相垂直的平面,可以利用面面垂 直的性质定理,作出互相垂直且交于一点的三条直线,建立坐标系. 例2 (全国卷Ⅱ理科第19题)在直三棱柱111ABC A B C -中,AB =BC ,D 、E 分别为11BB AC ,的中点. (1)证明:ED 为异面直线1BB 与1AC 的公垂线; (2)设12AA AC AB ==,求二面角1 1A AD C --的大小. 解:(1)如图2,建立直角坐标系O xyz -,其中原点O 为 AC 的中点,设(00)A a , ,则,1(00)(02)B b B b c ,,,,,, 则11(00)(002)0ED b BB c ED BB ===,,,,,,,即1ED BB ⊥.

立体几何平面公式大全

立体几何平面公式大全 最早的几何学当属平面几何。平面几何就是研究平面上的直线和二次曲线(即圆锥曲线,就是椭圆、双曲线和抛物线)的几何结构和度量性质(面积、长度、角度)。为了计算体积和面积问题,人们实际上已经开始涉及微积分的最初概念。 名称符号周长C和面积S 1、长方形a和b-边长C=2(a+b)S=ab 2、正方形a—边长C=4aS=a2 3、三角形a,b,c-三边长;h-a边上的高;s-周长的一半;A,B,C-内角 其中s=(a+b+c)/2 S=ah/2=ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2 =a2sinBsinC/(2sinA) 4、四边形d,D-对角线长;α-对角线夹角 S=dD/2·sinα 5、平行四边形a,b-边长;h-a边的高;α-两边夹角 S=ah=absinα 6、菱形a-边长;α-夹角;D-长对角线长;d-短对角线长 S=Dd/2=a2sinα 7、梯形a和b-上、下底长;h-高;m-中位线长 S=(a+b)h/2=mh

8、圆r-半径;d-直径; C=πd=2πrS=πr2=πd2/4 9、扇形r—扇形半径a—圆心角度数 C=2r+2πr×(a/360) S=πr2×(a/360) 10、弓形l-弧长;b-弦长;h-矢高;r-半径;α-圆心角的度数S=r2/2·(πα/180-sinα) =r2arccos[(r-h)/r]-(r-h)(2rh-h2)1/2 =παr2/360-b/2·[r2-(b/2)2]1/2 =r(l-b)/2+bh/2 ≈2bh/3 11、圆环R-外圆半径;r-内圆半径;D-外圆直径;d-内圆直径S=π(R2-r2)=π(D2-d2)/4 12、椭圆D-长轴;d-短轴;S=πDd/4

立体几何(向量法)—建系讲义

立体几何(向量法)—建系 引入空间向量坐标运算,使解立体几何问题避免了传统方法进行繁琐的空间分析,只需建立空间直角坐标系进行向量运算,而如何建立恰当的坐标系,成为用向量解题的关键步骤之一.所谓“建立适当的坐标系”,一般应使尽量多的点在数轴上或便于计算。 一、利用共顶点的互相垂直的三条线构建直角坐标系 例1(2012高考真题重庆理19)(本小题满分12分 如图,在直三棱柱111C B A ABC - 中,AB=4,AC=BC=3,D 为AB 的中点 (Ⅰ)求点C 到平面11ABB A 的距离; (Ⅱ)若11AB A C ⊥求二面角 的平面角的余弦值. 【答案】解:(1)由AC =BC ,D 为AB 的中点,得CD ⊥AB .又CD ⊥AA 1,故 CD ⊥面A 1ABB 1,所以点C 到平面A 1ABB 1的距离为 CD =BC 2-BD 2= 5. (2)解法一:如图,取D 1为A 1B 1的中点,连结DD 1,则DD 1∥AA 1∥CC 1.又由(1)知CD ⊥面A 1ABB 1,故CD ⊥A 1D ,CD ⊥DD 1,所以∠A 1DD 1为所求的二面角A 1-CD -C 1的平面角. 因A 1D 为A 1C 在面A 1ABB 1上的射影,又已知AB 1⊥A 1C ,由三垂线定理的逆定理得AB 1⊥A 1D ,从而∠A 1AB 1、∠A 1DA 都与∠B 1AB 互余,因此∠A 1AB 1=∠A 1DA ,所以Rt △A 1AD ∽Rt △B 1A 1A .因此AA 1AD =A 1B 1 AA 1 ,即AA 21=AD · A 1 B 1=8,得AA 1=2 2.

重点高中数学立体几何建系设点专题

重点高中数学立体几何建系设点专题

————————————————————————————————作者:————————————————————————————————日期:

2009-2010学年高三立几建系设点专题 引入空间向量坐标运算,使解立体几何问题避免了传统方法进行繁琐的空间分析,只需建立空间直角坐标系进行向量运算,而如何建立恰当的坐标系,成为用向量解题的关键步骤之一.所谓“建立适当的坐标系”,一般应使尽量多的点在数轴上或便于计算。 一、建立空间直角坐标系的三条途径 途径一、利用图形中的对称关系建立坐标系:图形中虽没有明显交于一点的三条直线,但有一定对称关系(如正三棱柱、正四棱柱等),利用自身对称性可建立空间直角坐标系. 例1(湖南卷理科第18题)已知两个正四棱锥P -ABCD 与 Q -ABCD 的高都为2,AB =4. (1)证明:PQ ⊥平面ABCD ; (2)求异面直线AQ 与PB 所成的角; (3)求点P 到平面QAD 的距离. 简解:(1)略; (2)由题设知,ABCD 是正方形,且AC ⊥BD .由(1),PQ ⊥平面ABCD ,故可分别以直 线CA DB QP ,,为x ,y ,z 轴建立空间直角坐标系(如图1),易得 (2202)(0222)AQ PB =--=-u u u r u u u r ,,,,,,1 cos 3 AQ PB AQ PB AQ PB <>==u u u r u u u r u u u r u u u r g u u u r u u u r ,.所求异面直线 所成的角是1arccos 3 . (3)由(2)知,点(0220)(22220)(004)D AD PQ -=--=-u u u r u u u r , ,,,,,,,. 设n =(x ,y ,z )是平面QAD 的一个法向量,则00AQ AD ?=??=??u u u r g u u u r g ,,n n 得200x z x y ?+=??+=??, ,取x =1,得(112)--,,n =.点P 到平面QAD 的距离22PQ d ==u u u r g n n . 途径二、利用面面垂直的性质建立坐标系:图形中有两个互相垂直的平面,可以利用面面垂直的性质定理,作出互相垂直且交于一点的三条直线,建立坐标系. 例2 (全国卷Ⅱ理科第19题)在直三棱柱111ABC A B C -中,AB =BC ,D 、E 分别为 11BB AC ,的中点. (1)证明:ED 为异面直线1BB 与1AC 的公垂线; (2)设12AA AC AB ==,求二面角1 1A AD C --的大小. 解:(1)如图2,建立直角坐标系O xyz -,其中原点O 为 AC 的中点,设(00)A a ,,则,1(00)(02)B b B b c ,,, ,,,

九章算术中的立体几何

《九章算术》中的立体几何 《九章算术》文字古奥,历代注释者甚多,其中以刘徽的注本最为有名.刘徽是我国魏晋时期著名数学家,他在曹魏末年撰成《九章算术注》九卷。在继承的基础上,又提出了许多自己的创见与发明,刘徽的观点,对现今的数学有很多借鉴的地方。 《九章算术》是一部问题集,全书分为九章,共收有246个问题,每题都有问、答、术三部分组成。内容涉及算术、代数、几何等诸多领域,并与实际生活紧密相连,充分体现了中国人的数学观与生活观。其中卷第五“商功”,主要讲各种几何体体积的计算,包括现阶段高中数学教材中的棱柱、棱锥、棱台,圆柱、圆锥、圆台,或可化为上述几何体的几何体体积的计算。 《九章算术》是东方数学的思想之源,也是我国多年来各级各类考试的重要题库。卷第五“商功”第25题作为2015年全国卷(Ⅰ)(文理)第6题,通过古题新解考查阅读理解能力,通过圆锥体积的计算考查空间想象能力与求解运算能力。 题目是:《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何?” 其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的 四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米 堆的体积和堆放的米各为多少?”已知1斛米的体积约为 1.62立方尺,圆周率约为3,估算出堆放的米约有(解法见 例25) A.14斛 B.22斛 C.36斛 D.66斛 2015年湖北理科19题、文科20题选用《九章算术》“商功”第16题“阳马”与第17题“鳖臑”的组合考查立体几何中线、面间的位置关系与度量关系. 《九章算术》卷第五“商功”共收录28个题目,现将这28个问题整理如下,供参考。 【例1】今有穿地积一万尺.问为坚、壤各几何? 【注释】穿地:挖地取土. 坚:坚实的土. 壤:松软的土. 【译文】现挖地体积为1000立方尺,问换算成坚土、松土各多少? 【解析】本题是各种土方量的换算,有专门的换算比例,这里不赘述. 【说明】从例2到例7都是直四棱柱求体积问题,以例2为例,介绍它们的算法.【例2】今有城下广四丈,上广二丈,高五丈,袤一百二十六丈五尺。问积几何?【注释】广袤:广,东西方向,袤,南北方向. 【译文】现有城,下底长4丈,上底长2丈,高5丈,

相关文档