文档库 最新最全的文档下载
当前位置:文档库 › 基于PROE的健身器材滑步机的运动仿真说明书

基于PROE的健身器材滑步机的运动仿真说明书

基于PROE的健身器材滑步机的运动仿真说明书
基于PROE的健身器材滑步机的运动仿真说明书

辽宁科技大学本科生毕业设计(论文)

辽宁科技大学

题目:基于pro/e的健身器材滑步机的运动仿真

姓名:

专业:机制 11

院系:装备制造学院

指导教师:

完成日期:2015年6月3日

基于pro/e的健身器材滑步机的运动仿真

摘要

滑步机主要为大腿使力驱动身体,主要运动到臀部,背部等肌群。这是一种适合男女老少有氧运动的健身器材,可以有效锻炼人的心血管系统和提高人的心肺功能,并对心血管系统功能提高有相当大的作用,同时它的减脂作用也很明显。是一种可使全身80%的肌肉和关节同时参加运动的一种不可多得的器材。本文中不但介绍了健身器材的发展现状,也指出了一些现在存在的一些问题。并且,在分析研究滑步机的各组成零件和它们之间的结构关系的同时,利用现代机械研究软件pro/e对所研究的滑步机进行实体建模和运动仿真。Pro/Engineer系统是美国参数技术公司的产品。PTC公司提出的单一数据库、参数化、基于特征、全相关的概念改变了机械CAD/CAE/CAM的传统观念,这种全新的概念已成为当今世界机械CAD/CAE/CAM领域的新标准。得出在传统条件下不能得出的结论数据。从而更好的确定滑步机的结构和相关数据,为滑步机的优化设计打下基础。使之起到更好的锻炼作用。

关键词:滑步机,pr/e,建模

Abstract

Slide driven mainly for the thighs make strength your body, major sport to the hips, back and other muscles. It is suitable for men, women and children of aerobic exercise fitness equipment, can effectively exercise the cardiovascular system and improve lung function in people's hearts, and has a considerable effect on cardiovascular system function, improving, but fat loss is also evident. Is a general 80% of the muscles and joints as well as a rare sports equipment. This article not only introduced the current situation of fitness equipment, also pointed out some problems now. Furthermore, analysis of the slip of the constituent parts and the structural relationships between them at the same time, using modern machinery software Pro/e for the study of sliding the solid modeling and motion simulation. Pro/Engineer system is the United States of parametric Technology Corp. product. PTC , parametric, based on the company's proposed single database concepts related to features, changed the mechanical CAD/CAE/cam tradition, this new concept has become the world of mechanical CAD/CAE/cam areas of new standards. Data obtained under traditional conditions cannot come to the conclusion. In order to better determine the structure of sliding machine and related data, and lay the Foundation for optimal design of sliding machines. Make them play a better role in exercise.

Key words: gliding machine,PR/e, modeling

目录

辽宁科技大学毕业设计(论文)任务书...................... 错误!未定义书签。

摘要............................................ 错误!未定义书签。Abstract ........................................................... II 目录............................................................ II 1.绪论.......................................... 错误!未定义书签。

1.1选题背景和目的.................................. 错误!未定义书签。

1.2国内外研究状况 (1)

1.2.1健身器材的发展 (1)

1.2.2 Pro/e的发展应用 (2)

1.3本课题研究的必要性 (3)

2 Pro/E功能介绍 (4)

2.1 Pro/e的主要功能简介 (4)

2.2 Pro/E的三维模型创建功能 (5)

2.3 Pro/E建模的一般过程 (6)

2.4 pro/e的参数化曲面建模......................... 错误!未定义书签。

3 滑步机的建模与分析 (8)

3.1滑步机的组成及内在联系 (8)

3.2 典型零件建模................................... 错误!未定义书签。

3.3 零件装配 (27)

4仿真 (29)

4.1 仿真介绍 (29)

4.2 干涉检验 (29)

4.3 运动分析 (30)

5 结论 (30)

致谢 (32)

参考文献 (33)

基于pro/e的健身器材滑步机的运动仿真

1 绪论

1.1 选题背景和目的

随着时代的发展,社会的进步,人们的生活水平越来越高。在物质条件得到满足的同时,人们越来越渴望着精神世界的满足和有健康的身体去享受这一切。随着国家《全民健身计划纲要》的实施,全国健身热潮正在兴起。

全民健身是指全国人民,不分男女老少,全体人民增强力量,,增加耐力,提高协调,控制身体各部分的能力,从而使人民身体强健。旨在全面提高国民体质和健康水平,以青少年和儿童为重点,倡导全民做到每天参加一次以上的体育健身活动,学会两种以上健身方法,每年进行一次体质测定。为纪念北京奥运会成功举办,国务院批准从2009年起,将每年8月8日设置为“全民健身日”。随机人们的健康观念正在转变,越来越多的人从传统的“养生健康”转变为现代的“健身健康”,开始意识到“健身”和“锻炼”对健康的重要性。“花钱买锻炼”、“花钱买健身”已经成为一种新的消费时尚。健身健康事业也已成为人们普遍关注的投资热点。而舒适的室内健身也成为人们越来越喜欢的一种运动。

在这样的一个大环境下,室内健身成了大多数人必不可少的健身活动,随之而来的是健身器材行业的发展越来越受到我们的重视。在现代机械领域里,三维绘图已经成为我们创新发展的一种必不可少的手段。Pr/e是一套由设计至生产的机械自动化软件,是新一代产品造型系统,是一个参数化、基于特征的实体造型系统,并且具有单一数据库功能。

1.2 国内外研究状况

1.2.1 健身器材的发展

健身器材工业起源于 20 世纪 70 年代初的美国及加拿大,所以美国及加拿大的健身设备厂是历史最悠久的厂商,他们经历了健身器材工业的低谷与高峰,经历了健身器材的诞生与发展过程,所以说美国及加拿大的健身器材是技术最优秀的最专业的产品,经过 30 年的工业创新,使得美国及加拿大的产品

成为全球健身器材产品的全球领跑者。包括有氧的 Lifefitness , Precor , Stairmaster ,Schwinn , Concept II , Bodyguard , 力量设备 Cybex , Nautilus ,Vectra 从以上品牌开始,美洲大地开始了健身器材工业化。人们意识到了健身器材工业是一个朝阳产业,而且越来越为广大使用者接受。之后美国出现了众多厂商进行众多品牌的工业化生产,包括目前“ StarTrac , Keys , Scifit , Trimline , Quinton ,Hummer ,Trotter……”等等品牌。

直到20世纪90年代中期之前,国内销售的电动跑步机基本上都是国外产品,能进入家庭的大都是机械式跑步机,其生产厂家多为自行车厂。20世纪90年代中期,随着国际产业结构的调整,部分国外跑步机生产产能开始向我国转移,沿海地区的一些企业利用产业配套优势,结合国内外信息,生产出了国产化的家用电动跑步机。进入21世纪之后,家用跑步机的生产企业广泛分布到长三角、山东半岛及粤、闽沿海地区,数量众多,其产能占据全球产能的一半以上,但均以产业链下游的代工生产、出口加工为主。当然也有些企业试图从OEM (原始设备生产商) 向ODM (原始设计制造商)、OBM(原始品牌制造商)转型,用自有品牌去占据市场,尤其是国内市场。所以国内市场出现了新生的本土品牌与传统的洋品牌交互辉映的情形:汇祥、万年青、乔山、星驰、舒华、格林、兄弟、英派斯等。

1.2.2 Pro/e的发展应用

Pro/E(Pro/Engineer操作软件)是美国参数技术公司(Parametric Technology

Corporation,简称PTC)的重要产品。在目前的三维造型软件领域中占有着重要地位,并作为当今世界机械CAD/CAE/CAM领域的新标准而得到业界的认可和推广,是现今最成功的CAD/CAM软件之一。Pro/E第一个提出了参数化设计的概念,并且采用了单一数据库来解决牲的相关性问题。另外,它采用模块化方式,用户可以根据自身的需要进行选择,而不必安装所有模块。Pro/E的基于特征方式,能够将设计至生产全过程集成到一起,实现并行工程设计。它不但可以应用于工作站,而且也可以应用到单机上。Pro/E采用了模块方式,可以分别进行草图绘制、零件制作、装配设计、钣金设计、加工处理等,保证用户可以按照自己的需要进行选择使用。

Pro/E是一套涵盖了由设计至生产的机械自动化软件,是新一代的产品造型统,是一个参数化、基于特征的实体造型系统,并且具有单一数据库功能。PTC 的系列软件已经深入工业设计和机械设计等各项领域,包括对大型装配体的管理、功能仿真、制造

和产品数据管理,并提供了最全面、集成最紧密的产品开发环境。

1.3 本课题研究的必要性

在曾长期被国外CAD软件垄断的中国CAD市场,我们国产CAD软件已走过了十多年曲折、探索的岁月,如今迎来了新的机遇和发展。作为国产CAD的领导品牌,中望龙腾以及中望CAD的成长历程,其实也正是整个国产CAD软件业发展的一个缩影。

好比中国的汽车工业,曾经很长一段时间,人们对中国企业自主研发汽车的技术和经济实力都表示怀疑,而如今,中国自主汽车品牌奇瑞却用短短六年时间实现了从0到30多万辆的年销售成绩,缔造了“车坛黑马”的神话。

国产CAD软件领域也是如此。中望龙腾的领军人物杜玉林自豪地讲,一切皆有可能,在中望等国产厂商开始自主研发CAD软件的时候,许多人对国产CAD的前景表示担忧和茫然,甚至无法理解。但目前的市场和产品,也证明了当时的决定是正确的,只要勇敢、坚定的朝着目标前进,就能得到回报,这个我感触非常深刻。

从“九五”国家推进制造业信息化工程开始,二维软件的应用逐步走向普及的同时,CAD软件正版化问题越来越得到人们的关注。针对盗版软件问题,杜玉林告诉记者,曾经很长的一段历史时期内,国内用户对知识产权的认知度和重视程度还不是很够,这是盗版软件广泛被使用的重要原因。盗版给软件企业尤其是本土软件企业带来了很大的困扰。不过这也恰恰预示着机会,预示着需求,关键是看软件企业自身如何抓住并把握好这个机会。加入WTO后,全民上下都在关注着知识产权这个话题,国内企业对正版化的意识逐渐提高,这种机会和需求就越来越明显。尤其是随着“十一五”规划的开始,自主创新和知识产权保护成为国家战略的重中之重。杜玉林说,需求带来了机遇,同时也带来了挑战。随着中国用户对正版软件使用深度的增加,对软件技术要求的提高,需要国产CAD软件在质量上更加苛刻地要求自己,精益求精,满足客户的需求,

因为我们深深明白一个道理——软件在于应用。面对逐渐壮大的三维软件市场,在二维制图正向三维应用转变的过程中,三维制图的应用已经成为趋势,而二维软件不会被三维软件取代,三维是软件技术发展的一大方向。而健身又是现在的一大热点话题,所以我认为本课题值得研究。

2 Pro/e的功能介绍

2.1 Pro/e的主要功能简介

在这里我选择PCT的Pro/Engineer (一下简称pro/e)软件作为虚拟设计的软件平台,选择该软件的原因如下:

1.它具有强大的功能,能够满足设计要求;

2.它具有实体建模模块,可在此基础上进行零件的虚拟设计和建模;

3.它具有完整的功能仿真分析系统,可以对设计进行仿真和分析。

pro/engineer的主要功能如下:

1.特征驱动(例如:凸台、槽、倒角、腔、壳等);

2.参数化(参数=尺寸、图样中的特征、载荷、边界条件等);

3.通过零件的特征值之间,载荷/边界条件与特征参数之间(如表面积等)的关系来进行设计;

4.支持大型、复杂组合件的设计(规则排列的系列组件,交替排列,pro/program 的各种能用零件设计的程序化方法等);

5.贯穿所有应用的完全相关性(任何一个地方的变动都将引起与之有关的每个地方的变动),其它辅助模块将进一步提高扩展pro/engineer的基本功能。

概括起来Pro/ENGINEER主要具有以下功能:

1.2D和3D制图。

2.机械设计和仿真。

3.逼真图像。Pro/ENGINEER Foundation提供了建立Pro/ENGINEER零部件的精确、逼真图像所需的全部工具。

4.钣金设计。完备的Pro/ENGINEER Foundation钣金设计工具套件,可以帮助用

户建立墙壁、弯头、冲头、槽口、式样和浮雕花纹等基本特征。

5.部件功能。因为用户需要开发的是产品,而不仅仅是零件,所以在Pro/E Foundation

的基础结构中,提供了许多定义和建立部件的功能。

6.动画设计。

7.相关图形表。

8.高级部件扩展。高级部件扩展功能通过提供一些支持自顶向下设计方法、能处理替代产品配置以及管理大型复杂部件的工具,来帮助设计小组设计和管理大型复杂产品。

9.完备的详细文档书写。

10.曲线、曲面。

Pro/ENGINEER高级曲面扩展功能与Pro/E Foundation相结合可以满足客户对产品形状进行复杂控制的需求,设计人员能够设计出从棱柱形引擎组件到轮廓化的高尔夫俱乐部、再到类似人类牙齿器官等的各种产品。高级曲面扩展功能提供了逆向工程的设计规范管理、参数化曲面建模和直接曲面建模等高性能工具。概括起来它主要具有几个方面的特性。

2.2 Pro/E的三维模型创建功能

特征造型是几何造型技术的发展,它对诸如零件形状、尺寸、工艺、功能等相关信息的综合描述更直观和更具工程含义。基于特征的造型系统一般先将大量的标准特征或用户自定义特征存入数据库,在设计阶段调用特征库中的特征作为基本造型单元进行建模,再逐步输入几何信息、工艺信息,建立零件的特征数据模型,并将其存入数据库。基于特征的造型方法大大地提高了设计效率和质量,同时在设计过程中设计人员可方便地进行特征的合法性、相关性检查,便于组织复杂的特征。特征建模过程实际上是一系列特征的累加过程。

在三维建模中主要有以下3种特征:

(1)实体特征它是构建三维模型的基本单元和主要设计对象。实体特征可以是正空间特征(如实体的突出部分),也可以是负空间特征(如实体上的孔、槽等)。在Pro/E中,根据建模方式和原理的差异,把实体特征进一步分为基础特征和工程特征基础特征是三维模型设计的起点,包括拉伸特征、旋转特征、扫描特征和混合特征等。工程特征是在基础特征上的附加特征,它的创建依赖于已存在

的基础特征,是有一定工程应用价值的特征,包括孔特征、肋特征、倒角特征和拔模特征等。

(2)曲面特征它是一种没有质量和体积的几何特征,对曲面的精确描述比较复杂,在目前三维造型中通常采用“B样条曲线”为基础,通过曲率分布图对曲线进行编辑,进而得到高质量的曲面造型曲面特征主要用于产品的概念设计、外形设计和逆向工程等设计领域。

(3)基准特征指参数化设计的基准点、基准轴、基准曲线、基准平面和坐标系等。一般来说,基准特征主要用于辅助三维模型的创建。

2.3 Pro/E建模的一般过程

Pro/E是美国PTC(Parametric Technology Corpora.tion)公司推出的CAD/CAM/CAE一体化软件,该软件集机械设计、模具设计、加工制造、钣金设计、机构分析、有限元分析和关系数据库管理等功能于一体,是目前国际上专业设计人员使用最为广泛、功能强大的新一代产品造型和动态仿真软件。利用Pro/E 建模首先从整体研究将要建模的零件,分析其特征组成,明确不同特征之间的关系和内在联系,确定零件特征的创建顺序,在此基础上进行建模、添加工程特征等设计。通过二维平面草绘图的旋转、拉伸、扫描和混合等工具来实现三维实体模型的构建。Pro/E三维模型将线框、曲面和实体三者有机地结合起来,形成一个整体,整个建模过程是基于特征为基本单位的参数化设计过程。其中参数包括几何参数和尺寸参数。几何参数确定了实体特征基本位置的固定关系,尺寸参数决定了产品外观尺寸和相对距离。利用参数可以准确控制和修改所建立的三维模型。Pro/E建模的一般过程如下:

(1)建立或选取基准特征作为模型空间定位的基准:如基准面、基准轴和基准坐标系等。建立每个实体特征时,都要利用基准特征作为参照;

(2)建立基础实体特征:拉伸、旋转、扫描、混合等;

(3)建立工程特征:孔、倒角、肋、拔模等;

(4)特征的修改:特征阵列、特征复制等编辑操作;

(5)添加材质和渲染处理。

2.4 pro/e的参数化曲面建模

高级曲面功能可以帮助设计人员和工程师高效开发和优化尺寸驱动式几何图形和自由曲面。参数化曲面建模功能为设计人员提供了各种方便的曲面建模工具,比如变截面扫描工具,其中纵截面可以由用户自定义图表或数学函数控制;另还提供了混合曲面和大量曲面操作,扩充、裁剪、偏移以及转换等工具,以帮助用户建立精确的形状。

1.直接曲面建模和逆向工程

为了从实体模型、原型或者现有的产品中获取设计面信息,Pro/ENGINEER 的高级曲面功能逆向工程工具提供了一种快速建立、修改和校验定型曲面的方法。快速高效建立优质定型曲面的能力可以多方面地加速后续过程,从而为用户节省大量时间。Pro/E的交互式曲面设计扩展功能(ISDX)定义了新一代曲面处理技术。这一新工具具有独特的自由形状曲线和曲面建模功能,并具有高级的互用性和灵活性。它能让设计人员和工程师在一种完全自由式参数化建模环境中工作,这样就能保证设计和工程的真正集成。通过在Pro/E的参数化建模基础内建立复杂的自由形状几何体,ISDX能让设计人员和工程师在一种具有极大设计灵活性、独特的环境中工作。

2.ISDX的主要特性

交互式曲面设计是一种一体化的建模方法,它确保了设计过程具有最大的灵活性,并能让设计人员和工程师按照设想来设计产品。无论用户是在建立曲线、曲面,还是在建立实体间的相互关系,都能为他们提供需要用来建立自由形状曲面模型的所有软件工具。这种在基于特征的参数化建模环境中设想和建立任意形状曲面模型的能力,Pro/E的功能提高到了一个新的水平。用户可以通过混合已有的几何体,或者是全新设计,来轻松建立自由曲面,并将其作为Pro/E 模型的一部分。ISDX可以将自由式曲面处理和工程设计完全集成在一起,用户不需要退出目前正在使用的工具,即可随时更改模型。只需要重定义或修改特征,然后就可继续工作。它致力于增值设计,而不是数据传输。用户不用再等待其他人来完成更改,在Pro/E中就可快速简便地完成模型。在自由式曲面处理方法与参数化驱动式、基于特征的建模技术之间的交互作用方面,Pro/E交互式曲面设计扩充功能已经领先于其他大部分CAD软件了。设计人员和工程师只

需买进能够快速获得设计意图、并有能力支持后续设计和制造的工具,即可以迅速地完成产品的设计和建模。交互式曲面设计系统的功能主要如下。

(1)建立曲线。3D曲线、平面曲线、曲面上的曲线、直接在曲面上草绘、把某个曲线映射到曲面上、用参数化方法建立曲线。

(2)编辑曲线。动态或根据数据移动内插点或控制点;在显示屏上动态或根据数据修

改相切条件;用切线和折线把曲线连接到曲线和曲面增加内插点;使用或不使用约束条件来动态扩展;删除点或整条线段;组合和分离曲线;交互式曲度描绘。

(3)建立曲面。使用内部特征曲线和曲面或实体的边线来建立曲面;添加内部曲线;

用局部边界线建立曲面。

(4)编辑曲面。通过编辑定义曲线,修改曲面;添加/删除内部曲线,以便重新定义曲

面形状;替换边界曲线/边,以便重新定义曲面形状;交互式曲面连接。

(5)建模环境。4视图窗口显示(三个等距视图,一个3D视图);引用已定义的任何几何体,比如点、平面、曲线、曲面和实体;直接处理导入的几何体、面和采样数据;局部重建机制;局部解决模式;在参数化修改过程中促进模型更改;使用行为建模(Behavioral Modeling)技术来优化;建立、设计、模拟和制造其他几何体等后续应用。

Pro/E是业界领先的CAD/CAM/CAE标准软件。现在,Pro/ENGINEER的交互式曲面设计扩展功能(ISDX)的推出,标志着PTC已将直观的自由形状曲面处理建模工具集成到世界最优秀的建模软件中。这种独特的设计功能允许设计人员和工程师利用强大的参数化建模工具来建立自由形状曲面。直观的建模环境能让客户采用一种清晰的过程方法来完成设计,从而在提高效率的同时,减少了产品开发时间和费用。

3 滑步机的建模与分析

3.1 滑步机的组成与内在联系

滑步机共有四部分组成,分别是底座,摇臂,脚架,后架。其整体图和零件图所示:

图一滑步机

图二滑步机摇臂

图三滑步机后架

图四滑步机底座

图五滑步机脚架

3.2 典型零件的建模

由于篇幅原因与设计中的零件比较多,在本文中不能一一复述零件的所有建模过程,在下文中简单介绍一个有代表性的图5 滑步机后架的实体建模过程,其中软件环境为Pro/Engineer 5.0。

建模过程如下:

1)零件分析。模型包括六个特征:基准面RIGHT、TOP、FRONT、基准坐标系PRT_CSYS_DEF、拉伸特征、孔特征。确定特征创建顺序:利用拉伸工具创建主体(基本特征利用拉伸工具剪切多余材料利用拉伸工具建立中间带有小孔的突起块。

2)进入零件设计模式,将文件命名为0001。具体过程:启动软件点击菜单上文件)(F)新建文件(N)文件类型设定为“零件”子类型设定为“实体”输入文件名点击“使用缺省模板”选取mmns_part_solid单击“确定”进入零件设计界面。

3)创建与修改零件特征

A 1.点击右侧拉伸命令,选择“放置”,定义草绘平面,进入草绘界面。进行草绘。如图6所示。

图6

2.草绘结束后点击,进入拉伸界面,进行拉伸,输入拉伸值,拉伸至如图7所示。

图7

3.重复上述步骤,进入草绘界面,进行草绘,拉伸,拉伸后如图8所示。

图8

4.在此基础上再进行三次拉伸操作得到图9.

图9

5.得到图9后,利用拉伸功能得到一个Φ2的链接轴。得到下图所示效果。

图10

6.接下来进行倒角操作,出现图11对话框。设置好后完成,得到图12效果。

图11

图12

7.目前零件的一端已经完成,下面完成另一端,另一端由拉伸功能就可以完成。最终完成效果图13。由图6到图13完成滑步机脚架的设计过程。进行保存。

图13

B 1.重复新建一个页面,进行下一个零件的设计。本零件需要用到扫描。大致步骤如下:插入扫描伸出项。弹出对话框如图14

图14

机构运动仿真基本知识

机构仿真是PROE的功能模块之一。PROE能做的仿真内容还算比较好,不过用好的兄弟不多。当然真正专做仿真分析的兄弟,估计都用Ansys去了。但是,Ansys研究起来可比PROE麻烦多了。所以,学会PROE的仿真,在很多时候还是有用的。我再发一份学习笔记,并整理一下,当个基础教程吧。希望能对学习 仿真的兄弟有所帮助。 术语 创建机构前,应熟悉下列术语在PROE中的定义:主体(Body) - 一个元件或彼此无相对运动的一组元件,主体内DOF=0。 连接(Connections) - 定义并约束相对运动的主体之间的关系。 自由度(Degrees of Freedom) - 允许的机械系统运动。连接的作用是约束主体之间的相对运动,减少系统可能的总自由度。 拖动(Dragging) - 在屏幕上用鼠标拾取并移动机构。 动态(Dynamics) - 研究机构在受力后的运动。 执行电动机(Force Motor) - 作用于旋转轴或平移轴上(引起运动)的力。 齿轮副连接(Gear Pair Connection) - 应用到两连接轴的速度约束。 基础(Ground) - 不移动的主体。其它主体相对于基础运动。 机构(Joints) - 特定的连接类型(例如销钉机构、滑块机构和球机构)。 运动(Kinematics) - 研究机构的运动,而不考虑移动机构所需的力。 环连接(Loop Connection) - 添加到运动环中的最后一个连接。 运动(Motion) - 主体受电动机或负荷作用时的移动方式。 放置约束(Placement Constraint) - 组件中放置元件并限制该元件在组件中运动 的图元。 回放(Playback) - 记录并重放分析运行的结果。 伺服电动机(Servo Motor) - 定义一个主体相对于另一个主体运动的方式。可在机构或几何图元上放置电动机,并可指定主体间的位置、速度或加速度运动。LCS - 与主体相关的局部坐标系。LCS 是与主体中定义的第一个零件相关的缺 省坐标系。 UCS - 用户坐标系。 WCS - 全局坐标系。组件的全局坐标系,它包括用于组件及该组件内所有主体 的全局坐标系。 运动分析的定义 在满足伺服电动机轮廓和机构连接、凸轮从动机构、槽从动机构或齿轮副连接的要求的情况下,模拟机构的运动。运动分析不考虑受力,它模拟除质量和力之外的运动的所有方面。因此,运动分析不能使用执行电动机,也不必为机构指定质量属性。运动分析忽略模型中的所有动态图元,如弹簧、阻尼器、重力、力/力矩以及执行电动机等,所有动态图元都不影响运动分析结果。

教你如何用proe做装配动画(A)

第1章运动仿真 本章重点 应力分析的一般步骤 边界条件的创建 查看分析结果 报告的生成和分析 本章典型效果图

1.1机构模块简介 在进行机械设计时,建立模型后设计者往往需要通过虚拟的手段,在电脑上模拟所设计的机构,来达到在虚拟的环境中模拟现实机构运动的目的。对于提高设计效率降低成本有很大的作用。Pro/ engineer中“机构”模块是专门用来进行运动仿真和动态分析的模块。PROE的运动仿真与动态分析功能集成在“机构”模块中,包括Mechanism design(机械设计)和Mechanism dynamics(机械动态)两个方面的分析功能。 使用“机械设计”分析功能相当于进行机械运动仿真,使用“机械设计”分析功能来创建某种机构,定义特定运动副,创建能使其运动起来的伺服电动机,来实现机构的运动模拟。并可以观察并记录分析,可以测量诸如位置、速度、加速度等运动特征,可以通过图形直观的显示这些测量量。也可创建轨迹曲线和运动包络,用物理方法描述运动。

使用“机械动态”分析功能可在机构上定义重力,力和力矩,弹簧,阻尼等等特征。可以设置机构的材料,密度等特征,使其更加接近现实中的结构,到达真实的模拟现实的目的。如果单纯的研究机构的运动,而不涉及质量,重力等参数,只需要使用“机械设计”分析功能即可,即进行运动分析,如果还需要更进一步分析机构受重力,外界输入的力和力矩,阻尼等等的影响,则必须使用“机械设计”来进行静态分析,动态分析等等。 1.2总体界面及使用环境 在装配环境下定义机构的连接方式后,单击菜单栏菜单“应用程序”→“机构”,如图1-1所示。系统进入机构模块环境,呈现图1-2所示的机构模块主界面:菜单栏增加如图1-3所示的“机构”下拉菜单,模型树增加了如图1-4所示“机构”一项内容,窗口右边出现如图1-5所示的工具栏图标。下拉菜单的每一个选项与工具栏每一个图标相对应。用户既可以通过菜单选择进行相关操作。也可以直接点击快捷工具栏图标进行操作。 图1-1 由装配环境进入机构环境图

proe小球运动教程

1.1机构模块简介 在进行机械设计时,建立模型后设计者往往需要通过虚拟的手段,在电脑上模拟所设计

的机构,来达到在虚拟的环境中模拟现实机构运动的目的。对于提高设计效率降低成本有很大的作用。Pro/ engineer中“机构”模块是专门用来进行运动仿真和动态分析的模块。PROE的运动仿真与动态分析功能集成在“机构”模块中,包括Mechanism design(机械设计)和Mechanism dynamics(机械动态)两个方面的分析功能。 使用“机械设计”分析功能相当于进行机械运动仿真,使用“机械设计”分析功能来创建某种机构,定义特定运动副,创建能使其运动起来的伺服电动机,来实现机构的运动模拟。并可以观察并记录分析,可以测量诸如位置、速度、加速度等运动特征,可以通过图形直观的显示这些测量量。也可创建轨迹曲线和运动包络,用物理方法描述运动。 使用“机械动态”分析功能可在机构上定义重力,力和力矩,弹簧,阻尼等等特征。可以设置机构的材料,密度等特征,使其更加接近现实中的结构,到达真实的模拟现实的目的。如果单纯的研究机构的运动,而不涉及质量,重力等参数,只需要使用“机械设计”分析功能即可,即进行运动分析,如果还需要更进一步分析机构受重力,外界输入的力和力矩,阻尼等等的影响,则必须使用“机械设计”来进行静态分析,动态分析等等。 1.2总体界面及使用环境 在装配环境下定义机构的连接方式后,单击菜单栏菜单“应用程序”→“机构”,如图1-1所示。系统进入机构模块环境,呈现图1-2所示的机构模块主界面:菜单栏增加如图1-3所示的“机构”下拉菜单,模型树增加了如图1-4所示“机构”一项内容,窗口右边出现如图1-5所示的工具栏图标。下拉菜单的每一个选项与工具栏每一个图标相对应。用户既可以通过菜单选择进行相关操作。也可以直接点击快捷工具栏图标进行操作。 图1-1 由装配环境进入机构环境图

proe运动仿真

proe5.0装配体运动仿真 基础与重定义主体 基础是在运动分析中被设定为不参与运动的主体。 创建新组件时,装配(或创建)的第一个元件自动成为基础。 元件使用约束连接(“元件放置”窗口中“放置”页面)与基础发生关系,则此元件也成为基础的一部份。 如果机构不能以预期的方式移动,或者因两个零件在同一主体中而不能创建连接,就可以使用“重定义主体”来确认主体之间的约束关系及删除某些约束。 进入“机构”模块后,“编辑”—>“重定义主体”进入主体重定义窗口,选定一个主体,将在窗口里显示这个主体所受到的约束(仅约束连接及“刚体”接头所用的约束)。可以选定一个约束,将其删除。如果删除所有约束,元件将被封装。、、 特殊连接:凸轮连接 凸轮连接,就是用凸轮的轮廓去控制从动件的运动规律。PROE里的凸轮连接,使用的是平面凸轮。但为了形象,创建凸轮后,都会让凸轮显示出一定的厚度(深度)。 凸轮连接只需要指定两个主体上的各一个(或一组)曲面或曲线就可以了。定义窗口里的“凸轮1”“凸轮2”分别是两个主体中任何一个,并非从动件就是“凸轮2”。 如果选择曲面,可将“自动选取”复选框勾上,这样,系统将自动把与所选曲面的邻接曲面选中,如果不用“自动选取”,需要选多个相邻面时要按住Ctrl。 如果选择曲线/边,“自动选取”是无效的。如果所选边是直边或基准曲线,则还要指定工作平面(即所定义的二维平面凸轮在哪一个平面上)。 凸轮一般是从动件沿凸轮件的表面运动,在PROE里定义凸轮时,还要确定运动的实际接触面。选取了曲面或曲线后,将会出线一个箭头,这个箭头指示出所选曲面或曲线的法向,箭头指向哪侧,也就是运动时接触点将在哪侧。如果系统指示出的方向与想定义的方向不同,可反向。 关于“启用升离”,打开这个选项,凸轮运转时,从动件可离开主动件,不使用此选项时,从动件始终与主动件接触。启用升离后才能定义“恢复系数”,即“启用升离”复选框下方的那个“e”。 因为是二维凸轮,只要确定了凸轮轮廓和工作平面,这个凸轮的形状与位置也就算定义完整了。为了形象,系统会给这个二维凸轮显示出一个厚度(即深度)。通常我们可不必去修改它,使用“自动”就可以了。也可自已定义这个显示深度,但对分析结果没有影响。 需要注意: A.所选曲面只能是单向弯曲曲面(如拉伸曲面),不能是多向弯曲曲面(如旋转出来的鼓形曲面)。 B.所选曲面或曲线中,可以有平面和直边,但应避免在两个主体上同时出现。 C.系统不会自动处理曲面(曲线)中的尖角/拐点/不连续,如果存在这样的问题,应在定义凸轮前适当处理。

proe产品装配与运动仿真

第八章产品装配与运动仿真 学习目的: 各种装配约束类型 装配连接类型的概念 零件装配与连接的基本方法 组件分解图的建立方法 组件的装配间隙与干涉分析 学习重点: 产品的装配方法 机械运动仿真的建立 完成零件设计后,将设计的零件按设计要求的约束条件或连接方式装配在一起才能形成一个完整的产品或机构装置。利用P r o/E提供的“组件”模块可实现模型的组装。在P r o/E系统中,模型装配的过程就是按照一定的约束条件或连接方式,将各零件组装成一个整体并能满足设计功能的过程。 8.1元件放置操控板 模型的装配操作是通过元件放置操控板来实现的。单击菜单【文件】→【新建】命令,在打开的对话框中选择“组件”,如图所示。单击【确定】按钮,进入“组件”模块工作环境。

在组件模块工作环境中,单击按钮或单在弹出的〖打开〗对话框中选择要装配的零件后,单击【打开】按钮,系统显示如图12-2所示的元件放置操控板。 8.2装配约束类型 零件的装配过程,实际上就是一个约束限位的过程,根据不同的零件模型及设计需要,选择合适的装配约束类型,从而完成零件模型的定位。一般要完成一个零件的完全定位,可能需要同时满足几种约束条件。P r o/E提供的约束类型有: 1.匹配 所谓“匹配”就是指两零件指定的平面或基准面重合或平行(当偏移值不为零时两面平行,当偏移值为零时两面重合)且两平面的法线方向相反。 如图所示为使用“匹配”约束方式且偏移值为0的两面配合情况(选择圆台的上端面和直角模型底座的上表面,如图中箭头所示)。

匹配时偏移值为0时的两面配合情况 匹配时偏移值不为0时的两面配合情况 2.对齐 使两零件指定的平面、基准面、基准轴、点或边重合或共线。如图所示为“对齐”方式且偏移值为0时两面配合情况 对齐时偏移值为0时的两面配合情况

proe运动仿真经典教程!47

proe运动仿真经典教程!47 ProE野火运动仿真经典教程 关键词:PROE 仿真运动分析重复组件分析连接回放运动包络轨迹曲线版权:原创文章,转载请注明出处 机构仿真是PROE的功能模块之一。PROE能做的仿真内容还算比较好,不过用好的兄弟不多。当然真正专做仿真分析的兄弟,估计都用Ansys去了。但是,Ansys研究起来可比PROE麻烦多了。所以,学会PROE的仿真,在很多时候还是有用的。坛子里关于仿真的教程也有过一些,但很多都是动画,或实例。偶再发放一份学习笔记,并整理一下,当个基础教程吧。 希望能对学习仿真的兄弟有所帮助。 术语 创建机构前,应熟悉下列术语在PROE中的定义: 主体 (Body) - 一个元件或彼此无相对运动的一组元件,主体内DOF=0。 连接 (Connections) - 定义并约束相对运动的主体之间的关系。自由度(Degrees of Freedom) - 允许的机械系统运动。连接的作用是约束主体之间的相对 运动,减少系统可能的总自由度。 拖动 (Dragging) - 在屏幕上用鼠标拾取并移动机构。 动态 (Dynamics) - 研究机构在受力后的运动。 执行电动机 (Force Motor) - 作用于旋转轴或平移轴上(引起运动)的力。 齿轮副连接 (Gear Pair Connection) - 应用到两连接轴的速度约束。 基础 (Ground) - 不移动的主体。其它主体相对于基础运动。 接头 (Joints) - 特定的连接类型(例如销钉接头、滑块接头和球接头)。

运动 (Kinematics) - 研究机构的运动,而不考虑移动机构所需的力。 环连接 (Loop Connection) - 添加到运动环中的最后一个连接。 运动 (Motion) - 主体受电动机或负荷作用时的移动方式。放置约束(Placement Constraint) - 组件中放置元件并限制该元件在组件中运动的图元。 回放 (Playback) - 记录并重放分析运行的结果。 伺服电动机 (Servo Motor) - 定义一个主体相对于另一个主体运动的方式。可在接头或几 何图元上放置电动机,并可指定主体间的位置、速度或加速度运动。 LCS - 与主体相关的局部坐标系。LCS 是与主体中定义的第一个零件相关的缺省坐标系。 UCS - 用户坐标系。 WCS - 全局坐标系。组件的全局坐标系,它包括用于组件及该组件内所有主体的全局坐标系。 运动分析的定义 在满足伺服电动机轮廓和接头连接、凸轮从动机构、槽从动机构或齿轮副连接的要求的情况下,模拟机构的运动。运动分析不考虑受力,它模拟除质量和力之外的运动的所有方面。因此,运动分析不能使用执行电动机,也不必为机构指定质量属性。运动分析忽略模型中的所有动态图元,如弹簧、阻尼器、重力、力/力矩以及执行电动机等,所有动态图元都不影响 运动分析结果。 如果伺服电动机具有不连续轮廓,在运行运动分析前软件会尝试使其轮廓连续,如果不能使 其轮廓连续,则此伺服电机将不能用于分析。 使用运动分析可获得以下信息: 几何图元和连接的位置、速度以及加速度

PROE运动仿真分析基础教程

机构仿真之运动分析基础教程 机构仿真是PROE的功能模块之一。PROE能做的仿真容还算比较好,不过用好的兄弟不多。当然真正专做仿真分析的兄弟,估计都用Ansys去了。但是,Ansys研究起来可比PROE麻烦多了。所以,学会PROE的仿真,在很多时候还是有用的。我再发一份学习笔记,并整理一下,当个基础教程吧。希望能对学习仿真的兄弟有所帮助。 术语 创建机构前,应熟悉下列术语在PROE中的定义: 主体(Body) - 一个元件或彼此无相对运动的一组元件,主体DOF=0。 连接(Connections) - 定义并约束相对运动的主体之间的关系。 自由度(Degrees of Freedom) - 允许的机械系统运动。连接的作用是约束主体之间的相对运动,减少系统可能的总自由度。 拖动(Dragging) - 在屏幕上用鼠标拾取并移动机构。 动态(Dynamics) - 研究机构在受力后的运动。 执行电动机(Force Motor) - 作用于旋转轴或平移轴上(引起运动)的力。 齿轮副连接(Gear Pair Connection) - 应用到两连接轴的速度约束。 基础(Ground) - 不移动的主体。其它主体相对于基础运动。 机构(Joints) - 特定的连接类型(例如销钉机构、滑块机构和球机构)。 运动(Kinematics) - 研究机构的运动,而不考虑移动机构所需的力。 环连接(Loop Connection) - 添加到运动环中的最后一个连接。 运动(Motion) - 主体受电动机或负荷作用时的移动方式。 放置约束(Placement Constraint) - 组件中放置元件并限制该元件在组件中运动的图元。 回放(Playback) - 记录并重放分析运行的结果。 伺服电动机(Servo Motor) - 定义一个主体相对于另一个主体运动的方式。可在机构或几何图元上放置电动机,并可指定主体间的位置、速度或加速度运动。 LCS - 与主体相关的局部坐标系。LCS 是与主体中定义的第一个零件相关的缺省坐标系。 UCS - 用户坐标系。 WCS - 全局坐标系。组件的全局坐标系,它包括用于组件及该组件所有主体的全局坐标系。 运动分析的定义 在满足伺服电动机轮廓和机构连接、凸轮从动机构、槽从动机构或齿轮副连接的要求的情况下,模拟机构的运动。运动分析不考虑受力,它模拟除质量和力之外的运动的所有方面。因此,运动分析不能使用执行电动机,也不必为机构指定质量属性。运动分析忽略模型中的所有动态图元,如弹簧、阻尼器、重力、力/力矩以及执行电动机等,所有动态图元都不影响运动分析结果。 如果伺服电动机具有不连续轮廓,在运行运动分析前软件会尝试使其轮廓连续,如果不能使其轮廓连续,则此伺服电机将不能用于分析。 使用运动分析可获得以下信息: 几何图元和连接的位置、速度以及加速度 元件间的干涉 机构运动的轨迹曲线 作为Pro/ENGINEER 零件捕获机构运动的运动包络 运动分析工作流程 创建模型:定义主体,生成连接,定义连接轴设置,生成特殊连接 检查模型:拖动组件,检验所定义的连接是否能产生预期的运动

ProE丝杠螺杆螺母的运动仿真教程

第一步当然是建模咯,这个我就不说了 第二步新建组件,创建一根轴,这根轴是用来给螺杆做销钉定义用的 第三步插入螺杆元件,用销钉~~~怎么定义应该知道吧,轴对齐,面对齐,不知道的先学装配的基础教程 第四步插入螺母元件,先用圆柱连接,使两个元件同轴 定义好之后别急着打钩~~~按左下角的新设置

第五步新设置一个槽连接(槽连接就是点在线上运动~~),这个是最关键的,先选螺杆上的一条螺纹边 一定要是同一条线~~~~螺纹线会分成很多段,按ctrl把整条线都选上,建议选内螺纹,好选 选好线后选点,这个点毫无疑问在螺母上,可以选螺母的内螺纹的一个定点,一定要是和在螺杆上的那条螺纹线匹配的那条!!! 意思就是这一点是在刚才选的螺纹线上运动的

这个定义好之后槽连接就定义好了,别急着打钩,还有呢 第六步因为现在的螺母还会旋转 所以我们再定义一个平面连接,使它不会转动,选择面的时候要注意,不要选到螺杆的平面,到时候螺母随螺杆一起旋转了 现在终于可以打钩了~~~到此,装配就完成了 接下来就是仿真了 第七步在应用程序里选机构

第八步定义一个伺服电机,轴在螺杆上,选速度,A=100 第九步就可以分析了 类型选动态,时间稍微长点吧,如果你觉得分析有可能失败,那就短点,因为如果装配有问题,或计算两很大的话电脑计算的会很慢

点运行就可以看到动了 每次看不一定都要在分析里看,因为那计算,可能会很慢,可以在回放里看 记得要保存哦,不然下次就又要分析了

终于完成了。。。。写图文教程真累 而且表达能力欠缺,希望朋友们多多提意见啊 本来想做视频的,老大说有可能会出期刊。。只好图文了

proe机构运动仿真教程

proe机构运动仿真教程 典型效果图 1.1机构模块简介 在进行机械设计时,建立模型后设计者往往需要通过虚拟的手段,在电脑上模拟所设计的机构,来达到在虚拟的环境中模拟现实机构运动的目的。对于提高设计效率降低成本有很大的作用。Pro/ engineer中“机构”模块是专门用来进行运动仿真和动态分析的模块。 PROE的运动仿真与动态分析功能集成在“机构”模块中,包括Mechanism design(机械设计)和Mechanism dynamics (机械动态)两个方面的分析功能。 使用“机械设计”分析功能相当于进行机械运动仿真,使用“机械设计”分析功能来创建某种机构,定义特定运动副,创建能使其运动起来的伺服电动机,来实现机构的运动模拟。并可以观察并记录分析,可以测量诸如位置、速度、加速度等运动特征,可以通过图形直观的显示这些测量量。也可创建轨迹曲线和运动包络,用物理方法描述运动。 使用“机械动态”分析功能可在机构上定义重力,力和力矩,弹簧,阻尼等等特征。可以设置机构的材料,密度等特征,使其更加接近现实中的结构,到达真实的模拟现实的目的。

如果单纯的研究机构的运动,而不涉及质量,重力等参数,只需要使用“机械设计”分析功能即可,即进行运动分析,如果还需要更进一步分析机构受重力,外界输入的力和力矩,阻尼等等的影响,则必须使用“机械设计”来进行静态分析,动态分析等等。 1.2总体界面及使用环境 在装配环境下定义机构的连接方式后,单击菜单栏菜单“应用程序”→“机构”,如图1-1所示。系统进入机构模块环境,呈现图1-2所示的机构模块主界面:菜单栏增加如图1-3所示的“机构”下拉菜单,模型树增加了如图1-4所示“机构”一项内容,窗口右边出现如图1-5所示的工具栏图标。下拉菜单的每一个选项与工具栏每一个图标相对应。用户既可以通过菜单选择进行相关操作。也可以直接点击快捷工具栏图标进行操作。 图1-1 由装配环境进入机构环境图 图1-2 机构模块下的主界面图 图1-3 机构菜单图1-4 模型树菜单图1-5 工具栏图标图1-5所示的“机构”工具栏图标和图1-3中下拉菜单各选项功能解释如下:

ProE齿轮机构仿真

Pro/E齿轮机构仿真 时间:2013-3-26 15:24:44 作者:未知来源:网络文摘查看:252 评论:0 本次设计用pro/e三维造型软件进行建模,各零件建好后,进行装配,进而实现模拟仿真运动分析。 1建立机构模型 经装配后,得到跑步机的仿真模型。 图1 仿真实体 2运动仿真 2.1进入机械设计环境 单击菜单栏中的【应用程序】【机构】命令,进入机械设计环境。 单击菜单栏中的【编辑】【连接】命令,弹出【连接组件】对话框。单击该对话框的【运行】,检查装配的连接情况。若连接成功,系统弹出【确认】对话框。单击该对话框中的【是】按钮,确认检查情况。 2.2定义圆锥齿轮连接 单击【模型】工具【齿轮】,弹出【齿轮副定义】对话框,如图2所示。接受默认名称和传动类型标准,选择如图2所示的大齿轮的连接作为连接轴;系统将会自动选择齿轮的主体和托架,输入节圆直径45,如图7-2所示。 单击【齿轮副定义】对话框中的【齿轮2】选项卡,选取如图3所示的小齿轮的连接作为连接轴;系统将会自动选择齿轮的主体和托埽输入节圆直径18,如图3所示;单击该对话框中的【确定】按钮,此时,在齿轮机构中将显示齿轮副连接的标志,如图4所示。

图2 【齿轮副定义】对话框 图3 齿轮2的定义

图4 齿轮副连接标志 2.3 创建驱动器 单击【模型】工具栏【伺服电动机】按钮,弹出【伺服电动机定义】对话框,如图5所示。接受默认名称,在绘图区选择如图5所示的连接轴作为伺服电动机的驱动对象,并单击【反向】按钮。 图5【伺服电动机定义】对话框 在如图5所示的对话框中单击【轮廓】面板,在如图6所示的【规范】选项组下拉列表中选择【速度】选项。其余均接受对话框中当前项的选择,默认当前轴的位置为零位置。在【模】选项组下拉列表中选择【常数】选项,表示驱动器以常数形式运行。在【A】,文本框中输

PROE运动仿真教程

PROE机构仿真之运动分析 关键词:PROE 仿真运动分析重复组件分析连接回放运动包络轨迹曲线 术语 创建机构前,应熟悉下列术语在PROE中的定义: 主体(Body) - 一个元件或彼此无相对运动的一组元件,主体内DOF=0。 连接(Connections) - 定义并约束相对运动的主体之间的关系。 自由度(Degrees of Freedom) - 允许的机械系统运动。连接的作用就是约束主体之间的相对运动,减少系统可能的总自由度。 拖动(Dragging) - 在屏幕上用鼠标拾取并移动机构。 动态(Dynamics) - 研究机构在受力后的运动。 执行电动机(Force Motor) - 作用于旋转轴或平移轴上(引起运动)的力。 齿轮副连接(Gear Pair Connection) - 应用到两连接轴的速度约束。 基础(Ground) - 不移动的主体。其它主体相对于基础运动。 接头(Joints) - 特定的连接类型(例如销钉接头、滑块接头与球接头)。 运动(Kinematics) - 研究机构的运动,而不考虑移动机构所需的力。 环连接(Loop Connection) - 添加到运动环中的最后一个连接。 运动(Motion) - 主体受电动机或负荷作用时的移动方式。 放置约束(Placement Constraint) - 组件中放置元件并限制该元件在组件中运动的图元。 回放(Playback) - 记录并重放分析运行的结果。 伺服电动机(Servo Motor) - 定义一个主体相对于另一个主体运动的方式。可在接头或几何图元上放置电动机,并可指定主体间的位置、速度或加速度运动。 LCS - 与主体相关的局部坐标系。LCS 就是与主体中定义的第一个零件相关的缺省坐标系。

PROE机构仿真分析基础知识

机构仿真分析基础知识 机构仿真之运动分析基础教程 机构仿真是PROE的功能模块之一。PROE能做的仿真内容还算比较好,不过用好的兄弟不多。当然真正专做仿真分析的兄弟,估计都用Ansys去了。但是,Ansys研究起来可比PROE麻烦多了。所以,学会PROE的仿真,在很多时候还是有用的。我再发一份学习笔记,并整理一下,当个基础教程吧。希望能对学习 仿真的兄弟有所帮助。 术语 创建机构前,应熟悉下列术语在PROE中的定义:主体(Body) - 一个元件或彼此无相对运动的一组元件,主体内DOF=0。 连接(Connections) - 定义并约束相对运动的主体之间的关系。 自由度(Degrees of Freedom) - 允许的机械系统运动。连接的作用是约束主体之间的相对运动,减少系统可能的总自由度。 拖动(Dragging) - 在屏幕上用鼠标拾取并移动机构。 动态(Dynamics) - 研究机构在受力后的运动。 执行电动机(Force Motor) - 作用于旋转轴或平移轴上(引起运动)的力。 齿轮副连接(Gear Pair Connection) - 应用到两连接轴的速度约束。 基础(Ground) - 不移动的主体。其它主体相对于基础运动。 机构(Joints) - 特定的连接类型(例如销钉机构、滑块机构和球机构)。 运动(Kinematics) - 研究机构的运动,而不考虑移动机构所需的力。 环连接(Loop Connection) - 添加到运动环中的最后一个连接。 运动(Motion) - 主体受电动机或负荷作用时的移动方式。 放置约束(Placement Constraint) - 组件中放置元件并限制该元件在组件中运动 的图元。 回放(Playback) - 记录并重放分析运行的结果。 伺服电动机(Servo Motor) - 定义一个主体相对于另一个主体运动的方式。可在机构或几何图元上放置电动机,并可指定主体间的位置、速度或加速度运动。LCS - 与主体相关的局部坐标系。LCS 是与主体中定义的第一个零件相关的缺 省坐标系。 UCS - 用户坐标系。 WCS - 全局坐标系。组件的全局坐标系,它包括用于组件及该组件内所有主体 的全局坐标系。 运动分析的定义 在满足伺服电动机轮廓和机构连接、凸轮从动机构、槽从动机构或齿轮副连接的要求的情况下,模拟机构的运动。运动分析不考虑受力,它模拟除质量和力之外

基于PROE的抓取机械手设计与运动仿真课程设计

目录 一、题目:基于PRO/E的抓取机械手设计与运动仿真 二、研究内容与目标: 本设计主要的研究内容是 1. 拟定机械手的整体设计方案,特别是机械手各组成部分的方案。 2. 设计出机械手的各执行机构,包括:手部、手腕、手臂等部件的设计。 3. 各主要组成部分的设计计算,机械手的传动系统的设计。 4. 机械手装配图的绘制,编写设计计算说明书。 目标:本设计通过对机械设计制造及其自动化专业大学本科四年的所学知识进行整合,完成一个特定功能、特殊要求的抓取机械手的设计,能够比较好地体现机械设计制造及其自动化专业毕业生的理论研究水平,实践动手能力以及专业精神和态度,具有较强的针对性和明确的实施目标,能够实现理论和实践的有机结合。 三、研究方法: 1.观察法 观察法是指研究者根据一定的研究目的、研究提纲或观察表,用自己的感官和辅助工具去直接观察被研究对象,从而获得资料的一种方法。 2.功能分析法 功能分析法是社会科学用来分析社会现象的一种方法,是社会调查常用的分析方法之一。 四、主要参考文献: [1] 邹庆华。数控新技术动向研究。科技创新导报,2009,(31):89-91. [2] 艾兴肖诗纲著.切削用量简明手册[M].北京:机械工业出版社,2005.10,1~50 [3] 陈宏均著.实用机械加工工艺手册[M].北京:机械工业出版社,1996.12,167~258 [4] 杨胜群。VERICUT7.0中文版数控加工仿真技术.北京:清华大学出版社,2010. [5] 张卫卫,李建生。数控仿真技术分析及发展趋势。心声,2010:85-87. [6] 王先奎。机械制造工艺学.北京:机械工业出版社,2006.

用ProE建模装配及机构仿真

汽车CAD/CAM/CAE报告 第一章用Pro/E建模、装配及机构仿真 1.1连杆建模 1.1.1 建立文件名为connecting_rod的新零件,模板选择mmns_part_solid。 1.1.2 使用拉伸工具制作连杆小头,草绘如图1-1-1,推出后得到1-1-2。. 图1-1-1 图1-1-2 1.1.3 使用拉伸工具制作连杆大头,草绘如图1-1-3,退出后得到1-1-4 图1-1-3 图1-1-4 1.1.4 使用拉伸工具按钮制作杆身,草绘如图1-1-5,退出后得到1-1-6。

图1-1-5 图1-1-6 1.1.5使用拉伸工具按钮制作大头伸出板,草绘如图1-1-7,退出后得到1-1-8。 图1-1-7 图1-1-8 1.1.6使用拉伸工具按钮制作螺栓座,草图如图1-1-9,退出后得到1-1-10。

图1-1-9 图1-1-10 1.1.7 使用工具栏内的孔工具按钮制作螺栓孔,,草绘如图1-1-11,最终得到图1-1-12 图1-1-11 图1-1-12

1.1.8 使用倒圆角工具按钮和倒角按钮,进行倒圆角和倒角操作,最终得到图1-1-13。 图1-1-13 1.1.9 使用拉伸工具按钮创建杆身的剪切特征,草绘如图1-1-14,,并使用编辑-特征操作-复制-镜像工具进行复制,最后得到图1-1-15。 图1-1-14 图1-1-15

1.2连杆的大头盖建模 1.2.1 新建一个文件名为big_cap的零件,模板选择mmns_part_solid。 1.2.2 使用拉伸工具按钮,绘制草图1-2-1,退出后得到1-2-2。 图1-2-1 图1-2-2 1.2.3 使用拉伸工具按钮制作大头盖螺栓座,绘制草图1-2-3,退出后得到1-2-4。 图1-2-3

Proe活塞机构运动仿真分析毕设

摘要 使用Pro/E 软件构建活塞机构的三维模型,对模型进行装配,并用Mechanism 模块对活塞机构进行运动仿真,得到活塞的位移、速度、加速度的运动仿真曲线图;并从理论角度运用数理方法建立运动方程,借助Matlab simulink仿真模块对活塞机构进行仿真得到活塞的位移、速度、加速度的理论曲线。 根据Pro/E运动仿真结果分析表明设计的活塞机构满足要求,活塞运动正常;对比Matlab simulink仿真结果表明Pro/E进行模拟比数值理论方法更具优越性。 关键词:Pro/E Simulink 活塞机构运动仿真

ABSTRACT The paper constructs the three-dimensional model of piston mechanism by using Pro/E software ,gets the assembly model , makes the piston mechanism motion simulation by using Mechanism module and obtains the displacement, velocity , acceleration of slider and the motion simulation curve. From a theoretical point of view by means of mathematical methods to establish the motion equation ,and making simulation by means of Matlab Simulink simulation module and obtaining the displacement ,velocity, acceleration curve. According to the Pro/E simulation results show that the piston mechanism design to meet the requirements, the piston motion is normal; Compared with the Matlab Simulink simulation results show that the Pro/E simulation than numerical theory method is more superiority. Key words: Pro/E Simulink Piston mechanism Motion simulation

比较全面的ProE机构仿真分析

比较全面的ProE机构仿真分析 创建机构前,应熟悉下列术语在PROE中的定义: 主体(Body) - 一个元件或彼此无相对运动的一组元件,主体内DOF=0。 连接(Connections) - 定义并约束相对运动的主体之间的关系。 自由度(Degrees of Freedom) - 允许的机械系统运动。连接的作用是约束主体之间的相对运动,减少系统可能的总自由度。 拖动(Dragging) - 在屏幕上用鼠标拾取并移动机构。 动态(Dynamics) - 研究机构在受力后的运动。 执行电动机(Force Motor) - 作用于旋转轴或平移轴上(引起运动)的力。 齿轮副连接(Gear Pair Connection) - 应用到两连接轴的速度约束。 基础(Ground) - 不移动的主体。其它主体相对于基础运动。 接头(Joints) - 特定的连接类型(例如销钉接头、滑块接头和球接头)。 运动(Kinematics) - 研究机构的运动,而不考虑移动机构所需的力。 环连接(Loop Connection) - 添加到运动环中的最后一个连接。 运动(Motion) - 主体受电动机或负荷作用时的移动方式。 放置约束(Placement Constraint) - 组件中放置元件并限制该元件在组件中运动的图元。 回放(Playback) - 记录并重放分析运行的结果。 伺服电动机(Servo Motor) - 定义一个主体相对于另一个主体运动的方式。可在接头或几何图元上放置电动机,并可指定主体间的位置、速度或加速度运动。 LCS - 与主体相关的局部坐标系。LCS 是与主体中定义的第一个零件相关的缺省坐标系。UCS - 用户坐标系。 WCS - 全局坐标系。组件的全局坐标系,它包括用于组件及该组件内所有主体的全局坐标系。运动分析的定义 在满足伺服电动机轮廓和接头连接、凸轮从动机构、槽从动机构或齿轮副连接的要求的情况下,模拟机构的运动。运动分析不考虑受力,它模拟除质量和力之外的运动的所有方面。因此,运动分析不能使用执行电动机,也不必为机构指定质量属性。运动分析忽略模型中的所有动态图元,如弹簧、阻尼器、重力、力/力矩以及执行电动机等,所有动态图元都不影响运动分析结果。 如果伺服电动机具有不连续轮廓,在运行运动分析前软件会尝试使其轮廓连续,如果不能使其轮廓连续,则此伺服电机将不能用于分析。 使用运动分析可获得以下信息: 几何图元和连接的位置、速度以及加速度 元件间的干涉 机构运动的轨迹曲线 作为Pro/ENGINEER 零件捕获机构运动的运动包络 使用重复组件分析可获得以下信息: 几何图元和连接的位置 元件间的干涉 机构运动的轨迹曲线 运动分析工作流程 创建模型:定义主体,生成连接,定义连接轴设置,生成特殊连接 检查模型:拖动组件,检验所定义的连接是否能产生预期的运动 加入运动分析图元:设定伺服电机 准备分析:定义初始位置及其快照,创建测量

PROE运动仿真教程

PROE机构仿真之运动分析 关键词:PROE 仿真运动分析重复组件分析连接回放运动包络轨迹曲线术语 创建机构前,应熟悉下列术语在PROE中的定义: 主体(Body) - 一个元件或彼此无相对运动的一组元件,主体内DOF=0。 连接(Connections) - 定义并约束相对运动的主体之间的关系。 自由度(Degrees of Freedom) - 允许的机械系统运动。连接的作用是约束主体之间的相对运动,减少系统可能的总自由度。 拖动(Dragging) - 在屏幕上用鼠标拾取并移动机构。 动态(Dynamics) - 研究机构在受力后的运动。 执行电动机(Force Motor) - 作用于旋转轴或平移轴上(引起运动)的力。 齿轮副连接(Gear Pair Connection) - 应用到两连接轴的速度约束。 基础(Ground) - 不移动的主体。其它主体相对于基础运动。 接头(Joints) - 特定的连接类型(例如销钉接头、滑块接头和球接头)。 运动(Kinematics) - 研究机构的运动,而不考虑移动机构所需的力。 环连接(Loop Connection) - 添加到运动环中的最后一个连接。 运动(Motion) - 主体受电动机或负荷作用时的移动方式。 放置约束(Placement Constraint) - 组件中放置元件并限制该元件在组件中运动的图元。 回放(Playback) - 记录并重放分析运行的结果。 伺服电动机(Servo Motor) - 定义一个主体相对于另一个主体运动的方式。可在接头或几何图元上放置电动机,并可指定主体间的位置、速度或加速度运动。 LCS - 与主体相关的局部坐标系。LCS 是与主体中定义的第一个零件相关的缺省坐

PROE运动仿真教程

PROE机构仿真之运动分析 关键词:PROE 仿真运动分析重复组件分析连接回放运动包络轨迹曲线术语 创建机构前,应熟悉下列术语在PROE中得定义: 主体(Body)-一个元件或彼此无相对运动得一组元件,主体内DOF=0。 连接(Connections)- 定义并约束相对运动得主体之间得关系。 自由度(DegreesofFreedom) -允许得机械系统运动。连接得作用就是约束主体之间得相对运动,减少系统可能得总自由度。 拖动(Dragging) - 在屏幕上用鼠标拾取并移动机构。 动态(Dynamics)-研究机构在受力后得运动。 执行电动机(Force Motor)- 作用于旋转轴或平移轴上(引起运动)得力。 齿轮副连接(GearPairConnection) - 应用到两连接轴得速度约束。 基础(Ground) -不移动得主体。其它主体相对于基础运动。 接头(Joints) - 特定得连接类型(例如销钉接头、滑块接头与球接头)。 运动(Kinematics) -研究机构得运动,而不考虑移动机构所需得力。 环连接(Loop Connection)- 添加到运动环中得最后一个连接。 运动(Motion) -主体受电动机或负荷作用时得移动方式。 放置约束(PlacementConstraint) -组件中放置元件并限制该元件在组件中运动得图元。 回放(Playback)-记录并重放分析运行得结果。 伺服电动机(ServoMotor) - 定义一个主体相对于另一个主体运动得方式。可在接头或几何图元上放置电动机,并可指定主体间得位置、速度或加速度运动。LCS- 与主体相关得局部坐标系。LCS 就是与主体中定义得第一个零件相关得缺

ProE机构运动及动画制作

pro/e 运动仿真教程 =黑白子(heibaizi)=制作 pro/e 运动仿真教程 =黑白子(heibaizi)=制作 pro/e 运动仿真教程 =黑白子(heibaizi)=制作 pro/e 运动仿真教程 =黑白子(heibaizi)=制作 pro/e 运动仿真教程 =黑白子(heibaizi)=制作

pro/e 运动仿真教程 =黑白子(heibaizi)=制作 pro/e 运动仿真教程 =黑白子(heibaizi)=制作 pro/e 运动仿真教程 =黑白子(heibaizi)=制作 pro/e 运动仿真教程 =黑白子(heibaizi)=制作 pro/e 运动仿真教程 =黑白子(heibaizi)=制作

pro/e 运动仿真教程 =黑白子(heibaizi)=制作 pro/e 运动仿真教程 =黑白子(heibaizi)=制作 pro/e 运动仿真教程 =黑白子(heibaizi)=制作 pro/e 运动仿真教程 =黑白子(heibaizi)=制作 pro/e 运动仿真教程 =黑白子(heibaizi)=制作

pro/e 运动仿真教程 =黑白子(heibaizi)=制作 pro/e 运动仿真教程 =黑白子(heibaizi)=制作 pro/e 运动仿真教程 =黑白子(heibaizi)=制作 pro/e 运动仿真教程 =黑白子(heibaizi)=制作 pro/e 运动仿真教程 =黑白子(heibaizi)=制作

pro/e 运动仿真教程 =黑白子(heibaizi)=制作 pro/e 运动仿真教程 =黑白子(heibaizi)=制作 pro/e 运动仿真教程 =黑白子(heibaizi)=制作 pro/e 运动仿真教程 =黑白子(heibaizi)=制作 pro/e 运动仿真教程 =黑白子(heibaizi)=制作

PROE螺纹三种画法及仿真

基于Pro/E 3.0创建螺纹的三种方法 ——原创:哈尔滨工业大学翟万柱 笔者是Pro/E的初学者,在这里仅就个人在Pro/E学习中的点滴心得与大家分享,希望大家提出宝贵意见、多多批评,以求共同进步。 螺纹机构是机械行业普遍应用的一种机构,为创建螺纹的方便Pro/E中设立有强大的螺旋扫描功能,可以实现螺纹、弹簧等基于螺旋线多种特征,其中的变节距螺旋扫描功能更是为螺旋类特征的灵活创建提供的广阔的空间,本文最后将介绍变节距弹簧的建模过程。 在掌握直接应用内建功能实现螺旋特征创建的同时,笔者认为从理论原理出发,通过基础建模功能实现设想功能也是十分必要的。不但对其他三维软件学习起到借鉴作用,同时也可以在内建功能不能满足要求的时候通过基础功能的灵活运用达到目的,并可以对Pro/E3.0的基本功能和机械基础知识增进了解。 方法一: 首先,应用“插入”(Insert)>“扫描”(Sweep)>“伸出项”(Protrusion)功能进行普通梯形螺纹的建模。 想必大家对此功能都已熟悉,唯一值得讨论的地方也是重要的地方可能就是螺旋线的生成问题了。简单易行的方法就是用方程建立曲线,而且可以容易的与参数建立关系,使得生成特征具有通用性。 常用参数方程如下:(应用时注意坐标系的选择与类型的设定) 笛卡儿坐标下的螺旋线柱坐标下的螺旋线x = radia * cos ( t *(n*360)) r=radia y = radia * sin ( t * (n*360)) theta=theta0+t*(n*360) z = l*t z=t*l 其中:radia为半径;n为指定长度上螺旋线的圈数;l为设定长度。 n=l/螺距;多头螺纹生成需要多条螺旋线,注意生成其他螺旋线时须设定参数方程中角度的初始值;对于左旋螺纹参数方程中角度值取负 值。 生成螺旋曲线方法为:单击“插入”(Insert)>“模型基准”(Model Datum)> “曲线”(Curve),或单击“基准”(Datum)工具栏上的按钮。然后选择“从方程”(From Equation),接下来选择坐标系并指定坐标系类型后,既可在编辑窗口中输入相关参数方程,得到目的曲线。 此种方法虽然简单、快结,但需要熟悉参数方程,并熟练坐标系的设定。对于象笔者这样数学不佳,又相对懒惰的朋友,是否有更直观的方法可行呢?答案是肯定的。 下面笔者就以变截面扫描功能根据螺纹形成原理实现此目的,虽然步骤繁琐但容易理解,同时也可以为大家开拓思路,深刻的理解Pro/E基本功能。

相关文档