文档库 最新最全的文档下载
当前位置:文档库 › 蓝藻生态学和微囊藻毒素毒性研究

蓝藻生态学和微囊藻毒素毒性研究

秘徽囊藻毒索?LR的褶关关系,掇出了饮用尔源水中蓝藻细臆密度限值,以期为基层组织进{亍藻类蝼测提供一个切实霹褥的标准。秘瓣尽管微囊藻毒素.LR翡捉瘸效应已经得莉公认,但对其遗传毒性尚有较多争论。而且在只常生活中,人们更多霓的悸况下是长簸接触低剡鬃毂藻类毒豢,辑绫奉次磷究熬第二部分醑究了微囊藻毒素一LR在不引起细胞毒性的低剂量时对细胞DNA的损伤俘用,=搏进~步磺究了DNA损臻发生黪最}毳染毒剂嚣下,缩魏对徽囊藻簿素一LR静氧亿应激凝应。技术路线见图2。

瀚1滇溏永孥

蓝藻生态学和微囊藻毒豢毒性研究

MC.LR毒性

梳壤研究

DNA损l|氧化应臻褥究ll激磷究文献生态学

资料总缩

实验生态

学磷窥

现场生态

学研究

建立MC+LR浓度与菔藻细

胞密度之间麴数学模型

饮弼水源水中蓝藻细胞密度隈值

强2技术路线萄

图1.i.7硅藻中的真链藻澎态结构(400x)

圈1.1,8硅藻中的小环藻形态结构t400x)

图1.1.9隐藻形态缕构(400x)

图1.1。lO撩藻形态结构(400x)

黼1A.132003年7~2004年3月番暇水藻细胞密度变化

溪1.1+142003年7,跨一2004霉3劳备嚣份藻鲴魏构戏院变纯阉1.1。152003芷F7月一2004年3月务类藻细溅燮化

水华蓝藻毒素研究概述

收稿日期:2003-12-01  基金项目:国家重点基础研究发展规划资助课题 (2002C B412306) 水华蓝藻毒素研究概述 胡宗达,周元清 (云南大学生态地植物研究所,云南昆明650091) 摘 要:随着科技进步,发现的有毒种类越来越多,毒素分子结构的研究也越来越清楚。在大量文献的基础上,综合介绍水华微囊藻毒素、水华束丝藻毒素和水华鱼腥藻毒素对动物的毒害、毒素结构、检测方法和去除方法,并讨论存在的问题。 关键词:水华蓝藻;藻毒素;检测方法 中图分类号:X173 文献标识码:A 文章编号:1006-947X (2004)03-0008-04 蓝藻(Cyanophyta )是生物界中一类古老且十分特殊的生物类群,分布广泛,适应力强,在腐烂物质、水体表面或底层皆有分布。其重要繁殖场所之一是淡水,尤其是富营养化淡水湖泊。淡水湖泊中常见蓝藻主要有微囊藻(Microcystis )、鱼腥藻(Anabaena )、颤藻(Oscillatoria )、聚球藻(Syne 2chococcus )、层理鞭线藻(Mastig oclaminosus )等。 目前已知产生毒素的淡水蓝藻约12属26种[4],其中易形成水华的常见种有铜绿微囊藻(Microcystis aeruginosa )、水华鱼腥藻(Anadaena flos -aquae )和 水华束丝藻(Aphanizomenon flos -aquae )。这3种蓝藻可分为有毒品系和无毒品系。 滇池是蓝藻水华污染相当严重的淡水湖泊之一,认识了解蓝藻毒素及其检测和去除方法,具有重要的现实意义。本文综合介绍水华微囊藻毒素、水华束丝藻毒素和水华鱼腥藻毒素对动物的毒害、毒素结构、检测方法和去除方法,并讨论存在的问题。 1 水华蓝藻毒素 1878年Francis 首次发现某些淡水“水华”蓝 藻引起动物中毒死亡的现象。Schwimmer 、Schwim 2mer 及G orham 等分别综述报道了北美洲湖泊、水库 和池塘中的水华蓝藻导致动物中毒的事例[19]。在欧、亚、非、南美洲等气候相似地区也有类似中毒死亡现象发生。 111 微囊藻毒素(MCY STs ) 微囊藻毒素主要是在Microcystis 、Anabaena 、 Oscillatoria 、N ostoc 等属中的种类产生[26]。属于一 种肝毒素或一种细胞内毒素。完整细胞没有毒性,在衰老、死亡或破裂后毒素才释放出来,表现毒性。 11111 微囊藻毒素 淡水藻类中,毒性最强、污染最广、最严重的是蓝藻门。目前已肯定的有毒藻类有铜锈微囊藻、水华鱼腥藻、水华束丝藻、阿氏颤藻、泡沫节球藻及念珠藻等。这些藻类不只产生一种毒素,如环境发生变化,一种藻类可产生几种毒素。 蓝藻门中几个属产生的次生代谢产物可分为两类。一类是肝毒素,主要包括七肽微囊藻毒素、五肽节球藻毒素和m otpurin 等,以微囊藻毒素为代表;另一类是神经毒素,主要是钠通道阻断蛤蚌毒素及类似物[24]、后突触神经类毒素和高类毒素、有机磷胆碱酯酶抑制毒素等[25],以鱼腥藻毒素为代表。 11112 微囊藻毒素对生物的影响 MCY STs 主要以肝脏为靶器官。动物经灌喂或 腹腔注射后,破坏细胞内的蛋白磷酸化平衡,改变多种酶活性,引起肝脏病变,造成一系列生理紊乱。中毒症状主要表现为虚弱、呼吸沉重、皮肤变白、呕吐、腹泻、毛立和嗜睡等。如猴子的中毒症状为昏迷、肌肉痉挛、呼吸急促、腹泻等,在数小时或几天内死亡[11]。 赵雄飞(1994)用九山湖和金针湖采集的铜绿微囊藻,经BG 11培养基培养,抽取和分离毒素,对小白鼠腹腔注射。小白鼠出现呼吸沉重、步履蹒跚、昏睡、最后死亡并出现眼珠发白,肝脏淤血呈深紫红色等症状。证实九山湖铜绿微囊藻产生的毒 — 8—云南环境科学 2004,23(3):8-11 C N53-1093/X ISS N1006-947X

水体中微囊藻毒素的监测与分析

水体中微囊藻毒素的监测与分析 随着水体富营养化状况的日益加剧,蓝藻水华爆发带来的微囊藻毒素污染成为一个全球关注的环境问题。微囊藻毒素(Microcystins, MCs)是由蓝藻产生的一种具有强烈致癌作用的肝毒素,其分子结构复杂、种类繁多,以痕量形式稳定存在于各类富营养化的天然水体中。有资料表明,饮用水中的微囊藻毒素污染可能是除黄曲霉毒素以外导致肝癌的另一个重要诱因,随着世界各国对微囊藻毒素的重视,中国也在相关水质标准中新增了微囊藻毒素这一指标,如今水环境中微 囊藻毒素的监测与控制已变得非常重要。 一、微囊藻毒素的简介 1. 微囊藻毒素的产生 一般认为MCs 为细胞内毒素,在藻类死亡、细胞破裂后从细胞内释放到环境中。但是,已有研究发现,藻类在死亡之前也会向水体中分泌毒素。关于MCs 的产生机制主要有两种观点:一种认为是由遗传学因素主导;另一种认为是环境因素主导。 2. 微囊藻毒素的结构 微囊藻毒素是由水体中蓝绿藻如铜绿微囊藻(Microcystis aeruginosa)、鱼腥藻(Anabaena spp.)、颤藻(Oscillatoriaruescens)等产生的具有生物活性的单环七肽化合物,其可表示为环(D-丙氨酸-L-X-赤-β-甲基-D-异天冬氨酸-L-Z-Adda-D-异谷氨酸-N-甲基脱氢丙氨酸)。其中,Adda(3-氨基-9-甲氧基-2,6,8-三甲基-10-苯基-4,6-二烯酸)是MCs 生物活性表达所必需的;X、Z为两个可变的氨基酸残基,这两个可变的L-氨基酸的更替及其它氨基酸的去甲基化,衍生出众多的毒素类型,至今已发现MCs有60多种变体。在众多变体中存在最普遍、含量较多、毒性较大、研究详细的是MC-RR、MC-LR,R、L分别代表精氨酸、亮氨酸。 3. 微囊藻毒素的性质 MCs的性质稳定,在水中为中性或带负电荷的分子集团,可溶于水(溶解度>1g/L),在水中的自然降解过程缓慢,仅有少量能被水体微粒吸附沉淀。纯化的MCs在阳光照射下稳定,但当其曝露于波长在其吸收峰周围的紫外线中,分子发生异构化,方可使MC-LR快速降解。MCs具有热稳定性,加热煮沸(水浴100℃,

微囊藻毒素检测方法的研究进展

微囊藻毒素检测方法的研究进展 湖泊、水库和河流中接纳过多的氮和磷等营养物质,使水体的生态结构和功能发生变化,导致藻类特别是蓝藻(Cyanobacteria)的异常繁殖生长而出现的蓝藻水华现象。随着水体富营养化的加剧而引起有害藻类水华(HAB,harmful algal bloom)的频繁发生已成为国内外普遍关注的环境问题。当蓝藻水华严重时,水面形成厚厚的蓝绿色湖靛,散发出难闻的气味。不仅影响人的感官,破坏了健康平衡的水生生态系统,而且因藻细胞破裂后释放出多种藻毒素而对人和动物的饮用水安全构成了严重的威胁。世界上25%~70%的蓝藻水华污染可产生藻毒素,在已发现的各种不同藻毒素中,微囊藻毒(Microcystins,MC)是目前已知的一种在蓝藻水华污染中出现频率最高、产生量最大和造成危害最严重的藻毒素种类。在20世纪80年代对全国范围内的水源水质进行过全面的调查,结果表明34个湖泊中有一半以上的湖泊面积处于富营养状态。进入20世纪90年代,全国淡水水体富营养化日益严重,涉及范围不断扩大。通过对各大饮用水水源及各种湖泊的监测表明,在夏秋季节藻类水华严重,每年长达7~8个月,而天然水体蓝藻水华80%是产生毒素的。从加拿大、日本、芬兰、美国、中国等地对湖水、河水、水库水、井水及自来水等水样的检测结果看,有的水体中微囊藻毒素检出率高达60%~87%,源水中微囊藻毒素浓度从130ng/ml~2μg/ml,经加氯处理后的浓度也在0.09~0.6μg/L之间。淡水水源受到微囊藻毒素的检测方法的研究日益深入,需要建立一种简单、快速、准确的系统的检测方法。 1 微囊藻毒素简介 1.1 微囊藻毒素 淡水藻类通常以蓝藻、绿藻、硅藻、甲藻、隐藻、裸藻、金藻、黄藻等8个门为主。蓝藻门是已知的产生毒素最多的门类,这些毒藻可产生具有明显肝毒性的肽类物质,称为微囊藻毒素(Microcystins,MC)。它是一种肝毒素,是肝癌的强烈致癌剂。 1.2 微囊藻毒素的结构 Louw认为,微囊藻毒素是一种具有强烈慢性肝脏中毒特征的生物碱。Hughes等人在1958年发现并分离得到铜绿微囊藻NRC-1有毒品系。1959年Bishop等人对铜绿微囊藻NRC-1有毒品系的毒性做全面研究,发现这种微囊藻毒素是由7种氨基酸组成的小分子环状多肽,为单环结构:D-丙氨酸-L-X-赤-β-甲基-D-谷氨酸-Mdha。其中Mdha是一种特殊的氨基酸;Adda为3-氨基-9-甲氧基-2,6,8-三甲基-10-苯-4,6-二烯酸;X和Y为两种可变L氨基酸。目前已鉴定的约有65个微囊藻毒素变式,其中多数毒性较高,如MC-LR,MC-RR和MC-YR等。 1.3 微囊毒素的产生 MC是细胞内毒素,它在细胞内合成,细胞破裂后释放出来并表现出毒性。由于它有很小的体积(分子量1000左右)、环状结构及其氨基酸的特殊结构,一般认为它不在核糖体内合成,而是由肽合成酶复合体合成的生物活性小肽,类似于在一些杆菌和真菌中小肽的合成。这些小肽大多是抗生素、免疫抑制物和一些对动物和植物有毒的物质。关于微囊藻毒素产生的机理有很多假设,但目前为止尚无令人满意的结果,现在常提到的有环境因素和遗传因素。微囊藻毒素受光照、温度、营养盐等多种环境因素影响,其中光照可起到非常重要的作用。但遗传论者认为微囊藻毒素的合成是由毒素肽合成酶基因多基因控制的,并由肽合成酶复合体合成(非核糖体合成的多肽)。 1.4 微囊藻毒素对生物的影响 因为MC主要以肝脏为靶器官,当动物被灌喂或腹腔注射后,破坏细胞内的蛋白磷酸化平衡,改变多种酶活性,引起肝脏病变,造成一系列的生理紊乱。中毒症状主要表现为虚弱、呼吸沉重、皮肤变白、呕吐、腹泻、毛立和嗜睡等。如猴子的中毒症状为昏迷、肌肉痉挛、呼吸急促、腹泻等,在数小时内或几天内死亡。1987年Brook WP用HC标记的MC-LR腹腔注射染毒小鼠,1分钟后肝脏内出现总标记的70%,3小时后肝脏内积聚的MC-LR占总量的90%,表明肝脏是MC-LR分布的主要器官。它不仅对动物有影响,而且对植物也有一定的影响。Mcelhiney等发现MC-LR的存在可对茄属植物的生长和豆类植物根的发育产生不良影响。Singh等研究了MC对藻类、微生物和真菌生长的效应,发现在初始50mg/L的MC可完全抑制灰色念珠藻和鱼腥藻的生长并使藻细胞溶解。观察到了MC对二氧化碳的吸收和光合作用的不良影响,

饮用水中微囊藻毒素处理工艺

Advances in Environmental Protection 环境保护前沿, 2020, 10(2), 282-289 Published Online April 2020 in Hans. https://www.wendangku.net/doc/2214265127.html,/journal/aep https://https://www.wendangku.net/doc/2214265127.html,/10.12677/aep.2020.102032 Treatment Process of Microcystin in Drinking Water Siqi Shi, Jianhua Li College of Environment Science and Engineer, Tongji University, Shanghai Received: Mar. 28th, 2020; accepted: Apr. 22nd, 2020; published: Apr. 29th, 2020 Abstract The eutrophication has led to the increasing popularity of freshwater cyanobacteria blooms. The concentration of algae toxin in water increases rapidly with the proliferation of cyanobacteria. Microcystin (MCs) is a strong hepatotoxin and has carcinogenicity, which attracted widespread attention. In this article, author mainly introduced the research on the removal of intracellular and extracellular (lysed) algal toxins, introduced the process of removal of algal toxins from three aspects of physical methods, chemistry, and biology. This passage also summarizes the current treatment process simply and introduces the outlook. Keywords Algal Toxins, Microcystin, Degradation, Intracellularalgal Toxins, Extracellular (Lysed) Algal Toxins 饮用水中微囊藻毒素处理工艺 石思琦,李建华 同济大学环境科学与工程学院,上海 收稿日期:2020年3月28日;录用日期:2020年4月22日;发布日期:2020年4月29日 摘要 水体富营养化导致淡水蓝藻水华爆发日趋普遍。水体中藻毒素含量随蓝藻的大量增殖而快速升高,其中微囊藻毒素(MCs)是强烈的肝毒素,具有致癌性而引起广泛关注。文中主要介绍了去除胞内和胞外(溶解)藻毒素的相关研究,从物理方法、化学、生物三个方面介绍藻毒素去除工艺,并对目前的处理工艺进行

光催化降解微囊藻毒素_MC_的研究进展

2014年8月吉林师范大学学报(自然科学版) ?.3第3期Journal of Jilin Normal University (Natural Science Edition ) Aug.2014 收稿日期:2014- 06-03基金项目:国家自然科学基金(21276116);教育部新世纪优秀人才项目(NCET-13-0835);霍英东基金会青年教师基础研究课题(141068);江苏省六大人才高峰项目(XCL-025)第一作者简介:施伟东(1978-),男,吉林省公主岭市人,现为江苏大学化学化工学院教授,博士,博士生导师.研究方向:半导体纳米光催剂 合成与性能. 光催化降解微囊藻毒素(MC )的研究进展 施伟东,蒋金辉 (江苏大学化学化工学院,江苏镇江212013) 摘 要:近年来蓝藻水华现象日益严重,甚至威胁了人类饮用水的安全.传统水处理技术对微囊藻毒素去除效 果不明显,新型降解技术亟待研究.本文概述了二氧化钛系列的光催化剂的一些研究进展,并提出了未来光催化氧化法降解微囊藻毒素的主要研究方向. 关键词:饮用水;微囊藻毒素;二氧化钛;光催化降解 中图分类号:X524文献标识码:A 文章编号:1674- 3873-(2014)03-0025-040前言 随着水体污染和富营养化加剧,淡水湖泊发生 蓝藻水华频率和规模日益严重.微囊藻毒素(Micro-cystin ,MC )是产毒蓝藻释放出的出现频率最高、产 生量最大和造成危害最严重的一类藻毒素,其中毒性较强的为MC-LR、MC-RR和MC-YR(L 、R、Y 分别为亮氨酸、精氨酸和酪氨酸).研究显示水体中的MC 可沿饮用水或食物链进入鱼、鸟、动物及人类等体内,中毒症状表现为乏力、呕吐,可使动物或人类肝脏充血肿大,严重时可导致肝出血和坏死,直至死亡 [1] .MC 对恶性肿瘤也有促进作用,流行病学调查 发现饮用水中MC 的含量与原发性肝癌和大肠癌发 病率有非常明显的正相关性[2] .由此可见,水体中的MC 对人类健康及水生态系统稳定均已构成极为严重的威胁.MC 具有环状七肽结构,极易溶于水, 性质非常稳定,在高温300?下仍不失活、不挥发, 传统消除方法难以达到理想效果.常规的混凝—沉淀—过滤组合对蓝藻胞外毒素消除基本没有效果, 而且还会破坏蓝藻细胞而促使毒素释放[3] ;活性炭吸附、膜过滤以及介孔材料无法破坏MC 有毒基团, 浓液安全处理仍是重要问题[4] ;高剂量的臭氧、氯、高锰酸钾以及高铁酸钾氧化方法成本高昂,去除过 程中容易产生中间副产物,造成二次污染[5] .发展高效、安全、低成本去除水中MC 的方法已成为环境科学研究中亟待解决的重要问题之一.近年来,半导体光催化剂为核心的多相光催化氧化处理技术因其无二次污染,对污染物去除彻底,安全稳定,成本较 低等优点,已经被公认是最有前景的绿色环境净化 技术之一.其中,利用半导体粉末光催化降解水中 MC 的研究也取得了一定进展.关于蓝藻水华、蓝藻 细胞及MC-LR、MC-RR、MC-YR的分子结构见图 1.图1(a )蓝藻水华;(b )蓝藻细胞;(c )MC-LR、MC-RR及MC- YR的分子结构1紫外光响应催化降解MC 研究 许多研究已经证实, TiO 2/UV 催化氧化法是一种能够高效降解MC 的方法, 甚至对高浓度的MC ,TiO 2/UV 催化氧化法的降解效果也很好[5-7].而对于不同类型的商业TiO 2其降解MC 的效果也各有差 异.Liu 等人[8] 研究发现,由图2所示, 5种常用的商业粉体TiO 2对MC 的降解效果顺序为:P25>PC500>PC50>PC100>UV100;4种商业颗粒状TiO 2对

水中微囊藻毒素测定

编号:作业指导书水中微囊藻毒素的测定 高效液相色谱法 临江市环境保护监测站 1、方法提要 微囊藻毒素在238nm下有 1、方法的适用范围 本标准规定了高效液相色谱法和间接竞争酶联免疫吸附法测定水中微囊藻毒素(环状七肽)的条件和详细分析步骤。 本标准适应于饮用水、湖泊水、河水、地表水中微囊藻毒素的测定。 样品中微囊藻毒素的检出限:高效液相色谱法和酶联免疫吸附法均匀为0.1μg/L。 2、微囊藻毒素的分子式、分子质量及结构式 2.1分子式 微囊藻毒素-RR(MC-RR):C49H75N13O12, 微囊藻毒素-YR(MC-YR):C52H72N10O13,

微囊藻毒素-LR(MC-LR):C49H74N10O12.。 2.2分子质量 MC-RR:1038.21mg,MC-YR:1045.2100μg,MC-LR:995.250μg。2.3结构式 MC-RR、MC-YR、MC-LR、X和Y 表1 MC-RR、MC-YR、MC-LR、X和Y 3、水样采集和保存 用采水器采集1500ml~2000ml水样(水样采集后,应在4 h内完成以下前处理步骤)。用500目的不锈钢筛()过滤,除去水样中大部分浮游生物和悬浮物。取过滤后的水样1200ml于玻璃杯式滤器()中,依次经滤膜()减压过滤。准确量取1000ml 滤液置于棕色试剂瓶中。注:如减压过滤后的水样不能立即分析,可置于玻璃容器中,在-20℃保存,30d内分析完毕。 4、试剂和材料 除非另有说明,分析时均使用符合国家标准的分析纯试剂和不含有机物的蒸馏水。 5.1甲醇,HPLC级(色谱级甲醇) 5.2二氯甲烷,农残级

项目解读 微囊藻毒素

《生活饮用水卫生标准》GB5749- 项目解读微囊藻毒素(1) 1 概述 微囊藻毒素 藻毒素主要的结构特征为N-甲基脱氢丙氨酸及两个L-氮基酸残基x和Z,根据1988年制定的微囊藻毒素(Microcystins或MCYST)命名法规定.x,Z二残基的不同组合由代表氨基酸的字母后缀区分。常见的有LR,RR,YR三种毒素,L,R,Y分别代表亮氨酸,精氨酸,酪氨酸。微囊藻毒素的一般结构为环(D-丙氨酸-L-X-赤-β-甲基-D-异天冬氨酸-L-Z—Adda-D-异谷氨酸-N-甲基脱氢丙氨酸),其中Adda(3氨基9-甲氨基2,6,8-三甲基10-苯基-4,6-二烯酸)是微囊藻毒素生物活性表达所必须的。已证实微囊藻毒素是一种肝毒素,能抑制蛋白质磷酸酯酶,从而帮助解除对细胞增殖的正常的制动作用,促进肿瘤的发育。微囊藻毒素虽然主要存在于藻细胞中.但研究表明藻细胞死亡解体后·不断有藻毒素释放到水体,对人类的饮用水源造成危害,已证明某些地区的肝癌高发率与饮用水源中的水华大量发生有关。微囊藻毒素是一类具生物活性的单环七肽,这类毒素主要由淡水藻类铜绿微囊藻(Microcystins aeruginosa)产生,此外其他种类的微囊藻,如绿色微囊藻(M.viridis)、惠氏微囊藻(M.wesenbergii)以及鱼腥藻(Anabaena)、念珠藻(Nostoc)、颤藻(Oscillatoria)的一些种或株系也能产生这类毒素。目前所检测到的微囊藻毒素异构体已超过50多种。 微囊藻毒素有不同的脂多糖和极性.毒性也不同,微囊藻毒素-LR是最早被阐明化学结构的藻毒素.在对藻毒素的研究中也多以它作为研究对象。它是一个环状的7肽分子,分子量约为1000道尔顿,许多国家出现的由藻毒素引发的事件大都

内毒素知识介绍

内毒素知识介绍 (2010-01-16 10:00:17) 转载 分类:精彩推荐展示 标签: 抗体 细胞因子 蛋白 酶 试剂盒 信号转导 凋亡 生化 试剂 干细胞 生物 ips 细菌内毒素,英文称作Enolotoxin,是G-菌细胞壁个层上的特有结构,内毒素为外源性致热原,它可激活中性粒细胞等,使之释放出一种内源性热原质,作用于体温调节中枢引起发热。内毒素的主要化学成分为脂多糖中的类脂A 细菌内毒素这个概念在1890年的时候就已被提了出来,它是在研究发热物质过程所引成的,1933年Boivin 最先由小鼠伤寒杆菌提取出来,进行化学免疫学方面的研究,到1940年时候,Morgan使用志贺氏痢疾菌阐明了细菌内毒素是由多糖脂质及蛋白质三部分所组成的复合体,到了1950年以后,随着生物学,物理化学,免疫学以及遗传学等的进步发展,细菌内毒素的研究工作,尤其是其化学结构组成及各种生物活性间的关系也更加明确起来。 细菌英文叫Bacteria :为原核生物中的一类单细胞微生物由二分裂法繁殖。若按革兰氏染色法可将细菌

分为G+菌和G-菌两大类。这两类细菌细胞壁的结构和化学组成存在很大差异。唯有肽聚糖为其共同成分,但其含量的多少和肽链的性质有所不同,见下表: 关于细菌细胞壁结构,尤其G+/G-菌不同之处见下图所示: 由以上结构模式图可以发现,G+菌与G-菌有不同之处,其中对于G-菌来说: 细胞壁较薄,厚约10-15nm,结构也较复杂。肽聚糖含量低,仅占细胞干生10%左右,层薄又较疏松,因肽聚糖之间仅四肽侧链直接联结,缺乏五肽桥;肽聚糖居于细胞最内层,外面由内向外还有脂蛋白,外膜和脂多糖的三层聚合物。 (1)脂蛋白(lipoprotein)由类脂和蛋白质构成,联结在外膜与肽聚糖层之间,类脂一端经非共价键联结到外膜的磷脂上,另一端由共价键联结到肽聚糖肽链中的二氧基庚二酸残基上,使外膜和肽聚糖层构成一个整体。 (2)外膜(outer membrane)是革兰氏阴性菌细胞壁的重要结构,位于肽聚糖的外侧,其结构类似细胞膜,为液态的磷脂双层,其中镶嵌一些特异蛋白质,穿透外膜的内外双层,呈液态镶嵌体。外膜中间有微小孔道,容许水溶性的小分子通过,以进行细胞内外的物质运输和交换。除此之外,外膜还能防止胰蛋白酶和溶菌酶等进入,起到保护性屏障作用。(3)脂多糖(lipopolysaccharide,LPS)由多糖O抗原、核心多糖和类脂A(lipid A)组成(图1-8),位于最外层。多糖O抗原向外,由若干个低聚糖的重复单位组成的多糖链,即革兰氏阴性菌的菌体抗原(O抗原),有特异性。核心多糖由庚糖、半乳糖、2-酮基-3-脱氧辛酸(2-keto-3-deoxyoctonic acid, KDO)等组成,所有革兰氏阴性细菌都有此结构。类脂A是以脂化的葡萄胺二糖为单位,通过焦磷酸酯键组成的一种独特的糖脂化合物,具有致热作用,是革兰氏阴性细菌内毒素的毒性成分。

蓝藻的防治

随着高温季节的到来,江苏省江都市罗氏沼虾和河蟹养殖塘口,蓝藻大量暴发。如何解决这个问题,我们请教全国渔业科技入户虾蟹类指导员邢华教授,分析其产生的原因并提出解决的办法供参考。 一、蓝藻的危害 1、溶解氧迅速下降 蓝藻的大量死亡能使水中的溶解氧迅速下降,造成鱼虾等养殖对象大量死亡,这种现象常发生在连续数天阴雨后天气突然转晴。由于蓝藻的过度繁殖,抑制了其它藻类的繁殖,它的死亡造成了水体中浮游植物数量锐减。水体中没有浮游植物,就不能实现光合作用产氧过程。而养殖水体中氧的70%以上来源于浮游植物的光合作用。鱼虾等养殖对象因缺氧浮头甚至泛塘。 2、产生快速致死因子 蓝藻中的项圈藻形成水华时,可产生快速致死因子,破坏鱼、虾等养殖对象的鳃组织,干扰其新陈代谢的正常进行,麻痹神经,使其死亡。 3、产生生物毒素 蓝藻类的个别种类不但活体带毒,而且死亡个体分解也可产生生物毒素,即蓝藻素。蓝藻素数量多时可直接造成养殖对象的中毒死亡,即使数量少,也可通过食物链的积累效应而危害养殖对象,甚至危害人体健康。 4、产生恶臭味,富集于池底 蓝藻水华出现时,水面被厚厚的蓝绿色湖靛所覆盖,被风吹到岸边堆积,不但会发出恶臭味,影响饲养管理,而且含毒素的蓝藻细胞在水

体中漂游,当与某些悬浮物络合沉淀,或被养殖对象捕食后随其排泄物沉淀,在鱼池池底富集,对水产业可持续发展和实现绿色水产品养殖的目标,将带来巨大的负面影响。 二、蓝藻发生的原因 1、水温:蓝藻的生长速度随着水温的升高而加快。在常温条件下,一些有益的单细胞藻类生长速度并不比蓝藻慢,只有当气温达到20℃以上。水温25—35℃时,蓝藻的生长速度才会比其他藻类快。所以受其它藻种的生长制约,蓝藻并不可能在常温条件下大规模暴发,只有进入高温季节,蓝藻的生长速度优势才会体现出来。所以温度是蓝藻暴发的主要因素之一。 2、富营养化:进入养殖高峰期后,养殖水体中富营养化,养殖生物自身的排泄物对养殖水体也是一种污染。在过去我们往往忽略了养殖生物的自身污染。所以不经常换水的池塘中往往更容易暴发蓝藻。如果蓝藻没有充分的营养也是很难生长的。 3、有机磷:有机磷并不是磷酸盐之类的,它广泛存在于各类化工污水中,另外在生活污水中也有有机磷,生活污水中有机磷主要存在于洗衣粉中,有机磷是蓝藻生长的必须因素。当前很多专家学者均认为治理蓝藻最直接最根本的办法就是除去有机磷。 三、解决方案 1、定向培藻:目前,在自然界中最适宜的生长温度条件下,蓝藻的生长速度是最快的,其次就是小球藻和栅藻。如果在养殖前期,在养殖池塘中能培养出上述两种藻类为优势种群的水体(定向培育),与蓝

内毒素知识介绍[1].

内毒素知识介绍 内毒素是革兰氏阴性菌细胞壁中的一种成分,叫做脂多糖。脂多糖对宿主是有毒性的。内毒素只有当细菌死亡溶解或用人工方法破坏菌细胞后才释放出来,所以叫做内毒素。 内毒素不是蛋白质,因此非常耐热。在100℃的高温下加热1小时也不会被破坏,只有在250℃的温度下加热1个小时,或用强碱、强酸或强氧化剂加温煮沸30分钟才能破坏它的生物活性。与外毒素不同之处,还有:内毒素不能被稀甲醛溶液脱去毒性成为类毒素;把内毒素注射到机体内虽可产生一定量的特异免疫产物(称为抗体),但这种抗体抵消内毒素毒性的作用微弱。 内毒素脂多糖分子由菌体特异性多糖、非特异性核心多糖和脂质A三部分构成。脂质A是内毒素的主要毒性组分。不同革兰氏阴性细菌的脂质A结构基本相似。因此,凡是由革兰氏阴性菌引起的感染,虽菌种不一,其内毒素导致的毒性效应大致类同。这些毒性反应主要有: 发热反应。人体对细菌内毒素极为敏感。极微量(1-5纳克/公斤体重)内毒素就能引起体温上升,发热反应持续约4小时后逐渐消退。自然感染时,因革兰氏阴性菌不断生长繁殖,同时伴有陆续死亡、释出内毒素,故发热反应将持续至体内病原菌完全消灭为止。内毒素引起发热反应的原因是内毒素作用于体内的巨噬细胞等,使之产生白细胞介素1、6和肿瘤坏死因子α等细胞因子,这些细胞因子作用于宿主下丘脑的体温调节中枢,促使体温升高发热。 白细胞反应。细菌内毒素进入宿主体内以后,血流中占白细胞总数60-70%的中性粒细胞数量迅速减少,这是因为细胞发生移动并粘附到组织毛细血管上了。不过1-2小时后,由内毒素诱生的中性细胞释放因子刺激骨髓释放其中的中性粒细胞进入血流,使其数量显著增加,有部分不成熟的中性粒细胞也被释放出来。革兰氏阴性菌的伤寒沙门菌是例外,其内毒素使白细胞总数始终是减少状态,目前还不清楚是什么原因。由于绝大多数被革兰氏阴性菌感染的患者血流中白细胞总数都会增加,所以现在医生在诊断前,为了初步区别是细菌性感染还是病毒性感染,常常要化验病人的血液,对白细胞进行总数测定和分类计数。被病毒感染的病人,其白细胞总数和中性粒细胞百分比基本在正常值范围内。 内毒素血症与内毒素休克。当病灶或血流中革兰氏阴性病原菌大量死亡,释放出来的大量内毒素进入血液时,可发生内毒素血症。大量内毒素作用于机体的巨噬细胞、中性粒细胞、内皮细胞、血小板,以及补体系统和凝血系统等,便会产生白细胞介素1、6、8和肿瘤坏死因子α、组胺、5羟色胺、前列腺素、激肽等生物活性物质。这些物质作用于小血管造成功能紊乱而导致微循环障碍,临床表现为微循环衰竭、低血压、缺氧、酸中毒等,于是导致病人休克,这种病理反应叫做内毒素休克。 关于内毒素休克,过去曾有过惨痛的教训。20世纪40年代青毒素刚问世的时候,医生发现青霉素对脑膜炎奈瑟菌引起的流行性脑膜炎疗效非常显著。因此,凡发现这类病人,一律优选青霉素进行治疗;且按照一般规律,用药剂量随病情严重程度而递增。结果发生了意外,用大剂量青霉素治疗重症脑膜炎患者时,不少发生了内毒素休克而死亡。后来经过研究分析,发现了其中的原委。病情严重的患者,体内存在的病原菌数量多,医生采用大剂量“轰炸”,意欲“一举歼敌”。快速、彻底杀灭病原体,这种战略无可非议,但有些医生忽略了另一方面,即流行性脑膜炎的病原菌是属革兰氏阴性菌的脑膜炎奈瑟菌,其致病物质是内毒素,而内毒素是要在病菌死亡后再放出的。如今用大剂量青霉素一下子将全部病菌杀死,也就是使大量内毒素一次放出,促成了内毒素休克,加速了患者的死亡。随着医学的进步,现在医生遇到这类病人,一方面仍然要用大剂量的有效抗菌药物去对付,同时要加用激素类药物,以保护对内毒素敏感的细胞不对内毒素诱生的细胞因子发生反应,从而度过“休克”难关。犹如外科手术时,采用麻醉药使病人丧失痛觉一样。 内毒素或脂多糖(lipopolysaccharide,LPS)在酒精性肝病(ALD)所致的肝损害中起重要作用[1]。LPS要发挥生理作用,必须与血循环中的载体结合,脂多糖结合蛋白(lipopolysaccharide binding protein, LBP)是近年发现的一种LPS载体蛋白,它能与LPS结合形成LPS-LBP复合物,并将LPS运送到效应靶器官或靶细胞发挥生理或病理生理作用。单核/巨噬细胞表面存在一种膜蛋白CD14,其分子量为5.5×104,主要功能是识别LPS,被认为是LPS的受体,在LPS介导单核/巨噬细胞激活中起重要作用[2]。LPS-LBP与CD14的结合能促使单核/巨噬细胞激活并释放多种细胞因子,诱导肝脏损害[3]。LPS、LBP及CD14三者在ALD中的确切作用机制及相互关系尚不清楚。本研究用乙醇喂养大鼠建立酒精性肝病动物模型,观察LBP和CD14 mRNA的表达及其在肝损害中的作用。 结果 1. 血中内毒素和ALT含量变化:乙醇喂养组大鼠喂养4周和8周时血浆LPS浓度分别为(129±21) pg/ml 和(187±35)pg/ml, 明显高于对照组的(48±9)pg/ml 和(53±11)pg/ml(t值分别为11.2和11.6,P<0.05);乙醇组血清ALT浓度分别为(112±15)U/L 和(147±22)U/L,也明显高于对照组的(31±12)U/L和(33±9)U/L(t值分别为5.9和20.6,P<0.05)。 2. 肝组织中LBP和CD14 mRNA的表达:两组大鼠肝组织中LBP和CD14 mRNA的表达见图1~3。对照组大鼠4周和8周肝组织中LBP 和CD14 mRNA的表达均不明显。乙醇喂养组大鼠肝组织中LBP和CD14 mRNA在4周时已明显表达,8周时表达进一步增加,其中CD14 mRNA 表达最显著,与对照组相比差异有显著性(P<0.05)。 3. 肝脏形态学变化:对照组大鼠光、电镜下肝组织无明显的病理学变化。乙醇喂养组4周时光镜下见肝细胞内出现大小不等的空泡样变性,肝窦内有较多白细胞,但未见明显的炎性细胞浸润和坏死病灶形成;乙醇喂养8周后,肝细胞脂肪变性更加明显,并有较多的炎性细胞浸润及坏死灶出现(图4、5)。电镜下乙醇喂养组肝细胞内有较多局灶性的胞浆变性及髓鞘样结构形成,并可见坏死灶的出现(图6、7)。 讨论 酒精性肝病时肝脏损害的程度与乙醇的剂量和作用时间呈正相关,雌性大鼠比雄性大鼠对乙醇具有更高的敏感性,甘氨酸通过减少

蓝藻的预防和处理

蓝藻的预防和处理 夏天,养殖中后期,养殖户提出最多的问题是:蓝藻如何处理? 蓝藻的生活特性: 1. 蓝藻喜高温、强光、多静止的淡水水体,尤其是水体中有机质丰富、水、底富营养化时容易产生。常见的种类有微囊藻、囊球藻、鱼腥藻、拟鱼腥藻等,这些藻类有固氮作用,因而在缺氮环境其它藻类不能生活时,唯有蓝藻可大量繁殖。 2. 蓝藻具有一般藻类的生长特点:其生命周期大概为30天,整个生命周期可分三个阶段:生长期、高峰期、老化期。 3. 有过多蓝藻的池塘呈现的颜色一般为翠绿色(由蓝藻大类中的铜绿微囊藻和不定微囊藻产生)或者是蓝绿色(由蓝藻大类中的鱼腥藻和颤藻产生),产生这两种水色的同时,一般会在池塘四周(尤其是下风口)会浮有一层翠绿色的膜,太阳上其颜色呈绿色油漆状。 蓝藻的危害: 1.蓝藻死亡后会放出大量有毒物质,比活藻危害更大; 2.蓝藻生长繁殖过程释放出一定的有害含氮化合物,有臭水的感觉; 3.多数蓝藻不易被虾利用,因而蓝藻多的水体虾生长缓慢; 4.蓝藻易浮于水面,抑制了水层中其他藻类的繁殖,因而表层以下水常常是清的,水体的净水功能较弱,底易臭。 蓝藻的预防: 在养殖过程中,为避免蓝藻出现,应从以下方面着手: 1.清塘时,生物净化环节不容忽视:因老的池塘留有大量蓝藻的“种子”沉在底泥中,因此要清淤并用微生物制剂分解; 2.基肥慎用化学肥料,尤其少用磷肥,而用多氮少磷型的生物有机肥(如肥水元素)作基肥,中后期如追肥,应使用氨基酸速肥王或氨基酸培藻调水元素等全水溶性肥,这样可促进其他藻类尤其是有益藻类的繁殖。 3.不用含蓝藻丰富的水源。

4.养殖水位不宜过深,池边使用车轮式增氧机增氧,以培养硅藻,减少蓝藻繁殖。 5.定期使用微生物制剂改良水质和底质,及时分解有机质,避免水、底富营养化。 6.水浓、透明度低应及时使用解毒绿水王、绿水元素或爽水素、水质保护解毒剂抑制蓝藻和其它有害藻类。 7.高温季节,合理投料,每周适当减料或停料2~3餐。 一旦出现蓝藻的处理方法: 1.处理蓝藻当天应适当减料,以减少蓝藻赖以生存繁殖的养分; 2.白天抽排(含蓝藻)表层水,或者全池泼洒底优或底优二代、沸石粉吸附蓝藻沉降于池底,然后在晚上排去底层水; 3.同时全池泼洒绿水元素、水质保护解毒剂分解蓝藻尸体、解除蓝藻毒素和避免藻相变动引起的缺氧; 4.于第二天从其它池塘进新鲜含藻水,再用氨基酸速肥王或氨基酸培藻调水元素追肥,培养鲜活藻相和菌相。

微囊藻毒素研究进展

微囊藻毒素研究进展 王雪艳1,聂晶晶2 1大连海事大学环境科学与工程学院(116026) 2云南农业大学资环学院(650201) E-mail:wangxyan@https://www.wendangku.net/doc/2214265127.html, 摘要:微囊藻毒素(Microcystins,MCYSTs,MCs)为富营养化淡水水体中最常见的藻类毒素,从毒理学、环境科学、生物学及化学等方面对MCs巳的研究已有较多报道。本文综述了MCs的具体的概念、对生物的影响,并对关于MCs在产生机理、分离检测方法和水处理过程中的去除方法等方面的研究进展,并对目前研究的不足提出了几点意见。 关键词:微囊藻毒素,水华,毒素,藻类植物 1.前言 日趋严重的水体富营氧化使水华(Water bloom)发生已成为全球性的环境问题。我国多数淡水湖泊中形成水花的优势藻种,主要为有毒的蓝藻,这些毒藻可产生具有明显肝毒性的肽类物质,称为微囊藻毒素(Microcystins,MCYST)。近年来,由于饮用藻毒素污染的水体,而导致家禽、野生动物中毒,甚至死亡的事件频繁发生,藻类毒素对人体健康的危害已引起了人们的关注。我国的一些饮用水水源也已受到了有毒藻类的严重污染。本文就微囊藻毒素对生物危害、采集、检测及去除微囊藻的方法作了简单的介绍,着重在于微囊藻毒素的产生与环境的关系的介绍。 2.微囊藻毒素(MCYST) 2.1 微囊藻毒素 淡水藻类中,毒性最强、污染最广、最严重的是蓝藻门。目前已肯定的有毒藻类有铜锈微囊藻、水华鱼腥藻、水华束丝藻、阿氏颤藻、泡沫节球藻及念珠藻等。这些藻类不只产生一种毒素,如环境发生变化,一种藻类可产生几种毒素。它是一种肝毒素,这种毒素是肝癌的强烈致癌剂[1]。虽然在1878年Francis就最早报道了泡沫节球藻会对动物产生毒害作用,但人们对藻类分子结构的认识还不满40年。1959年Bishop首次分离出藻毒素后,不断有相关报道发表。美国、日本、澳大利亚、印度、加拿大、芬兰等lO多个国家都曾报道了其湖泊、水库中有毒水华的形成,并分离出有毒藻株[2]。我国的东湖、巢湖、太湖、滇池、淀山湖、黄浦江等饮用水水源及各种湖泊在夏秋季节藻类水华严重,每年长达7—8个月,而天然水体蓝藻水华80%是产毒的[3]。从加拿大、日本、芬兰、美国、中国等地对湖水、河水、水库水、井水及自来水等水样的检测结果看,有的水体中微囊藻毒素检出率高达60%一87%,源水中微囊藻毒素浓度从130ng/ml一2ug/ml不等,经加氯处理后的浓度也有0.09—0.6ug /L不等[4]。由此可见淡水水源受到微囊藻毒素污染的严重状况。 2.2 微囊藻毒素对生物的影响 MCYSTs主要以肝脏为靶器官[5-6]。动物经灌喂或腹腔注射后,破坏细胞内的蛋白磷酸化平衡,改变多种酶活性,引起肝脏病变,造成一系列的生理紊乱。中毒症状主要表现为虚 - 1 -

藻毒素的脱除技术研究解析

藻毒素的脱除技术研究 一、前言 随着我国工农业的快速发展,大量含氮含磷的工业废水、生活污水以及农业面源污水排入江河湖海,导致环境水体富营养化严重。根据中国环保部公布的2014年《中国环境状况公告》中可以看出:开展营养状态监测的湖泊(水库)中轻度富营养的有13个,中度富营养的有2个,其中滇池和达赉湖富营养化最严重。水体富营养化的日益加剧导致藻类大量繁殖,形成日趋严重的水华污染,微囊藻水华是淡水水体污染中危害最严重的一类。当水华严重时,水面形成厚厚的蓝绿色湖靛,散发出难闻的气味,破坏了健康平衡的水生生态系统[1]。 二、藻毒素的分类和来源 水体中的藻毒素可分为两部分,一部分溶解在水体中,称为溶解性藻毒素; 另一部分在藻细胞内合成,称为细胞内毒素。随着藻细胞的生长繁殖,当藻细胞破裂或老化死亡时,胞内毒素从藻细胞内释放出来并表现出毒性。一般情况下,藻细胞内的藻毒素浓度要高于水中溶解性藻毒素浓度。蓝藻毒素,按照毒性功能可以分为肝脏毒素、神经毒素和其它毒素[2]。微囊藻毒素和节球藻毒素都属于肝脏毒素。微囊藻毒素是由有毒蓝藻产生的代谢物,是蓝藻水华污染中出现频率最高、产生量最大和造成危害最严重的一类藻毒素[3]。 三、藻毒素的结构和危害 水体中的藻毒素可分为两部分,一部分溶解在水体中,称为溶解性藻毒素; 另一部分在藻细胞内合成,称为细胞内毒素。随着藻细胞的生长繁殖,当藻细胞破裂或老化死亡时,胞内毒素从藻细胞内释放出来并表现出毒性。一般情况下,藻细胞内的藻毒素浓度要高于水中溶解性藻毒素浓度。蓝藻毒素,按照毒性功能可以分为肝脏毒素、神经毒素和其它毒素[2]。微囊藻毒素和节球藻毒素都属于肝脏毒素。微囊藻毒素是由有毒蓝藻产生的代谢物,是蓝藻水华污染中出现频率最高、产生量最大和造成危害最严重的一类藻毒素[3]。 3.1藻毒素的结构 藻毒素在1959年被Bioshop发现。藻毒素主要是由微囊藻属、颤藻属、鱼腥藻属、念珠藻属产生。Rinehart于1988年确定分子结构[4]。微囊藻毒素的相对分子质量在1000 左右。是一种环状七肽物质,分子结构式如下:

l蓝藻水华的危害及治理

南京师范大学 研究生课程学习考试成绩单 (试卷封面) 任课教师签名: 批改日期: 注: 1、以撰写论文为考核形式的,填写此表,综合考试可不填; 2、本成绩单由任课老师填写,填好后与作业(试卷)一并送院(系)研究生秘书处; 3、学位课总评成绩须以百分制记分。

蓝藻水华的危害及其治理 姓名:刘畅,学号:121202008.学院:生命科学学院 摘要:水体富营养化是目前世界各国所面临的重大环境问题。水体富营养化带 来的一个突出的问题是蓝藻水华的暴发。大规模的蓝藻水华降低了水资源利用效能,引起严重的生态破坏及巨大的经济损失,而蓝藻毒素的产生给公众健康带来极大危害。有关蓝藻毒素中毒的事件也时有报道。引起蓝藻水华的种类主要有微囊藻(Microcystis)、鱼腥藻(Anabaena)、鞘颤藻(Lyngbya)、束丝藻(Aphanizomenon)、颤藻(Oscillatoria)。本文简要概述了蓝藻水华的危害及其治理现状。 关键词:蓝藻水华危害治理 The harmful of water blooms and its management Abstract:The water eutrophication is the serious environment problem that all the countries are faced with it. The water eutrophication brings the outbreak of water blooms. The scale of the water blooms reduces the efficiency of water usage , cause serious ecological destruction and huge economic losses, and the algae toxin production brings great harm to the public health . The algae toxin poisoning event is also reported. The species cause water blooms are mainly Microcystis, Anabaena, Lyngbya , Aphanizomenon, Oscillatoria. This paper briefly summarizes the harmful of water blooms and its present management situation. Key wards: water blooms, damage, management 1 蓝藻及蓝藻水华 蓝藻是一类极其古老、微小的原核生物,又称蓝细菌,是一种全球广泛存在的原核生物,无色素体、细胞核等细胞器,原生质体分为外部色素区和内部无色中央区,色素区含有叶绿素a,细胞可以进行光合作用(李建宏,1997),繁殖为无性繁殖。蓝藻在其长达三十多亿年的进化过程中,形成了一套独特的形态和生理代谢机制(陈飞勇,2008)。一旦环境条件适宜,其就快速生长繁殖,并在短时间内成为优势种群,当其生长达到一定的生物量时,他们便在水体表层聚集,形成水华。长期的进化形成了极强的生态竞争优势,在适合的环境条件下即可获得最大生长率,并以指数级迅速增长。研究发现蓝藻具有自我强化机制作用的生态生长调节素,可使其产生尽可能多的后代,从而使产毒菌株密度增加,获得竞争优势,形成种类少而数量大的蓝藻水华。 水华(water bloom)是指在富营养化的河流、湖泊及池沼等淡水域中,在一定的营养、气候、水文条件和生物环境下,由于氮、磷等营养元素过多,导致某些藻类的异常增殖,在水体表层大量聚集成肉眼可见的蓝绿色藻层,呈油状厚厚地覆盖于水面的污染现象(王为东,2001)。常见的水华藻种多属蓝藻门,有微囊藻、鱼腥藻、颤藻、束丝藻、念珠藻等(汪育文,2007)。其中以铜绿微囊藻在数量和发生上占绝对优势。

相关文档