文档库 最新最全的文档下载
当前位置:文档库 › DL T 620-1997 交流电气装置的过电压保护和绝缘配合

DL T 620-1997 交流电气装置的过电压保护和绝缘配合

DL T 620-1997 交流电气装置的过电压保护和绝缘配合
DL T 620-1997 交流电气装置的过电压保护和绝缘配合

直流系统在线绝缘监测装置

直流系统在线绝缘监测装置设备采购技术条件书 广东电网有限公司茂名供电局

目录 1总则 (3) 2工作范围 (3) 2.1 供货清单 (3) 2.2服务界限 (3) 2.3技术文件 (4) 3技术要求 (4) 3.1应遵循的主要现行标准 (4) 3.2使用条件要求 (5) 3.3基本设计要求 (5) 3.4 技术参数 (7) 4质量保证 (8) 5试验 (9) 5.1型式试验 (9) 5.2出厂检验 (9) 5.3第三方检测报告 (10) 6包装、运输和储存 (10) 7备品备件及专用工具 (11) 7.1备品备件 (11) 7.2专用工具 (11) 8 投标方应填写主要部件来源、规范一览表 (12)

1总则 1.1.本技术条件书适用于直流在线绝缘监测装置的功能设计、结构、性能、安装和试验等 方面的技术要求,以及技术服务等有关内容。 1.2.本技术条件书提出的是最低限度的技术要求, 并未对一切技术细节作出规定, 也未 充分引述有关标准和规范的条文, 投标方应提供符合本技术条件书和工业标准的优质产品。 1.3.如果投标方没有以书面形式对本技术条件书的条文提出异议, 则意味着投标方提供 的设备(或系统)完全符合本技术条件书的要求。如有异议, 不管是多么微小, 都应在报价书中以“对技术条件书的意见和同技术条件书的差异”为标题的专门章节中加以详细描述。 1.4.本技术条件书所使用的标准如遇与投标方所执行的标准不一致时, 按较高标准执行。 1.5.本技术条件书经招、投标双方确认后作为订货合同的技术附件,与合同正文具有同等 法律效力。 1.6.本技术条件书未尽事宜, 由招、投标双方协商确定。 2工作范围 2.1 供货清单 本技术条件书要求采购的直流在线绝缘监测装置范围包括: 1)装置主机; 2) 装置辅机; 3)选线模块; 4)超低频微电流开口CT; 5)网络线缆等辅助材料; 6)备品备件及专用工器具等。 2.2服务界限 2.2.1 从生产厂家至招标方指定交货点的运输和装卸全部由投标方完成。

电气化铁路过电压绝缘配合设计

电气化铁路过电压绝缘配合设计 1.1 概述 电气化铁路牵引变电所供电对象是电力机车,由于电力机车是单相脉冲负荷,产生的负序谐波较大,会导致牵引供电网络的功率因素降低并给电力系统带来影响。提高电力牵引变电所的功率因数方法有很多种,我国普遍采用的方法是在牵引变压器低压侧安装固定并联电容补偿装置,并且大都采用真空断路器来进行透切操作。由于真空断路器具有超强的灭弧能力和高频吸弧能力,在牵引变电所利用真空断路器投切并联补偿装置的过程中,曾多次发生烧毁电容器和电抗器的事故,严重的影响电气化铁路的安全运营,因此迫切需要对电气化铁路并联补偿装置投切暂态过程的过电压与绝缘配合进行研究。 本文主要介绍电气化铁道无功功率的现状,并联电容补偿的原理、作用、方案和主接线以及国内无功补偿方式的应用及研究现状。然后对电气化铁道并联无功补偿装置投切的过渡过程进行了理论分析和计算,得出了并联补偿装置投切过渡过程期间电容器和电抗器上的电压及回路电流的数学表达式。根据牵引变电所并联补偿装置的实际参数,对投切过渡过程期间电容器和电抗器上的电压及回路电流进行了工程计算,并对计算结果进行了分析。综合考虑电气化铁路供电系统中各设备的绝缘能力,欲使绝缘能耐受所有可能预见的最大过电压进行绝缘配合设计分析。 。 2接触网绝缘配合的分析与研究 2.1接触网的绝缘部件 (1)绝缘子是接触网带电体与支柱设备或其他接地体保持电气绝缘的重要部件。 接触网用的绝缘子多为悬式绝缘子和棒式绝缘子。悬式绝缘子主要用来悬吊或支撑接 触悬挂,电气化铁路供电的额定电压是25kV,选用的绝缘子形式一般是由三片组成 的绝缘子串,轻污染区采用三片普通型悬式绝缘子组成,重污染区采用四片均为防污 型悬式绝缘子组成的绝缘子串。棒式绝缘子是根据电气化铁路接触网的工作条件而专 门设计的一种瓷质的整体式绝缘子,根据使用环境及条件可分为普通型﹑防污型及双 重绝缘三种类型。绝缘子的性能好坏,对接触网能否正常供电影响很大。 (2)绝缘子的机械性能 绝缘子在接触网中不仅起绝缘作用,而且还承受着机械负荷,特别是软横跨的承 力索及下锚用的绝缘子承受着线索的全部张力,所以对绝缘子的电气及机械性能的要 求都是极为严格的。 (3)绝缘子的电气强度 绝缘子在工作中要受到各种大气环境的影响,并可能受到工频电压、内部过电压 和外部过电压的作用。因而,要求绝缘子在这三种电压作用及相应的环境之下能够正 常工作或保持一定绝缘水平。绝缘子的电气性能,用干闪络电压﹑湿闪络电压和击穿 电压表示。

变压器绝缘油中气体在线监测装置技术规范书

变压器绝缘油中溶解气体在线监测装置 技术规范书 工程项目: 广西电网公司 2008年10月 目次 1总则 2使用条件 3技术参数和要求 4试验 5供货范围 6供方在投标时应提供的资料 7技术资料及图纸交付进度 8包装、运输和保管要求 9技术服务和设计联络

1 总则 1.1本规范书适用于变压器绝缘油中溶解气体在线监测装置,它提出设备的功能设计、结构、性能、安装和试验等方面的技术要求。 1.2需方在本规范书中提出了最低限度的技术要求,并未规定所有的技术要求和适用的标准,未对一切技术细则作出规定,也未充分引述有关标准和规范的条文,供方应提供一套满足本规范书和现行有关标准要求的高质量产品及其相应服务。 1.3如果供方没有以书面形式对本规范书的条款提出异议,则意味着供方提供的设备(或系统)完全满足本规范书的要求。如有异议,不管是多么微小,都应在投标书中以“对规范书的意见和和规范书的差异”为标题的专门章节加以详细描述。本规范书的条款,除了用“宜”字表述的条款外,对低于本规范书技术要求的差异一律不接受。 1.4本设备技术规范书经需供双方确认后作为订货合同的技术附件,和合同正文具有同等的法律效力。 1.5供方须执行现行国家标准和行业标准。应遵循的主要现行标准如下。下列标准所包含的条文,通过在本技术规范中引用而构成为本技术规范的条文。本技术规范出版时,所示版本均为有效。所有标准都会被修订,供需双方应探讨使用下列标准最新版本的可能性。有矛盾时,按现行的技术要求较高的标准执行。 DL/T 596-1996 电力设备预防性试验规程 DL/T 572-1995 电力变压器运行规程 DL/T722-2000 变压器油中溶解气体分析和判断导则 DL/573-1995 电力变压器检修导则 GB7957-1998 电力用油检验方法 GB/T17623-1998 绝缘油中溶解气体组份含量的气相色谱测定法 IEC60599-1999 运行中矿物油浸电气设备溶解气体和游离气体分析的解释导则 GB190-1990 危险货物包装标志 GB5099-1994 钢质无缝钢瓶 DL/T5136-2001 火力发电厂、变电所二次接线设计技术规程 GB/T17626.1 电磁兼容试验和测量技术抗扰度试验总论 GB/T17626.2 电磁兼容试验和测量技术静电放电抗扰度试验 GB /T17626.3 电磁兼容试验和测量技术射频电磁场抗扰度试验 GB/T17626.4 电磁兼容试验和测量技术电快速瞬变脉冲群抗扰度试验 GB/T17626.5 电磁兼容试验和测量技术浪涌(冲击)抗扰度试验 GB/T17626.6 电磁兼容试验和测量技术射频场感应的传导抗扰度

交流电气装置的过电压保护及绝缘配合0001

输变电标准讲解资料交流电气装置的过电压保护和绝缘配合》 (DL/T620-1997) 2008 年8 月

目录 引言 二,电力系统中性点接地方式及其对过电压的影响三,暂时过电压及其限制 四,操作过电压及其保护 五,雷电过电压及其防护 六, 金属氧化物避雷器MOA 七,绝缘配合

一,前言: 1,本标准规定了标称电压为3?500 kV交流系统中电气装置过电压保护的方法和要求;提供了相对地、相间绝缘耐受电压或平均(50%)放电电压的选择程序,并给出电气设备通常选用的耐受电压和架空送电线路与高压配电装置的绝缘子、空气间隙的推荐值。 本标准是根据原水利电力部1979年1月颁发的《电力设备过电压保护设计技术规程》SDJ7-79和1984年3月颁发的《500 kV电网过电压保护绝缘配合与电气设备接地暂行技术标准》SD 119-84,经合并、修订之后提出的。 2,标准的适用范围: 本标准与修订前标准的主要差别: 1 ),增补了电力系统中性点电阻接地方式;修订了不接地系统接地故障电流的阈值; 2),对暂时过电压和操作过电压保护,补充了有效接地系统偶然失地保护和并联补偿电容器组、电动机操作过电压保护及隔离开关操作引起的特快瞬态过电压保护等内容;对330kV系统提出新的操作过电压水平要求、修订了限制500kV合闸和重合闸过电压的原则和措施等; 3),增加了金属氧化物避雷器参数选择的要求; 4),增加了变电所内金属氧化物避雷器最大保护距离和SF6 GIS变电所的防雷保护方式的内容; 5),充实并完善了3?500kV交流电气装置绝缘配合的原则和方法。给出架空线路、变电所绝缘子串、空气间隙和电气设备绝缘水平的推荐值。 注:本文中工频过电压倍数,为工频过电压有效值与系统最高相电压有效值之比;本文中谐振、操作过电压倍数,为谐振、操作过电压幅值与系统最高相电压峰值之比。 二,电力系统中性点接地方式及其对过电压的影响: 电力系统中性点接地方式是涉及系统接地故障电流、过电压水平、运行可靠性等一项技术、经济的综合性问题。 --- 影响一次设备的制造水平,造价,进而影响电力系统的建设投资:如, 影响断路器的开断能力,影响变压器等的动, 热稳定性; --- 影响继电保护方式的选择性,影响故障的复杂程度, 影响电力系统的电磁暂态、机电暂态的发展和系统稳定,影响电力系统的运行费用; --- 影响二次系统,包括对继电保护, 通讯, 铁路信号, 自动化等的电磁干扰;--- 影响电力系统非对称接地故障引起的工频过电压, 进而影响电力系统的操作过电压水平和绝缘水平. 目前, 我国电力系统中性点接地方式有 1. 有效接地方式(3.1.1): (此处括号内数字为DL/T620相应条款,以下雷同。) 有效接地方式,即系统在各种条件下应该使零序与正序电抗之比a = X0/X1为 正值并且不大于3,而其零序电阻与正序电抗之比RX i为正值并且不大于1。接地故障系数( K = 故障时健全相工频电压/ 故障前工频相电压)不超过1.4 ,接地故障系数K乘以最大运行相电压为工频过电压。

电气设备绝缘在线监测装置

电气设备绝缘在线监测 装置 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

电气设备绝缘在线监测装置 摘要:在线监测系统的原理、结构及在实际中的应用。 关键词:在线监测绝缘色谱分析单元 前言 在40 年代,因电网电压等级低、容量小,电气设备发生故障所带来的损失和影响不大因此人们采用事故后维修制,即设备损坏后,停电进行维修。此后,电网容量逐渐增大,电压等级也随之提高,设备故障所产生的影响也相应增大,因此,从事故后维修制逐渐发展到预测性维修制。从50年代起,由于110KV~220KV电压等级的电网已有相当规模,设备故障所产生的影响也更大,用户对供电的可靠性要求也相应提高,于是从预测性维修制逐渐演变为维修预防制。在预测性维修制逐渐演变为维修预防制的过渡中,人们逐渐探索定期对某些设备的绝缘停电作非破坏性和破坏性试验研究,逐渐总结出了对某些设备的预防性试验试行标准,并逐渐形成了局部预防性维修体系;从60年代起,各国相继制定出了比较规范的停电预防性试验标准,从而进入了预防性维修制时代,并将这种观念一直延续至今。 进入预防性维修制时代后,人们逐渐认识和发现定期停电进行预防性试验的缺陷和不足。当一台大型电气设备的某一元件的绝缘有缺陷时,往往反映不灵敏,即使整体预防性试验合格,仍然时有故障发生。例如我局1998年站街变206开关CT在高压试验中合格,但却发生了爆炸的事故。由于现行的预防性试验电压太低,无法真实反映运行电压下的绝缘性能和整个工作情况,因此必需对现行的预防性维修制进行根本的变革,其发展方向必然是采用在线监测及诊断技术,并探索以在线监测为基础的状态检修制。

绝缘在线监测系统

电力设备在线监测与故障诊断课程设计 题目:电气设备绝缘在线监测系 统 专业:电气工程及其自动化 班级:09电气2班 学生姓名:王同春 学号:0967130219 指导教师:张飞

目录 摘要 (3) 引言 (3) 1 在线监测技术的发展现状 (3) 1.1 带电测试阶段 (3) 1.2 在线监测及智能诊断 (4) 2 在线监测技术的基本原理 (4) 2.1 在线监测系统的组成 (4) 3 硬件设计 (6) 4 电流传感器 (6) 5 前置处理电路 (7) 6 数字波形采集装置 (7) 7 现场通信控制电路 (8) 8 结语 (8) 参考文献: (8)

摘要: 绝缘在线监测与诊断技术近年来受到电力行业运营、科技部门的高度重视,应对其进行深入研究并开发应用。在线监测系统主要是对被测物理量(信号)进行监测、调理、变换、传输、处理、显示、记录、等多个环节组成的完整系统。随着传感器技术、信号采集技术、数字分析技术与计算机技术的发展和应用,使在线监测技术将向着更加准确、及时、全面的方向发展,使电气设备的工作更加安全可靠。 关键词: 电力系统;高压电气设备; 绝缘在线监测系统; 引言 在电网中,高压电气设备具有不可替代的作用,若其绝缘部分劣化或存在缺陷,就可能对电网设备的正常运行造成影响,进而引发安全事故。而以往的设备检修和测试工作都是在电网设备运营过程中,通过定期停电的方式来完成的。但这种检修方式也存在很多问题:①检修时必须停电,影响电网正常运营。一旦碰到突发状况,设备不能停电而造成漏试,可能埋下安全隐患。②由于测试程序繁琐、时间集中,且任务紧迫,工人的工作量较大,极易受人为因素影响。③检修周期长,某些故障就极易在这个周期内快速发展,酿成大事故。④测试电压达不到10KV,设备实际运营时的电压要比这个数值要大,同时因为测试期间停电,设备运营过程中关于磁场、温度、电场以及周围环境等情况无法真实的反映出来,因而测试结果不一定与实际运营情况相符。高压电气设备随着电网容量的持续增大而急剧增加,以往的预防性测试及事故维修已无法保证电网的安全运营。而且,因为高压电气设备的绝缘劣化是经过长时间累积的,在某些条件下,预防性测试已失去其应有的作用。所以,实现高压电气设备绝缘实时、在线的动态监测,可通过局部推测整体,通过现象预测本质,由当前情况预测未来发展,无需卸设备逐一测试,符合现代化设备的生产、使用及维修的要求。 1 在线监测技术的发展现状 在线监测技术的发展方面,高压电气设备的绝缘大致经过了两个阶段。 1.1 带电测试阶段 自十九世纪七十年代开始进入带电测试阶段。当时只是本着确保正常通电的的条件下直接测量电网设备中的部分绝缘参数。这一阶段研发了很多专用的带电测试仪器,监测技术实现了由以往的模拟测试向数字化测试模式转变。但设备构造简单,缺乏灵敏度,仍有部分参数无法测试。到了八十年代,随着计算机信息

直流系统绝缘检测原理介绍

直流系统绝缘检测原理介绍 时间:2013-2-25 11:56:56来源:深圳市信瑞达电力设备有限公司https://www.wendangku.net/doc/2015012148.html,打印本文直流系统绝缘检测原理介绍 直肯定会有很多人想知道直流系统绝缘检测原理介绍的一些内容? 下面小编就满足下大家的好奇心: 发电厂和变电站的直流电源作为主要电气设备的保安电源及控制信号电源,是一个十分庞大的多分支供电网络。在一般情况下,一点接地并不影响直流系统的运行,但如果不能迅速找到接地故障点并予以修复,又发生另一点接地故障,就可能引起重大故障的发生。 现有检测直流系统绝缘的方法主要有电桥平衡原理和低频探测原理。根据电桥平衡原理实现的绝缘监测装置被广泛使用,但它不能检测直流系统正、负极绝缘同等下降时的情况;绝缘监测装置即使报警,也不能直接得到系统对地的绝缘电阻大小。用低频探测原理检测接地故障是近几年采用的一种新方法,但它所能检测的接地电阻受直流系统对地分布电容的制约,而且低频交流信号容易受外界的干扰,另外注入的低频交流信号增大直流系统的电压纹波系数。可见,电桥平衡原理和低频探测原理均存在若干难以克服的缺陷。本文提出一种新的检测方法,即主回路用不平衡电桥检测总的绝缘电阻,而支路用直流互感器来检测到底是哪一路出现了绝缘降低。同时用单片机来实现这种检测方法。 主回路的绝缘电阻的测量 传统的平衡电桥检测原理如下图-1,通过检测电压Uj和Um,再加上给定的电阻R来算出R+、R-,但当正负绝缘都出现降低的情况下,检测的结果将与实际情况不符合。 图-1 为了能检测正负都绝缘降低的情况,下文设计一种不平衡电桥测量法。并用MCS 80C196KC单片机来实现,如图-2所示。首先我们先说明一下电子继电器AQW214的用法,当AQW214的1、2脚导通时,7、8脚也导通;而且导通的内阻很小。同理,3,4脚导通时,5、6脚也导通。而且,AQW214的耐压值可以达到400V,即当7、8,或5、6不导通时,它们两端可以承受400V的电压。所以我们可以通过控制P10的电平,来控制1、2脚的导通而达到控制JK1的导通与关断。同理,通过控制P11的电平来控制JK2的导通与关断。第一步,JK1、JK2都断开,我们通过80C196单片机的A/D口的AC4通道采集C4两端的电压,从而测得Um。第二步,JK1断开、JK2闭合,通过A/D口的AC5通道采集C2两端的电压,从而测算得Uj,记此时测得的电压Uj为Uj1。第三步,JK1闭合、JK2断开,记此时测得的电压Uj为Uj2。很明显的Uj1与R+,R-有关系,Uj2也与

过电压和绝缘配合资料全

第一章 过电压及其绝缘配合 电力系统的各种电气设备在运行中除了要承受正常的系统电压外,还会受到各种过电压的作用。因而,了解各种过电压产生的机理及其对电气设备的危害,研究防止产生或限制幅值的措施,对系统及电气设备绝缘水平的选定有决定性的意义。本章就各种过电压的发生机理作初步介绍。 第一节 理论基础 一、直流电源作用在LC 串联回路的过渡过程 从电路的观点看,电力系统中的各种电气设备都可以用R 、L 、C 三个典型元件的不同组合来表示。其中L 、C 为储能元件,是过电压形成的 因,是作为分析复杂电路过渡过程的基础。现在, 我们来研究直流电源作用于L 串联电路上的过渡过 程及由之产生的过电压。 如图1-1所示,根据电路第二定理可写出 E =L dt di +C 1∫idt (1-1) 在未合闸时,i =0,uc =0,变换一下形式,式(1-1) 可写为 LC 2 2dt uc d +uc=E (1-2) 当满足t =0时,i =0,uc =0,式(1-2)的解为 uc=E (1-cos ω0t) 式中,ω0=LC 1 ,而电路的电则为 i=C dt duc =C L E sin ω0t (1-3) 若uc (0)≠0,那么uc 的解为 uc=E-[E-uc (0)]cos ω0t (1-4) 由上式可知,uc 可以看作是由两部分叠加而成:第一 部分为稳态值E ,第二部分为振荡部分,后者是由于起始 状态和稳定状态有差别而引起的,其幅值为(稳定值 一起始值),见图1-2。因此,由于振荡而产生的过电压 可以用下列更普遍的式子求出 过电压=稳态值+振荡幅值=2×稳态值-起始值 (1-5) 利用上式,可以很方便地估算出由振荡而产生的过电 压值。当然,实际的振荡回路中,电阻总是存在的,电阻 的存在会使振荡波形最终衰减到稳态或甚至根本就振荡不

变压器绝缘在线监测

前言 在40 年代,因电网电压等级低、容量小,电气设备发生故障所带来的损失和影响不大因此人们采用事故后维修制,即设备损坏后,停电进行维修。此后,电网容量逐渐增大,电压等级也随之提高,设备故障所产生的影响也相应增大,因此,从事故后维修制逐渐发展到预测性维修制。从50年代起,由于110KV~220KV 电压等级的电网已有相当规模,设备故障所产生的影响也更大,用户对供电的可靠性要求也相应提高,于是从预测性维修制逐渐演变为维修预防制。在预测性维修制逐渐演变为维修预防制的过渡中,人们逐渐探索定期对某些设备的绝缘停电作非破坏性和破坏性试验研究,逐渐总结出了对某些设备的预防性试验试行标准,并逐渐形成了局部预防性维修体系;从60年代起,各国相继制定出了比较规范的停电预防性试验标准,从而进入了预防性维修制时代,并将这种观念一直延续至今。 进入预防性维修制时代后,人们逐渐认识和发现定期停电进行预防性试验的缺陷和不足。当一台大型电气设备的某一元件的绝缘有缺陷时,往往反映不灵敏,即使整体预防性试验合格,仍然时有故障发生。例如我局1998年站街变206开关CT在高压试验中合格,但却发生了爆炸的事故。由于现行的预防性试验电压太低,无法真实反映运行电压下的绝缘性能和整个工作情况,因此必需对现行的预防性维修制进行根本的变革,其发展方向必然是采用在线监测及诊断技术,并探索以在线监测为基础的状态检修制。 因我局目前在观水变电站采用的在线监测装置是重庆大学高电压技术与系统信息监测中心研制的变压器油中六种溶解气体在线监测诊断装置。所以我们以下主要介绍我局这一套油中气体在线监测装置的使用情况。 在线监测诊断装置在实际中的应用 我局目前在观水变电站一号主变上采用的在线监测装置是重庆大学高电压技术与系统信息监测中心研制的DZJ-Ⅲ型电气设备绝缘在线监测装置。已于2000年3月15日进入试运行状态。 监测的原理及方法: 电力变压器不仅属于电力系统中最重要的和最昂贵的设备之列,而且也是导致电力系统事故最多的设备之一,因此,国内外不仅要定期作以预防性试验为基础的预防性维护,而且相继都在研究以在线监测为基础的预知性维护策略,以便实时或定时在线监测与诊断潜伏性故障或缺陷。变压器在发生突发性事故之前,绝缘的劣化及潜伏性故障在运行电压下将产生光、电、声、热、化学变化等一系列效应及信息。对于大型电力变压器,目前几乎是用油来绝缘和散热,变压器油与油中的固体有机绝缘材料(纸和纸板等)在运行电压下因电、热、氧化和局部电弧等多种因素作用会逐渐变质,裂解成低分子气体;变压器内部存在的潜伏性过热或放电故障又会加快产气的速率。随着故障的缓慢发展,裂解出来的气体形成泡在油中经过对流、扩散作用,就会不断地溶解在油中。同一类性质的故障,其产生的气体的组分和含量在一定程度上反映出变压器绝缘老化或故障的程度,可以作为反映电气设备异常的特征量。 从预防性维修制形成以来,电力运行部门通过对运行中的变压器定期分析其溶解于油中的气体组分、含量及产气速率,总结出了能够及早发现变压器内部存在潜伏性故障、判断其是否会危及安全运行的方法即油色谱分析法。油色谱分析法是将变压器油取回实验室中用色谱仪进行分析,不仅不受现场复杂电磁场的干扰,而且可以发现油设备中一些用介损和局部放电法所不能发现的局部性过热等缺陷。但常规的油色谱分析法存在一系列不足之处:不仅脱气中可能存在较大的人为误差,而且检测曲线的人工修正法也会加大误差,从取油样到实验室分析,作业程序复杂,花费的时间和费用较高,在技术经济上不能适应电力系统发展的需要;检测周期长,不能及时发现潜伏性故障和有效的跟踪发展趋势;因受其设备费用和技术力量的

电气设备绝缘在线监测装置

电气设备绝缘在线监测装置 摘要:在线监测系统的原理、结构及在实际中的应用。 关键词:在线监测绝缘色谱分析单元 前言 在40 年代,因电网电压等级低、容量小,电气设备发生故障所带来的损失和影响不大因此人们采用事故后维修制,即设备损坏后,停电进行维修。此后,电网容量逐渐增大,电压等级也随之提高,设备故障所产生的影响也相应增大,因此,从事故后维修制逐渐发展到预测性维修制。从50年代起,由于110KV~220KV电压等级的电网已有相当规模,设备故障所产生的影响也更大,用户对供电的可靠性要求也相应提高,于是从预测性维修制逐渐演变为维修预防制。在预测性维修制逐渐演变为维修预防制的过渡中,人们逐渐探索定期对某些设备的绝缘停电作非破坏性和破坏性试验研究,逐渐总结出了对某些设备的预防性试验试行标准,并逐渐形成了局部预防性维修体系;从60年代起,各国相继制定出了比较规范的停电预防性试验标准,从而进入了预防性维修制时代,并将这种观念一直延续至今。 进入预防性维修制时代后,人们逐渐认识和发现定期停电进行预防性试验的缺陷和不足。当一台大型电气设备的某一元件的绝缘有缺陷时,往往反映不灵敏,即使整体预防性试验合格,仍然时有故障发生。例如我局1998年站街变206开关CT在高压试验中合格,但却发生了爆炸的事故。由于现行的预防性试验电压太低,无法真实反映运行电压下的绝缘性能和整个工作情况,因此必需对现行的预防性维修制进行根本的变革,其发展方向必然是采用在线监测及诊断技术,并探索以在线监测为基础的状态检修制。

因我局目前在观水变电站采用的在线监测装置是重庆大学高电压技术与系统信息监测中心研制的变压器油中六种溶解气体在线监测诊断装置。所以我们以下主要介绍我局这一套油中气体在线监测装置的使用情况。 在线监测诊断装置在实际中的应用 我局目前在观水变电站一号主变上采用的在线监测装置是重庆大学高电压技术与系统信息监测中心研制的DZJ-Ⅲ型电气设备绝缘在线监测装置。已于2000年3月15日进入试运行状态。 监测的原理及方法:电力变压器不仅属于电力系统中最重要的和最昂贵的设备之列,而且也是导致电力系统事故最多的设备之一,因此,国内外不仅要定期作以预防性试验为基础的预防性维护,而且相继都在研究以在线监测为基础的预知性维护策略,以便实时或定时在线监测与诊断潜伏性故障或缺陷。变压器在发生突发性事故之前,绝缘的劣化及潜伏性故障在运行电压下将产生光、电、声、热、化学变化等一系列效应及信息。对于大型电力变压器,目前几乎是用油来绝缘和散热,变压器油与油中的固体有机绝缘材料(纸和纸板等)在运行电压下因电、热、氧化和局部电弧等多种因素作用会逐渐变质,裂解成低分子气体;变压器内部存在的潜伏性过热或放电故障又会加快产气的速率。随着故障的缓慢发展,裂解出来的气体形成泡在油中经过对流、扩散作用,就会不断地溶解在油中。同一类性质的故障,其产生的气体的组分和含量在一定程度上反映出变压器绝缘老化或故障的程度,可以作为反映电气设备异常的特征量。 从预防性维修制形成以来,电力运行部门通过对运行中的变压器定期分析其溶解于油中的气体组分、含量及产气速率,总结出了能够及早发现变压器内部存在潜伏性故障、判断其是否会危及安全运行的方法即油色谱分析法。油色谱分析法是将变压器油取回实验室中用色谱仪进行分析,不仅不受现场复杂电磁场的干扰,而且可以发现油设备中一些用介损和局部

电力系统过电压及绝缘配合

电力系统过电压及绝缘配合方面存在的10个误导 中国电力科学研究许颖 近几年,阅读到文刊上关于电力系统过电压及其绝缘配合方面的文章,我认为其中有一些容易引起人们的误导,综合起来有10个问题,现提出来讨论。 1.误导一:把人工冲击电流波形命名自然雷电流标准波形 自然雷电流波形,世界各国实测得的对地放电雷电流波形基本一致,多数是单极性重复脉冲波,少数为较小的负过冲,一次放电过程常常包含多次先导至主放电的过程(分别为第一脉冲和随后脉冲)和后续电流,放电脉冲数目平均为2-3个,最多记录到42个。第一脉冲波前最大陡度达50kA/μs,平均陡度为32kA/μs,幅值可达200kA以上;第二脉冲波前陡度比第一脉冲大,可达100kA/μs以上,幅值比第一脉冲低,波尾都在100μs以上,也就是说,一次雷击中是一连串的波长100μs以上脉冲波。见图1。 在一些标准中或一些文献上,检验(计算)物体(如杆塔、引流线)上的压降,采用陡波前(波尾不规定)或1/4μs、1/10μs、2.6/50μs冲击电流波形:检验防雷保护器(如金属氧化物非线性电阻片,以下简称MOR)上残压,采用陡波(波前时间1μs)冲击电流和8/20μs 标称冲击电流;检验MOR通过雷电流能量能力,采用18/40μs,10/350μs,100/200μs冲击电流;验算变电所防雷保护可靠性时,传统采用雷击点反击导线上冲击波为直角波(波尾很长)的方法,这样做,达到了主要目的,是可以接受的。但这些人工冲击电流波形,都不是自然雷电流标准波形,与自然雷电流波形(图1)相差甚远。 有人仅从“雷电流标准波形”名词出发,使用很不当。例如,在验算变电所防雷保护可靠性时,采用1/10μs或2.6/50μs波形,特别是波尾太短,这与传统使用斜角波前无穷长波尾,验算结果相差甚远。又如,对MOR考核能量能力,有的仅用一次或两次的1/4μs或4/10μs冲击流,这与20次的18/40μs、10/350μs、100/200μs冲击电流效应相差甚远,偏低。 因此,人工冲击电流不能命名自然雷电流标准波形。 2.误导二:按电压等级对交流无间隙金属氧化物避雷器(简称WGMOA)分类

发电机绝缘监测装置原理及应用

西安交通大学网络教育学院 毕业论文 论文题目发电机绝缘监测装置的原理及应用 班级 学号 姓名 联系方式_ 指导教师 提交日期

随着电子信息技术的飞速发展,从20世纪80年代初开始,各种各样的在线监测装置在汽轮发电机上得到了推广和应用。以往,我国发电设备长期以来实施“计划维修”,缺乏针对性,容易造成设备的“过度维修”。现在,先进的工业国家都转至状态维修也就是“需修时修”。 设备状态监测和诊断是实施状态维修、预知维修的重要基础,而状态维修必须扎根于状态监测仪器的实用性、可靠性及对测试结果的解读能力上。发电机容量的大小、已运行时间的长短、不同冷却方式、在线监测装置的可靠性等都会影响到在线监测装置的配置。因此,如何合理应用和配置在线监测装置是一项比较复杂的策略性选择,尤其在广泛推广使用时更要慎之。 本文针对国内外300MW及以上机组汽轮发电机绝缘在线监测使用情况的应用研究,做出综合分析,对发电机绝缘在线监测设备的选择和配置提出建议。 关键词发电机;绝缘监测;局部放电

摘要 (1) 1 前言 (3) 2 国内外研究动态 (4) 2.1发电机局部放电监测方法国内外研究现状 (4) 2.2 发电机局部放电监测方法现状 (4) 2.3 国内外主流发电机绝缘在线监测主要测量方法及原理 (4) 3 国内某600MW机组发电机绝缘在线检测装置参数 (11) 3.1 FJR―ⅡA型发电机绝缘过热监测装置工作条件 (11) 3.2 FJR―ⅡA型发电机绝缘过热监测装置主要技术指标 (11) 3.3 FJR―ⅡA型发电机绝缘过热监测装置性能及特点 (11) 3.4 FJR―ⅡA型发电机绝缘过热监测装置外型尺寸和重量 (12) 3.5 FJR―ⅡA型发电机绝缘过热监测装置工作原理 (12) 4 结论 (15) 4.1发电机在线监测装置测量原理总结 (15) 4.2发电机绝缘在线监测装置的改进建议 (16) 4.3发电机绝缘在线监测装置的应用选择 (16) 4.4发电机绝缘在线监测装置的管理建议 (17) 参考文献 (18) 致谢 (19)

电动汽车绝缘电阻在线监测方法

电动汽车绝缘电阻在线监测方法 一、前言 电动汽车是一个复杂的机电一体化产品,其中的许多部件包括动力电池、电机、充电机、能量回收装置、辅助电池充电装置等都会涉及高压电器绝缘问题。这些部件的工作条件比较恶劣,振动、酸碱气体的腐蚀、温度及湿度的变化,都有可能造成动力电缆及其他绝缘材料迅速老化甚至绝缘破损,使设备绝缘强度大大降低,危及人身安全。 目前发电厂、变电站等场所直流高压系统的绝缘监测技术有多种方式,但都存在一些缺点,如继电器检测方式灵敏度低,平衡电桥法在正负极绝缘同时降低时不能准确及时报警,注入交流信号法不仅会使直流系统纹波增大,影响供电质量,而且系统的分布电容会直接影响测量结果,分辨率低。与电力系统直流绝缘监测不同的是,电动汽车直流系统电压等级涵盖90~500V的宽范围,而且运行过程中电压频繁变化。文中提出的利用端电压监测系统绝缘状况的方法可以较好地解决上述问题,具有较高的精度,完全适合在电动汽车上应用。 二、绝缘电阻测量 原理电动汽车的绝缘状况以直流正负母线对地的绝缘电阻来衡量。电动汽车的国际标准[1]规定:绝缘电阻值除以电动汽车直流系统标称电压U,结果应大于100Ω/V,才符合安全要求。标准中推荐的牵引蓄电池绝缘电阻测量方法适用于静态测试,而不满足实时监测的要求。

文中通过测量电动汽车直流母线与电底盘之间的电压,计算得到系统的绝缘电阻值。假设电动汽车的直流系统电压(即电池总电压)为U,待测的正、负母线与电底盘之间的绝缘电阻分别为RP、RN,正、负母线与电底盘之间的电压分别为UP、UN,则待测直流系统的等效模型如图1中的虚线框内所示。 图1为电动汽车绝缘电阻测量原理,图中RC1、RC2为测量用的已知阻值的标准电阻。工作原理如下:当开关S1、S2全部断开时,测量正、负母线与电底盘之间的电压分别为UP0、UN0,由电路定律[2]可以得到 UP0/RP=UN0/RN(1) 当开关S1闭合、S2断开时,则在正母线与电底盘之间加入标准偏置电阻RC1,测量正、负母线与电底盘之间的电压分别为UPP、UNP,同样可以得到 同样,绝缘电阻在以下2种情况也可以得到:

13. 防雷及过电压保护(习题)29页word文档

13. 防雷及过电压保护 一、单选题 1.下面给出了几组四种雷区平均年雷暴日数,按照标准对雷电活动强弱的分类,其中标准的规定值是( )。 A.少雷区≤10,中雷区10~20,多雷区20~40,特强区≥40: B.少雷区≤12,中雷区12~30,多雷区30~60,特强区≥60; C.少雷区≤15,中雷区15~40,多雷区40~90,特强区≥90; D.少雷区≤20,中雷区20~60,多雷区60~120,特强区~>120。2.在绝缘配合标准中,送电线路,变电所绝缘子串及空气间隙的绝缘配合公式均按标准气象条件给出。在下列各组气象条件数据中,标准气象条件(气压P、温度T、绝对湿度H)的一组数据是( )。 A.P=8.933kPa,T=10℃,H=8.5g/m3; B.P=8.933kPa,T=15℃,H=10g /m3; C.P=101.325kPa,T=20℃,H=llg/m3; D.P=101.325Da,T=25℃,H=12 g/m3。 注ImmHg=133.322Pa。 DL/T620—1997交流电气装置的过电压保护和绝缘配合 10 绝缘配合 10.1 绝缘配合原则 10.1.1 按系统中出现的各种电压和保护装置的特性来确定设备绝缘水平,即进行绝缘配合时,应全面考虑设备造价、维修费用以及故障损失三个方面,力求取得较高的经济效益。

不同系统,因结构不同以及在不同的发展阶段,可以有不同的绝缘水平。 10.1.2 工频运行电压和暂时过电压下的绝缘配合: a)工频运行电压下电气装置电瓷外绝缘的爬电距离应符合相应环境污秽分级条件下的爬电比距要求。 b)变电所电气设备应能承受一定幅值和时间的工频过电压和谐振过电压。 10.1.3 操作过电压下的绝缘配合: a)范围Ⅱ的架空线路确定其操作过电压要求的绝缘水平时,可用将过电压幅值和绝缘强度作为随机变量的统计法,并且仅考虑空载线路合闸、单相重合闸和成功的三相重合闸(如运行中使用时)过电压。 b)范围Ⅱ的变电所电气设备操作冲击绝缘水平以及变电所绝缘子串、空气间隙的操作冲击绝缘强度,以避雷器相应保护水平为基础,进行绝缘配合。配合时,对非自恢复绝缘采用惯用法;对自恢复绝缘则仅将绝缘强度作为随机变量。 c)范围Ⅰ的架空线路和变电所绝缘子串、空气间隙的操作过电压要求的绝缘水平,以计算用最大操作过电压为基础进行绝缘配合。将绝缘强度作为随机变量处理。 10.1.4 雷电过电压下的绝缘配合。 变电所中电气设备、绝缘子串和空气间隙的雷电冲击强度,以避雷器雷电保护水平为基础进行配合。配合时,对非自恢复绝缘采用惯用法,对自恢复绝缘仅将绝缘强度作为随机变量。

电缆绝缘在线监测及故障定位 系统

电缆绝缘在线监测及故障定位系统 上海蓝瑞电气有限公司 CIM-II电缆绝缘监测及故障定位系统 目录 一、概述...................................................................... .. (1) 二、装置介 绍 ..................................................................... . (1) 1、工作原 理 ..................................................................... ............... 1 2、功能介 绍 ..................................................................... ............... 2 3、优势介 绍 ..................................................................... ............... 3 4、技术指 标 ..................................................................... ............... 4 5、配置介 绍 ..................................................................... (4) 系统简介

一、概述 电线电缆是最常用的电力设备,同时也是出现绝缘故障概率最高的设备,由于电缆绝缘损坏直接导致线路相间短路、单相接地等重大事故,严重影响供电可靠性。当电缆发生故障时,人工寻找故障点比较困难。因此,对电缆绝缘状态进行在线监测及故障定位意义重大。 CIM-II电缆绝缘监测及故障定位系统是上海蓝瑞电气有限公司依托上海交通大学联合研制的,该系统由电缆绝缘在线监测装置和电缆故障智能测试仪组成。电缆绝缘在线监测装置以改进的介损因数法+直流分量法为主,对电缆的绝缘情况给出预警,以便及时更换电缆,当电缆线路发生故障时,装置可在线辨识故障支路。确定故障支路后,再通过电缆故障测试仪离线方式下精确定位故障点。二、装置介绍 1、工作原理 1.1电缆绝缘在线监测装置(图1) 根据国内外大量研究表明,电缆的绝缘老化过程是一个渐变的过程,通过绘制电缆介质因数的历 史变化曲线,可以看出电缆绝缘老化趋势。 其基本方法是直接测量电缆护套接地电流和电缆对地电压,通过数字信号频谱分析方法分别计算 出电缆的容性阻抗和阻性阻抗的大小,以改进的介损因数法+直流分量法分析绝缘状况,对于绝缘老 化超限报警,绝缘故障线路选择。因正常时容性电流远大于阻性电流,所以测量精度要求高,为保证 监测的准确性,装置采用了以相对偏差和阻抗变化斜率为比较对象的方法,可有效屏蔽测量误差。

(完整版)变压器绝缘在线监测系统

变压器局部放电及铁心故障在线监测系统

一、研制目的和意义 1.研制目的 本项目在现有局部放电在线监测技术的基础上,开发一套变压器局部放电及铁心故障在线监测系统,实现对变压器绝缘及铁心接地状况的有效监测和故障诊断,以确保变压器的安全稳定运行。 2.研制意义 电力变压器是电力系统中的最为重要的电气设备之一,它的运行状况直接关系到电力系统安全经济运行,变压器发生故障将导致大面积停电,致使国民经济遭到重大损失。 由于变压器内部的局部放电是造成变压器绝缘老化和破坏的主要原因,测量变压器的局部放电可有效监测变压器的绝缘状况。 电力变压器正常运行时,铁芯必须一点可靠接地。当铁芯或其他金属构件有两点或多点接地时,接地点就会形成闭合回路,造成环流,引起局部过热,导致油分解,绝缘性能下降,严重时,会使铁芯硅钢片烧坏,造成主变重大事故,严重威胁变压器的安全运行。因此在线监测铁芯接地情况,对于变压器的安全运行具有十分重要的意义。 二、研究目标 开发一套变压器局部放电及铁心故障在线监测系统,实现对变压器内部绝缘局部放电和铁芯多点接地故障的监测与诊断。监测系统给出局放视在放电量、放电频度、放电故障类型放电点位置及铁心接地状况,监测系统灵敏度为200pC,当时视在放电量为500pC时报警;

局放定位误差20cm。 三、研究内容及关键技术 本项目是在原有变压器局部放电在线监测技术的基础上,进一步优化在线监测系统,提高监测灵敏度、抗干扰性能、局放定位精度及故障智能诊断能力。其主要研究内容: 1、变压器局部放电脉冲电流—超声波在线监测技术; 2、局放脉冲电流传感器、超声波传感器及铁心接地电流互感器的 选型与研制; 3、现场DSP信号预处理技术; 4、基于数字滤波、小波分析、混沌控制技术的软件抗干扰技术; 5、多路信号超高速、宽频带同步采样系统及光信号传输技术; 6、局部放电源点定位技术; 7、变压器局部放电视在放电量与放电频度的变化报警阈值的设 定; 8、大容量数据存储、查询、特征量变化趋势曲线、显示及报警; 9、铁芯多点接地故障判定技术; 10、基于信息融合技术的变压器故障分析及诊断。 本项目的关键技术是软件抗干扰技术。拟在现有的软件抗干扰技术基础上,进一步深入研究各类干扰特征,有效抑制干扰、提取局放脉冲电流和铁芯接地回路电流。 四、国内外研究状况

发电机绝缘在线监测

摘要:在线监测系统的原理、结构及在实际中的应用。 关键词:在线监测绝缘色谱分析单元 前言 在40 年代,因电网电压等级低、容量小,电气设备发生故障所带来的损失和影响不大因此人们采用事故后维修制,即设备损坏后,停电进行维修。此后,电网容量逐渐增大,电压等级也随之提高,设备故障所产生的影响也相应增大,因此,从事故后维修制逐渐发展到预测性维修制。从50年代起,由于110KV~220KV 电压等级的电网已有相当规模,设备故障所产生的影响也更大,用户对供电的可靠性要求也相应提高,于是从预测性维修制逐渐演变为维修预防制。在预测性维修制逐渐演变为维修预防制的过渡中,人们逐渐探索定期对某些设备的绝缘停电作非破坏性和破坏性试验研究,逐渐总结出了对某些设备的预防性试验试行标准,并逐渐形成了局部预防性维修体系;从60年代起,各国相继制定出了比较规范的停电预防性试验标准,从而进入了预防性维修制时代,并将这种观念一直延续至今。 进入预防性维修制时代后,人们逐渐认识和发现定期停电进行预防性试验的缺陷和不足。当一台大型电气设备的某一元件的绝缘有缺陷时,往往反映不灵敏,即使整体预防性试验合格,仍然时有故障发生。例如我局1998年站街变206开关CT在高压试验中合格,但却发生了爆炸的事故。由于现行的预防性试验电压太低,无法真实反映运行电压下的绝缘性能和整个工作情况,因此必需对现行的预防性维修制进行根本的变革,其发展方向必然是采用在线监测及诊断技术,并探索以在线监测为基础的状态检修制。 因我局目前在观水变电站采用的在线监测装置是重庆大学高电压技术与系统信息监测中心研制的变压器油中六种溶解气体在线监测诊断装置。所以我们以下主要介绍我局这一套油中气体在线监测装置的使用情况。 在线监测诊断装置在实际中的应用 我局目前在观水变电站一号主变上采用的在线监测装置是重庆大学高电压技术与系统信息监测中心研制的DZJ-Ⅲ型电气设备绝缘在线监测装置。已于2000年3月15日进入试运行状态。 监测的原理及方法: 电力变压器不仅属于电力系统中最重要的和最昂贵的设备之列,而且也是导致电力系统事故最多的设备之一,因此,国内外不仅要定期作以预防性试验为基础的预防性维护,而且相继都在研究以在线监测为基础的预知性维护策略,以便实时或定时在线监测与诊断潜伏性故障或缺陷。变压器在发生突发性事故之前,绝缘的劣化及潜伏性故障在运行电压下将产生光、电、声、热、化学变化等一系列效应及信息。对于大型电力变压器,目前几乎是用油来绝缘和散热,变压器油与油中的固体有机绝缘材料(纸和纸板等)在运行电压下因电、热、氧化和局部电弧等多种因素作用会逐渐变质,裂解成低分子气体;变压器内部存在的潜伏性过热或放电故障又会加快产气的速率。随着故障的缓慢发展,裂解出来的气体形成泡在油中经过对流、扩散作用,就会不断地溶解在油中。同一类性质的故障,其产生的气体的组分和含量在一定程度上反映出变压器绝缘老化或故障的程度,可以作为反映电气设备异常的特征量。 从预防性维修制形成以来,电力运行部门通过对运行中的变压器定期分析其溶解于油中的气体组分、含量及产气速率,总结出了能够及早发现变压器内部存在潜伏性故障、判断其是否会危及安全运行的方法即油

相关文档
相关文档 最新文档