文档库 最新最全的文档下载
当前位置:文档库 › 习题课:DNA分子中的计算类型归纳

习题课:DNA分子中的计算类型归纳

习题课:DNA分子中的计算类型归纳
习题课:DNA分子中的计算类型归纳

课时课题:第3章 DNA分子中的计算类型归纳课型:习题课

能力点运用碱基互补配对原则分析问题、解决问题自主探究点DNA分子中的碱基计算规律

易错易混点1、碱基比例的计算

2、DNA复制与细胞分裂结合的计算

训练点运用碱基互补配对原则分析问题

拓展点DNA分子中的碱基计算规律

教学流程

教学环节教师活动学生活

设计意图

目标展示:出示习题导学案,展示本节课的知识目标、能力目标、情感态度和价值观目标。

温故知新:复习提问:

1.DNA分子的基本单位是什么?2.DNA分子的复制方式和过程?3.DNA分子精确复制的原因?

题型一:碱基互补配对原则的基础应用——基础知识引导学生合作探究:

应用碱基互补配对原则,总结导学案上的碱基规律。在黑板上画出DNA的两条链,标出1链、2链。

如下图

规律一:DNA双链中的两种互补的碱基相等。

即A=T,G=C。(最基本的规律)

规律二:DNA双链中,嘌呤碱基之和与嘧啶碱基之和相等,

任意两个不互补的碱基之和相等,占碱基总数的50%。

即 A+G=T+C = A+C=T+G=50%

规律三:按照碱基互补原则,DNA分子一条链中腺嘌呤A1在

该链中的比例等于互补链中的互补碱基胸腺嘧啶T2在互补链

中的比例。

即A1 = T2 T1 = A2 G1 =C2 C1 = G2

规律四:在DNA双链中,每条单链上任意两个互补的碱基和

之比相等,与DNA双链中的此比值相等。

即(A1+ T1)/单链=(A2+ T2)/单链=(A+T)/双链

(C1+G1)/单链=(C2+G2)/单链=(C+G)/双链例题讲解例1:已知某双链DNA分子中,G与C之和占全部碱基总数的34%,其一条链中的T与C分别占该链碱基总数的32%和

18%,则在它的互补链中,T和C分别占该链碱基总数的(

A.34%和16% B.34%和18% C.16%和34% D.32%和18%

解析:解此题目时,应先绘出两条链碱基符号,并注明含量,这样非常直观,便于推导和分析来理清解题思路,寻

求解决方法。明确DNA的两条链中含碱基数目相同,且A=

T,G=C,一条链中的A1、T1、G1、C1数量等于另一条链

中的T2、A2、C2、G2数量。

第一步,整理已知条件。G+C=34%,T1=32%,C1 =18%。

第二步,借助规律推导所需公式。所以A+T=66%,A1+T1=A2+T2=66%,G1+C1=G2+C2=34%。

第三步,计算。在它的互补链中,

T2=A1=66%-32%=34%,C2=G1=34%-18%=16%。

故A正确。

例2:分析某生物的双链DNA,发现腺嘌呤与胸腺嘧啶之和占全部碱基的64%,其

中一条链上的腺嘌呤占该链全部碱基的

30%,则对应链中腺嘌呤占整个DNA碱基

的比例是( )

A 、17%

B 、32% C、34% D、50%

解析:因为A+T是两个互补碱基和,所以无论单链和双链之间的比值都相等,所以题目重视表述“腺嘌呤与胸腺嘧

啶之和占全部碱基的64%”,也可以是占“其中一条链上”的

64%,则可求出这条链中胸腺嘧啶占该链全部碱基的比例是

64%—30%=34%,即对应链中腺嘌呤占对应链全部碱基的

34%,而问占整个DNA碱基的比例除2即可。

[总结做题方法]:

1. 仔细读题,搞清题中所给的和所求的碱基比例是占整个

DNA分子的碱基比例,还是占DNA分子一条链的碱基比

例。

2. 画一个DNA分子的模式图,并在图中标出已知的和所要

求的碱基。

3.根据碱基互补配对原则及有关规律进行计算。

拓展训练引导学生做导学案的拓展训练,让两位同学爬黑板做。

训练1、从某生物组织中提取DNA进行分析,其四种碱

基数的比例是:鸟嘌呤与胞嘧啶之和占全部碱基总数的46%。又知该DNA的一条链(H链)所含的碱基中28%是腺嘌呤,问与H链对应的另一条链中腺嘌呤占该链全部碱基数的( )

A.42% B.27% C.26% D.14%

训练2、若在一双链DNA分子中鸟嘌呤和胞嘧啶之和占碱基总数的44%,在其中的一条链中A和C分别占该链碱基总数的22%和30%,那么在另一条链中腺嘌呤和胞嘧啶分别占该链碱基总数的比例为( )

A.34%、14% B.22%、30% C.14%、

34% D.20%、28%

题型二:DNA复制中碱基数计算————基础知识

DNA

复制其方式是半保留复制,具体过程如图所示:

每个子代DNA分子中的碱基含量和亲代DNA分子中的碱基含量相同。从图可看出无论复制几次,子代DNA分子中始终有两条链是原亲代DNA的两条模板链,也就是相当于始终有一个DNA分子不是复制而来的。因此,复制过程所需要的原料——碱基量,应该是所有子代DNA分子中的碱基量减去一个DNA分子中的碱基量。而DNA复制所得子代DNA分子数是成指数增加的,那么一个DNA分子复制过程中,所需的原料——碱基量与复制次数(n)间可建立如下数学模型:

复制n次所需某碱基量=(2n-1)×一个DAN中所含某碱基量

第n次复制时,已经复制完2n-1,是由2n-1个增加到2n 个,所以新增加的DNA分子数量为:2n-2n-1=2n-1,所以第n 次复制所需的原料与复制次数(n)间可建立如下数学模

型:

第n次复制所需某碱基量=(2n-1)×一个DAN中所含某碱基量例题讲解例3:具有100个碱基对的一个DNA分子片段,内含60个腺嘌呤,如果连续复制2次,则需要游离的鸟嘌呤脱氧核苷

酸的个数为()

A. 60 B .80 C. 120 D. 180

解析:第一步,求出一个DNA分子中鸟嘌呤的数目。具有100个碱基对(碱基数为200个)的一个DNA分子片段,内

含60个腺嘌呤,则含鸟嘌呤40个。

第二步,根据公式:需要的游离的鸟嘌呤脱氧核苷酸数=DNA分子中该碱基数×(2n-1)=40×(22-1)=120个,

式中 n为复制次数。

例4:(2013?宁夏模拟)有100个碱基对的某DNA分子片段,内含60个胞嘧啶脱氧核苷酸,若连续复制n次,则在第n次

复制时需游离的胸腺嘧啶脱氧核苷酸多少个( )

A.40n-1 B.40n C.40×2n-1 D.40×2n

解析:第一步,求出一个DNA分子中胸腺嘧啶的数目。

共有100个碱基对即200个碱基,其中C有60个,则T为40个。

第二步,在第n次复制时需游离的胸腺嘧啶脱氧核苷酸40×2n-1个。答案:C

拓展训练:

训练3:某DNA分子有碱基200对,已知腺嘌呤和胸腺嘧啶之和占碱基总数的60%,则该DNA连续复制二次所需游离的鸟嘌呤脱氧核苷酸分子数为( )

A.80 B.160 C.240 D.320

训练4:某DNA分子含有m对碱基,其中腺嘌呤有A个。此DNA在连续复制时,对所需的胞嘧啶脱氧核苷酸数目的叙述,不正确的是()

A、在第一次复制时,需要(m-A)个

B、在第二次复制时,需要3(m-A)个

C、在第n次复制时,需要2n-1(m-A)个

D、在n次复制过程中,总共需要(2n-1)(m-A)个

题型三:基因表达中碱基计算——基础知识

基因表达包括转录和翻译两个阶段。转录是指以DNA的一条链为模板,按照碱基互补配对原则,合成RNA的过程。由于DNA是双链,RNA是单链,因此,合成的RNA上的碱基数是DAN上碱基数的一半。翻译是指以RNA为模板,合成具有一定氨基酸顺序的蛋白质的过程。此过程中RNA上相邻的三个碱基(即一个遗传密码)决定一个氨基酸,合成的蛋白质上的氨基酸数是RNA上碱基数的三分之一,DNA上碱基数的六分之一。由此可见,蛋白质合成过程中DNA上的碱基数、RNA上的碱基数以及蛋白质上的氨基酸数间可建立如下数学模型:

DNA上的碱基数﹕RNA上的碱基数﹕蛋白质上的氨基酸数=6:3﹕1

要注意的是,在蛋白质合成过程中在RNA上有一个终止密码,因此这样算出来的碱基数是最少碱基数。

例题讲解例5:某条多肽的相对分子质量为2778,若氨基酸的平均相对分子质量为110,如考虑终止密码子,则编码该多肽的基

因长度至少是()?

A.75对碱基 B.78对碱基 C.90对碱基

D.93对碱基

解析:第一步,求出氨基酸的数目。设氨基酸有X个,则:110X-18(X-1)=2778,得X=30。

第二步,依据数量关系求解。根据6:3:1得,基因中的碱基对数为30*3,再考虑终止密码对应的三对碱基得:93对碱

基。

例6:(2008?浙江模拟)已知某多肽链的平均相对分子

质量为10320,氨基酸的平均相对分子质量为120,脱氧核苷

酸的平均相对分子质量为300.那么,合成该多肽化合物的

基因的相对分子质量约为( )

A、12120

B、 90900

C、181800

D、

170928

解析:第一步,求出氨基酸的数目。设多肽链由n个氨基酸脱水缩合形成,根据蛋白质的分子量=氨基酸分子量×氨

基酸分子数-18×水的分子数,肽键数=水分子数=氨基酸数-

肽链数,可得:10320=120×n-18×(n-1),求出n=101。

第二步,依据数量关系求解。因此控制该多肽链的基因中,

含脱氧核苷酸606个,脱氧核苷酸形成双链的DNA片段脱去

n-2个水,则合成该多肽化合物的基因的相对分子质量约为

606×300-(606-2)×18=170928。故选:D.

拓展训练训练5:一条肽链上有100个肽键,控制这条肽链合成的基因所含的碱基至少有( )

A、100个

B、 101个

C、303个

D、606个

训练6:已知一个蛋白质由两条多肽链组成,连接氨基酸的肽键共有198个,翻译该蛋白质的mRNA中有A和G共250

个,则转录该mRNA的基因中C和T不少于()

A.200个 B.400个 C.600个 D.800个

题型四:与DNA 复制、细胞分裂有关的综合计算细胞无论进行有丝分裂还是减数分裂,首先都要进行DNA的复制,然后DNA再分配到子细胞中去。这一过程中要涉及到DNA的半保留复制、姐妹染色单体和同源染色体等染色体形为变化、有丝分裂与减数分裂的区别等知识,在碰到具体问题时,通过画简图的办法就可以疏清脉络,化难为易。

例题讲解例7:取1个含有1对同源染色体的精原细胞,用15N标记细胞核中DNA,然后放在含14N的培养基中培养,让其连续

进行两次有丝分裂,形成4个细胞,这4个细胞中含15N的细

胞个数可能是 ( )

A.2

B.3

C.4

D.前三项都对

解析:可以利用画图的方法解答

例8:(2012.山东)假设一个双链均被32P标记的噬菌体DNA由5000个碱基对组成,其中腺嘌呤占全部碱基的

20%。用这个噬菌体侵染只含31P的大肠杆菌,共释放出100

个子代噬菌体。下列叙述正确的是()

A.该过程至少需要3×105个鸟嘌呤脱氧核苷酸

B.噬菌体增殖需要细菌提供模板、原料和酶等

C.含32P与只含31P的子代噬菌体的比例为1:49

D.该DNA发生突变,其控制的性状即发生改变

解析:A、噬菌体的DNA含有10000个碱基,

A=T=2000,G=C=3000.在噬菌体增殖的过程中,DNA进行

半保留复制,100个子代噬菌体含有100个DNA,相当于新合

成了99个DNA,至少需要的鸟嘌呤(G)脱氧核苷酸是

99×3000=297000,故A错误;

B、噬菌体增殖的模板是由噬菌体自身提供的,细菌提

供了原料、酶、场所等,故B错误;

C、在100个子代噬菌体中,含有32P的噬菌体共有2个,

只含有31P的噬菌体共有98个,其比例为1:49,故C正确;

D、由于DNA上有非基因序列,基因中有非编码序列,密码

子具有简并性等原因,DNA发生突变并不意味着性状发生改

变,故D错误.

拓展训练训练7:(2014?潍坊)将含有两对同源染色体且DNA分子都已用32P标记的一个精原细胞,放在不含32P的普通培养液中

进行减数分裂。下列有关叙述正确的是 ( )

A.初级精母细胞中,每条染色体中有一条单体含有32P

B.初级精母细胞中,半数的染色体中一条单体含有32P

C.某个时期的次级精母细胞中,半数的染色体含有32P

D.此细胞产生的4个精子中所有的染色体都含有32P

训练8:某高等动物的一个细胞中DNA分子的双链均被32P标记(不考虑细胞质DNA), 将其放在含31P的细胞培养液

中培养,正确的是()

A.若该细胞进行有丝分裂,则完成一个细胞周期后产生

的子细胞100%具有放射性

B.若该细胞进行无丝分裂,则产生的子细胞均不具有放

射性

C.若该细胞是精原细胞,则其进行减数分裂产生的子细

胞50%具有放射性

D.若该细胞为精细胞,则其增殖产生的子细胞具有放射

训练9:(2013?怀化一模)某成年雄性小鼠的初级精母细胞中有20个四分体,如取该小鼠的某种干细胞,放入含3H

标记的胸腺嘧啶脱氧核苷酸的培养液中培养,当该细胞首次

进入有丝分裂后期时( )

A.被标记的同源染色体移向两极

B.被标记的染色体是

80条

C.细胞内的基因表达很活跃

D.细胞内含有2个染色体

课堂总结本节课重点应掌握DNA分子的结构特点,并掌握关于碱基计算规律,最基本的规律是DNA双链中A=T,G=C。

在此基础上结合前面所学的知识,掌握综合类题目的解

题方法和规律。

课后作业自主学习丛书43页例题3,第44页第2题、第46页例题2和第2、6题、第51页12题

1

2

教后记:

本节课内容以DNA模型为依托,以图文并茂的方式让学生理解DNA分子的结构及特点,并通过碱基互补配对原则,让学生通过计算导学案上的题目总结DNA分子中的碱基计算规律,然后通过例题进行巩固,教给学生做此类题目的方法。例题先让学生自己分析,教师再总结做题方法,效果很好。

[后附学案]

DNA计算题型汇总

一、碱基互补配对原则的基础应用

【基础知识】

①在整个DNA分子中, A=T、G=C;

②在整个DNA分子中,两个非配对碱基之和占碱基总数的50%。

即 A+C=T+G=50%,A+G=T+C=50%

③按照碱基互补原则,DNA分子一条链中腺嘌呤A1在该链中的比例等于互补链中的互补碱基胸腺嘧啶T2在互补链中的比例。

A1

A2

T1

T2

G1

C1

C1

C2

1链

2链

A1 = T2 T1 = A2 G1 =C2 C1 = G2

④在DNA分子中一条链中A+T的和占该链碱基比例等于另一条链中A+T的和占该链碱基比例,还等于双链DNA分子中A+T的和占整个DNA分子的碱基比例。(也等于其转录形成的信使RNA中该种碱基比例的比值)

即: A1+T1 = A2+T2 = 总A+T

同理: G1+C1 = G2+C2= 总G+C

【例题讲解】

例1:已知某双链DNA分子中,G与C之和占全部碱基总数的34%,其一条链中的T与C分别占该链碱基总数的32%和18%,则在它的互补链中,T和C分别占该链碱基总数的()

A.34%和16% B.34%和18% C.16%和34% D.32%和18%解析:第一步,整理已知条件。G+C=34%,T1=32%,C1 =18%。

第二步,借助规律推导所需公式。所以A+T=66%,

A1+T1=A2+T2=66%,G1+C1=G2+C2=34%。

第三步,计算。在它的互补链中,T2=A1=66%-32%=34%,

C2=G1=34%-18%=16%。

故A正确。

例2:分析某生物的双链DNA,发现腺嘌呤与胸腺嘧啶之和占全部碱基的64%,其中一条链上的腺嘌呤占该链全部碱基的30%,则对应链中腺嘌呤占整个DNA碱基的比例是( )

A 、17%

B 、32% C、34% D、50%

解析:因为A+T是两个互补碱基和,所以无论单链和双链之间的比值都相等,所以题目重视表述“腺嘌呤与胸腺嘧啶之和占全部碱基的64%”,也可以是占“其中一条链上”的64%,则可求出这条链中胸腺嘧啶

占该链全部碱基的比例是64%—30%=34%,即对应链中腺嘌呤占对应链全部碱基的34%,而问占整个DNA碱基的比例除2即可。

【变式训练】

训练1、从某生物组织中提取DNA进行分析,其四种碱基数的比例是:鸟嘌呤与胞嘧啶之和占全部碱基总数的46%。又知该DNA的一条链(H链)所含的碱基中28%是腺嘌呤,问与H链对应的另一条链中腺嘌呤占该链全部碱基数的( )

A.42% B.27% C.26% D.14%

训练2、若在一双链DNA分子中鸟嘌呤和胞嘧啶之和占碱基总数的44%,在其中的一条链中A和C分别占该链碱基总数的22%和30%,那么在另一条链中腺嘌呤和胞嘧啶分别占该链碱基总数的比例为( ) A.34%、14% B.22%、30% C.14%、34% D.20%、28%

二、DNA复制中碱基数计算

【基础知识】

DNA复制其方式是半保留复制,具体过程如图所示:

每个子代DNA分子中的碱基含量和亲代DNA分子中的碱基含量相同。从图可看出无论复制几次,子代DNA分子中始终有两条链是原亲代DNA的两条模板链,也就是相当于始终有一个DNA分子不是复制而来的。因此,复制过程所需要的原料——碱基量,应该是所有子代DNA分子中的碱基量减去一个DNA分子中的碱基量。而DNA复制所得子代DNA分子数是成指数增加的,那么一个DNA分子复制过程中,所需的原料——碱基量与复制次数(n)间可建立如下数学模型:

复制n次所需某碱基量=(2n-1)×一个DAN中所含某碱基量第n次复制时,已经复制完2n-1,是由2n-1个增加到2n个,所以新增加的DNA分子数量为:2n-2n-1=2n-1,所以第n次复制所需的原料与复制次数(n)间可建立如下数学模型:

第n次复制所需某碱基量=(2n-1)×一个DAN中所含某碱基量【例题讲解】

例3:具有100个碱基对的一个DNA分子片段,内含60个腺嘌呤,如果连续复制2次,则需要游离的鸟嘌呤脱氧核苷酸的个数为()

A. 60 B .80 C. 120 D. 180

解析:第一步,求出一个DNA分子中鸟嘌呤的数目。具有100个碱基对(碱基数为200个)的一个DNA分子片段,内含60个腺嘌呤,则含鸟嘌呤40个。

第二步,根据公式:需要的游离的鸟嘌呤脱氧核苷酸数=DNA分子中该碱基数×(2 n-1)=40×(22-1)=120个,式中 n为复制次数。

例4:(2013?宁夏模拟)有100个碱基对的某DNA分子片段,内含60个胞嘧啶脱氧核苷酸,若连续复制n次,则在第n次复制时需游离的胸腺嘧啶脱氧核苷酸多少个( )

A.40n-1 B.40n C.40×2n-1 D.40×2n

解析:第一步,求出一个DNA分子中胸腺嘧啶的数目。共有100个碱基对即200个碱基,其中C有60个,则T为40个。

第二步,在第n次复制时需游离的胸腺嘧啶脱氧核苷酸40×2n-1个。答案:C

【变式训练】

训练3:某DNA分子有碱基200对,已知腺嘌呤和胸腺嘧啶之和占碱基总数的60%,则该DNA连续复制二次所需游离的鸟嘌呤脱氧核苷酸分子数为( )

A.80 B.160 C.240 D.320

训练4:某DNA分子含有m对碱基,其中腺嘌呤有A个。此DNA在连续复制时,对所需的胞嘧啶脱氧核苷酸数目的叙述,不正确的是()

A、在第一次复制时,需要(m-A)个

B、在第二次复制时,需要3(m-A)个

C、在第n次复制时,需要2n-1(m-A)个

D、在n次复制过程中,总共需要(2n-1)(m-A)个

三、基因表达中碱基计算

【基础知识】

 基因表达包括转录和翻译两个阶段。转录是指以DNA的一条链为模板,按照碱基互补配对原则,合成RNA的过程。由于DNA是双链,RNA是单链,因此,合成的RNA上的碱基数是DAN上碱基数的一半。翻译是指以RNA为模板,合成具有一定氨基酸顺序的蛋白质的过程。此过程中RNA上相邻的三个碱基(即一个遗传密码)决定一个氨基酸,合

成的蛋白质上的氨基酸数是RNA上碱基数的三分之一,DNA上碱基数的六分之一。由此可见,蛋白质合成过程中DNA上的碱基数、RNA上的碱基数以及蛋白质上的氨基酸数间可建立如下数学模型:

DNA上的碱基数﹕RNA上的碱基数﹕蛋白质上的氨基酸数=6:3﹕1

要注意的是,在蛋白质合成过程中在RNA上有一个终止密码,因此这样算出来的碱基数是最少碱基数。

【例题讲解】

例5:某条多肽的相对分子质量为2778,若氨基酸的平均相对分子质量为110,如考虑终止密码子,则编码该多肽的基因长度至少是()?

A.75对碱基 B.78对碱基 C.90对碱基 D.93对碱基解析:第一步,求出氨基酸的数目。设氨基酸有X个,则:110X-18(X-1)=2778,得X=30。

第二步,依据数量关系求解。根据6:3:1得,基因中的碱基对数为30*3,再考虑终止密码对应的三对碱基得:93对碱基。

例6:(2008?浙江模拟)已知某多肽链的平均相对分子质量为10320,氨基酸的平均相对分子质量为120,脱氧核苷酸的平均相对分子质量为300.那么,合成该多肽化合物的基因的相对分子质量约为

( )

A、12120

B、 90900

C、181800

D、170928

解析:第一步,求出氨基酸的数目。设多肽链由n个氨基酸脱水缩合形成,根据蛋白质的分子量=氨基酸分子量×氨基酸分子数-18×水的分子数,肽键数=水分子数=氨基酸数-肽链数,可得:10320=120×n-

18×(n-1),求出n=101。

第二步,依据数量关系求解。因此控制该多肽链的基因中,含脱氧核苷酸606个,脱氧核苷酸形成双链的DNA片段脱去n-2个水,则合成该多肽化合物的基因的相对分子质量约为606×300-(606-2)

×18=170928。故选:D.

【变式训练】

训练5:一条肽链上有100个肽键,控制这条肽链合成的基因所含的碱基至少有( )

A、100个

B、 101个

C、303个

D、606个

训练6:已知一个蛋白质由两条多肽链组成,连接氨基酸的肽键共有198个,翻译该蛋白质的mRNA中有A和G共250个,则转录该mRNA的基因中C和T不少于()

A.200个 B.400个 C.600个 D.800个

四、与DNA复制、细胞分裂有关的综合计算

【基础知识】

细胞无论进行有丝分裂还是减数分裂,首先都要进行DNA的复制,然后DNA再分配到子细胞中去。这一过程中要涉及到DNA的半保留复制、姐妹染色单体和同源染色体等染色体形为变化、有丝分裂与减数分裂的区别等知识,在碰到具体问题时,通过画简图的办法就可以疏清脉络,化难为易。

【例题讲解】

例7:取1个含有1对同源染色体的精原细胞,用15N标记细胞核中DNA,然后放在含14N的培养基中培养,让其连续进行两次有丝分裂,形成4个细胞,这4个细胞中含15N的细胞个数可能是 ( )

A.2

B.3

C.4

D.前三项都对

解析:可以利用画图的方法解答

例8:(2012.山东)假设一个双链均被32P标记的噬菌体DNA由5000个碱基对组成,其中腺嘌呤占全部碱基的20%。用这个噬菌体侵染只含31P的大肠杆菌,共释放出100个子代噬菌体。下列叙述正确的是()

A.该过程至少需要3×105个鸟嘌呤脱氧核苷酸

B.噬菌体增殖需要细菌提供模板、原料和酶等

C.含32P与只含31P的子代噬菌体的比例为1:49

D.该DNA发生突变,其控制的性状即发生改变

解析:A、噬菌体的DNA含有10000个碱基,A=T=2000,

G=C=3000.在噬菌体增殖的过程中,DNA进行半保留复制,100个子代噬菌体含有100个DNA,相当于新合成了99个DNA,至少需要的鸟嘌呤(G)脱氧核苷酸是99×3000=297000,故A错误;

B、噬菌体增殖的模板是由噬菌体自身提供的,细菌提供了原料、酶、场所等,故B错误;

C、在100个子代噬菌体中,含有32P的噬菌体共有2个,只含有31P 的噬菌体共有98个,其比例为1:49,故C正确;

D、由于DNA上有非基因序列,基因中有非编码序列,密码子具有简并性等原因,DNA发生突变并不意味着性状发生改变,故D错误.【变式训练】

训练7:(2014?潍坊)将含有两对同源染色体且DNA分子都已用32P标记的一个精原细胞,放在不含32P的普通培养液中进行减数分裂。下列有关叙述正确的是 ( )

A.初级精母细胞中,每条染色体中有一条单体含有32P

B.初级精母细胞中,半数的染色体中一条单体含有32P

C.某个时期的次级精母细胞中,半数的染色体含有32P

D.此细胞产生的4个精子中所有的染色体都含有32P

训练8:某高等动物的一个细胞中DNA分子的双链均被32P标记(不考虑细胞质DNA), 将其放在含31P的细胞培养液中培养,正确的是()

A.若该细胞进行有丝分裂,则完成一个细胞周期后产生的子细胞100%具有放射性

B.若该细胞进行无丝分裂,则产生的子细胞均不具有放射性

C.若该细胞是精原细胞,则其进行减数分裂产生的子细胞50%具有放射性

D.若该细胞为精细胞,则其增殖产生的子细胞具有放射性

训练9:(2013?怀化一模)某成年雄性小鼠的初级精母细胞中有20个四分体,如取该小鼠的某种干细胞,放入含3H标记的胸腺嘧啶脱氧核苷酸的培养液中培养,当该细胞首次进入有丝分裂后期时( )

A.被标记的同源染色体移向两极

B.被标记的染色体是80条

C.细胞内的基因表达很活跃

D.细胞内含有2个染色体组

2015高考归纳总结20有关基因频率的计算题

归纳总结有关基因频率的计算题 基因频率的计算题对高二学生来说是个重点也是个难点,为此我把这部分知识进行整理、归纳,总结如下: 一、由基因型频率来计算基因频率 (一)常染色体 若已经确定了基因型频率,用下面公式很快就可以计算出基因频率。 A的基因频率=(AA的频率+1/2Aa的频率)=(AA的个数×2+Aa的个数)/2 a的基因频率=(aa的频率+1/2Aa的频率)=(aa的个数×2+Aa的个数)/2 例1 、在一个种群中随机抽出一定数量的个体,其中基因型AA的个体占24%,基因型为Aa的个体占72%,aa的个体占4%,那么,基因A和a的频率分别是 解:这是最常见的常染色体基因频率题:A=(AA的频率+1/2Aa的频率)=24%+72%÷2=60%,a=1-60%=40% (二)性染色体 XA=(XAXA个数×2 + XAXa个数+ XAY个数)/(雌性个数×2 + 雄性个数) Xa=(XaXa个数×2 + XAXa个数+ XaY个数)/(雌性个数×2 + 雄性个数) 注意:基因总数=女性人数×2 + 男性人数×1 例1.某工厂有男女职工各200名,对他们进行调查时发现:女性色盲基因的携带者为15人,患者5人,男性患者11人,那么这个群体中色盲基因的频率为。 解:这是最常见的性染色体基因频率题:由XAXa:15,XaXa:5,XaY:11,得Xa=(XaXa个数×2 + XAXa个数+ XaY个数)/(雌性个数×2 + 雄性个数)=(5×2+15+11)/(200×2+200)=6% 例2.对欧洲某学校的学生进行遗传调查时发现,血友病患者占0.7%(男:女=2:1);血友病携带者占5%,那么,这个种群的Xh的频率是() A 2.97% B 0.7% C 3.96% D 3.2% 解析:该题稍有难度,解本题的关键在于确定各基因型的频率,而且还要注意男性的Y染色体上是没有相关基因 1:1) 由表格数据,Xh基因的总数是1.4%/3+5%+1.4%/3,Xh的基因频率=(1.4%/3+5%+1.4%/3)/150%=3.96%。 二、根据基因频率求基因型频率 做这种题时一般要用到遗传平衡定律,如果一个种群符合下列条件: 1. 种群是极大的; 2. 种群个体间的交配是随机的,那么其后代可用遗传平衡来计算。 3. 没有突变发生;种群之间不存在个体的迁移或基因交流;没有自然选择。 那么,这个种群的基因频率(包括基因型频率)就可以一代代稳定不变,保持平衡。就可以用遗传平衡定律,也称哈迪——温伯格平衡。公式是:AA=A2. aa=a2. Aa=2×A×a (一)一个大的群体可用遗传平衡定律计算 (1)、常染色体 例1、在欧洲人中有一种罕见的遗传病,在人群中的发病率约为25万分之一,患者无生育能力,现有一对表现型正常的夫妇,生了一个患病的女儿和正常的儿子。后因丈夫车祸死亡,该妇女又与一个没任何血缘关系的男子婚配,则这位妇女再婚后再生一患病孩子的概率是: A.1/4 B. 1/250000 C.1/1000 D.1/50000 解析:由aa=1/250000,得a=1/500。由题干可知该妇女的基因型为Aa,她提供a配子的概率为1/2,没有任何亲缘关系的男子提供a配子的概率为1/500,所以他们生出一个有病孩子aa的概率是:1/2×1/500=1/1000。 例2.某常染色体隐性遗传病在人群中的发病率为1%,现有一对表现正常的夫妇,妻子为该常染色体遗传病致病基因携带者。那么他们所生小孩患病的概率是 A.1/88 B.1/22 C.7/2200 D.3/800

2020年高考生物DNA的结构与复制知识点

2020年高考生物DNA的结构与复制知识点 2017年高考生物DNA的结构与复制知识点: 1、DNA的化学结构: ①DNA是高分子化合物:组成它的基本元素是C、H、O、N、P等。 ②组成DNA的基本单位——脱氧核苷酸。每个脱氧核苷酸由三部分组成:一个脱氧核糖、一个含氮碱基和一个磷酸 ③构成DNA的脱氧核苷酸有四种。DNA在水解酶的作用下,可以 得到四种不同的核苷酸,即腺嘌呤(A)脱氧核苷酸;鸟嘌呤(G)脱氧核 苷酸;胞嘧啶(C)脱氧核苷酸;胸腺嘧啶(T)脱氧核苷酸;组成四种脱氧 核苷酸的脱氧核糖和磷酸都是一样的,所不相同的是四种含氮碱基:ATGC。 ④DNA是由四种不同的脱氧核苷酸为单位,聚合而成的脱氧核苷 酸链。 2、DNA的双螺旋结构:DNA的双螺旋结构,脱氧核糖与磷酸相间排列在外侧,形成两条主链(反向平行),构成DNA的基本骨架。两 条主链之间的横档是碱基对,排列在内侧。相对应的两个碱基通过 氢键连结形成碱基对,DNA一条链上的碱基排列顺序确定了,根据 碱基互补配对原则,另一条链的碱基排列顺序也就确定了。 点击查看:高中生物知识点总结 3、DNA的特性: ①稳定性:DNA分子两条长链上的脱氧核糖与磷酸交替排列的顺 序和两条链之间碱基互补配对的方式是稳定不变的,从而导致DNA 分子的稳定性。 ②多样性:DNA中的碱基对的排列顺序是千变万化的。碱基对的 排列方式:4n(n为碱基对的数目)

③特异性:每个特定的DNA分子都具有特定的碱基排列顺序,这种特定的碱基排列顺序就构成了DNA分子自身严格的特异性。 4、碱基互补配对原则在碱基含量计算中的应用: ①在双链DNA分子中,不互补的两碱基含量之和是相等的,占整个分子碱基总量的50%。②在双链DNA分子中,一条链中的嘌呤之和与嘧啶之和的比值与其互补链中相应的比值互为倒数。 ③在双链DNA分子中,一条链中的不互补的两碱基含量之和的比值(A+T/G+C)与其在互补链中的比值和在整个分子中的比值都是一样的。 5、DNA的复制: ①时期:有丝分裂间期和减数第一次分裂的间期。 ②场所:主要在DNA的结构与复制核中。 ③条件:a、模板:亲代DNA的两条母链;b、原料:四种脱氧核苷酸为;c、能量:(ATP);d、一系列的酶。缺少其中任何一种,DNA 复制都无法进行。 ④过程:a、解旋:首先DNA分子利用DNA的结构与复制提供的能量,在解旋酶的作用下,把两条扭成螺旋的双链解开,这个过程称为解旋;b、合成子链:然后,以解开的每段链(母链)为模板,以周围环境中的脱氧核苷酸为原料,在有关酶的作用下,按照碱基互补配对原则合成与母链互补的子链。随的解旋过程的进行,新合成的子链不断地延长,同时每条子链与其对应的母链互相盘绕成螺旋结构,c、形成新的DNA分子。 ⑤特点:边解旋边复制,半保留复制。 ⑥结果:一个DNA分子复制一次形成两个完全相同的DNA分子。 ⑦意义:使亲代的遗传信息传给子代,从而使前后代保持了一定的连续性.。

伴性遗传基因频率计算

伴性遗传基因频率计算 特别提示:请同学们先做完再看解析 1某工厂有男女职工各200名,调查发现,女性色盲基因的携带者为15人,患者5人,男性患者11人。那么这个群体中色盲基因的频率是() A. 4.5% B. 6% C. 9% D. 7.8% 2、从某个种群中随机抽出100个个体,测知基因型为X B X B、X B X b、X b X b和X B Y、X b Y的个体分别是44、5、1和4 3、7,则X B和X b的基因频率为() A、43%、7% B、21.5%、3.5% C、90.7%、9.3% D、45.35%、4.65% 3、.在某个岛上,每1万人中有500名男子患红绿色盲。则该岛上的人群中,女性携带者的数量为每万人中有()人(设男女比例1:1) A、1000 B、 900 C、 800 D、700 4、在对欧洲某学校的学生进行遗传调查时发现,血友病患者占0.7%(男:女=2:1),血友病携带者占5%,那么,这个种群中X h的频率是() A、3.96% B、7.92% C、0.7% D、12.1% 5、若在果蝇种群中,X B的基因频率为90%,X b的基因频率为10%,雌雄果蝇数相等,理论上X b X b、X b Y的基因型比例依次为( ) A.1%、2% B.0.5%、5% C.10%、10% D.5%、0.5% 6、(2010四川卷)果蝇的某一对相对性状由等位基因(N,n)控制,其中一个基因在纯合时能使合子致死(注:NN,X n X n,X n Y等均视为纯合子)。有人用一对果蝇杂交,得到F1代果蝇共185只,其中雄蝇63只。 ①控制这一性状的基因位于___________染色体上,成活果蝇的基因型共有________种。 ②若F1代雌蝇仅有一种表现型,则致死基因是________,F1代雌蝇基因型为_________。 ③若F1代雌蝇共有两种表现型,则致死基因是___________。让F1代果蝇随机交配,理论上F2代成活个体构成的种群中基因N的频率为__________。 方法总结 1、随机抽取的小样本中: ①该种群可能未达遗传平衡(如第1、2题),或不具备种群特点(第4题),因此 不能用遗传平衡定律计算,只能根据概念直接计算。 ②由于男女性(雌雄性)中X染色体数量不等,因此,来自男女性(雌雄性) 中的基因总数就不等,计算时要注意区别对待。 【解析】:第1题:X b的基因频率:(15+5×2+11)/(200×2+200)=0.06 第2题;随机抽取的100个个体中,男女比例应该相等,各有50个。则X B的基因频率:(44×2+5+43)/(50×2+50)≈0.907,X b的基因频率:1-0.907=0.093 第4题:假定有学生100人,男女生各50人,血友病患者共有0.7个;由于患病男女比为2:1,则X h X h的个数为0.7×1/3, X h Y的个数为0.7×2/3。X H X h的个数为5个。则X h的基因频率为:(0.7×1/3×2+0.7×2/3+5)/(50×2+50)=0.0396 2、随机交配的大样本中 ①一个随机交配的或较大的自然种群可视作遗传平衡种群(第3题、第5题)。在这类 种群中,算基因频率一般用遗传平衡定律法(或配子随机结合法)

高中生物论文:用《哈代-温伯格定律》计算基因频率

用遗传平衡理论计算基因频率 哈代-温伯格定律 Hardy-Weinberg Law 1908年提出,数学家哈迪(G.H. Hardy)和德国医生温伯格(W. Weinberg)分别提出关于基因频率稳定性的见解。在一个有性生殖的自然种群中,在符合以下5个条件的情况下,各等位基因的频率和等位基因的基因型频率在一代一代的遗传中是稳定不变的:1,种群大;2,种群中个体间的交配是随机的;3,没有突变发生;4,没有新基因加入;5,没有自然选择。用数学方程式表达就是(p+q)2=p2+2pq+q2其中p、q分别是等位基因P、Q的频率,p平方是指纯合子PP 的频率,2pq是指杂合子PQ的频率,q平方是指纯合子QQ的频率。注,2表示平方 事实上,这5个条件是永远不能满足的,因为基因频率总要变化。 在去年的高考生物试题中和今年的模拟体中,有一些试题要用到该知识,现举几例,供大家参考。 1.(09广东卷)某人群中某常染色体显性遗传病的发病率为19%,一对夫妇中妻子患病,丈夫正常,他们所生的子女患该病的概率是A.10/19 B.9/19 C.1/19 D.1/2 解析:假设该病的基因A,则正常的基因为a,正常人的基因型则为aa,患病者基因型为AA和Aa,由题干中知道:正常人占81%,由遗传平衡理论可知,a2=81%,则a的基因频率为90%,进一步知道A的基因频率为10%,AA的频率为1%,Aa的基因频率为18%,所以在19%的患病者中,AA占1∕19,Aa占18∕19。因此可得如

下遗传图: AA 1∕19 ⅹ aa Aa 18∕19 ⅹ aa ♀患者↓♂正常♀患者↓♂正常Aa 1∕19 Aa 9∕19aa 9∕19 所以患病者的概率为10∕19. 2.(10成都七中)小鼠的黑身和灰身分别由常染色体上的一对等位基因(E.e)控制,某小鼠种群中黑身占51%,取一只黑身小鼠与灰身小鼠交配,则其后代为黑身的概率是(30 ∕51 )。 解析:该题与上题考查的是同一知识点,由题干知:黑身为显性,EE和Ee共占51%,则ee占49%。E的基因频率=70%,e的基因频率=30%。EE的频率=9%,Ee的频率=42%。则黑身群体中,EE占9∕51,Ee占42∕51,故可得如下遗传图: EE 9∕51 ⅹ ee Ee 42∕51 ⅹ ee ↓↓ Ee 9∕51 Ee 21∕51 ee 21∕51 所以黑身在后代中占:9∕51+ 21∕51 = 30∕51 3.(09四川卷)大豆是两性花植物。下面是大豆某些性状的遗传实验: (1)大豆子叶颜色(BB表现深绿;Bb表现浅绿;bb呈黄色,幼苗阶段死亡)和花叶病的抗性(由R、r基因控制)遗传的实验结果如下表:

分子生物学与基因工程主要知识点

分子生物学与基因工程复习重点 第一讲绪论 1、分子生物学与基因工程的含义 从狭义上讲,分子生物学主要是研究生物体主要遗传物质-基因或DNA的结构及其复制、转录、表达和调节控制等过程的科学。 基因工程是一项将生物的某个基因通过载体运送到另一种生物的活体细胞中,并使之无性繁殖和行使正常功能,从而创造生物新品种或新物种的遗传学技术。 2、分子生物学与基因工程的发展简史,特别是里程碑事件,要求掌握其必要的理由 上个世纪50年代,Watson和Crick提出了的DNA双螺旋模型; 60年代,法国科学家Jacob和Monod提出了的乳糖操纵子模型; 70年代,Berg首先发现了DNA连接酶,并构建了世界上第一个重组DNA分子; 80年代,Mullis发明了聚合酶链式反应(Polymerase Chain Reaction,PCR)技术; 90年代,开展了“人类基因组计划”和模式生物的基因组测序,分子生物学进入“基因组时代”; 目前,分子生物学进入了“后基因组时代”或“蛋白质组时代”。 3、分子生物学与基因工程的专业地位与作用:从专业基础课角度阐述对专业课程的支 撑作用 第二讲核酸概述 1、核酸的化学组成(图画说明) 2、核酸的种类与特点:DNA和RNA的区别 (1)DNA含的糖分子是脱氧核糖,RNA含的是核糖; (2)DNA含有的碱基是腺嘌呤(A)、胞嘧啶(C)、鸟嘌呤(G)和胸腺嘧啶(T),RNA含有的碱基前3个与DNA完全相同,只有最后一个胸腺嘧啶被尿嘧啶(U)所代替; (3)DNA通常是双链,而RNA主要为单链;

(4)DNA的分子链一般较长,而RNA分子链较短。 3、DNA作为遗传物质的直接和间接证据; 间接: (1)一种生物不同组织的细胞,不论年龄大小,功能如何,它的DNA含量是恒定的,而生殖细胞精子的DNA含量则刚好是体细胞的一半。多倍体生物细胞的DNA含量是按其染色体倍数性的增加而递增的,但细胞核里的蛋白质并没有相似的分布规律。 (2)DNA在代谢上较稳定。 (3)DNA是所有生物的染色体所共有的,而某些生物的染色体上则没有蛋白质。(4)DNA通常只存在于细胞核染色体上,但某些能自体复制的细胞器,如线粒体、叶绿体有其自己的DNA。 (5)在各类生物中能引起DNA结构改变的化学物质都可引起基因突变。 直接:肺炎链球菌试验、噬菌体侵染实验 4、DNA的变性与复性:两者的含义与特点及应用 变性:它是指当双螺旋DNA加热至生理温度以上(接近100oC)时,它就失去生理活性。这时DNA双股链间的氢键断裂,最后双股链完全分开并成为无规则线团的过程。简而言之,就是DNA从双链变成单链的过程。增色效应:它是指在DNA的变性过程中,它在260 nm的吸收值先是缓慢上升,到达某一温度后即骤然上升的效应。 复性:它是指热变性的DNA如缓慢冷却,已分开的互补链又可能重新缔合成双螺旋的过程。复性的速度与DNA的浓度有关,因为两互补序列间的配对决定于它们碰撞频率。DNA复性的应用-分子杂交:由DNA复性研究发展成的一种实验技术是分子杂交技术。杂交可发生在DNA和DNA或DNA与RNA间。 5、Tm的含义与影响因素 Tm的含义:是指吸收值增加的中点。 影响因素: 1)DNA序列中G + C的含量或比例含量越高,Tm值也越大(决定性因素);2)溶液的离子强度 3)核酸分子的长度有关:核酸分子越长,Tm值越大

基因频率和基因频率计算

基因频率和基因频率计 算 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

基因频率与基因型频率计算 1.某植物种群中,AA个体点16%,aa个体占36%,该种群随机交配产生的后代中AA个体百 分比、A基因频率和自交产生的后代中AA个体百分比、A基因频率的变化依次为() A.增大,不变;不变,不变B.不变,增大;增大,不变 C.不变,不变;增大,不变D.不变,不变;不变,增大 2.某小岛上原有果蝇20000只,其中基因型VV、Vv和vv的果蝇分别占15%,55%和30%。 若此时从岛外入侵了2000只基因型为VV的果蝇,且所有果蝇均随机交配,则F1代中 V的基因频率约为() A.43%%%% 3.在调查某小麦种群时发现T(抗锈病)对t(易感染锈病)为显性,在自然情况下该小麦 种群可以自由传粉,据统计TT为20%,Tt为60%,tt为20%。该小麦种群突然大面积 感染锈病,,致使全部的易感染锈病的小麦在开花之前全部死亡。则该小麦在感染锈病之前与感染锈病之后基因T的频率分别是() A.50%和50%%和%和50%%和100% 4.某人群中某常染色体显性遗传病的发病率为19%,一对夫妇中妻子患病,丈夫正常,他 们所生的子女患该病的概率是() A.10/19B.9/19C.1/19D.1/2 5.当地人群中约2500人中有一个白化病患者,现在有一个表现型正常,其双亲也正常,但 其弟弟是白化病患者的女性,与当地一个无亲缘关系的正常男性婚配,他们所生男孩患白化病的概率为_______。 6.某工厂有男女职工各200名,对他们进行调查时发现:女性色盲基因的携带者为15人, 患者5人,男性患者11人,那么这个群体中色盲基因的频率为。 7.对欧洲某学校的学生进行遗传调查时发现,血友病患者占%(男∶女=2∶1);血友病携 带者占5%,那么,这个种群的Xh的频率是() %%% 8.在欧洲人中有一种罕见的遗传病,在人群中的发病率约为25万分之一,患者无生育能 力,现有一对表现型正常的夫妇,生了一个患病的女儿和正常的儿子。后因丈夫车祸

基因频率计算类型及其公式推导

基因频率计算类型及其公式推导 摘要:生物进化的实质是种群基因库基因频率在环境选择作用下的定向改变。运用数学方法计算种群基因频率有利于理解种群进化情况,本文结合实例探讨种群在不同情况下种群基因频率计算类型和计算公式的推导过程。 关键词:遗传平衡基因频率 基因频率是指在一个种群基因库中,某个基因占全部等位基因数的比例。种群中某一基因位点上各种不同的基因频率之和以及各种基因型频率之和都等于1。对于一个种群来说,理想状态下种群基因频率在世代相传中保持稳定,然而在自然条件下却受基因突变、基因重组、自然选择、迁移和遗传漂变的影响,种群基因频率处于不断变化之中,使生物不断向前发展进化。因此,通过计算某种群的基因频率有利于理解该种群的进化情况。为了进一步加深对这部分知识的理解和掌握,现将基因频率计算类型和计算公式推导归纳如下:1.理想状态下种群基因频率的计算 理想状态下的种群就是处于遗传平衡状况下的种群,遵循“哈迪──温伯格平衡定律”。遗传平衡指在一个极大的随机自由交配的种群中,在没有突变发生,没有自然选择和迁移的条件下,种群的基因频率和基因型频率在代代相传中稳定不变,保持平衡。 一个具有Aa基因型的大群体(处于遗传平衡状态的零世代或某一世代),A基因的频率P(A)=p,a基因的频率P(a)=q,显性基因A的基因频率与隐性基因a的基因频率之和p+q=1,其雌雄个体向后代传递基因A型配子的频率为p,与其相对应的传递隐性基因a型配子的频率为q,则可用下表1来表示各类配子的组合类型、子代基因型及其出现的概率:表1 由上表可知该种群后代中出现三种基因型AA、Aa、aa,并且三种基因型出现的频率分别为P(AA)= p×p= p2=D;P(Aa)=2p×q=2pq=H; P(aa)= q×q = q 2=R。且它们的频率之和为p2+2pq+q2=(p+q)2=1。其基因频率为A基因的频率P(A)=D+1/2H= p2+ pq=p(p+q)=p;a基因的频率P(a)= R+1/2H=q2+ pq=q(p+q)=q。可见子代基因频率与亲代基因频率一样。所以,在以后所有世代中,如果没有突变、迁移和选择等因素干扰,这个群体的遗传成分将永远处于p2+ 2pq+q2平衡状态。伴性基因和多等位基因遗传平衡的计算仍遵循上述规律。运用此规律,已知基因型频率可求基因频率;反之,已知基因频率可求基因型频率。 例题:已知苯丙酮尿症是位于常染色体上的隐性遗传病。据调查,该病的发病率大约为1/10000,请问在人群中该苯丙酮尿症隐性致病基因(a)的基因频率以及携带此隐性基因的携带者(Aa)基因型频率分别是() A.1% 和0.99% B.1% 和1.98% C.1% 和3.96% D.1% 和0.198%解析:苯丙酮尿症是一种常染色体隐性遗传病。由于该病则发病基因型为aa,即 a2=0.0001,a=0.01,A= 1-a=1-0.01=0.99,携带者基因型为Aa的频率 = 2×0.01×0.99=0.0198。 答案:D

高一生物知识点整理:DNA分子的结构及其特点讲解

高一生物知识点整理:DNA分子的结构 及其特点讲解 1.基本单位 DNA分子的基本单位是脱氧核苷酸。每分子脱氧核苷酸由一分子含氮碱基、一分子磷酸和一分子脱氧核糖通过脱水缩合而成。由于构成DNA的含氮碱基有四种:腺嘌呤、鸟嘌呤、胸腺嘧啶和胞嘧啶,因而脱氧核苷酸也有四种,它们分别是腺嘌呤脱氧核苷酸、鸟嘌呤脱氧核苷酸、胸腺嘧啶脱氧核苷酸和胞嘧啶脱氧核苷酸。 2.分子结构 DNA分子的立体结构为规则的双螺旋结构,具体为:由两条DNA反向平行的DNA链盘旋成双螺旋结构。DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架;碱基排列在内侧。DNA分子两条链上的碱基通过氢键连接成碱基对,碱基配对遵循碱基互补配对原则。应注意以下几点: ⑴DNA链:由一分子脱氧核苷酸的3号碳原子与另一分子脱氧核苷酸的5号碳原子端的磷酸基团之间通过脱水缩合形成磷酸二脂键,由磷酸二脂键将脱氧核苷酸连接成链。 ⑵5'端和3'端:由于DNA链中的游离磷酸基团连接在5号碳原子上,称5'端;另一端的的3号碳原子端称为3'端。

⑶反向平行:指构成DNA分子的两条链中,总是一条链的5'端与另一条链的3'端相对,即一条链是3'~5',另一条为5'~~3'。 ⑷碱基配对原则:两条链之间的碱基配对时,A与T配对、c与G配对。双链DNA分子中,A=T,c=G,A%=T%,c%=G%,可据此得出: ①A+G=T+c:即嘌呤碱基数与嘧啶碱基数相等; ②A+c=T+G:即任意两不互补碱基的数目相等; ③A%+c%=T%+G%=A%+G%=T%+c%=50%:即任意两不互补碱基含量之和相等,占碱基总数的50%; ④/=/=/=A/c=T/G:即双链DNA及其任一条链的/为一定值; ⑤/=/=1/[/]:DNA分子两条链中的/互为倒数;双链DNA 分子的/=1。 根据以上推论,结合已知条件可方便的计算DNA分子中某种碱基的数量和含量。 3.结构特点 ⑴稳定性:规则的双螺旋结构使其结构相对稳定,一般不易改变。 ⑵多样性:虽然构成DNA的碱基只有四种,但由于构成每个DNA分子的碱基对数、碱基种类及排列顺序多样,可形成多种多样的DNA分子。

基因频率的计算

若在果蝇种群中,X B的基因频率为80%,X b的基因频率为20%,雌雄果蝇数相等,理论上X b X b、X b Y的基因型比例依次为--------------------------------------- 可见,理论上X B Y基因型比例为40%,X b Y的为10%,X B X b的为16%,X b X b的为2%,X B X B 32%。 与基因频率有关的计算例析 基因频率是指某群体中,某一等位基因在该位点上可能出现的基因总数中所占的比率。对基因频率的计算有很多种类型,不同的类型要采用不同的方法计算。 一、哈代--温伯格公式(遗传平衡定律)的应用 当种群较大,种群内个体间的交配是随机的,没有突变发生、新基因加入和自然选择时,存在以下公式:(p+q)2=p2+2pq+q2=1 ,其中p代表一个等位基因的频率,q代表另一个等位基因的频率,p2 代表一个等位基因纯合子(如AA)的频率,2pq代表杂合子(如Aa)的频率,q2代表另一个纯合子(aa)的频率。 例1:已知苯丙酮尿症是位于常染色体上的隐性遗传病。据调查,该病的发病率大约为1/10000。请问,在人群中苯丙酮尿症致病基因的基因频率以及携带此隐性基因的杂合基因型频率各是多少? 解析:由于本题不知道具体基因型的个体数以及各种基因型频率,所以问题变得复杂化,此时可以考虑用哈代----温伯格公式。由题意可知aa的频率为1/10000,计算得a的频率为1/100。又A+a=1,所以A的频率为99/100,Aa的频率为2×(99/100)×(1/100)=99/5000。 答案:1/100,99/5000 例2:在阿拉伯牵牛花的遗传实验中,用纯合体红色牵牛花和纯合体白色牵牛花杂交,F1全是粉红色牵牛花。将F1自交后,F2中出现红色、粉红色和白色三种类型的牵牛花,比例为1:2:1,如果取F2中的粉红色的牵牛花与红色的牵牛花均匀混合种植,进行自由传粉,则后代表现性及比例应该为( )

关于基因频率的计算题(可编辑修改word版)

关于基因频率的计算题 1.对某校学生进行色盲遗传病调查研究后发现:780 名女生中有患者23 人,携带着52 人,820 明男生 中有患者65 人,那么该群体中色盲基因的概率是( ) A.4.4% B.5.1% C.6.8% D.10.2% 2.囊性纤维变性是一种常染色体遗传病。在欧洲人群中每2500 个人就有一人患此病。如果一对健康的 夫妇有一个患病的儿子,此后该女又与另一健康男子再婚,则再婚后他们生一个患此病孩子的概率是( ) A.0.98% B.0.04% C.3.9% D.2% 3.如果在以各种群中,基因型 AA 的比例占 25%,基因型 Aa 的比例为 50%,基因型 aa 比例占 25%,已知 基因型aa 的个体失去求偶和繁殖的能力,则随机交配一代后,基因型aa 的个体所占的比例为( ) A.1/16 B.1/9 C.1/8 D.1/4 4.在人类的 MN 血型系统中,基因型 LMLM 的个体表现为 M 血型;基因型 LMLN 的个体表现为 MN 血型,基 因型NN 的个体表现为N 血型。1977 年上海中心血防站调查了1788 人,发现有397 人为M 血型,861 人 为MN 血型,530 人为N 血型。则LM 基因的频率为,LN 基因的频率为. 5 一个种群中随机抽出一定数量的个体,其中基因型为 AA 的个体占 18%,基因型为 Aa 的个体占 78%,aa 的个体占4%,基因型A 和a 的频率分别是( ) A.18%,82% B.36%,64% C.57%,43% D.92%,8% 6.人的 ABO 血型决定于 3 个等位基因 IA、IB、i。通过抽样调查发现血型频率(基因型频率):A 型(IAIA,Iai)=0.45;B 型(IBIB,Ibi)=0.13;AB 型(IAIB)=0.06;O 型(ii)=0.36.试计算 IA、IB、i 这 3 各等位基因的频率? 7.据调查,某小学的学生中,基因型为 X B X B的比例为42.32%,X B X b为7.36%,X b X b为0.32%,X B Y 为 46%,X b Y 为4%,则在该地区X B和X b的基因频率分别为() A.6%,8% B.8%,92% C.78%,92% D.92%,8% 8.已知苯丙酮尿是位于常染色体上的隐性遗传病。据调查,该病的发病率大约为1/10000。请问在人群 中该苯丙酮尿隐性致病基因的基因频率以及携带此隐性基因和杂合基因型频率各是 9.人的色盲是X 染色体上的隐性遗传病。在人类群体中,男性中患色盲的概率大约为8%,那么,在人类 中色盲基因的概率以及在女性中色盲的患病率各是 10.在非洲人群中,每10000 人中有1 个人患囊性纤维原瘤,该病属常染色体遗传。一对健康夫妇生有 一个一患病的孩子,此后,该妇女与另一个健康男性再婚,他们若生孩子,患此病的几率是( ) A.1/25 B.1/50 C.1/100 D.1/200 11.在一个杂合子为Aa 为50%的人类群体中,基因A 的频率是(该群体是遗传平衡群体)( ) A.10% B.25% C.35% D.50% 12.在豚鼠中,黑猫对白毛是显性,如果基因库中,90%是显性基因B,10%是隐性基因b,则种群中,基因 型BB、Bb、bb 的概率分别是( ) A.45%、40%、15% B.18%、81%、1% C.45%、45%、10% D.81%、18%、1% 13.色盲基因出现的频率为7%。一个正常男性与一个无亲缘关系的女性结婚,子代患色盲的可能性是( ) A.7/400 B.8/400 C.13/400 或 1/400 D.14/400 14.已知苯丙酮尿症是位于常染色体上的隐性遗传病。据调查,该病的发病率大约为 1/10000。请问,在 人群中苯丙酮尿症致病基因的基因频率以及携带此隐性基因的杂合基因型频率各是 15.在阿拉伯牵牛花的遗传实验中,用纯合体红色牵牛花和纯合体白色牵牛花杂交,F1 全是粉红色牵牛 花。将 F1 自交后,F2 中出现红色、粉红色和白色三种类型的牵牛花,比例为 1:2:1,如果取 F2 中的粉

分子诊断知识点

1、基因(gene)是含有生物信息的DNA 功能片段,根据这些生物信息可以编码具有生物功能的产物,包括RNA 和蛋白质(多数). 2、基因组genome, 指细胞或生物体一套完整的遗传物质,包括所有基因和基因间的区域(序列)。 3、基因组学genomics 以基因组为研究对象的一门学科,包括基因组作图、基因组测序、基因定位、基因功能分析 4、结构基因:编码RNA 或蛋白质的核苷酸序列 5、基因表达:DNA 携带遗传信息通过转录传递给RNA,mRNA 通过翻译将基因的遗传信息在细胞内合成具有生物功能的各种蛋白质的过程 6、C 值基因组DNA 全部碱基(对)数。C 值是物种的一个重要特性常数。C 值矛盾,C 值悖论:生物体的进化程度与基因组大小之间不完全成比例的现象 7、N 值矛盾,N 值悖论:基因组中的基因数目与生物进化程度或复杂程度的不对称性 8、必需基因(致死基因)关系到生物体存活的基因。可通过基因突变实验确定必需基因。: 9、原核生物基因组1、细菌、支原体、立克次体、衣原体、螺旋体、放线菌、蓝绿藻等 10、重叠基因:是指两个或两个以上的基因共有一段DNA 序列,或是指一段DNA 序列为两个或两个以上基因的组成部分。 11、操纵子:由一组功能相关的结构基因连同其上游调控序列共同组成一个转录单位 12、质粒的分类致育质粒F 质粒)编码性菌毛,介导细菌之间的接合传递;耐药性质粒R 质粒)编码细菌对抗菌药物或重金属盐类的耐药性;毒力质粒Vi 质粒)编码与该菌致病性有关的毒力因子;细菌素质粒编码细菌产生细菌素;代谢质粒编码产生相关的代谢酶。 13、严紧控制型拷贝数少,一般<10 个,分子量大;调节因子是蛋白质,复制受限,受染色体DNA 复制系统的控制;严谨控制机理(低拷贝原因),认为是该质粒可以产生阻遏蛋白,反馈抑制自身DNA 合成。松弛控制型拷贝数多,10-200 个,分子量小;调节因子是RNA,复制不受染色体DNA 复制系统限制基因工程使用松弛型(高拷贝数)质粒,以获得较多的基因产物。 14、质粒性质 1、质粒的转移:可以通过转化、转导或接合作用而由一个细菌细胞转移到另一个细菌细胞中,使两个细胞都成为带有质粒的细胞;质粒转移时,它可以单独转移,也可以携带着染色体(片段)一起进行转移,所以它可成为基因工程的载体。 2、质粒具有选择性标记:质粒有抗药性基因、营养缺陷型基因、抗重金属盐基因等多种选择性标记 3、质粒的不相容性:质粒已成为分子克隆的有用工具,是目的DNA 的载体。载体质粒大多是在天然质粒基础上经人工构建而成, 15、质粒特点:1、有限制性核酸内切酶单一切口,可用以重组外源DNA;2、有筛选标记,如抗药基因等;3、插入外源DNA 后,仍能转化宿主细胞,并能复制。 16、质粒基因转移的方式1.接合作用当细胞与细胞、或细菌通过菌毛相互接触时,质粒DN 从一个细胞(细菌)转移至另一细胞(细菌)的DNA 转移称为接合作用 2.转化作用通过自动获取或人为地供给外源DNA,使细胞或培养的受体细胞获得新的遗传表型,称为转化作用3、转导作用当病毒从被感染的(供体)细胞释放出来、再次感染另一(受体)细胞时,发生在供体细胞与受体细胞之间的DNA 转移及基因重组即为转导作用4、转染作用通过感染方式将外来DNA 引入宿主细胞,并导致宿主细胞遗传性状改变的过程称为转染(transfection) 。转染是转化的一种特殊形式。

基因频率与基因型频率计算方法总结

基因频率和基因型频率的计算 基因频率和基因型频率的计算 (一).根据基因型或基因型频率计算基因频率: 例1.从某个种群中随机抽出100个个体,测知基因型为AA,Aa和aa的个体分别是30、60和10个,求a的基因频率。 解析:可以通过基因型频率计算基因频率。一对等位基因中的一个基因的频率:基因频率(A)=对应纯合子(AA)基因型频率+杂合子(Aa)基因型频率的1/2。 100个个体中AA为30个,Aa为60个,aa为10个,则AA这种基因型的频率为30÷100=30%;同理,Aa为60%,aa为10%,则A基因的基因频率为30%+60%×1/2=60%,a基因的基因频率为10%+60%×1/2=40%。 答案:A基因的基因频率为60%,a基因的基因频率为40%。 变式训练1.已知人眼的褐色(A)对蓝色(a)是显性,属常染色体上基因控制的遗传。在一个30000人的人群中,蓝眼的有3600人,褐眼的有26400人,其中纯合子有12000人,那么,这一人群中A和a基因的基因频率分别为--------------------------------() A.64%和36% B.36%和64% C.50%和50% D.82%和18% (二).在伴性遗传 ....中有关基因频率的相关计算: ﹡例2.若在果蝇种群中,X B的基因频率为90%,X b的基因频率为10%,雌雄果蝇数相等,理论上X b X b、X b Y的基因型比例依次为--------------------------------------------() A.1%、2% B.0.5%、5% C.10%、10% D.5%、 0.5% 解析:由于在该果蝇种群中,雌雄果蝇数相等, 所以雌果蝇产生的配子中,X B的基因频率应为90%,X b的基因频率为10%。雄果蝇产生的配子中,有约1/2的含Y染色体的配子,另有约1/2的含X染色体的配子,在含X染色体的雄配子中, X B与X b的基因频率也分别为90%和10%。它们配 可见,理论上X Y基因型比例为45%,X Y的为5%,X X的为9%,X X的为0.5%。 答案:B。 变式训练2.对某校学生进行红绿色盲遗传病调查研究后发现:780名女生中有患者23人,携带者52人,820名男生中有患者65人,那么该群体中红绿色盲基因的频率是------( ) A.4.4% B.5.1% C.6.8% D.10.2% (三).利用遗传平衡定律求解基因频率和基因型频率 1.对遗传平衡的理解: 遗传平衡指在一个极大的随机交配的种群中,在没有突变发生,没有自然选择和迁移的条件下,种群的基因频率和基因型频率在一代一代的遗传中可以世代保持不变。 在遗传平衡的种群中,某一基因位点上各种不同的基因频率之和以及各种基因型频率之和都等于是1。

高二生物知识点总结DNA分子的结构

高二生物知识点总结:DNA分子的结构 高二生物知识点总结:DNA分子的结构 一、DNA分子结构 1 .DNA的元素组成和基本单位元素组成:C、H、O、N、P 基本单位:脱氧核苷酸由一个脱氧核糖、一个磷酸和一个含氮碱基组成.其中组成DNA的碱基有两类四种:腺嘌呤(A),鸟嘌呤(G),胞嘧啶(C)、胸腺嘧啶(T);因此形成的脱氧核苷酸也有四种分别是:腺嘌呤脱氧核苷酸,鸟嘌呤脱氧核苷酸,胞嘧啶脱氧核苷酸 2. DNA分子的平面和立体结构①两条长链按反向平行方式盘旋成双螺旋结构②脱氧核糖和磷酸交替连接构成基本骨架,排列在外侧,碱基成对排列在内侧③碱基互补配对原则:A―T、G―C 3、DNA分子的结构特性 (l)稳定性:DNA分子中脱氧核糖和磷酸交替连接的方式不变;两条链间碱基互补配对的方式不变。 (2)多样性:DNA分子中碱基时排列顺序多种多样。 (3)特异性:每种DNA有别于其他DNA的特定的碱基排列顺序。二、DNA复制的过程 1、复制的概念:是指以亲代DNA为模板合成子代DNA的过程。 2、复制的时间:有丝分裂间期和减数第一次分裂的间期 3、复制条件①模板:DNA的两条链②能量:ATP ③原料:游离的四种脱氧核苷酸④酶:解旋酶、DNA 聚合酶等 4、特点:边解旋边复制 5、DNA准确复制的原因: 1)、DNA分子独特的双螺旋结构,为复制提供精确的模板, (2)、碱基互补配对,保证了复制能够准确地进行。 6、DNA复制的意义 DNA 分子通过复制,将遗传信息从亲代传给了子代,从而保持了遗传信息的连续性。 7、意义:保证了亲子两代之间性状相象。知识点拨: 知识拓展: 1、两条链之间的脱氧核苷酸数目相等→两条链之间的碱基、脱氧核糖和磷酸数目对应相等。 2、碱基配对的关系是:A(或T)一定与T(或A)配对、G(或C)一定与C(或G)配对,这就是碱基互补配对原则。其中,A与T之间形成2个氢键,G与C之间形成3个氢键。 3、DNA分子彻底水解时得到的产物是脱氧核苷酸的基本组分,高中语文,即脱氧核糖、磷酸、含氮碱基。 1.基本单位 DNA分子的基本单位是脱氧核苷酸。每分子脱氧核苷酸由一分子含氮

高中生物知识点:DNA分子结构及特点

高中生物知识点:DNA分子结构及特点 1953年4月25日发表在英国《自然》杂志上的一篇论文《核酸的分子结构——脱氧核糖核酸的一个结构模型》,揭开了DNA的结构之迷。沃森、克里克和维尔金斯三人也因此共同获得了1962年的诺贝尔生理学或医学奖。那么,DNA分子的结构到底是怎样的呢? 1.基本单位 DNA分子的基本单位是脱氧核苷酸。每分子脱氧核苷酸由一分子含氮碱基、一分子磷酸和一分子脱氧核糖通过脱水缩合而成(右图)。由于构成DNA的含氮碱基有四种:腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C),因而脱氧核苷酸也有四种,它们分别是腺嘌呤脱氧核苷酸、鸟嘌呤脱氧核苷酸、胸腺嘧啶脱氧核苷酸和胞嘧啶脱氧核苷酸。 2.分子结构 DNA分子的立体结构为规则的双螺旋结构,具体为:由两条DNA反向平行的DNA链盘旋成双螺旋结构。DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架;碱基排列在内侧。DNA分子两条链上的碱基通过氢键连接成碱基对(A与T通过两个氢键相连、C与G通过三个氢键相连),碱基配对遵循碱基互补配对原则。应注意以下几点: ⑴DNA链:由一分子脱氧核苷酸的3号碳原子与另一分子脱氧核苷酸的5号碳原子端的磷酸基团之间通过脱水缩合形成磷酸二脂键,由磷酸二脂键将脱氧核苷酸连接成链。 ⑵5'端和3'端:由于DNA链中的游离磷酸基团连接在5号碳原子上,称5'端;另一端的的3号碳原子端称为3'端。 ⑶反向平行:指构成DNA分子的两条链中,总是一条链的5'端与另一条链的3'端相对,即一条链是3'~5',另一条为5'~~3'。 ⑷碱基配对原则:两条链之间的碱基配对时,A与T配对、C与G配对。双链DNA分子中,A=T,C=G(指数目),A%=T%,C%=G%,可据此得出: ①A+G=T+C:即嘌呤碱基数与嘧啶碱基数相等;

高中生物基因频率与基因型频率的计算

基因频率与基因型频率的计算 一、 已知基因型频率计算基因频率 1 利用常染色体上一对等位基因的基因型频率(个数)求基因频率 设定A%、a%分别表示基因A 和a 的频率,AA 、Aa 、aa 分别表示AA 、Aa 、aa 三种基因型频率(个数)。根据遗传平衡定律,则: A% =)(22aa Aa AA Aa AA ++?+??100% a% =) (22aa Aa AA Aa aa ++?+??100% 例:已知人的褐色(A)对蓝色(a)是显性。在一个有30000人的群体中,蓝眼的有3600人,褐眼的有26400人,其中纯合体12000人。那么,在这个人群中A 、a 基因频率是多少? 解析 因为等位基因成对存在,30000个人中共有基因30000×2=60000个,蓝眼3600含a 基因7200个,褐眼26400人,纯合体12000人含A 基因24000个,杂合体14400人含(26400-12000)×2=28800个基因,其中A 基因14400个,a 基因14400个。则:A 的基因频率=(24000+14400)/60000=0.64,a 的基因频率=(7200+14400)/60000=0.36。 又例:在一个种群中随机抽取一定数量的个体,其中基因型AA 的个体占18%,基因型Aa 的个体占78%,基因型aa 的个体占4%,那么基因A 和a 频率分别是多少? 解析 A% =%) 4%78%18(2%78%182++?+??100% = 57% a% = %)4%78%18(2%78%42++?+??100% = 43% 2 利用常染色体上复等位基因的基因型频率(个数)求基因频率 以人的ABO 血型系统决定于3 个等位基因I A 、I B 、i 为例。设基因IA 的频率为p ,基因 IB 的频率为q ,基因i 的频率为r ,且人群中p+q+r=1。根据基因的随机结合,用下列二项式 可求出子代的基因型及频率:♂(pI A +qI B +ri)×♀(pI A +qi B +ri) = p 2(I A I A )+q 2(I B I B ) +r 2(ii)+2pq(I A I B )+2pr(I A i)+2qr(I B i)=1,A 型血(I A I A ,I A i)的基因型频率为p 2+2pr ;B 型血(I B I B ,I B i )的基因型频率为q 2+2qr ;O 型血(ii )的基因型频率为r 2,AB 型血(I A I B )的基因型频率为2pq 。可罗列出方程组,并解方程组。 例:通过抽样调查发现血型频率(基因型频率):A 型血(I A I A ,I A i )的频率=0.45;B 型 血(I B I B ,I B i )的频率=0.13;AB 型血(I A I B )的频率=0.06;O 型血(ii )=0.36。试计算I A 、I B 、I 的基因频率。 解析 设I A 的频率为p,I B 的频率q,i 的频率为r.根据以上公式可知:O 型血的基因型频率 =r 2=0.36;A 型血的基因型频率=p 2+2pr=0.45;B 型血的基因频率=q 2+2qr=0.13;AB 型血的基因型 频率=2pq=0.06。解方程即可得出I A 的基因频率为0.3;I B 的基因频率为0.1;i 的基因频率为 0.6。 3 利用性染色体上一对等位基因的基因型频率(个数)求基因频率 以人类的色盲基因遗传为例。女性的性染色体组成为XX ,男性的性染色体组成为XY ,Y 染色体上无该等位基因,设定X B %、X b %分别表示基因X B 和X b 的频率, X B X B 、X B X b 、X b X b 、X B Y 、 X b Y 分别表示X B X B 、X B X b 、X b X b 、X B Y 、X b Y 五种基因型频率(个数)。则:

相关文档
相关文档 最新文档