文档库 最新最全的文档下载
当前位置:文档库 › 实验五数字频率计设计

实验五数字频率计设计

实验五数字频率计设计
实验五数字频率计设计

实验项目名称:数字频率计设计

姓名:雷锋一号学号:123456789 班级:通信121 实验时间:星期四晚上

姓名:雷锋二号学号:123456789 班级:通信121 实验地点: 407

一、实验目的

1. 掌握单片机片内定时器的使用方法。

2. 掌握基于单片机片内定时器的数字频率计设计方法。

二、实验内容

基于单片机片内定时器的数字频率计设计。要求:

(1)测频率范围:10Hz ~ 10K Hz。为保证测量精度分为三个频段:

10Hz ~ 100 Hz

100Hz ~ 1K Hz

1 K Hz ~ 10K Hz

当信号频率超过规定的频段上限时,设有超量程指示。三个频段之间用手动切换。

(2)输入波形:低频函数信号发生器输出的矩形波,幅度为3V 。

(3)测量误差:σ≤±1%。

(4)显示和响应时间:

测量结果用三位半导体数码管显示,要求显示数码稳定清晰。三个频段的最大显示数分别为99.9 Hz,999. Hz,9.99 K Hz,为此需要控制小数点位置,并用两个发光二极管分别显示频率单位:Hz 或K Hz,详见表1。

三、实验说明

通过本实验,掌握单片机片内定时器的使用方法,了解数字频率计的测量原理及测量电路设计方法。掌握基于单片机的数字频率计工作原理与设计方法。

必须用模块化方法进行C语言程序设计。

四、实验仪器和设备

PC机、Keil uVision2软件,C8051F020单片机,EC3在线仿真器。

五、实验原理

频率测量的方法常用的有测频法和测周法两种。

(1)测频法

测频法的基本思想是让计数器在闸门信号的控制下计数1秒时间,计数结果是1秒内被测信号的周期数,即被测信号的频率。若被测信号不是矩形脉冲,则应先变换成同频率的矩形脉冲。测频法的原理框图如图6所示。

图中,秒脉冲作为闸门信号,当其为高电平时,计数器计数;低电平时,计数器停止计数。显然,在同样的闸门信号作用下,被测信号的频率越高,测量误差越小。当被测频率一定时,闸门信号高电平的时间越长,测量误差越小。但是闸门信号周期越长,测量的响应时间也越长。

例如,闸门信号高电平时间为1秒,被测信号频率的真值为2Hz,如图2-2-2所示。由

图6 频率测量原理框图

图可知,无论被测信号的频率是多少,测量时可能产生的最大绝对误差均为±1Hz,即

f测-f真=±1Hz

所以,最大相对误差为

σmax=(f测-f真)/ f真=±1/ f真

由上式可知,在闸门信号相同时,测频法的相对误差与被测信号的频率成反比。因此测频法适合于测量频率较高的信号。

f真=2

图7 测频法的误差

(2)测周法

当被测信号频率较低时,为保证测量精度,常采用测周法。即先测出被测信号的周期,再换算成频率。测周法的实质是把被测信号作为闸门信号,在它的高电平的时间内,用一个标准频率的信号源作为计数器的时钟脉冲。若计数结果为N,标准信号频率为f1,则被测信号的周期为

T = T1·N

被测信号的频率为

f = 1/T1·N = f1/N

利用测周法所产生的最大绝对误差,显然也等于±1个标准信号周期。如果被测信号周期的真值为T真= T1·N,则T测= T1·(N±1)

σmax=(f测-f真)/ f真= T真/T测– 1=±1/(N±1)

由上式可知,对于一定的被测信号,标准信号的频率越高,则N的值越大,因而相对误差越小。

(3)低频段的测量

鉴于上述困难,对于低频信号,为了达到规定的精度,要采取一些比较特殊的方法。例如,可考虑将被测信号倍频后再用测频法测量。或将闸门信号展宽。由于倍频电路比较复杂,所以一般采用后一种方法,实际上闸门信号展宽与被测信号倍频在效果上是相同的。闸门信号展宽比较容易做到,例如采用分频电路就可以实现。若闸门信号高电平时间从1秒展宽到10秒,则相对误差可以按比例下降,但响应时间也增大相同的比例。

六、程序流程图

开始

关闭看门狗

系统时钟设置

ZLG 芯片初始化

配置交叉开关

定时器、外部中断

0的设置

开启定时器0

模式?

时间 1s

Y

显示频率

N

脉冲计数

1

时间 10s

Y

显示频率

N

脉冲计数

七、实验结果与分析

利用函数信号发生器产生各种频率大小在1HZ~10KHZ的方波信号,当频率≥100HZ时,响应时间为约1s,当频率<100HZ时,响应时间约10s。

当频率在10HZ~100HZ时显示格式为xx.x,LED灯0亮起,表示单位是HZ;

当频率在100HZ~1KHZ时显示格式为xxx.,LED灯0亮起,表示单位是HZ;

当频率在1KHZ~10KHZ时显示格式为x.xx,LED灯1亮起,表示单位是KHZ。

实验结论:

通过实验,自主设计了利用测频法测量频率的程序,通过实验数据可知,测频的范围、显示格式以及精度要求都符合实验要求。掌握了单片机片内定时器的使用方法,掌握了基于单片机片内定时器的数字频率计设计方法。但是这种设计方法尚有不足,当频率较低时,利用测频法响应时间太长,以后的设计可以采用低频是测周期大小的方法会更好!

八、源代码

源代码必须有必要的注释,且要与流程图的逻辑关系对应。

# include

# include

# include

bit model; //定义一个测试模式标识位,0:测频,1:测周期

unsigned int ms,maichong; //定义ms为计时器计时基本单位,表示10ms

//定义maichong为记录脉冲数变量

//////////////////////////////////////////////////////////////////////////

//外部时钟,12M,需要调用delay()函数

void SYSCLK_Init(void)

{

OSCXCN=0x77;

delay(20);

while(!(OSCXCN &0x80))

{;}

OSCICN=0x08;

}

//////////////////////////////////////////////////////////////////////////

//初始化函数,系统的初始化

void chushihua()

{

bdwtd(); //关闭看门狗

SYSCLK_Init(); //选用外部时钟,12M

ZLG7289_Init(40); //ZLG芯片初始化

XBR1=0x04; //配置交叉开关,将INT0连到交叉开关XBR2=0x40; //使能交叉开关

P3MDOUT=0xff; //将P3设置为推挽输出

CKCON=0x00; //定时器时钟选择,用系统时钟12分频TMOD=0x01; //定时器方式设置为方式0

TH0=(65536-10000)/256; //为T0装初值

TL0=(65536-10000)%256; //

TR0=0; //关闭T0

ET0=1; //允许T0中断

PX0=1; //设置INT0为高优先级

EX0=1; //允许INT0中断

IT0=1; //将INT0设置为边沿触发

IE0=0; //中断标志自动清零

}

//////////////////////////////////////////////////////////////////////////

//频率显示函数

void xianshi()

{

//当频率大于100时,maichong值就是频率大小,将其直接按位显示即可if(model==0)

{

if(maichong>=1000)

{

P5=0xfd;

ZLG7289_Download(1,0,1,maichong/1000);

ZLG7289_Download(1,1,0,maichong%1000/100);

ZLG7289_Download(1,2,0,maichong%1000%100/10);

}

else

{

P5=0xfe;

ZLG7289_Download(1,0,0,maichong/100);

ZLG7289_Download(1,1,0,maichong%100/10);

ZLG7289_Download(1,2,1,maichong%100%100%10);

}

}

//当频率小于100时,需要计时十秒,maichong/10就是频率值

else

{

P5=0xfe;

ZLG7289_Download(1,0,0,maichong/100);

ZLG7289_Download(1,1,1,maichong%100/10);

ZLG7289_Download(1,2,0,maichong%10);

}

}

//////////////////////////////////////////////////////////////////////////

//初始化的显示

void xianshi0()

{

char i;

for(i=0;i<8;i++)

{

ZLG7289_Download(1,i,0,0);

}

}

//////////////////////////////////////////////////////////////////////////

//用测频法测量,测量有两种模式

//模式0:当频率大于等于100时,测量1s内的脉冲数,频率就是脉冲数大小

//模式1:当频率小于100时,测量10s内的脉冲数,频率为脉冲数大小的十分之一void F_measure()

{

if(model==0)

{

if(ms>=100)

{

//判断频率的范围,当用测频率的方法测得频率≥100,继续用模式0测量

//否则用模式1测量

if(maichong<100)

{

model=1;

}

xianshi(); //显示频率

maichong=0; //将脉冲数清零

ms=0;

}

}

else if(ms>=1000)

{

if(maichong>=1000) //判断如果频率大于100就将模式切换到模式0 {

model=0;

}

xianshi();

maichong=0;

ms=0;

}

}

void main()

{

chushihua(); //系统的初始化

xianshi0(); //初始化的显示

ms=0; //闸门时间开始时设为0

model=0; //初始默认用模式0测量

maichong=0; //脉冲数计数变量,初值为0

TR0=1; //开启计时器T0

while(1) //进入死循环

{

F_measure(); //调用测量频率的函数

}

}

//////////////////////////////////////////////////////////////////////////

//定时器0的溢出中断服务程序

void ser1() interrupt 1 using 2

{

ms++; //ms+1表示时间增加10ms

TH0=(65536-10000)/256; //定时器初值重载

TL0=(65536-10000)%256; //

}

//////////////////////////////////////////////////////////////////////////

//外部中断0的服务程序,当此中断出现时,说明脉冲数增加1

void ser0() interrupt 0

{

maichong++;

}

各个头文件程序:

#ifndef _bdwtd_H_

#define _bdwtd_H_

/*

这是一个关闭看门狗的头文件,并且开启所有中断,为方便主程序里对看门狗的处理

*/

void bdwtd(void)

{

EA=0;

WDTCN=0XDE;

WDTCN=0XAD;

EA=1;

}

#endif

#ifndef _delay_H_

#define _delay_H_

/*

这是一个可以控制延时的头文件,其中的函数可以

延时x*100倍机器时钟

*/

void delay(unsigned char x)

{

unsigned int i,j;

for(i=0;i

{

for(j=0;j<100;j++);

}

}

#endif

BPSK调制及解调实验报告

实验五BPSK调制及解调实验 一、实验目的 1、掌握BPSK调制和解调的基本原理; 2、掌握BPSK数据传输过程,熟悉典型电路; 3、了解数字基带波形时域形成的原理和方法,掌握滚降系数的概念; 4、熟悉BPSK调制载波包络的变化; 5、掌握BPSK载波恢复特点与位定时恢复的基本方法; 二、实验器材 1、主控&信号源、9号、13号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、BPSK调制解调(9号模块)实验原理框 PSK调制及解调实验原理框图 2、BPSK调制解调(9号模块)实验框图说明 基带信号的1电平和0电平信号分别与256KHz载波及256KHz反相载波相乘,叠加后得到BPSK调制输出;已调信号送入到13模块载波提取单元得到同步载波;已调信号与相干载波相乘后,经过低通滤波和门限判决后,解调输出原始基带信号。 四、实验步骤 实验项目一 BPSK调制信号观测(9号模块) 概述:BPSK调制实验中,信号是用相位相差180°的载波变换来表征被传递的信息。本项目通过对比观测基带信号波形与调制输出波形来验证BPSK调制原理。 1、关电,按表格所示进行连线。

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【BPSK/DBPSK数字调制解调】。将9号模块的S1拨为0000,调节信号源模块W3使256 KHz载波信号峰峰值为3V。 3、此时系统初始状态为:PN序列输出频率32KHz。 4、实验操作及波形观测。 (1)以9号模块“NRZ-I”为触发,观测“I”; (2)以9号模块“NRZ-Q”为触发,观测“Q”。 (3)以9号模块“基带信号”为触发,观测“调制输出”。 思考:分析以上观测的波形,分析与ASK有何关系? 实验项目二 BPSK解调观测(9号模块) 概述:本项目通过对比观测基带信号波形与解调输出波形,观察是否有延时现象,并且验证BPSK解调原理。观测解调中间观测点TP8,深入理解BPSK解调原理。 1、保持实验项目一中的连线。将9号模块的S1拨为“0000”。 2、以9号模块测13号模块的“SIN”,调节13号模块的W1使“SIN”的波形稳定,即恢复出载波。 3、以9号模块的“基带信号”为触发观测“BPSK解调输出”,多次单击13号模块的“复位”按键。观测“BPSK解调输出”的变化。 4、以信号源的CLK为触发,测9号模块LPF-BPSK,观测眼图。 思考:“BPSK解调输出”是否存在相位模糊的情况?为什么会有相位模糊的情况? 五、实验报告 1、分析实验电路的工作原理,简述其工作过程; 输入的基带信号由转换开关转接后分成两路,一路经过差分编码控制256KHz的载频,另一路经倒相去控制256KHz的载频。???解调采用锁相解调,只要在设计锁相环时,使它锁定在FSK的一个载频上此时对应的环路滤波器输出电压为零,而对另一载频失锁,则对应的环路滤波器输出电压不为零,那末在锁相环路滤波器输出端就可以获得原基带信号的信息。? 2、分析BPSK调制解调原理。 调制原理是:基带信号先经过差分编码得到相对码,再根据相对码进行绝对调相, 即将相对码的1电平和0电平信号分别与256K载波及256K反相载波相乘,叠加后得到DBPSK 调制输出。?

简易数字频率计设计

简易数字频率计设计报告 设计内容: 1、测量信号:方波、正弦波、三角波; 2、测量频率范围: 1Hz~9999Hz; 3、显示方式:4位十进制数显示; 4、时基电路由由555构成的多谐振荡器产生(当标准时间的精度要求较高时,应通过晶体振荡器分频获得); 5、当被测信号的频率超出测量范围时,报警。 设计报告书写格式: 1、选题介绍和设计系统实现的功能; 2、系统设计结构框图及原理; 3、采用芯片简介; 4、设计的完整电路以及仿真结果; 5、Protel绘制的电路原理图; 6、制作的PCB; 7、课程设计过程心得体会(负责了哪些内容、学到了什么、遇到的难题及解决方法等)。 电子课程设计过程: 系统设计→在Multisim2001下仿真→应用Protel 99SE绘制电路原理图→制作PCB →撰写设计报告

简易数字频率计课程设计报告 第一章技术指标 1.1整体功能要求 1.2系统结构要求 1.3电气指标 1.4扩展指标 1.5设计条件 第二章整体方案设计 2.1 算法设计 2.2 整体方框图及原理 第三章单元电路设计 3.1 时基电路设计 3.2闸门电路设计 3.3控制电路设计 3.4 小数点显示电路设计 3.5整体电路图 3.6整机原件清单 第四章测试与调整 4.1 时基电路的调测 4.2 显示电路的调测 4-3 计数电路的调测 4.4 控制电路的调测 4.5 整体指标测试 第五章设计小结 5.1 设计任务完成情况 5.2 问题及改进

5.3心得体会附录 参考文献

第一章技术指标 1.整体功能要求 频率计主要用于测量正弦波、矩形波、三角波和尖脉冲等周期信号的频率值。其扩展功能可以测量信号的周期和脉冲宽度。 2.系统结构要求 数字频率计的整体结构要求如图所示。图中被测信号为外部信号,送入测量电路进行处理、测量,档位转换用于选择测试的项目------频率、周期或脉宽,若测量频率则进一步选择档位。 数字频率计整体方案结构方框图 3.电气指标 3.1被测信号波形:正弦波、三角波和矩形波。 3.2 测量频率范围:分三档: 1Hz~999Hz 0.01kHz~9.99kHz 0.1kHz~99.9kHz 3.3 测量周期范围:1ms~1s。 3.4 测量脉宽范围:1ms~1s。 3.5测量精度:显示3位有效数字(要求分析1Hz、1kHz和999kHz的测量误 差)。 3.6当被测信号的频率超出测量范围时,报警. 4.扩展指标 要求测量频率值时,1Hz~99.9kHz的精度均为+1。

基于51单片机的数字频率计_毕业设计

毕业论文声明 本人郑重声明: 1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。本人完全意识到本声明的法律结果由本人承担。 2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。 3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。 4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。 学位论文作者(签名): 年月

关于毕业论文使用授权的声明 本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。本人完全了解大学有关保存,使用毕业论文的规定。同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容:按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据 库和收录到《中国学位论文全文数据库》进行信息服务。在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。 论文作者签名:日期: 指导教师签名:日期:

电子技术课程设计(数字频率计的设计)

一课程设计题目:数字频率计的设计 二、功能要求 (1)主要用于测量正弦波、矩形波、三角波和尖脉冲等周期信号的频率值。 (2)率范围:分四1Hz~999Hz、01kHz~9.99kHz、1kHz~99.9kHz、10~999KHZ (3)周期范围:1ms~1s。 (4)用3个发光二极管表示单位,分别对应3个高档位。 三频率计设计原理框图 正弦波 数字频率计原理框图 1

测试电路原理:在测试电路中设置一个闸门产生电路,用于产生脉冲宽度为1s 的闸门信号。改闸门信号控制闸门电路的导通与开断。让被测信号送入闸门电路,当1s闸门脉冲到来时闸门导通,被测信号通过闸门并到达后面的计数电路(计数电路用以计算被测输入信号的周期数),当1s闸门结束时,闸门再次关闭,此时计数器记录的周期个数为1s内被测信号的周期个数,即为被测信号的频率。测量频率的误差与闸门信号的精度直接相关。 被测信号 频率测量算法对应的方框图 四、各部分电路及仿真 1 整形电路部分 整形电路的目的是将三角波、正弦波变成方便计数的脉冲信号。整形电路可以直接用555定时器构成施密特触发。 本次设计采用555定时器,适当连接若干个电阻就可以构成触发器 图1-1 整形电路 将555定时器的THR和TR1两个输入端连在一起作为信号输入端,则可得到 显示电路 闸门产生 输入电路闸门计数电路

施密特触发器,为了提高其稳定性通常要在要在CON端口接入一个0.01uf左右的滤波电容。但使用555定时器的时候输入的电压应该要大于5V,本次设计直接用信号源来做输入信号,并且信号源的振幅为10V,没有用放大电路将信号放大。 2 时基电路 时基电路时用来控制闸门信号选通的时间,由于本次设计的频率计测试范围是0到999KHz,故时基信号要有1ms 10ms 100ms 1s,基于上述,还需要一个分频器分出不同的频率。设计过程如下:可用一个多谐振电路产生频率为1KHz的脉冲信号(即T=1ms),然后使用分频器产生10ms 100ms 1s。 多谐振电路可以采用555定时器或者晶体振荡器来完成。本次设计采用555定时器实现,本次设计的精确度要求比较低,而且555定时器组成的多谐振荡起的最高振荡频率只能最多1MHz,而我们将用555定时器产生1Kz的频率,满足在该范围之内。分频器采用10分频,可用74LS90或者74LS160。 图2-1555定时器构成的多谐振振荡器 555多谐振振荡器设计参数:设计一个震荡周期为1ms,输出的占空比 2 3 q

DBPSK调制解调实验

班级:2016112 学号:20161223 姓名:谢峻漪 实验三DBPSK调制/解调实验 一、实验目的 1、了解BPSK差分解调的基本工作原理; 2、掌握DBPSK数据传输过程; 二、预备知识 1、差分BPSK的解调基本工作原理; 2、软件无线电的基本概念; 三、实验仪器 1、J H5001-4实验箱一台; 2、20MHz示波器一台; 四、实验原理 差分BPSK是相移键控的非相干形式,它不需要在接收机端恢复相干参考信号。非相干接收机容易制造而且便宜,因此在无线通信系统中被广泛使用。在DBPSK系统中,输入的二进制序列先差分编码,然后再用BPSK调制器调制。差分编码后的序列﹛a n﹜是通过对输入b n与a n-1进行模2和运算产生的。如果输入的二进制符号b n为0,则符号a n与其前一个符号保持不变,而如果b n为1,则a n与其前一个符号相反。 差分编码原理为: n ) a⊕ - = n a b ( ( )1 (n ) 其实现框图如图4.3-1所示: 图4.3-1 差分编码示意图 一个典型的差分编码调制过程如4.3-2图所示:

图4.3-2 差分编码与载波相位示意图 在DBPSK 中,其不需要进行载波恢复,但位定时仍是必须的。在DPSK 中如何恢复位定时信号,初看起来比较复杂。我们仍按以前的信号定义,如图4.3-3所示: 图4.3-3 位定时误差信号提取 实际上其与相干BPSK 中的位定时恢复是一样的,由由其存在一个较小的系统剩余频差(发送中频与接收本地载波的频差,其与码元速率相比而言一般较小),结果是在每个剩余频差的周期中,具有很多有码元信号(例如对于64KBPS 的速、剩余频差为1KHZ ,则每个剩频差的周期中可包含64个码元符号)。从这些码元信号中可以根据下面的公式对位定时误差的大小进行计算: )]2()2()[()(+--=n S n S n S n e b 当然在剩余载波发生正负变化时,按上式提取的位定时误差信号可能出现不正确的情况,但只要在位定时误差信号的输出端加一滤波器,就可以克服在DBPSK 中剩余载波的影响(在相对剩余载波不大时)。 对位定时的调整如下:如果0)(>n e b ,则位定时抽样脉冲向前调整;反之应向后调整。 对DBPSK 的解调是通过比较接收相邻码元信号(I ,Q )在星座图上的夹角,如果大于900 则为1,否则为0,如图4.3-4所示:

数电课程设计报告-数字频率计

数电课程设计报告:频率计 目录 一、设计指标 二、系统概述 1.设计思想 2.可行性论证 3.工作过程 三、单元电路设计及分析 1.器件选择 2.设计及工作原理分析 四、电路的组构及调试 1.遇到的问题 2.现象记录及原因分析 3.解决及结果 4.功能的测试方法、步骤、设备、记录的数据 五、总结 1.体会 2.电路总图 六、参考文献 一、设计指标 设计指标:要求设计一个测量TTL方波信号频率的数字系统。测试值采用4个LED七段数码管显示,并以发光二极管只是测量对象(频率)的单位:Hz、kHz。

频率的测量范围有四档量程。 1)测量结果显示四位有效数字,测量精度为万分之一。 2)频率测量范围:100.1Hz——999.9kHz,分为: 第一档: 100.0Hz——999.9Hz 第二档: 1.000kHz——9.999kHz 第三档: 10.00kHz——99.99kHz 第四档: 100.0kHz——999.9kHz 3)量程切换可以采用两个按键SWB、SWA手动切换。 扩展要求: 一、当被测频率大于999.9kHz,超出最大值时,设置亮一个警灯,并同时发出报警声音。 二、自动切换量程 提示: 1.计数器计到9999时,产生溢出信号CO,启动量程加档。 2.显示不足4位有效数字时量程减档。 三、各量程输出信号的频率最高位有效数字为1、2、3、4、5、6、7、8、9。 二、系统概述 1.设计思想 周期性信号频率可通过记录信号在1s内的周期数来确定其频率。

累计标准时间Ts中被测信号的脉冲个数Nx,被测信号频率:fx≈Nx/Ts 测量时间Ts选择:由于测量时间Ts需要根据被测信号的频率切换,所以通常对振荡时钟进行分频以获得不同的定时时间。 采样定时、显示锁存、计数器清零的控制时序波形图 2.可行性论证 用计数器实现记录周期数的功能;用时基信号产生计数时间作为采样时间;用四位动态扫描通过数码管显示结果;因为如果计数器直接把数据输入到数码管显示,那么数码管的数据就会不断变化,累计增加的情况,所以采用锁存器,在每个时间信号内,通过一个高电平使能有效,将计数器的数值锁存到寄存器或者锁存器;为了不要让每次锁存的数据会比上次

南京邮电大学课程设计报告-简易数字频率计

目录 第一章技术指标 整体功能要求 系统结构要求 电气指标 扩展指标 设计条件 第二章整体方案设计 算法设计 整体方框图及原理 第三章单元电路设计 时基电路设计 闸门电路设计 控制电路设计 小数点显示电路设计 整体电路图 整机原件清单 第四章测试与调整 时基电路的调测 显示电路的调测 4-3 计数电路的调测 控制电路的调测 整体指标测试 第五章设计小结 设计任务完成情况 问题及改进 心得体会 第一章技术指标

1.整体功能要求 频率计主要用于测量正弦波、矩形波、三角波和尖脉冲等周期信号的频率值。其扩展功能可以测量信号的周期和脉冲宽度。 2.系统结构要求 数字频率计的整体结构要求如图所示。图中被测信号为外部信号,送入测量电路进行处理、测量,档位转换用于选择测试的项目------频率、周期或脉宽,若测量频率则进一步选择档位。 3.电气指标 被测信号波形:正弦波、三角波和矩形波。 测量频率范围:分三档: 1Hz~999Hz ~ ~ 测量周期范围:1ms~1s。 测量脉宽范围:1ms~1s。 3.5测量精度:显示3位有效数字(要求分析1Hz、1kHz和999kHz的测量误 差)。 当被测信号的频率超出测量范围时,报警. 4.扩展指标 要求测量频率值时,1Hz~的精度均为+1。 5.设计条件 电源条件:+5V。 可供选择的元器件范围如下表

门电路、阻容件、发光二极管和转换开关等原件自定。 第二章 整体方案设计 算法设计 频率是周期信号每秒钟内所含的周期数值。可根据这一定义采用如图2-1所示的算法。图2-2是根据算法构建的方框图。 被测信号

电路用以计算被测输入信号的周期数),当1s闸门结束时,闸门再次关闭,此时计数器记录的周期个数为1s内被测信号的周期个数,即为被测信号的频率。测量频率的误差与闸门信号的精度直接相关,因此,为保证在1s内被测信号的周期量误差在10 3量级,则要求闸门信号的精度为10 量级。例如,当被测信号为1kHz时,在1s的闸门脉冲期间计数器将计数1000次,由于闸门脉冲精度为10 ,闸门信号的误差不大于,固由此造成的计数误差不会超过1,符合5*10 3的误差要求。进一步分析可知,当被测信号频率增高时,在闸门脉冲精度不变的情况下,计数器误差的绝对值会增大,但是相对误差仍在5*10 3范围内。 整体方框图及原理 输入电路:由于输入的信号可以是正弦波,三角波。而后面的闸门或计数电路要求被测信号为矩形波,所以需要设计一个整形电路则在测量的时候,首先通过整形电路将正弦波或者三角波转化成矩形波。在整形之前由于不清楚被测信号的强弱的情况。所以在通过整形之前通过放大衰减处理。当输入信号电压幅度较大时,通过输入衰减电路将电压幅度降低。当输入信号电压幅度较小时,前级输入衰减为零时若不能驱动后面的整形电路,则调节输入放大的增益,时被测信号得以放大。 频率测量:测量频率的原理框图如图2-3.测量频率共有3个档位。被测信号经整形后变为脉冲信号(矩形波或者方波),送入闸门电路,等待时基信号的到来。时基信号由RC振荡电路构成一个较稳定的多谐振荡器,经4093整形分频后,产生一个标准的时基信号,作为闸门开通的基准时间。被测信号通过闸门,作为计数器的时钟信号,计数器即开始记录时钟的个数,这样就达到了测量频率的目的。 周期测量:测量周期的原理框图2-4.测量周期的方法与测量频率的方法相反,即将被测信号经整形、二分频电路后转变为方波信号。方波信号中的脉冲宽度恰好为被测信号的1个周期。将方波的脉宽作为闸门导通的时间,在闸门导通的时间里,计数器记录标准时基信号通过闸门的重复周期个数。计数器累计的结果可以换算出被测信号的周期。用时间Tx来表示:Tx=NTs 式中:Tx为被测信号的周期;N为计数器脉冲计数值;Ts为时基信号周期。

通信原理实验 QPSK调制解调实验

HUNAN UNIVERSITY 课程实验报告 题目:十QPSK调制解调实验 指导教师: 学生姓名: 学生学号: 专业班级:

实验10 QPSK调制解调实验 一、实验目的 1. 掌握QPSK调制解调的工作原理及性能要求;了解IQ调制解调原理及特性 2. 进行QPSK调制、解调实验,掌握电路调整测试方法了解载波在QPSK相干及非相干时的解调特性 二、实验原理 1、QPSK调制原理 QPSK又叫四相绝对相移调制,它是一种正交相移键控。QPSK利用载波的四种不同相位来表征数字信息。由于每一种载波相位代表两个比特信息,因此,对于输入的二进制数字序列应该先进行分组,将每两个比特编为一组,然后用四种不同的载波相位来表征。 用调相法产生QPSK调制原理框图如图所示,QPSK的调制器可以看作是由两个BPSK调 制器构成,输入的串行二进制信息序列经过串行变换,变成两路速率减半的序列,电平发生器分别产生双极性的二电平信号I(t)和Q(t),然后对Acosωt和Asinωt进行调制,相 加后即可得到QPSK信号。 二进制码经串并变换后的码型如图所示,一路为单数码元,另外一路为偶数码元,这两个支路互为正交,一个称为同相支路,即I支路;另外一路称为正交支路,即Q支路

2、QPSK解调原理 由于QPSK可以看作是两个正交2PSK信号的合成,故它可以采用与2PSK信号类似的解调方法进行解调,即由两个2PSK信号相干解调器构成,其原理框图如图 三、实验步骤 在实验箱上正确安装基带成形模块(以下简称基带模块)、IQ调制解调模块(以下简称IQ模块)、码元再生模块(以下简称再生模块)和PSK载波恢复模块。 1、QPSK调制实验 a、关闭实验箱总电源,用台阶插座线完成连接 * 检查连线是否正确,检查无误后打开电源。 b、按基带成形模块上“选择”键,选择QPSK模式(QPSK指示灯亮)。 c、用示波器观察基带模块上“NRZ-I,I-OUT,NRZ-Q,Q-OUT”的信号;并分别与“NRZ IN”信号进行对比,观察串并转换情况。 NRZ-I 与NRZ IN I-OUT与NRZ IN NRZ-Q 与NRZ IN Q-OUT与NRZ IN d、观测IQ调制信号矢量图。

数字频率计_课程设计报告

电气与信息工程学院 数字频率计 设计报告书 前言 摘要:在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的 测量就显得更为重要。测量频率的方法有多种,其中数字计 数器测量频率具有精度高、使用方便、测量迅速,以及便于 实现测量过程自动化等优点,是频率测量的重要手段之一。 其原理为通过测量一定闸门时间内信号的脉冲个数。本文阐 述了设计了一个简单的数字频率计的过程。 关键词:频率计,闸门,逻辑控制,计数-锁存

目录 第一章设计目的 第二章设计任务和设计要求 2.1 设计任务及基本要求 2.2.系统结构要求 第三章系统概述 3.1概述 3.2设计原理及方案 第四章单元电路设计及分析 4.1 时基电路 4.2逻辑控制电路 4.3计数电路 4.4锁存电路 4.5显示译码电路 4.6 闸门电路 第五章安装与调试过程 5.1 电路的安装过程 5.2 电路的调试过程 5.3 出现的问题及解决办法 第六章结果分析 第七章收获与体会

第八章元件清单 第九章实现结果实物图 附录A 参考文献 第一章 设计目的: 1.了解数字频率计测量频率与测量周期的基本原理; 2.熟练掌握数字频率计的设计与调试方法及减小测量误 差的方法。 3.本设计与制作项目可以进一步加深我们对数字电路应 用技术方面的了解与认识,进一步熟悉数字电路系统设计、制作与调试的方法和步骤。 4.针对电子线路课程要求,对我们进行实用型电子线路设 计、安装、调试等各环节的综合性训练,培养我们运用课程中所学的理论与实践紧密结合,独立地解决实际问题的能力。

第二章 设计任务及要求: 2.1设计任务及基本要求: 设计一简易数字频率计,其基本要求是: 1)测量频率范围0~9999Hz; 2)最大读数9999HZ,闸门信号的采样时间为1s;. 3)被测信号可以是正弦波、三角波和方波; 4)显示方式为4位十进制数显示; 5)完成全部设计后,可使用EWB进行仿真,检测试验设计电路的正确性。 2.2.系统结构要求 数字频率计的整体结构要求如图所示。图中被测信号为外部信号,送入测量电路进行处理、测量。 波形 整 形 计 数 器 数 码 显 示 振荡 电 路分 频 器 控 制 门 数 据 锁 存 器 显 示 译 码 器 被测 信 号

电子课程设计——数字频率计

2020/9/14 电子课程设计 ——数字频率计

目录 一 . 设计任务与要求 (2) 二 . 总体框图 (2) 2 . 1 题目分析及总体方案确定 (2) 三 . 选择器件 (4) 3 . 1 元件清单列表 (4) 3 . 2各元器件符号及逻辑功能 (5) 四 . 功能模块 (11) 4 . 1 整形电路 (11) 4 . 2 时基电路 (11) 4 . 3 逻辑控制电路 (12) 4 . 4 计数器、锁存器 (13) 4 . 5 译码显示电路 (15) 五 . 总体设计电路图 (15)

一 . 设计任务与要求 数字频率计是用来测量正弦信号、矩形信号、三角波等波形工作频率的仪器,其测量结果用十进制数字显示。具体要求如下: 1.测量频率范围:1Hz~10KHz; 2.数字显示位数:4位数字显示; 3.测量时间:t≤1.5s; 4.被测信号:方波、三角波、正弦波。 二 . 总体框图 2 . 1 题目分析及总体方案确定 频率的测量总的来说有三种方法:直接测量法、直接与间接测量相结合的方法和多周期同步测量法。直接测量法最简单,但测量误差最大;后两种方法测量精度高,但电路复杂。由于该题目没有对测量误差提出特别要求,为简单起见,采用直接测量法。 数字频率计就是直接用十进制的数字来显示被测信号频率。可以测的方波的频率,通过放大整形处理,它可还以测量正弦波、三角波和尖脉冲信号的频率。所谓频率就是在单位时间(1s)内周期信号的脉冲个数。若在一定时间间隔T内测得周期信号的脉冲个数N,则其频率为f=N Hz。 据此可得数字频率计的组成框图如图1—1(a)所示:

1-1(a) 图中的逻辑控制电路有两个作用:一是产生锁存脉冲,使显示器上的数字稳定;二是产生清零脉冲,使计数器每次测量从零开始计数。各信号之间的时序关系如图1-1(b)所示,图中信号由上而下依次是由放大整形电路得到的脉冲信号、时间基准信号、闸门电路输出、锁存脉冲和清零脉冲。

数字频率计课程设计报告

《数字频率计》技术报告 一、问题的提出 在传统的电子测量仪器中,示波器在进行频率测量时测量精度较低,误差较大。频谱仪可以准确的测量频率并显示被测信号的频谱,但测量速度较慢,无法实时快速地跟踪捕捉到被测信号频率的变化。而频率计则能够快速准确的捕捉到被测信号频率的变化。 在传统的生产制造企业中,频率计被广泛的应用在生产测试中。频率计能够快速的捕捉到晶体振荡器输出频率的变化,用户通过使用频率计能够迅速的发现有故障的晶振产品,确保产品质量。在计量实验室中,频率计被用来对各种电子测量设备的本地振荡器进行校准。在无线通讯测试中,频率计既可以被用来对无线通讯基站的主时钟进行校准,还可以被用来对无线电台的跳频信号和频率调制信号进行分析。 数字频率计是一种用数字显示的频率测量仪表,它不仅可以测量正弦信号、方波信号和尖脉冲信号的频率,而且还能对其他多种物理量的变化频率进行测量,诸如机械振动次数,物体转动速度,明暗变化的闪光次数,单位时间里经过传送带的产品数量等等,这些物理量的变化情况可以由有关传感器先转变成周期变化的信号,然后用数字频率计测量单位时间内变化次数,再用数码显示出来。 二、解决技术问题及指标要求 1、技术指标

被测信号:正弦波、方波或其他连续信号; 采样时间:1秒(0.1秒、10秒); 显示时间:1秒(2秒、3秒......); LED显示; 灵敏度:100mV; 测量误差:±1H z。 数字频率计是一种专门对被测信号频率进行测量的电子测量仪器。其最基本的工作原理为:当被测信号在特定时间段T内的周期个数为N时,则被测信号的频率f=N/T。一般T=1s,所以应要求定时器尽量输出为1s的稳定脉冲。 2、设计要求 可靠性:系统准确可靠。 稳定性:灵敏度不受环境影响。 经济性:成本低。 重复性:尽量减少电路的调试点。 低功耗:功率小,持续时间长。 三、方案可行性分析(方案结构框图) 1、原理框图

基于51单片机的数字频率计毕业论文

基于51单片机的数字频率计 目录 第1节引言 (2) 1.1数字频率计概述 (2) 1.2频率测量仪的设计思路与频率的计算 (2) 1.3基本设计原理 (3) 第2节数字频率计(低频)的硬件结构设计 (4) 2.1系统硬件的构成 (4) 2.2系统工作原理图 (4) 2.3AT89C51单片机及其引脚说明 (5) 2.4信号调理及放大整形模块 (7) 2.5时基信号产生电路 (7) 2.6显示模块 (8) 第3节软件设计 (12) 3.1 定时计数 (12) 3.2 量程转换 (12) 3.3 BCD转换 (12) 3.4 LCD显示 (12) 第4节结束语 (13) 参考文献 (14) 附录汇编源程序代码 (15)

基于51单片机的数字频率计 第1节引言 本应用系统设计的目的是通过在“单片机原理及应用”课堂上学习的知识,以及查阅资料,培养一种自学的能力。并且引导一种创新的思维,把学到的知识应用到日常生活当中。在设计的过程中,不断的学习,思考和同学间的相互讨论,运用科学的分析问题的方法解决遇到的困难,掌握单片机系统一般的开发流程,学会对常见问题的处理方法,积累设计系统的经验,充分发挥教学与实践的结合。全能提高个人系统开发的综合能力,开拓了思维,为今后能在相应工作岗位上的工作打下了坚实的基础。 1.1数字频率计概述 数字频率计是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。它是一种用十进制数字显示被测信号频率的数字测量仪器。它的基本功能是测量正弦信号,方波信号及其他各种单位时间变化的物理量。在进行模拟、数字电路的设计、安装、调试过程中,由于其使用十进制数显示,测量迅速,精确度高,显示直观,经常要用到频率计。 本数字频率计将采用定时、计数的方法测量频率,采用一个1602A LCD显示器动态显示6位数。测量围从1Hz—10kHz的正弦波、方波、三角波,时基宽度为1us,10us,100us,1ms。用单片机实现自动测量功能。 基本设计原理是直接用十进制数字显示被测信号频率的一种测量装置。它以测量周期的方法对正弦波、方波、三角波的频率进行自动的测量。 1.2频率测量仪的设计思路与频率的计算 频率测量仪的设计思路主要是:对信号分频,测量一个或几个被测量信号周期中已知标准频率信号的周期个数,进而测量出该信号频率的大小,其原理如右图1所示。 1 图可知: T=NT o 为标准信号的周期,所以T为分频后信号的周期,则可以算出被测量信(注:T o

数字频率计课程设计

课程设计任务书 学生姓名:覃朝光 ___________ 专业班级:通信1103 __________ 指导教师: ___________ 工作单位:信息工程学院 题目:数字频率计的设计与实现 初始条件: 本设il?既可以使用集成脉冲发生器、计数器、译码器、单稳态触发器、锁存器、放大器、整形 电路和必要的门电路等,也可以使用单片机系统构建简易频率计。用数码管显示频率汁数值。 要求完成的主要任务:(包括课程设讣工作量及技术要求,以及说明书撰写等具体要求)仁课程设计工作量:1周。 2、技术要求: 1)设计一个频率讣。要求用4位7段数码管显示待测频率,格式为0000Hz. 2)测量频率范围:10~9999HZo 3)测量信号类型:正弦波、方波和三角波。 4)测量信号幅值:0.5~5V° 5)设计的脉冲信号发生器,以此产生闸门信号,闸门信号宽度为1s。 6)确定设计方案,按功能模块的划分选择元、器件和中小规模集成电路,设讼分电路,画出总体电路原理图,阐述基本原理。 3、查阅至少5篇参考文献。按《武汉理工大学课程设计工作规范》要求撰写设计报告书。全 文用A4纸打印,图纸应符合绘图规范。 时间安排: 仁2013年5月17日,布宜课设具体实施计划与课程设计报告格式的要求说明。 2、2013年6月18日至2013年6月22日,方案选择和电路设计。 3、2013 年6月22日至2013 年7月1日,电路调试和设计说明书撰写。 4、2013年7月5日,上交课程设计成果及报告,同时进行答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日 word

武汉理匸大学$数字电子电路》课程设讣说明书 目录 摘要 (3) 1电路的设计思路与原理 (4) 1.1电路设计方案的选择 (4) 1.1.1方案一:利用单片机制作频率计 (4) 1.1.2方案二:利用锁存器与计数器制作频率计 (4) 1.1.3方案三:利用定时电路与计数器制作频率计 (5) 1.1.4方案确定 (6) 1.2原理及技术指标 (6) 1.3单元电路设计及参数计算 (8) 1.3.1时基电路 (8) 1.3.2放大整形电路 (9) 1.3.3逻辑控制电路 (9) 1.3.4计数器 (11) 1.3.5锁存器 (12) 1.3.6译码电路 (13) 2仿真结果及分析 (13) 2.1仿其总图 (13) 2.2单个元电路仿真图 (14) 2.3测试结果 (16) 3测试的数据和理论计算的比较分析 (16) 4制作与调试中出现的故障、原因及排除方法 (16) 4.1故障a (17) 4.2故障b (17) 4.3故障c (17) 4.4故障d (17) 4.5故障e (18) 5心得体会 (18) 2

FSK调制解调实验

实验报告册课程:通信系统原理教程 实验:FSK调制解调实验 班级: 姓名: 学号: 指导老师: 日期:

实验四:FSK 调制解调实验 一、实验目的: 1、了解对FSK 信号调制解调原理; 2、根据其原理设计出2FSK 信号的调制解调电路,在对电路进行仿真,观察 其波形,从而检验设计出的调制解调器是否符合要求。 二、实验原理: 2FSK 信号调制: 又称数字调频,它是用两种不同的载频1ω ,2ω来代表脉冲调制信号1 和0,而载波的振幅和相位不变。如果载波信号采用正弦型波,则FSK 信号可表示为: 2FSK 信号()t S 分解为信号()t S 1与()t S 2之和,则有:()()()t S t S t S 21+= 其中:()()()t U t S m 11cos ω=,代表数字码元“1” ()()()t U t S m 22cos ω=,代表数字码元“0” 2FSK 信号调制器模型如下图: 如上图,两个独立的振荡器产生不同频率的载波信号,当输入基带信号()1=t S 时,调制器输出频率为f1的载波信号,当()0=t S 时,反相器的输出()t S 调制器输出频率为f2的载波信号。f1和f2都取码元速率的整数倍。 2FSK 信号的带宽为:B f f B FSK 221+-= 其中:f 1为对应脉冲调制信号1的载波频率;f 2为对应脉冲调制信号0的载波频率。 2FSK 信号解调: 是调试的相反过程。由于移频键控调制是将脉冲调制信号“1”用FSK 信号()t S 1,而“0”用()t S 2表示,那么在接收端,可从FSK 信号中恢复出其基带信号。本设计采用了普通鉴频法进行解调,将()t S 1恢复成码元1,把()t S 2恢复成码元0 。 2FSK 信号的解调可以采用相干解调,也可以采用包络解调。 实验中采用相干解调,解调器模型如下图: ) 2 2cos(2)(2t f b T t πφ= 号 号调制器

简易数字频率计课程设计

简易数字频率计课程设计 Prepared on 22 November 2020

简易频率计设计 摘要 在数字电路中,数字频率计属于时序电路,它主要由具有记忆功能的触发器构成。在计算机及各种数字仪表中,都得到了广泛的应用。在CMOS电路系列产品中,数字频率计是用量最大、品种很多的产品,是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器,并且与许多电参量的测量方案、测量结果都有十分密切的关系,在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。测量频率的方法有多种,其中电子计数器测量频率具有精度高、使用方便、测量迅速,以及便于实现测量过程自动化等优点,是频率测量的重要手段之一。常用的频率测量方法有测频法、测周法、测周期/频率法、F/V与A/D法。本文阐述了用测频法构成的数字频率计 关键字:时序控制频率,数字频率计,555电路 目录

1绪论 课题描述 频率是周期信号每秒钟内所含的周期数值。输入电路:由于输入的信号可以是正弦波,方波。而后面的闸门或计数电路要求被测信号为矩形波,所以需要设计一个整形电路则在测量的时候,首先通过整形电路将正弦波或者三角波转化成矩形波。在整形之前由于不清楚被测信号的强弱的情况。所以在通过整形之前通过放大衰减处理。当输入信号电压幅度较大时,通过输入衰减电路将电压幅度降低。当输入信号电压幅度较小时,前级输入衰减为零时若不能驱动后面的整形电路,则调节输入放大的增益,时被测信号得以放大。通过时基电路及控制电路锁存器将最终频率稳定的显示在数码管上[1]。 设计任务与要求 1.频率测量范围:10~9999Hz; 2.输入电压幅度>300mV; 3.输入信号波形:任意周期信号; 4.显示位数:4 位; 5.电源: 220V 、 50Hz; 6.对所设计电路进行仿真分析。 7.编写设计报告,写出设计与制作的全过程,附上有关资料和图纸,有心得体会。 基本工作原理及框图 建议频率计电路框图如图1所示。

数字频率计(51单片机)

自动化与电子工程学院单片机课程设计 报告 课程名称:单片机原理与应用 学院:自动化与电子工程院 专业班级: 学生姓名: 完成时间: 报告成绩:

目录 第1章数字频率计概述 (2) 1.1数字频率计概述 (1) 1.2数字频率计的基本原理 (1) 1.3单脉冲测量原理 (2) 第2章课程设计方案设计 (2) 2.1系统方案的总体论述 (2) 2.2系统硬件的总体设计 (3) 2.3处理方法 (3) 第3章硬件设计 (4) 3.1单片机最小系统 (4) 第4章软件设计 (5) 4.1系统的软件流程图 (5) 4.2程序清单 (7) 第5章课程设计总结 (7) 参考文献 (8) 附录Ⅰ仿真截图 (9) 附录Ⅱ程序清单 (15)

第1章数字频率计概述 1.1数字频率计概述 数字频率计又称为数字频率计数器,是一种专门对被测信号频率进行测量的电子测量仪器,是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器。它是一种用十进制数字显示被测信号频率的数字测量仪器。它的基本功能是测量方波信号及其他各种单位时间内变化的物理量。 本数字频率计将采用定时、计数的方法测量频率,采用6个数码管显示6位十进制数。测量范围从10Hz—5.5kHz,精度为1%,用单片机实现自动测量功能。 基本设计原理是直接用十进制数字显示被测信号频率的一种测量装置。它以测量频率的方法对方波的频率进行自动的测量。 1.2数字频率计的基本原理 数字频率计最基本的工作原理为:当被测信号在特定时间段T内的周期个数为N时,则被测信号的频率f=N/T(如图1.1所示)。 图1.1 频率测量原理 频率的测量实际上就是在1s时间内对信号进行计数,计数值就是信号频率。用单片机设计频率计通常采用的办法是使用单片机自带的计数器对输入脉冲进行计数;好处是设计出的频率计系统结构和程序编写简单,成本低廉,不需要外部计数器,直接利用所给的单片机最小系统就可以实现。缺陷是受限于单片机计数的晶振频率,输入的时钟频率通常是单片机晶振频率的几分之一甚至是几十分之一,在本次设计使用的AT89C51单片机,由于检测一个由“1”到“0”的跳变需要两个机器周期,前一个机器周期测出“1”,后一个周期测出“0”。故输入时钟信号的最高频率不得超过单片机晶振频率的二十四分之一。根

单片机课程设计报告——智能数字频率计

单片机原理课程设计报告题目:智能数字频率计设计 专业:信息工程 班级:信息111 学号:*** 姓名:*** 指导教师:*** 北京工商大学计算机与信息工程学院

1、设计目的 (1)了解和掌握一个完整的电子线路设计方法和概念; (2)通过电子线路设计、仿真、安装和调试,了解和掌握电子系统研发产品的一个基本流程。 (3)了解和掌握一些常见的单元电路设计方法和在电子系统中的应用: 包括放大器、滤波器、比较器、计数和显示电路等。 (4)通过编写设计文档与报告,进一步提高学生撰写科技文档的能力。 2、设计要求 (1)基本要求 设计指标: 1.频率测量:0~250KHz; 2.周期测量:4mS~10S; 3.闸门时间:0.1S,1S; 4.测量分辨率:5位/0.1S,6位/1S; 5.用图形液晶显示状态、单位等。 充分利用单片机软、硬件资源,在其控制和管理下,完成数据的采集、处理和显示等工作,实现频率、周期的等精度测量方案。在方案设计中,要充分估计各种误差的影响,以获得较高的测量精度。 (2)扩展要求 用语音装置来实现频率、周期报数。 (3)误差测试 调试无误后,可用数字示波器与其进行比对,记录测量结果,进行误差分析。 (4)实际完成的要求及效果 1.测量范围:0.1Hz~4MHz,周期、频率测量可调; 2.闸门时间:0.05s~10s可调; 3.测量分辨率:5位/0.01S,6位/0.1S; 4.用图形液晶显示状态、单位(Hz/KHz/MHz)等。 3、硬件电路设计 (1)总体设计思路

本次设计的智能数字频率计可测量矩形波、锯齿波、三角波、方波等信号的频率。系统共设计包括五大模块: 主芯片控制模块、整形模块、分频模块、档位选择模块、和显示模块。设计的总的思想是以AT89S52单片机为核心,将被测信号送到以LM324N为核心的过零比较器,被测信号转化为方波信号,然后方波经过由74LS161构成的分频模块进行分频,再由74LS153构成的四选一选择电路控制档位,各部分的控制信号以及频率的测量主要由单片机计数及控制,最终将测得的信号频率经LCD1602显示。 各模块作用如下: 1.主芯片控制模块: 单片机AT89S52 内部具有2个16位定时/计数器T0、T1,定时/计数器的工作可以由编程来实现定时、计数和产生计数溢出时中断要求的功能。利用单片机的计数器和定时器的功能对被测信号进行计数。以AT89S52 单片机为控制核心,来完成对各种被测信号的精确计数、显示以及对分频比的控制。利用其内部的定时/计数器完成待测信号周期/频率的测量。 2.整形模块:整形电路是将一些不是方波的待测信号转化成方波信号,便于测量。本设计使用运放器LM324连接成过零比较器作为整形电路。 3.分频模块: 考虑单片机利用晶振计数,使用11.0592MHz 时钟时,最大计数速率将近500 kHz,因此需要外部分频。分频电路用于扩展单片机频率测量范围,并实现单片机频率测量使用统一信号,可使单片机测频更易于实现,而且也降低了系统的测频误差。本设计使用的分频芯片是74LS161实现4分频及16分频。 4.档位选择模块:控制74LS161不分频、4分频或者 16分频,控制芯片是74LS153。 5.显示模块:编写相应的程序可以使单片机自动调节测量的量程,并把测出的频率数据送到显示电路显示,本设计选用LCD1602。 (2)测频基本设计原理 所谓“频率”,就是周期性信号在单位时间(1s)内变化 的次数。若在一定时间间隔T内测得这个周期性信号的重复变 化次数N,则其频率可表示为f=N/T(右图3-1所示)。其中脉 冲形成电路的作用是将被测信号变成脉冲信号,其重复频率等 。利用单片机的定时/计数T0、T1的定时、计数 于被测频率f x 功能产生周期为1s的时间脉冲信号,则门控电路的输出信号持图3-1

相关文档