文档库 最新最全的文档下载
当前位置:文档库 › 聚乳酸功能材料小论文

聚乳酸功能材料小论文

聚乳酸功能材料小论文
聚乳酸功能材料小论文

生物可降解塑料-聚乳酸

摘要:本文主要阐述了聚乳酸的合成,改性以及其应用

关键词:聚乳酸合成改性应用

一、前言

目前塑料制品被广泛应用在各个领域,它在给人们生产、生活带来极大方便的同时,“白色污染”也对生态系统造成了严重的威胁。而且,其原料主要来源于石油类不可再生资源,这势必将引起严重的能源和人类生存危机。聚乳酸(PLA)是一种具有优良的生物相容性和可生物降解性的合成高分子材料,这种线型热塑性生物可降解脂肪族聚酯是以玉米、小麦、木薯等一些植物中提取的淀粉为最初原料,经过酶分解得到葡萄糖再经过乳酸菌发酵后变成乳酸然后经过化学合成得到高纯度聚乳酸。聚乳酸制品废弃后在土壤或水中30天内会在微生物、水、酸和碱的作用下彻底分解成CO2和H2O,随后在太阳光合作用下又成为淀粉的起始原料不会对环境产生污染,因而是一种完全自然循环型的可生物降解材料。

由于聚乳酸树脂具有环境保护、循环经济、节约化石类资源、促进石化产业持续发展等多重效果,是近年来开发研究最活跃、发展最快的生物可降解材料,也是目前唯一一种在成本和性能上可与石油基塑料相竞争的植物基塑料。

二、聚乳酸合成

在聚乳酸生产中,生物技术主要体现在乳酸单体生产上,而由乳酸单体生产乳酸聚合物是常规的聚合物合成技术。生物法由植物性原料生产乳酸的关键问题是开发高效、低成本酶催化剂。

聚乳酸的合成主要有两种方法:1、乳酸直接缩聚法。在真空下乳酸脱水缩聚直接得到聚乳酸,该法简单,但得到的聚合物分子量较小,一般小于5000。直接缩聚法的主要特点是合成的聚乳酸不含催化剂,但反应条件相对苛刻,近几年来通过技术创新与改进,直接聚合法取得了一定的进展,但目前在工业上还少

有应用。

直接法(一步法)

2、二步法,也叫非溶剂法或丙交酯开环聚合法。乳酸先脱水环化生成环状二乳酸,再开环缩聚得到聚乳酸,该法可得到分子量较高的聚乳酸,是目前国内外应用较多的生产方法。二步法生产聚乳酸关键技术包括:催化剂和引发剂选择、丙交酯提纯等。

间接法(二步法)

三、聚乳酸改性

聚乳酸(PLA) 降解材料具有良好的物理性能和生物相容性,但同时存在着降解速度难以控制,强度和韧性不够以及致炎效应等缺点,为此人们对PLA 进行大量的改性研究。聚乳酸的改性方法有物理改性、化学改性。物理改性主要是通过共混、增塑及纤维复合等方法实现对聚合物的改性。化学改性包括共聚、交联、表面修饰等,主要是通过改变聚合物大分子或表面结构改善其脆性、疏水性及降解速率等。现在,人们关注最多的是共聚改性,其通过调节乳酸(LA) 和其他单体的比例改变聚合物的性能,或由第二单体给PLA 以特殊性能,特别是该单体为某功能分子时更加受到重视。下面介绍几种主要的改性方法:

3.1共混改性

共混改性是将两种或两种以上的聚合物进行混合,通过聚合物各组分性能

的复合来达到改性的目的。共混物除具有各组分固有的优良性能外,还由于组分间某种协同效应呈现新的效应。依据共混组分的生物降解性,可以将聚乳酸共混体系分为完全生物降解体系和部分生物降解体系两大类。

3.1.1 PLA 完全生物降解共混体系

完全生物降解共混体系的另一组分是完全生物降解的高分子。比如:1、PLA/PHB(聚3-羟基丁酸酯)共混体系:在PLA 同PHB 的共混体系中,PLA 的分子量决定了共混组分的相容性。2、PA/PCL(ε—己内酯)共混体系:将PLA 和PCL 共混,共混物存在两个明显的玻璃化转变温度,说明PLA/PCL 共混体系是不相容的。3、PLA/PEO(聚氧化乙烯)共混体系:使用各种分子量的PEO 同PLA 共混,用以改善PLA 的机械性能和加工性能。4、PLA/淀粉共混体系:将PLA 与淀粉共混,可以降低PLA 的价格,改善它的降解性。5、PLA/PPC(聚丙撑碳酸亚丙酯)共混体系:将PLA 与PPC 共混,改善了PLA 的韧性,也解决了增韧剂从制品中向外迁移的问题。

3.1.2 PLA 部分生物降解体系

PLA 的另一种共混体系是部分生物降解体系。比如PLA/PVPh(聚对乙烯基苯酚)共混体系。PLA/PVAc(聚醋酸乙烯酯)共混体系。PLA/PMMA(聚甲基丙烯酸甲酯)、PLA/PMA(聚丙烯酸甲酯)共混体系

3.2 增塑改性

增塑改性就是在高聚物中混溶一定量的高沸点、低挥发性的低分子量物质,从而改善其机械性能与加工性能。例如:把生物相容性增塑剂如柠檬酸酯醚、葡萄糖单醚、部分脂肪酸醚、低聚物聚乙二醇(PEG2400, PEG21500)、低聚物聚乳酸(OLA )、丙三醇添加入聚乳酸基体, 通过研究经增塑后的聚乳酸的玻璃化温度、结晶温度、熔点、结晶度、弹性模量、断裂延伸率的变化可知, 增塑剂的加入使聚乳酸大分子链的柔性提高, 玻璃化温度降低非常明显, 其弹性模量下降, 断裂伸长率提高, 即在一定程度上韧性增加。

3.3纤维复合改性

聚乳酸可以由干法纺丝或熔融纺丝制得聚乳酸纤维, 由聚乳酸树脂与聚乳酸纤维通过纤维集束模压成型可以得到聚乳酸自增强材料; 而且可以加工成板状、棒状、螺钉等各种形状。碳纤维具有很高的比强度、比模量, 生物相容性和

稳定性好, 同完全可吸收聚合物复合材料一样, 骨折愈合后也不必二次手术取出。因此采用碳纤维增强聚乳酸制备复合材料可以用作骨折内固定生物材料。磷酸盐玻璃纤维是一种能在体内完全吸收、活性很好的纤维, 用它可增强PLLA 的强度。在传统的磷酸钙玻璃中加入22% (质量) 的三氧化二铁制备的纤维增强PLLA 后的复合材料力学性能得到明显的改善。但纤维与基体之间界面结合力差, 强度和模量保持的时间较短。

3.4共聚改性

共聚改性是目前研究最多的用来提高聚乳酸柔性和弹性的方法,其主旨是在聚乳酸的主链中引入另一种分子链,使得PLLA大分子链的规整度和结晶度降低。目前聚乳酸的共聚改性主要可以分为以下几个方面: 1、丙交酯与乙交酯共聚聚乙交酯(PGA)是最简单的线型脂肪族聚酯,早在1970年,PGA缝合线就已以“Dexon”商品化,但PGA亲水性好,降解太快,目前用单体乳酸或交酯与羟基乙酸或乙交酯共聚得到无定型橡胶状韧性材料,其中通过调节LLAPG的比例可控制材料的降解速度,作为手术缝合线已得到临床应用,其中L2丙交酯与乙交酯GA 的共聚物已商品化。 2、聚乳酸与聚乙二醇(PEG的嵌段共聚物),聚乙二醇(PEG)是最简单的低聚醚大分子,具有优良的生物相容性和血液相容性、亲水性和柔软性。3、丙交酯与己内酯(CL)共聚合聚(ε2己内酯)(PCL)是一种具有良好的生物相容性和降解性的生物医用高分子,其降解速度比聚乳酸慢,因此制备LAPC嵌段共聚物来达到控制降解速度,LAPCL嵌段共聚物近年来由于优异的生物降解和生物相容性受到广泛的关注,主要用于生物医学领域。

四、聚乳酸应用

4.1在生物医学中的应用

聚乳酸是一种具有良好的生物相容性和可生物降解的聚合物,是美国食品药品管理局( FDA) 认可的一类生物降解材料,其最终降解产物是二氧化碳和水,中间产物乳酸也是体内正常糖代谢产物,所以不会在重要器官聚集。它具有对人体无毒、无刺激、可控制生物降解、生物相容性较好,且原料易得等优点,因此聚乳酸及其共聚物已经成为一种备受关注的新兴可生物降解的生物医用高分子材料。其在生物医学上的应用主要包括在缝合线、药物控释载体、骨科内固定材

料、组织工程支架等方面的应用。

例如控制释放就是将药物或其他生物活性物质和基材结合在一起使药物通过扩散等方式在一定时间内,以某一速来率释放到环境中。聚乳酸作为药物载体时,随着聚乳酸在体内的降解,其结构变得疏松,内含药物从中溶解,扩散的阻力减小,药物释放速度加快。当药物释放速度的加快刚好与含药量的减少所引起的释药速度变慢一致时,就实现了药物的长期衡量释放。利用PLA 的末端羟基可以进行功能化,如接载药物或靶向试剂等,通过PLA 的降解,可以将药物或靶向试剂进行有效释放。目前,聚乳酸及其共聚物已被应用到许多药物的控制释放中,主要包括生物活性分子( 如生长素,牛血清白蛋白) 、抗癌物( 如顺氯氨铂,阿霉素,博来霉素等) 、抗生素( 如氯霉素,青霉素等) 、麻醉剂、麻醉剂拮抗物、避孕药以及其他药物的释放。

4.2 在纺织领域的应用

PLA 在纺织领域的研究应用开发是最近10 年左右开始的。聚乳酸可用纺粘法或熔喷法直接制成非织造布,也可先纺制成短纤维,再经干法或湿法成网制得非织造布。聚乳酸非织造布用于农业、园艺方面,可用作种子培植、育秧、防霜及除草用布等;在医疗卫生方面,可用作手术衣、手术覆盖布、口罩等,也可用作尿布、妇女卫生巾的面料及其他生理卫生用品;在生活用品方面,可用作衣料、擦揩布、厨房用滤水、滤渣袋或其他包装材料。

由于聚乳酸纤维的物理力学性能、热稳定性、和热塑性好,较软,较轻、染色性好、有生物相容性,因此用途十分广泛。下表列出了其主要用途。聚乳酸纤维可制成复丝、单丝、短纤维、假捻变形丝、针织物和非织造布等,目前主要用于服装和产业领域。

以聚乳酸纤维制得的布料具有真丝的光泽、优良的手感,亮度、吸水性、形状保持性及抗皱性,因此是较理想的面料,适合做服装尤其是妇女服装。钟纺,由尼契卡等公司还已将聚乳酸纤维的用途扩大到产业领域,聚乳酸纤维在产业领域的主要用途是:在木工工程中作网、垫子、沙袋等;在种植业中作养护薄膜等,在农业、林业中作播种织物,薄膜防虫放兽害盖布、芳草袋等,在渔业中做渔网,鱼线等,在家用器具中做垃圾网、手巾、滤器等。

4.3 在包装领域的应用

PLA 在包装领域的用途主要可用做包装带、包装用膜、农用薄膜、泡沫塑料、餐具、园艺用膜、冷饮杯等。2002 年日本一学者开发了具有生物降解性和优良的机械性能以及柔韧性的包装带,该包装带材料由结晶性聚乳酸、增塑剂和无机填料组成,适用于自动包装机。

五、结语

近年来,国内外可生物降解塑料得到了很快的发展,成为可持续、循环经济发展的焦点。无论是从能源替代、二氧化碳减少,还是从环境保护方面都具有重要意义。与其它生物基或者生物降解塑料相比, PLA是其中最具代表性和最重要的一种塑料, PLA具有良好的可降解性、生物相容性,原料易得等优点,其领先地位可以由目前PLA在包装、纺织、医药卫生等领域的广泛应用,越来越多的PLA新型产品,逐渐增加的在建项目,日益扩大的工业生产规模和加工企业数量,以及与PLA 相关的专利及文章的发表来证明,在当今社会必然有着广阔的研究和应用前景。

六参考文献

1、陈佑宁,樊国栋,张知侠,党西妹聚乳酸的合成和改性研究进展科技导报2009,27(17)

2、张望玺,可降解聚合物的合成及改性研究进展,塑料工业,第34卷第七期

3、王剑峰,生物可降解材料聚乳酸的研究进展,化学工程与设备,2010年第七期

聚乳酸简介

单个的乳酸分子中有一个羟基和一个羧基,多个乳酸分子在一起,-OH与别的分子的-COOH脱水缩合,-COOH与别的分子的-OH脱水缩合,就这样,它们手拉手形成了聚合物,叫做聚乳酸. 聚乳酸也称为聚丙交酯,属于聚酯家族。聚乳酸是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生。聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的绿色高分子材料。 聚乳酸的热稳定性好,加工温度170~230℃,有好的抗溶剂性,可用多种方式进行加工,如挤压、纺丝、双轴拉伸,注射吹塑。由聚乳酸制成的产品除能生物降解外,生物相容性、光泽度、透明性、手感和耐热性好,还具有一定的耐菌性、阻燃性和抗紫外性,因此用途十分广泛,可用作包装材料、纤维和非织造物等,目前主要用于服装(内衣、外衣)、产业(建筑、农业、林业、造纸)和医疗卫生等领域。 聚乳酸的优点主要有以下几方面:(1)聚乳酸(PLA)是一种新型的生物降解材料,使用可再生的植物资源(如玉米)所提出的淀粉原料制成。淀粉原料经由发酵过程制成乳酸,再通过化学合成转换成聚乳酸。其具有良好的生物可降解性,使用后能被自然界中微生物完全降解,最终生成二氧化碳和水,不污染环境,这对保护环境非常有利,是公认的环境友好材料。关爱地球,你我有责。世界二氧化碳排放量据新闻报道在2030年全球温度将升至60℃,普通塑料的处理方法依然是焚烧火化,造成大量温室气体排入空气中,而聚乳酸塑料则是掩埋在土壤里降解,产生的二氧化碳直接进入土壤有机质或被植物吸收,不会排入空气中,不会造成温室效应。(2)机械性能及物理性能良好。聚乳酸适用于吹塑、热塑等各种加工方法,加工方便,应用十分广泛。可用于加工从工业到民用的各种塑料制品、包装食品、快餐饭盒、无纺布、工业及民用布。进而加工成农用织物、保健织物、抹布、卫生用品、室外防紫外线织物、帐篷布、地垫面等等,市场前景十分看好。(3)相容性与可降解性良好。聚乳酸在医药领域应用也非常广泛,如可生产一次性输液用具、免拆型手术缝合线等,低分子聚乳酸作药物缓释包装剂等。(4)聚乳酸(PLA)除了有生物可降解塑料的基本的特性外,还具备有自己独特的特性。传统生物可降解塑料的强度、透明度及对气候变化的抵抗能力皆不如一般的塑料。(5)聚乳酸(PLA)和石化合成塑料的基本物性类似,也就是说,它可以广泛地用来制造各种应用产品。聚乳酸也拥有良好的光泽性和透明度,和利用聚苯乙烯所制的薄膜相当,是其它生物可降解产品无法提供的。(6)聚乳酸(PLA)具有最良好的抗拉强度及延展度,聚乳酸也可以各种普通加工方式生产,例如:熔化挤出成型,射出成型,吹膜成型,发泡成型及真空成型,与目前广泛所使用的聚合物有类似的成形条件,此外它也具有与传统薄膜相同的印刷性能。如此,聚乳酸就可以应各不同业界的需求,制成各式各样的应用产品。(7)聚乳酸(PLA)薄膜具有良好的透气性、透氧性及透二氧二碳性,它也具有隔离气味的特性。病毒及霉菌易依附在生物可降解塑料的表面,故有安全及卫生的疑虑,然而,聚乳酸是唯一具有优良抑菌及抗霉特性的生物可降解塑料。(8)当焚化聚乳酸(PLA)时,其燃烧热值与焚化纸类相同,是焚化传统塑料(如聚乙烯)的一半,而且焚化聚乳酸绝对不会释放出氮化物、硫化物等有毒气体。人体也含有以单体形态存在的乳酸,这就表示了这种分解性产品具有的安全性。 二、方法和流程 聚乳酸生产是以乳酸为原料,传统的乳酸发酵大多用淀粉质原料,目前美、法、日等国、家已开发利用农副产品为原料发酵生产乳酸,进而生产聚乳酸。由乳酸制聚乳酸生产工艺有:[1]方法 (1)直接缩聚法在真空下使用溶剂使脱水缩聚。日本在这方面做了大量的研究,

信息材料概论论文

信息材料概论论文 B09070507 雷雨婷 信息材料按功能分,主要有以下几类:1.信息探测材料对电、磁、光、声、热辐射、压力变化或化学物质敏感的材料属于此类,可用来制成传感器,用于各种探测系统,如电磁敏感材料、光敏材料、压电材料等。这些材料有陶瓷、半导体和有机高分子化合物等多种。2.信息传输材料主要是光导纤维,简称光纤。它重量轻、占空间小、抗电磁干扰、通信保密性强,可以制成光缆以取代电缆,是一种很有发展前途的信息传输材料。3信息储材料包括:磁存储材料,主要是金属磁粉和钡铁氧体磁粉,用于计算机存;光存储材料,有磁光记录材料、相变光盘材料等,用于外存;铁电介质存储材料,用于动态随机存取存储器;半导体动态存储材料,目前以硅为主,用于内存。4.信息传输材料是指用于各种通信器件的一些能够用来传递信息的材料,如通信电缆材料、光纤通信材料、微波通信材料和GSM蜂窝移动通信材料等,利用这些材料构建的综合通信网络,已成为国家信息基础设施的支柱。 下面主要介绍一下电子信息材料。 电子信息材料是指在微电子、光电子技术和新型元器件基础产品领域中所用的材料,主要包括单晶硅为代表的半导体微电子材料;激光晶体为代表的光电子材料;介质陶瓷和热敏陶瓷为代表的电子陶瓷材料;钕铁硼(NdFeB)永磁材料为代表的磁性材料;光纤通信材料;磁存储和光盘存储为主的数据存储材料;压电晶体与薄膜材料;贮氢材料和锂离子嵌入材料为代表的绿色电池材料等。这些基础材料及其产品支撑着通信、计算机、信息家电与网络技术等现代信息产业的发展。 电子信息材料是有机电子材料不无机电子材料以及作为电子工业产品、半导体工业产品辅劣材料使用的化合物不化工材料的总称。电子材料作为一个独立品种,其历史尚不足30年。60年代以前,在电子材料隶属于化学试剂中的高纯试剂、

聚乳酸合成

聚乳酸合成方法研究进展 聚乳酸的合成主要有两条路线:一条是乳酸(1actic acid)直接聚合.另一条是由乳酸预聚生成低分子量物质,其解聚得丙交酯(1actide),丙交酯重结晶后开环聚合(ROP)得到聚乳酸。具体过程如下 图2-1 聚乳酸的两条合成路线 1、直接聚合法[JK] 乳酸同时具有-OH和-COOH,是可直接缩聚的,采用高效脱水剂和催化剂使乳酸或乳酸低聚物分子间脱水缩合成高分子质量聚乳酸: 式1.1 采用直接法合成的聚乳酸,原料乳酸来源充足,大大降低了成本,有利于聚乳酸材料的普及,但该法得到的聚乳酸相对分子质量较低,机械性能较差。 2、丙交酯开环聚合法[L] 开环聚合法是先将乳酸缩聚为低聚物,低聚物在高温、高真空等条件下发生分子内酯交换反应,解聚为乳酸的环状二聚体-丙交酯。丙交酯经过精制提纯后,由引发剂如辛酸亚锡、氧化锌等许多化合物催化开环得到高分子量的聚合物第一步是乳酸经脱水环化制得丙交酯。 式1.2 第二步是丙交酯经开环聚合制得聚丙交酯由于此方法可通过

式1.3 由于此方法可通过催化剂的种类和浓度使得聚乳酸分子量高达70万到100万【M】,机械强度高,适合作为医用材料。 乳酸直接聚合与乳酸先制成丙交酯后再开环聚合制备聚乳酸相比,工艺简单,成本低廉。但以往的研究表明采用乳酸直接聚合法难以获得具有实用价值的高分子量聚乳酸,但丙交酯开环聚合的高成本限制了聚乳酸的应用。随着化工技术的进步,研究者们对乳酸缩聚制各聚乳酸又重新重视起来。 常有的缩聚方法有:熔融缩聚、溶液缩聚、乳液缩聚和界面缩聚。本实验室采用了熔融缩聚和溶液缩聚制得分子量较高的聚乳酸。 实验部分 实验原料:乳酸(85-90%);二水和氯化亚锡(Sn2Cl2.2H2O);三氧化二锑(Sb2O3);甲醇;高纯氮;二丁基氧化锡(SnOEt2);月桂酸二丁基锡;醋酸锰(Mn(CH3COO)2);五氧化二磷(P2O5);苯;氯仿;甲苯;四氢呋喃 实验仪器:温度计;通气管;三口烧瓶;油浴锅;磁力搅拌器一套;分馏头;冷凝管;尾接管;圆底烧瓶;干燥瓶;真空抽滤机;分析天平; 图2-1 实验装置图

新材料概论金属材料及其合金的研究进展

新材料概论金属材料及其合金的研究进展

河南工程学院《新材料概论》考查课 专业论文 金属材料及其合金的研究进展 学生姓名: 学号:== 学院: 专业班级: 专业课程: 任课教师:

日 金属材料及其合金的研究进展 ) 摘要:金属是人们日常生活生产中最不可或缺的材料,更是人类社会进步的关键所在,本篇论文主要论述金属材料的种类、性能及在社会发展中的重要应用,并且展望金属材料在未的发展前景。 关键词:金属材料、镁合金、铝合金、记忆金属 金属材料是指由金属元素或以金属元素为主构成的具有金属特性的材料的统称。包括纯金属、合金、金属间化合物和特种金属材料等。由两种或两种以上的金属,或金属与非金属,经熔炼、烧结或其它方法组合而成并具有金属特性的物质称为合金。工业中广泛使用的金属材料是合金,金属材料中最常用的是钢铁、铝合金、铜合金、镁合金、钛合金等。现代生产生活中种类繁多的金属材料已成为人类社会发展的重要物质基础。 一、金属材料的分类 金属材料通常分为黑色金属和有色金属如图1所示 1、黑色金属又称钢铁材料,包括含铁90%以上的工业纯铁,含碳2%~4%的铸铁,含碳小于2%的碳钢,以及各种用途的结构钢、不锈钢、耐热钢、高温合金、精密合金等。广义的黑色金属还包括铬、锰及其合金。 2、有色金属是指除铁、铬、锰以外的所有金属及其合金,通常分为轻金属、重金属、贵金属、半金属、稀有金属和稀土金属等。有色合金的强度和硬度一般比纯金属高,并且电阻大、电阻温度系数小。 3、特种金属材料包括不同用途的结构金属材料和功能金属材料。其中有通过快速冷凝工艺获得的非晶态金属材料,以及准晶、微晶、纳米晶金属材料等;还有隐身、抗氢、超导、形状记忆、耐磨、减振阻尼等特殊功能合金,以及金属基复合材料等。[1]金属材料按生产成型工艺又分为铸造金属、变形金属、喷射成形金属,以及粉末冶金材料。铸造金属通过铸造工艺成型,主要有铸钢、铸铁和铸造有色金属及合金。变形

聚乳酸的合成

聚乳酸的合成 聚乳酸有两种合成方法,即丙交酯(乳酸的环状二聚体)的开环聚合和乳酸的直接聚合。 丙交酯开环聚合生产工序为:先将乳酸脱水环化制成丙交酯;再将丙交酯开环聚合制得聚乳酸。其中乳酸的环化和提纯是制备丙交酯的难点和关键,这种方法可制得高分子量的聚乳酸,也较好地满足成纤聚合物和骨固定材料等的要求。 乳酸直接缩聚是由精制的乳酸直接进行聚合,是最早也是最简单的方法。该法生产工艺简单,但得到的聚合物分子量低,且分子量分布较宽,其加工性能等尚不能满足成纤聚合物的需要;而且聚合反应在高于180℃的条件下进行,得到的聚合物极易氧化着色,应用受到一定的限制。 由于原料原因,聚乳酸有聚d-乳酸(PDLA)、聚L-乳酸(PLLA)和聚dL-乳酸(PDLLA)之分。生产纤维一般采用PLLA。 聚乳酸的发展意义 聚乳酸在中国应用的意义不仅仅体现在环保方面,对于循环经济、节约型社会的建设也将有积极的作用。化工塑料的原料提取自不可再生的化石型资源---石油,而石油正在成为一种稀缺的消耗性资源。提取自植物的聚乳酸显然有着取之不尽的原料供应量,而分解后的聚乳酸又将被植物吸收,形成一个物质的循环利用。所以聚乳酸有“在地球环境下容易被生物降解的”塑料之称。 而且相对于化工塑料,聚乳酸不会产生更多的二氧化碳。因为聚乳酸的原料---玉米在生长过程中通过植物的光合作用,又会消耗二氧化碳。此外,聚乳酸的产业化将大大提高农作物的附加值。以玉米为例,中国每年库存达3000多万吨,且大部分被当作了饲料,如果用于生产聚乳酸,形成“玉米-乳酸-聚乳酸-共聚共混物-各种应用制品”的产业链,可大大提高玉米的价格,提高农民收益。 之前,农用薄膜和方便食品的包装或餐具已经使用了聚乳酸。但是,同利用石油和天然气制造的塑料比较起来,利用植物制造的这种聚乳酸塑料,成本较高,而且在60℃左右就会变形。由于存在着这些缺点,这种材料至今难以普及。 尽管如此,人们还是非常看好聚乳酸。一个重要的原因,就在于它是以植物作为原料。聚乳酸有可能为解决世界面临的化石燃料枯竭和地球变暖两大难题做出巨大贡献。 为了摆脱对日趋枯竭的石油资源的依赖,大力开发环境友好的可生物降解的聚合物,替代石油基塑料产品,已成为当前研究开发的热点。经过多年的研究,一些著名的科研机构和企业相继推出了多种可生物降解聚合物。而在众多可生物降解聚合物中,刚刚进入工业化大生产的聚乳酸异军突起,以其优异的机械性能,广泛的应用领域,显著的环境效益和社会效益,赢得了全球塑料行业的瞩目和青睐。

聚乳酸

聚乳酸 单个的乳酸分子中有一个羟基和一个羧基,多个乳酸分子在一起,-OH与别的分子的-COOH脱水缩合,-COOH与别的分子的-OH脱水缩合,就这样,它们手拉手形成了聚合物,叫做聚乳酸. 聚乳酸也称为聚丙交酯,属于聚酯家族。聚乳酸是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生。聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的绿色高分子材料。 聚乳酸的热稳定性好,加工温度170~230℃,有好的抗溶剂性,可用多种方式进行加工,如挤压、纺丝、双轴拉伸,注射吹塑。由聚乳酸制成的产品除能生物降解外,生物相容性、光泽度、透明性、手感和耐热性好,还具有一定的耐菌性、阻燃性和抗紫外性,因此用途十分广泛,可用作包装材料、纤维和非织造物等,目前主要用于服装(内衣、外衣)、产业(建筑、农业、林业、造纸)和医疗卫生等领域。 一、聚乳酸的优点 聚乳酸的优点主要有以下几方面: (1)聚乳酸(PLA)是一种新型的生物降解材料,使用可再生的植物资源(如玉米)所提出的淀粉原料制成。淀粉原料经由发酵过程制成乳酸,再通过化学合成转换成聚乳酸。其具有良好的生物可降解性,使用后能被自然界中微生物完全降解,最终生成二氧化碳和水,不污染环境,这对保护环境非常有利,是公认的环境友好材料。关爱地球,你我有责。世界二氧化碳排放量据新闻报道在2030年全球温度将升至60℃,普通塑料的处理方法依然是焚烧火化,造成大量温室气体排入空气中,而聚乳酸塑料则是掩埋在土壤里降解,产生的二氧化碳直接进入土壤有机质或被植物吸收,不会排入空气中,不会造成温室效应。 (2)机械性能及物理性能良好。聚乳酸适用于吹塑、热塑等各种加工方法,加工方便,应用十分广泛。可用于加工从工业到民用的各种塑料制品、包装食品、快餐饭盒、无纺布、工业及民用布。进而加工成农用织物、保健织物、抹布、卫生用品、室外防紫外线织物、帐篷布、地垫面等等,市场前景十分看好。 (3)相容性与可降解性良好。聚乳酸在医药领域应用也非常广泛,如可生产一次性输液用具、免拆型手术缝合线等,低分子聚乳酸作药物缓释包装剂等。 (4)聚乳酸(PLA)除了有生物可降解塑料的基本的特性外,还具备有自己独特的特性。传统生物可降解塑料的强度、透明度及对气候变化的抵抗能力皆不如一般的塑料。 (5)聚乳酸(PLA)和石化合成塑料的基本物性类似,也就是说,它可以广泛地用来制造各种应用产品。聚乳酸也拥有良好的光泽性和透明度,和利用聚苯乙烯所制的薄膜相当,是其它生物可降解产品无法提供的。 (6)聚乳酸(PLA)具有最良好的抗拉强度及延展度,聚乳酸也可以各种普通加工方式生产,例如:熔化挤出成型,射出成型,吹膜成型,发泡成型及真空成型,

材料概论论文

材料概论论文碳纤维复合材料 班级:2011级材料化学 姓名:邓开菊 学号:20110513454

摘要:主要介绍了碳纤维复合材料的基本概述,并对它的一些结构性能、应用(主要在航空领域的应用)、发展,并分析了目前我国碳纤维复合材料的研究进展和应用前景。 关键字:碳纤维复合材料、碳纤维树脂基复合材料、碳/碳复合材料、结构性能、发展、航空领域。 1、引言 碳纤维主要是由碳元素组成的一种特种纤维,其含碳量随种类不同而异,一般在90%以上。碳纤维具有一般碳素材料的特性,如耐高温、耐磨擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工成各种织物,沿纤维轴方向表现出很高的强度。碳纤维比重小,因此有很高的“比强度”。碳纤维属于聚合物碳,是有机纤维经固相反应转变为纤维状的无机碳化合物。碳纤维是一种新型非金属材料,它和它的复合材料具有高强度、耐高温、耐腐蚀、耐疲劳、抗蠕变、导电、传热、比重小和热胀胀系数小等优异性能,碳纤维单独使用时主要是利用其耐热性、耐蚀性、导电性和其它性质。碳纤维是一种力学性能优异的新材料,它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度一般都在3500Mpa以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa亦高于钢。因此CFRP(即碳纤维复合材料)的比强度即材料的强度与其密度之比可达到2000Mpa/(g/cm3)以上,而A3钢的比强度仅为59Mpa/(g/cm3)左右,其比模量也比钢高。目前,碳纤维不仅广泛应用军事工业,而且在汽车构件、风力发电叶片、核电、油田钻探、体育用品、碳纤维复合芯电缆以及建筑补强材料领域也存在巨大应用空间,而其在航空领域的光辉业绩尤为引人注目。 2、碳纤维的发展 碳纤维的出现是材料史上的一次革命。碳纤维是目前世界首选的高性能材料,具有高强度、高模量、耐高温、抗疲劳、导电、质轻、易加工等多种优异性能,正逐步征服和取代传统材料。现已广泛应用于航天、航空和军事领域。世界各国均把发展高性能碳纤维产业放在极其重要的位置。碳纤维除了在军事领域上的重要应用外,在民品的发展上有着更加广阔的空间,并已经开始深入到国计民生的

聚乳酸合成及应用研究

聚乳酸合成及应用研究 摘要:综述了聚乳酸的合成方法,介绍了其生产应用现状。 关键词:聚乳酸乳酸丙交酯生物降解材料 随着科学与社会的发展,环境和资源问题越来越受到人们的重视,成为全球性问题。以石油为原料的塑料材料应用广泛,这类材料使用后很难回收利用,造成了目前比较严重的“白色污染”问题。而且石油资源不可再生,大量的不合理使用给人类带来了严重的资源短缺问题。可降解材料的出现,尤其是降解材料的原材料的可再生性为解决这一问题提供了有效的手段。 聚乳酸(PLA)是目前研究应用相对较多的一种,它是以淀粉发酵(或化学合成)得到的以乳酸为基本原料制备得到的一种环境友好材料,它不仅具有良好的物理性能,还具有良好的生物相容性和降解性能。聚乳酸属于脂肪族聚酯化合物。聚乳酸的分子构象存在3种异构体,即左旋的L-PLA,右旋的D-PLA以及内消旋的D,L-PLA。由发酵产生的聚乳酸大部分为L-PLA。PLA 的几种旋光性结构中,L- PLA及D-PLA是半结晶高分子,机械强度较好;D,L-PLA是非结晶高分子,降解快,强度耐久性差。其中L-PLA由于降解产物是左旋乳酸,能被人体完全代谢,无毒、无组织反应。由于不同的聚乳酸的分子构象,对最终产品的性能产生影响,所以在聚乳酸形成时,控制不同分子构象的相对比例,就可得到不同性能的聚合体。 1913年法国人首先用缩聚的方法合成了聚乳酸,其产量、相对分子质量都很低,实际用途不大。1954年,美国Dupont公司用间接法制备出高相对分子质量的聚乳酸,1962年,美国Cyanamid 公司发现聚乳酸具有良好的生物相容性并将聚乳酸应用于医学领域,作为生物降解医用缝线。美国的Dow化学公司和Cargill公司各出资50%组建的CargillDow聚合物公司研制、开发出了新一代PLA树脂及其合金。日本Mitsui Toatsu公司也推出了新一代改进型聚乳酸树脂(商品名为Lacea),并于1994年建成年产100t的发酵设备。目前,美国Chronopol公司开发的PLA树脂已经半商业化,并计划在未来几年内建成世界级PLA生产装置。芬兰纽斯特(Neste)公司开发的聚乳酸产品也已经投入生产。哈尔滨市威力达公司与瑞士伊文达·菲瑟公司就合作建设世界第二大聚乳酸(该项目总投资4亿元,预计投产后每年可生产聚乳酸1万吨)生产基地的技术引进进行新一轮洽谈,并取得实质性进展;双方基本确定引进的方式、时间、价格等事宜;该项目将于2005年内建成投产。 1 聚乳酸的合成方法 1. 1 直接聚合 1.1.1 溶液聚合方法 Hiltunen等研究了不同催化剂对乳酸直接聚合的影响,在适合催化剂和聚合条件下,可制得相对分子质量达3万的聚乳酸。日本Ajioka等开发了连续共沸除水直接聚合乳酸的工艺,PLA相对分子质量可达30万,使日本Mitsui Toatsu化学公司实现了PLA的商品化生产。国内赵耀明1以D,L-乳酸为原料,联苯醚为溶剂,锡粉为催化剂(200目),在130℃、4000Pa条件下共沸回流,通过溶液直接聚合制得相对分子质量为4万的聚合物。秦志中2等用锡粉作催化剂,分阶段升温减压除水,通过本体及溶液聚合制备了相对分子质量达到20万的高分子量聚乳酸;他们的研究表明在直接法制备聚乳酸的过程中,为防止前期带出大量的低聚物,并且确保在聚合反应过程中所生成的水排除干净,宜用低温高真空,中温高真空,高温高真空的工艺路线;还对聚乳酸的降解性能进行了研究。王征3等采用精馏-聚合耦合装置SnCl2·2H2O的催化体系研究了直接聚合过程中温度、时间、压力对聚合物相对分子质量的影响;研究表明延长聚合时间,适当提高反应温度,采用高真空度可以有效降低体系水分含量,从而提高聚合物的相对分子质量。现已可由直接聚合方法制得具有实用价值的PLA聚合物,并且此聚合方法工艺简单,化学原料及试剂用量少,但直接聚合的PLA相对分子质量仍偏低,需进一步提高,才能使其具有更加广泛的用途。 聚乳酸直接聚合的原理: 反应体系中存在着游离乳酸、水、聚酯和丙交酯的平衡反应,其聚合方程式如下:

聚乳酸介绍

聚乳酸介绍 PLA聚乳酸历史 聚乳酸PLA (Poly lactic acid)一种新的生物塑料材料,早在1932年Dupont的科学家Wallace Carothers在真空中将乳酸进行聚合,产生低分子量的聚合物,但是由于生产成本过高,直到1987年食品公司Cargill开始投资研发新的聚乳酸制造过程,Cargill随后于2001年与Dow合资进行商业化产量名为:Nature-Works的聚乳酸商品。由于聚乳酸材料同时有生体相容性与生物可分解性,因此在所有的可分解性塑料中占有42%的市场。由专利分析来看聚乳酸的用途,2005年DERWENT专利資料库中共有聚乳酸专利1740篇,其中医用专利542篇,设备方面专利517篇,包装方面专利293篇,纤维方面专利419篇。除生物可分解的特性外,聚乳酸的主要优势包括有良好的机械特性与其材料来源,聚乳酸的材料来源为淀粉,在今日原油价格上涨,石油储存量下降的环境之下,除具有环境保护的优势,也同时有能源经济的效益。比较聚乳酸与其他常规塑料的物性发現,聚乳酸的机械性质相當强韧,与聚苯乙烯、聚氯乙烯接近,韧度超过聚丙烯,用于包裝材料、医疗与纤维的潛力相當好,唯一影响其近一步取代塑料包裝材料的障碍是其生产成本,依照制造过程与規模不同,聚乳酸的生產成本目前为 20-28元/公斤,高于目前常规塑料的价格。已商业化生产的生物可分解塑料,可以看出聚乳酸在整個生物可分解塑料占有举足轻重的地位,而Cargill Dow LLC每年14万吨的聚乳酸产量則为世界最高。日本方面三井化學也開始规模化生产,预计该公司2008年聚乳酸的销售量可以超过30000吨。依照Frost Sullivan推测,全世界的生物可分解性塑料在2002年時的市场为12万公吨,到2010年可望成达到每年50.5~70万公吨,而如果按照以上各主要公司所公布的产能扩建预计更是大幅超过此数字,如德国的Inventa Fisher计划将其设备放大至每年80000吨,而Cargill Dow LLC更预计在2009年可以将其聚乳酸产能提升至每年45万公吨,可以看出其強大的商机与市场成长潛力。 什么是生物可分解材料 生物可分解材料(Biodegradable Materials),主要以天然高分子或聚酯种类为基质,一般以可不短重复取得的天然資源,如:微生物、植物、动物,所製成的一种聚合物。传統的塑胶材料不能被微生物分解成H2O和CO2,如:PE、PVC、PS、PP…等。生物可分解材料PLA的制品暴露在空气中时,並不会进行分解。但在有足够的湿度、氧气与适当的微生物条件下.存在的自然掩埋或堆肥环境中经过短短的20~45天,即可被微生物所分解成H2O和CO2,再次回归于自然环境中滋养植物成長。 PLA聚乳酸材料优点 ** 材料天然、无毒,透气性高, PLA制品经由美国FDA认可,可直接与食物接触。 (就算盛裝含有酸性,酒精成份之食材,也不会釋放任何危害人体之物質) ** 使用任何废弃物处理方式(如焚化、掩埋、回收、堆肥)皆不致对环境造成任何影响。 ** 可取代以石油为基質的传统塑胶材料,且有同类传统塑胶制品之物性,使用方法相同。 ** 丢弃后,经堆肥环境及掩埋处理可经由微生物完全分解 100%。

材料学科导论小论文

站在材料的路口,展望人生 ——学科导论小论文引论 为了新生了解材料学科并加深对其的认识,学院特意开设了四次学科导论课程,其中最为感兴趣的是第一堂课所讲的材料的定义、发展历程、未来发展方向。因为作为一个大一新生,入学选择这个专业是因为兴趣所在,但是对于这个专业的理解并不是很深,连以后主要的发展方向都是一知半解。通过这堂课我不仅仅在时空上了解了材料的发展、材料学科的发展,更是从宏观角度上看到了材料的发展方向,最为重要的是得到了院长提到的“物理脑,化学手,工程心”这一材料学科的最佳学习方法,能让我在今后的学习中更好的掌握知识,并应用于实践。 对材料的理解 材料,即人类用于制造机器、构件和产品的物质,是人类赖以生存和发展的物质基础。(课堂笔记)。综合四次课程,我对材料学科的理解是探索物质本源,宏观上分析物质结构,探索合成工艺,提高使用性能;微观上剖析材料性质,分析最小基本组成单元之间的联系。 选择方向——超导材料 一、学院概况: 目前学院共有三个专业:材料科学与工程,高分子材料与工程,新能源材料与器件,其中材料科学与工程又分为金属与非金属方向。 二、个人选择: 为了今后选择个人发展方向的时候少些迷茫,在四次课程结束以后,我通过网上了解相关材料,结合学院老师的研究方向,我选定的发展方向为超导材料。 三、超导材料简介: 超导材料,是指具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料。当下主要研究方向有:非常规超导体磁通动力学和超导机理;强磁场下的低维凝聚态特性研究;强磁场下的半导体材料的光、电等特性强磁场下极微细尺度中的物理问题;强磁场化学。(以上简介摘自百度百科) 四、选择理由: 第一:超导材料应用领域: 未来必定是电子材料的世界,超导材料的研究必定在材料研究领域占据重要地位;

聚乳酸合成工艺及应用

聚乳酸合成工艺及应用 第七章聚乳酸合成工艺及应用 聚乳酸(PLA)是一种以通过光合作用形成的生物质资源为主要起始原料生产的生物可降解高分子材料,使用后可通过微生物降解为乳酸并最终分解成二氧化碳和水。聚乳酸的合成和应用实际上是一个来源于可再生资源、使用寿命结束后降解产物回归自然、参与到生物资源再生的过程中去的一个理想的生态循环,属于自然界的碳循环。聚乳酸无毒,无刺激性,具有良好的生物相容性、生物吸收性、生物可降解性,同时还具有优良的物理、力学性能,并可采用传统的方法成型加工,在农业、包装材料、日常生活用品、服装和生物医用材料等领域都具有良好的应用前景,因而聚乳酸成为近年来研究开发最活跃的可生物降解高分子材料之一。 7.1 聚乳酸的合成工艺 7.1.1 乳酸缩聚 乳酸上的羟基和羧基进行脱水缩聚反应生成聚乳酸,如图7.2。

必须解决以下三个问题:一,乳酸缩聚的平衡常数非常小,在热力学上分析很 难生成高分子量的聚乳酸,必须从动力学上加以控制,即有效的排出缩聚反应生成的水,使反应平衡向生成聚乳酸的方向移动;二,抑制聚乳酸解聚生成丙交酯的副反应;三,抑制变色、消旋化等副反应。 (1) 溶液缩聚法 合成过程中利用高沸点溶剂和水生成恒沸物将缩聚产生的痕量水带出,有力地促进了方应向正方向进行;同时蒸出的溶剂带出水合丙交酯经分子筛脱水后回流到反应系统中,有效地抑制了聚乳酸解聚生成丙交酯。 高沸点溶剂可以是苯、二氯甲烷、十氢萘、二苯醚等。 特点:直接制的高分子两聚乳酸,但有机溶剂的回收和分离工序使生产过程较 复杂并增加了设备投资,增加了成本,而且残存的有机溶剂对产品造成污染。 (2) 熔融缩聚法 利用无催化剂条件下制的聚合度约为8左右的低聚乳酸为起始物,加入催化剂SnCl?HO(0.4%,质量分数)和等摩尔的对甲基苯磺酸(TSA),在180?、22 410Torr的条件下反应15h可制得M大于10×10的聚乳酸。 W 催化剂除TSA外,还有烷氧基金属催化剂、烷氧基金属和Sn(?)催化体系。特点:能制得较高分子量的聚乳酸,工艺简单,明显降低了生产成本。但熔融缩聚发要达到高分子需要较长的反应时间,长时间的高温造成如下问题:一,解聚反应严

聚乳酸项目申报材料

聚乳酸项目 申报材料 规划设计/投资分析/产业运营

聚乳酸项目申报材料 近十余年来石油基塑料不加控制的滥用而导致的“白色污染”已成为全球性危害,越来越多的国家或城市开始立法禁止使用一次性不可降解塑料。聚乳酸系乳酸所形成的聚合物,具有可靠的生物安全性、生物可降解性、环境友好性、良好的力学性能及易于加工成形等优点,符合环保要求和人们对高质量产品的需求,因此在聚乳酸在在包装、医药、纺织、日用品、农用地膜等行业具有广阔的应用前景。 该聚乳酸项目计划总投资9496.50万元,其中:固定资产投资6449.34万元,占项目总投资的67.91%;流动资金3047.16万元,占项目总投资的32.09%。 达产年营业收入21523.00万元,总成本费用17199.17万元,税金及附加175.49万元,利润总额4323.83万元,利税总额5095.71万元,税后净利润3242.87万元,达产年纳税总额1852.84万元;达产年投资利润率45.53%,投资利税率53.66%,投资回报率34.15%,全部投资回收期4.43年,提供就业职位329个。 坚持安全生产的原则。项目承办单位要认真贯彻执行国家有关建设项目消防、安全、卫生、劳动保护和环境保护的管理规定,认真贯彻落实“三同时”原则,项目设计上充分考虑生产设施在上述各方面的投资,务

必做到环境保护、安全生产及消防工作贯穿于项目的设计、建设和投产的整个过程。 ......

聚乳酸项目申报材料目录 第一章申报单位及项目概况 一、项目申报单位概况 二、项目概况 第二章发展规划、产业政策和行业准入分析 一、发展规划分析 二、产业政策分析 三、行业准入分析 第三章资源开发及综合利用分析 一、资源开发方案。 二、资源利用方案 三、资源节约措施 第四章节能方案分析 一、用能标准和节能规范。 二、能耗状况和能耗指标分析 三、节能措施和节能效果分析 第五章建设用地、征地拆迁及移民安置分析 一、项目选址及用地方案

关于材料导论的论文范文

篇一:关于材料导论的论文范文 虽然我已经进大材料专业两个多月,却由于种种原因,不能对材料这门基础学科有清楚的认识,甚至对于别人问我材料是干什么的,我也是尴尬地不能回答。在这10来次的课程中,我终于进一步认识到了材料学科的优势和发展前景,对于自己的未来也有了更多自信和期许。 材料共分为金属材料,无机非金属材料和高分子材料三大类。在这些课程中,教授们着重强调了无机非金属材料中的陶瓷材料。以前,我总认为陶瓷无非就是瓷碗,花瓶之类,却没想到它还会有那么多的化学特性和功能。实际上,陶瓷是瓷器和陶器的统称,它采用天然原料如长石、粘土和石英等烧结而成,是典型的硅酸盐材料,主要组成元素是硅、铝、氧,这三种元素占地壳元素总量的90%,普通陶瓷来源丰富、成本低、工艺成熟。这类陶瓷按性能特征和用途又可分为日用陶瓷、建筑陶瓷、电绝缘陶瓷、化工陶瓷等。大多数陶瓷具有良好的电绝缘性,因此大量用于制作各种电压的绝缘器件。陶瓷材料在高温下不易氧化,并对酸、碱、盐具有良好的抗腐蚀能力。此外,它在防辐射方面也发挥着至关重要的作用在所有的材料中,最令我感兴趣的是功能材料。功能材料是指那些具有优良的电学、磁学、光学、热学、声学、力学、化学、生物医学功能,特殊的物理、化学、生物学效应,能完成功能相互转化,主要用来制造各种功能元器件而被广泛应用于各类高科技领域的高新技术材料。它涉及信息技术、生物工程技术、能源技术、纳米技术、环保技术、空间技术、计算机技术、海洋工程技术等现代高新技术及其产业。功能材料不仅对高新技术的发展起着重要的推动和支撑作用,有着十分广阔的市场前景和极为重要的战略意义。 其中,太阳能电池材料是新能源材料研究开发的热点。随着能源日益紧缺和环保压力的不断增大,石油的枯竭几乎像一个咒语,给人类带来了不安。各国都开始力推可再生能源,其中开发和利用太阳能已成为可再生能源中最炙热的“新宠”,太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。太阳能资源丰富,而且免费使用,又无需运输,对环境无任何污染。正是因为这些优点,太阳能光伏产业才蓬勃发展起来。相信在未来,太阳能电池会发挥越来越重要的作用。 尽管我国非常重视功能材料的发展取得了一批接近或达到国际先进水平的研究成果,在国际上占有了一席之地,却依旧和发达国家存在着、较大的差距。因此发达国家企图通过功能材料领域形成技术垄断,并试图占领中国广阔的市场。例如,高铁的一些关键材料还需从国外进口,每年都得花高达千亿的资金去购买这些材料,还必须满足他们各种要求,这对拥有万千专家学者的中国来说,这不能不说是一种悲哀。特别是我国国防用关键特种功能材料是不可能依靠进口来解决的,必须要走独立自主、自力更生的道路。如军事通信、航空、航天、激光武器等,都离不开功能材料的支撑。 如何在毕业后成为一位优秀的材料人,这是我们每个人都需要思考的问题,未来充满着未知,这一切都有待于我们的努力。首先,我们要有勤勉、认真、踏实的学习作风,我们所学的基础课程都是很朴实无华的内容,这就要求我们能静下心来,从一砖一瓦打基础做起,不可心浮气躁。其次,我们需要动手实验的实 践能力,任何的成果都要依靠理论和实验,用实验来验证理论,这就要求我们要有一定的动手能力,对于实验的操作、各种仪器的使用要有相当的了解。而且我们一定要有举一反三的创新能力,我们的目标就是在于如何研发出不同于前人的材料,制作新工艺和新方法,这样人类才能更好地利用科学来造福众生,才能使我们的世界越来越丰富多彩。另外,我们还要学习一定的软件知识。课上,老师教我们如何用软件来模拟物质结构,引起了我们极大的兴趣,如果我们将想要在材料方面大展身手,软件将是我们研究学习不可或缺的帮手。

聚乳酸的合成方法

聚乳酸的合成方法研究 摘要聚乳酸是一类运用广泛的生物可降解材料,具有良好的机械强度,生物相容性且易加工。聚乳酸的合成方法主要为内交酯开环聚合法和直接缩合聚合法,前者比较而言具有分子量高,机械性能好且无小分子水生成等优点。目前,聚乳酸主要面临着性能改性和成本降低的重要挑战。 关键词聚乳酸,开环聚合,缩合聚合 1 引言 生物降解材料包括天然树脂和合成树脂,是由可再生资源人工合成制得的一种可降解高分材料,主要包括淀粉类以及聚酯类,其中聚酯类包括聚乳酸、聚羟基脂肪酸酯、聚己内酯和聚丁二酸丁二醇酯等。 聚乳酸是一种用途广泛的生物降解高分子材料,具有良好的强度、通透性且易加工,并具有良好的生物相容性,对人体无毒无刺激,因此被广泛用于外科手术缝合线和骨折内固定材料及药物控释载体等生物医用材料,已经成为生物医用材料中最受重视的材料之一[1]。 2 聚乳酸的概述 聚乳酸也称为聚丙交酯,属于聚酯家族,是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生。聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的环保型高分子材料[1]。 2.1 聚乳酸的性质 聚乳酸(PLA)为浅黄色或透明的物质;玻璃化温度为50~60℃,熔点170~180℃,密度约1.25g/cm3;不溶于水、乙醇、甲醇等,易水解成乳酸。 聚乳酸有三种立体构型:聚右旋乳酸(PDLA),聚左旋乳酸(PLLA)和聚消旋乳酸(PDLLA)。PDLA和PLLA是两种具有光学活性的有规立体构型聚合物,25℃时比旋光度分别为+157°,-157°。Tg、Tm分别为58℃和215℃,熔融或溶液中均可结晶、结晶度可达60%左右。PDLLA是无定形非晶态材料,Tg为58℃,无熔融温度。 结晶性对PLA材料力学性能和降解性能(包括降解速率、力学强度衰减)的影响很大。PLA脆性高、冲击强度差。分子量增大,PLA的力学强度提高,作为成型制品使用的聚合物分子量至少要达到10万[2]。 2.2 聚乳酸的主要优点 1) 聚乳酸是一种生物可降解材料,使用可再生的植物资源(如玉米)所提供的淀粉原

聚乳酸(PLA)的合成及改性研究

聚乳酸(PLA)的合成及改性研究 摘要 介绍聚乳酸(PLA)的基本性质、合成方法及应用范围。综述了国内外PLA 的改性研究及目前有关PLA性能改进的方法。概括了PLA在合成改性中需要注意的问题,展望了PLA的发展前景:不断改进、简化和缩短PLA的合成工艺;用新材料、新方法对PLA进行改性,开发出新用途、高性能的PLA材料是PLA的研究方向。 关键词:聚乳酸合成改性 前言

聚乳酸(PLA)是一种以可再生生物资源为原料的生物基高分子,具有良好的生物降解性、生物相容性、较强的机械性能和易加工性。聚乳酸材料的开发和应用,不但可解决环境污染问题,更重要的意义在于为以石油资源为基础的塑料工业开辟了取之不尽的原料资源。 此外,由于它的最终降解产物为二氧化碳和水,可由机体正常的新陈代谢排出体外,是具有广泛应用前景的生物医用高分子材料(如可吸收手术缝合线)、烧伤覆盖物、骨折内固定材料、骨缺损修复材料等。近几年来,有应用到纺织材料、包装材料、结构材料、电子材料、发泡材料等更广泛的领域的研究报道。PLA 的应用市场空间和发展潜力巨大,有关它的研究一直是可生物降解高分子材料研究领域的热点。

1、聚乳酸的研究背景 聚乳酸(PLA)是由人工合成的热塑性脂肪族聚酯。早在20 世纪初,法国人首先用缩聚的方法合成了PLA[1];在50 年代,美国Dupont 公司用间接的方法制备出了相对分子质量很高的PLA;60 年代初,美国Cyanamid 公司发现,用PLA 做成可吸收的手术缝合线,可克服以往用多肽制备的缝合线所具有的过敏性;70 年代开始合成高分子量的具有旋光性的D 或L 型PLA,用于药物制剂和外科等方面的研究;80 年代以来,为克服PLA 单靠分子量及分子量分布来调节降解速度的局限,PLA 开始向降解塑料方面发展[2]。 作为石油基塑料的可替代品,其最大的缺点就是脆性大、力学强度较低,亲水性差,在自然条件下它降解速率较慢;因此近年来对PLA 的改性己成为研究的热点。目前国内外对PLA的改性主要有共聚、共混以及制成复合材料等几种方法。 2、PLA的合成 以玉米、小麦、木芋等植物中提取的淀粉为原料.经过酶分解得到葡萄糖.再通过乳酸菌发酵转变为乳酸,然后经化学合成得到高纯度的PLA。 PLA的合成通常有:1)直接缩聚法[3-4]。以乳酸、乳酸酯和其他乳酸衍生物等为原料在真空条件下,采用溶剂使之脱水聚合成PLA。该法生产工艺简单、成本低,且合成的PLA中不含催化剂.但由于体系中存在杂质且乳酸缩聚是可逆反应,故该法很难得到高相对分子质量的PLA。具体反应式如下[5]: nHOCH(CH 3)COOH → H 一[OCH(CH 3 )CO]n 一OH + (n-1)H 2 O H一[OCH(CH 3 )CO]n一 一[OCH(CH 3 )CO]n一OH + H 2 O

聚乳酸功能材料小论文

生物可降解塑料-聚乳酸 摘要:本文主要阐述了聚乳酸的合成,改性以及其应用 关键词:聚乳酸合成改性应用 一、前言 目前塑料制品被广泛应用在各个领域,它在给人们生产、生活带来极大方便的同时,“白色污染”也对生态系统造成了严重的威胁。而且,其原料主要来源于石油类不可再生资源,这势必将引起严重的能源和人类生存危机。聚乳酸(PLA)是一种具有优良的生物相容性和可生物降解性的合成高分子材料,这种线型热塑性生物可降解脂肪族聚酯是以玉米、小麦、木薯等一些植物中提取的淀粉为最初原料,经过酶分解得到葡萄糖再经过乳酸菌发酵后变成乳酸然后经过化学合成得到高纯度聚乳酸。聚乳酸制品废弃后在土壤或水中30天内会在微生物、水、酸和碱的作用下彻底分解成CO2和H2O,随后在太阳光合作用下又成为淀粉的起始原料不会对环境产生污染,因而是一种完全自然循环型的可生物降解材料。 由于聚乳酸树脂具有环境保护、循环经济、节约化石类资源、促进石化产业持续发展等多重效果,是近年来开发研究最活跃、发展最快的生物可降解材料,也是目前唯一一种在成本和性能上可与石油基塑料相竞争的植物基塑料。 二、聚乳酸合成 在聚乳酸生产中,生物技术主要体现在乳酸单体生产上,而由乳酸单体生产乳酸聚合物是常规的聚合物合成技术。生物法由植物性原料生产乳酸的关键问题是开发高效、低成本酶催化剂。 聚乳酸的合成主要有两种方法:1、乳酸直接缩聚法。在真空下乳酸脱水缩聚直接得到聚乳酸,该法简单,但得到的聚合物分子量较小,一般小于5000。直接缩聚法的主要特点是合成的聚乳酸不含催化剂,但反应条件相对苛刻,近几年来通过技术创新与改进,直接聚合法取得了一定的进展,但目前在工业上还少

功能材料概论论文

【摘要】碳纤维的出现是材料史上的一次革命。碳纤维是目前世界首选的高性能材料,具有高强度、高模量、耐高温、抗疲劳、导电、质轻、易加工等多种优异性能,正逐步征服和取代传统材料。现已广泛应用于航天、航空和军事领域。世界各国均把发展高性能碳纤维产业放在极其重要的位置。碳纤维除了在军事领域上的重要应用外,在民品的发展上有着更加广阔的空间,并已经开始深入到国计民生的各个领域。在机械电子、建筑材料、文体、化工、医疗等各个领域碳纤维有着无可比拟的应用优势。 我国对碳纤维的研究由于起步较晚,技术力量薄弱,虽然碳纤维及其复合材料在我国已被纳入国家“863”和“973”计划,但总体情况不尽理想,我国仍不具备成熟的碳纤维工业化生产技术,国防和民用碳纤维产品基本依赖进口。 【关键词】碳纤维、性能、技术 碳纤维主要是由碳元素组成的一种特种纤维,是由含碳量较高、在热处理过程中不熔融的人造化学纤维经热稳定氧化处理、碳化处理及石墨化等工艺制成的。其含碳量随种类不同而异,一般90以上。碳纤维具有一般碳素材料的特性,如耐高温、耐磨擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工性好,沿纤维轴方向表现出很高的度,且碳纤维比重小。 1、碳纤维的化学性能 碳纤维是一种纤维状的碳素材料。我们知道碳素材料是化学性能稳定性极好的物质之一。这是历史上最早就被人类认识的碳素材料的特征之一。除强氧化性酸等特殊物质外,在常温常压附近,几乎为化学惰性。可以认为在普通的工作温度≤250℃环境下使用,很难观察到碳纤维发生化学变化。根据有关资料介绍,从碳素材料的化学性质分析,在≤250℃环境下,碳素材料既没有明显的氧化发生,也没有生成碳化物和层间化合物生成。由于碳素材料具有气孔结构,因此气孔率高达25%左右,在加热过程易产生吸附气体脱气情况,这样的过程更有利于我们稳定电气性能和在电热领域的应用。 2、碳纤维的物理性能 (a)热学性质:碳素材料因石墨晶体的高度各向异性,而不同于一般固体物质与温度的依存性,从工业的应用角度来看,碳素材料比热大体上是恒定的。几乎不随石墨化度和碳素材料的种类而化 (b)导热性质:碳素材料热传导机理并不依赖于电子,而是依靠晶格振动导热,因此,不符合金属所遵循的维德曼—夫兰兹定律。根据有关资料介绍,普通的碳素材料导热系数极高,平行于晶粒方向的导热系数可与黄铜媲美。 (c)电学性质:碳素材料电学性质主要与石墨晶体的电子行为和不同的处理温度有关,石墨的电子能带结构和载流子的种类及其扩散机理决定了上述性质。碳素材料这类电学性质具有本征半导体所具备的特征,电阻率变化主要与载流子的数量

相关文档