文档库 最新最全的文档下载
当前位置:文档库 › 高等数学3_8方程近似解

高等数学3_8方程近似解

微分方程总结

第十章:微分方程总结姓名:刘桥 学号:40905237 班级:工商49班 小组:第八小组 组长:刘洪材

一、 微分方程的基本概念 1. 微分方程及其阶的定义 微分方程:凡含有未知函数的导数或微分的方程叫微分方程. 分类1:常微分方程(未知函数为一元函数的微分方程) ()() ,dy axy a dx dy p x y Q x dx =+=为常数 偏微分方程(未知函数为多元函数,从而出现偏导数的微分方程) () 22,2224 2 u u f x y x y u u y x ??+=????=?? 微分方程的阶.:微分方程中出现的未知函数导数或微分的最高阶数. 分类2:一阶微分方程 (,,)0,(,);F x y y y f x y ''== 高阶(n )微分方程 ()(,,,,)0,n F x y y y '= ()(1)(,,, ,).n n y f x y y y -'= 分类3:线性与非线性微分方程. ()(),y P x y Q x '+=2()20;x y yy x ''-+= 分类4:单个微分方程与微分方程组. 32,2,dy y z dx dz y z dx ?=-??? ?=-?? 2. 微风方程的解 微分方程的解:代入微分方程能使方程成为恒等式的函数. 微分方程解的分类:通解(微分方程的解中含有任意常数,且任意常数的个数与 微分方程的阶数相同.)

,y y '=例;x y ce =通解 0,y y ''+=12sin cos ;y c x c x =+通解 特解( 确定了通解中任意常数以后的解.) 初始条件:用来确定任意常数的条件. 初值问题: 求微分方程满足初始条件的解的问题. 积分曲线:微分方程的任一特解的图形都是一条曲线,称为微分方程的积分曲线 二、 一阶微分方程 1. 可分离变量的方程 可分离变量的微分方程:形如: ()()g y dy f x dx =的一阶微分方程. 例题回味:求方程()290y dy x dy ye ++ =的通解 分离变量得,21 9 y ye dy dx x = + 两边同时积分得, 2 1 9y ye dy dx x =- +?? 于是得到通解为,()11arctan 33 y x y e c -=+ 2. 齐次方程 如果一阶微分方程可化为()dy y f dx x =形如的方程,那么久称之为齐次方程. 解法:作变量代换,y u x = ,y xu =或 两边分求微分得, ,dy udx xdu =+ 代入原式得,(),du u x f u dx +=().du x f u u dx =-即 ()0,f u u -≠若则对上式分离变量得, ()du dx f u u x =-. 两边分别积分得, ()du dx f u u x =-? ? 求出积分后,将y u x = 代入,就求得了原微分方程的通解. 例题回味:求解微分方程(cos )cos 0.y y x y dx x dy x x -+=

(完整版)高等数学微分方程试题

第十二章 微分方程 §12-1 微分方程的基本概念 一、判断题 1.y=ce x 2(c 的任意常数)是y '=2x 的特解。 ( ) 2.y=(y '')3是二阶微分方程。 ( ) 3.微分方程的通解包含了所有特解。 ( ) 4.若微分方程的解中含有任意常数,则这个解称为通解。 ( ) 5.微分方程的通解中任意常数的个数等于微分方程的阶数。 ( ) 二、填空题 1. 微分方程.(7x-6y)dx+dy=0的阶数是 。 2. 函数y=3sinx-4cosx 微分方程的解。 3. 积分曲线y=(c 1+c 2x)e x 2中满足y x=0=0, y ' x=0=1的曲线是 。 三、选择题 1.下列方程中 是常微分方程 (A )、x 2+y 2=a 2 (B)、 y+0)(arctan =x e dx d (C)、22x a ??+22y a ??=0 (D ) 、y ''=x 2+y 2 2.下列方程中 是二阶微分方程 (A )(y '')+x 2y '+x 2=0 (B) (y ') 2+3x 2y=x 3 (C) y '''+3y ''+y=0 (D)y '-y 2=sinx 3.微分方程2 2dx y d +w 2 y=0的通解是 其中c.c 1.c 2均为任意常数 (A )y=ccoswx (B)y=c sinwx (C)y=c 1coswx+c 2sinwx (D)y=c coswx+c sinwx 4. C 是任意常数,则微分方程y '=3 23y 的一个特解是 (A )y-=(x+2)3 (B)y=x 3+1 (C) y=(x+c)3 (D)y=c(x+1)3 四、试求以下述函数为通解的微分方程。 1.2 2 C Cx y +=(其中C 为任意常数) 2.x x e C e C y 3221+=(其中21,C C 为任意常数) 五、质量为m 的物体自液面上方高为h 处由静止开始自由落下,已知物体在液体中受的阻力与运动的速度成正比。用微分方程表示物体,在液体中运动速度与时间的关系并写出初始条件。

求方程的近似解

习题课 课时目标 1.进一步了解函数的零点与方程根的联系.2.进一步熟悉用“二分法”求方程的近似解.3.初步建立用函数与方程思想解决问题的思维方式. 1.函数f(x)在区间(0,2)内有零点,则() A.f(0)>0,f(2)<0 B.f(0)·f(2)<0 C.在区间(0,2)内,存在x1,x2使f(x1)·f(x2)<0 D.以上说法都不正确 2.函数f(x)=x2+2x+b的图象与两条坐标轴共有两个交点,那么函数y=f(x)的零点个数是() A.0 B.1 C.2 D.1或2 3.设函数f(x)=log3x+2 x-a在区间(1,2)内有零点,则实数a的 取值范围是() A.(-1,-log32) B.(0,log32) C.(log32,1) D.(1,log34) 4.方程2x-x-2=0在实数范围内的解的个数是________________________________. 5.函数y=(1 2) x与函数y=lg x的图象的交点的横坐标是 ________.(精确到0.1) 6.方程4x2-6x-1=0位于区间(-1,2)内的解有__________个. 一、选择题 1.已知某函数f(x)的图象如图所示,则函数f(x)有零点的区间大致是() A.(0,0.5)

B.(0.5,1) C.(1,1.5) D.(1.5,2) 2.函数f(x)=x5-x-1的一个零点所在的区间可能是() A.[0,1] B.[1,2] C.[2,3] D.[3,4] 3.若x0是方程lg x+x=2的解,则x0属于区间() A.(0,1) B.(1,1.25) C.(1.25,1.75) D.(1.75,2) 4.用二分法求函数f(x)=x3+5的零点可以取的初始区间是() A.[-2,1] B.[-1,0] C.[0,1] D.[1,2] 5.已知函数f(x)=(x-a)(x-b)+2(a

高数下要点含微分方程自己的完整版

高数下要点含微分方程 自己的 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

第六章 微分方程 一、一阶微分方程 1、一阶线性方程 )()(x Q y x P dx dy =+ 2、伯努利方程 )1,0()()(d d ≠=+n y x Q y x P x y n ).()(d d 1111x Q y x P x y n n n =+?---令.1n y z -= 二、可降阶的高阶方程 1.)() (x f y n = n 次积分 2.)',("y x f y = 不显含 y 令)('x p y =,化为一阶方程 ),('p x f p =。 3.)',("y y f y = 不显含自变量 令)('y p y =,dy dp p dx y d =22,化为一阶方程。 三、线性微分方程 )()()()(1)1(1)(x f y x a y x a y x a y n n n n =+'+++-- , 0)(≡x f 时称为齐次的,0)(≡/x f 称为非齐次的。

1.二阶线性齐次线性方程 0)()(=+'+''y x Q y x P y (1) 如果函数 )(1x y 与)(2x y 是方程(1)的两个解, 则)()(2211x y C x y C y += 也是(1)的解,其中21,C C 是任意常数。 如果 )(1x y 与)(2x y 是方程(1)的两个线性无关的特解, 则 )()(2211x y C x y C y += (21,C C 是任意常数)是(1)的通解. 两个函数 )(1x y 与)(2x y 线性无关的充要条件为 C x y x y ≡/) () (21(常数) 2.二阶线性非齐次线性方程 设 )(*x y 是二阶线性非齐次线性方程 )()()(x f y x Q y x P y =+'+'' 的一个特解,)(x Y 是它对应的齐次方程(1)的通解,则 )()(*x y x Y y += 是该方程的 通解. 设 )(* 1x y 与)(*2 x y 分别是二阶线性非齐次方程 )()()(1x f y x Q y x P y =+'+'' 与 )()()(2x f y x Q y x P y =+'+'' 的两个特解。则 +)(*1x y )(*2x y 是 的特解。(叠加原理)

一阶常微分方程解法总结

页脚内容1 第 一 章 一阶微分方程的解法的小结 ⑴、可分离变量的方程: ①、形如 )()(y g x f dx dy = 当0)(≠y g 时,得到 dx x f y g dy )()(=,两边积分即可得到结果; 当0)(0=ηg 时,则0)(η=x y 也是方程的解。 例1.1、xy dx dy = 解:当0≠y 时,有xdx y dy =,两边积分得到)(2ln 2为常数C C x y += 所以)(11212 C x e C C e C y ±==为非零常数且 0=y 显然是原方程的解; 综上所述,原方程的解为)(1212 为常数C e C y x = ②、形如0)()()()(=+dy y Q x P dx y N x M 当0)()(≠y N x P 时,可有dy y N y Q dx x P x M ) ()()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=) x P 时,0x x =为原方程的解。 例1.2、0)1()1(22=-+-dy x y dx y x

页脚内容2 解:当0)1)(1(22≠--y x 时,有dx x x dy y y 1 122-=-两边积分得到 )0(ln 1ln 1ln 22≠=-+-C C y x ,所以有)0()1)(1(22≠=--C C y x ; 当0)1)(1(22=--y x 时,也是原方程的解; 综上所述,原方程的解为)()1)(1(22为常数C C y x =--。 ⑵可化为变量可分离方程的方程: ①、形如)(x y g dx dy = 解法:令x y u = ,则udx xdu dy +=,代入得到)(u g u dx du x =+为变量可分离方程,得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x x y f =。 ②、形如)0(),(≠+=ab by ax G dx dy 解法:令by ax u +=,则b du adx dy +=,代入得到)(1u G b a dx du b =+为变量可分离方程,得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x by ax f =+。 ③、形如 )(222111c y b x a c y b x a f dx dy ++++= 解法:01、02211 =b a b a ,转化为)(by ax G dx dy +=,下同①; 02、0221 1 ≠b a b a ,???=++=++00222111c y b x a c y b x a 的解为),(00y x ,令???-=-=00y y v x x u

微分方程解析近似解的符号计算研究

微分方程解析近似解的符号计算研究 【摘要】:本文基于数学机械化思想,借助于符号计算软件,以非线性方程为对象,系统地研究了适用于强非线性问题的解析近似方法:Adomian分解方法(ADM)和同伦分析方法(HAM)的应用和机械化实现。第一章是与本文相关的研究背景。简要综述了计算机代数和孤立子理论的发展进程,针对性地介绍了近年来解析近似方法的研究成果和现状。第二章改进了Adomian分解方法,能够获得修正Korteweg-deVries(mKdV)方程和Kadomtsev-Petviashvili(KP)方程的双孤子解。通过引入自变量变换和行波变换,将Degasperis-Procesi(DP)方程短波模型化为常微分方程,应用Adomian分解方法求解之,获得其闭合形式的解析解,再经过反变换,能够获得其环状孤子解。以上结果表明了Adomian分解方法在求解方程特殊孤子解方面的有效性。对Adomian分解方法进行了推广,解决了方程中离散变量不同于连续方程中的变量问题,并与Pade近似结合,能够获得几个经典的非线性微分差分方程组的孤子解,显著提高了方程解析近似解的精度。同时,我们还讨论了Pade有理近似中出现的伪极点问题,给出了合适选择Pade 近似阶数的指导原则。获得的解析近似解与精确解符合得很好,表明了Adomian分解方法对复杂强非线性问题的有效性。第三章通过引入自变量变换和行波变换,将偏微分方程化为常微分方程,通过同伦分析方法求解之,再经过反变换,能够获得DP方程短波模型的环状孤子解和Camassa-Holm(CH)方程短波模型的尖状孤子解,结果表明了同伦

分析方法在求解方程特殊孤子解方面的有效性。对同伦分析方法进行了推广,解决了方程中离散变量不同于连续方程中的变量问题,改进了同伦分析方法选择初始猜测解的方法,能够获得离散修正KdV方程的亮孤子解,获得的解析近似解与精确解符合得很好,表明了同伦分析方法对复杂强非线性问题的有效性。第四章在计算机代数系统Maple 上实现了Biazar提出的求解Adomian多项式的算法,编制了构造微分方程(组)和积分方程(组)解析近似解的自动推导软件包,这个算法避免了Adomian多项式的计算膨胀问题,降低了计算难度并显著提高了计算速度,通过大量实例说明了该软件包的有效性和实用性。【关键词】:微分方程微分差分方程解析近似解符号计算孤立子 【学位授予单位】:华东师范大学 【学位级别】:博士 【学位授予年份】:2010 【分类号】:O175 【目录】:摘要6-7Abstract7-11第一章绪论11-181.1数学机械化与计算机代数12-131.2孤立子理论13-141.3求解非线性方程的解析近似方法14-161.3.1Adomian分解方法14-151.3.2同伦分析方法15-161.4本文的选题和主要工作16-18第二章Adomian分解方法在非线性系统中的应用18-592.1Adomian分解方法求解非线性微分方程18-322.1.1

高等数学 微分方程

第十二章 微分方程 § 1 微分方程的基本概念 1、由方程x 2-xy+y 2=C 所确定的函数是方程( )的解。 A. (x-2y)y '=2-xy '=2x-y C.(x-2)dx=(2-xy)dy D.(x-2y)dx=(2x-y)dy 2、曲线族y=Cx+C 2 (C 为任意常数) 所满足的微分方程 ( ) 4.微分方程y '=y x 21-写成以 y 为自变量,x 为函数的形式为( ) A.y x 21dx dy -= B.y x 21dy dx -= '=2x-y D. y '=2x-y §2 可分离变量的微分方程 1.方程P(x,y)dx+Q(x,y)dy=0是( ) A.可分离变量的微分方程 一阶微分方程的对称形式, C.不是微分方程 D.不能变成 ) y ,x (P ) y ,x (Q dy dx -= 2、方程xy '-ylny=0的通解为( ) A y=e x B. y=Ce x cx D.y=e x +C 3、方程满足初始条件:y '=e 2x-y , y|x=0=0的特解为( ) A. e y =e 2x +1 2 1 e ln x 2+= C. y=lne 2x +1-ln2 D. e y =21e 2x +C 4、已知y=y(x)在任一点x 处的增量α+?+=?x x 1y y 2 ,且当?x →0时,α是?x 高阶无穷小,y(0)=π,则y(1)=( ) A. 2π B. π C. 4 e π 4e ππ 5、求特解 cosx sinydy=cosy sinxdx , y|x=0=4 π 解:分离变量为tanydy=tanxdx ,即-ln(cosy)=-ln(cosx)-lnC ,cosy=ccosx 代入初始条件:y|x=0= 4π 得:2 2C =特解为:2cosy=cosx 6、求微分方程()2 y x cos y x 2 1cos dx dy +=-+满足y(0)=π的特解。

高等数学第九章微分方程试题及答案

第九章 常微分方程 一.变量可分离方程及其推广 1.变量可分离的方程 (1)方程形式: ()()()()0≠=y Q y Q x P dx dy 通解() ()? ?+=C dx x P y Q dy (注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意 常数另外再加) (2)方程形式:()()()()02211=+dy y N x M dx y N x M 通解()()()() C dy y N y N dx x M x M =+??1221 ()()()0,012≠≠y N x M 2.变量可分离方程的推广形式 (1)齐次方程 ?? ? ??=x y f dx dy 令 u x y =, 则()u f dx du x u dx dy =+= ()c x c x dx u u f du +=+=-?? ||ln 二.一阶线性方程及其推广 1.一阶线性齐次方程 ()0=+y x P dx dy 它也是变量可分离方程,通解()?-=dx x P Ce y ,(c 为任意常数) 2.一阶线性非齐次方程 ()()x Q y x P dx dy =+ 用常数变易法可求出通解公式 令()()?-=dx x P e x C y 代入方程求出()x C 则得 ()()()[] ?+=??-C dx e x Q e y dx x P dx x P 3.伯努利方程 ()()()1,0≠=+ααy x Q y x P dx dy 令α-=1y z 把原方程化为()()()()x Q z x P dx dz αα-=-+11 再按照一阶线性非齐次方程求解。 4.方程: ()()x y P y Q dx dy -=1可化为()()y Q x y P dy dx =+ 以y 为自变量,x 为未知函数 再按照一阶线性非齐次方程求解。 三、可降阶的高阶微分方程

第五章 高等数学(理专) 微分方程试题库1

第五章 微分方程 试题库一 1.填空题 (1) 微分方程0),,,()4(='y y y x F 是 阶微分方程. (2)通过点)1,1(处,且在任意一点),(y x P 处的切线斜率为x 的曲线方程为 . (3) 微分方程054=-'-''y y y 的特征方程为 . (4) 微分方程03='-''y y 的通解为 . (5) 微分方程09=-''y y 的通解为 . (6) 微分方程y x x y -=e d d 的通解为 . (7) 微分方程054=-'+''y y y 的通解为 . (8) 微分方程20yy x '+=的通解为 . (9)微分方程560y y y '''-+=的特征方程为 . (10) 微分方程440y y y '''-+=的通解为 . 2.选择题 (1) 微分方程0))(,,,(24='''y y y x F 的通解中含有的相互独立的任意常数的个数是( ). A.1; B.2; C.3; D.4. (2) 下列微分方程中是可分离变量的微分方程的是( ). A.y xy x y +=d d ; B. y x y xy sin e d d =; C. 2d d y xy x y +=; D. 22d d y x x y +=. (3) 下列微分方程中是一阶线性非齐次微分方程的是( ). A. 2d d y xy x y +=; B.x xy y =+''; C.x xy y =+'; D. 02=+'xy y . (4) 微分方程x y e =''的通解为( ). A. x y e =; B. C y x +=e ; C. Cx y x +=e ; D. 21e C x C y x ++=.

高数(下)要点(含微分方程)——自己整理的

第六章 微分方程 一、一阶微分方程 1、一阶线性方程 )()(x Q y x P dx dy =+ ])([)()(C dx e x Q e y dx x P dx x P +?? =?-通解 2、伯努利方程 )1,0()()(d d ≠=+n y x Q y x P x y n ).()(d d 1111x Q y x P x y n n n =+?---令.1n y z -= 二、可降阶的高阶方程 1.)()(x f y n = n 次积分 2. )',("y x f y = 不显含y 令)('x p y =,化为一阶方程 ),('p x f p =。 3. )',("y y f y = 不显含自变量 令)('y p y =,dy dp p dx y d =22,化为一阶方程。 三、线性微分方程 )()()()(1)1(1)(x f y x a y x a y x a y n n n n =+'+++-- , 0)(≡x f 时称为齐次的,0)(≡/x f 称为非齐次的。 1.二阶线性齐次线性方程 0)()(=+'+''y x Q y x P y (1) 如果函数)(1x y 与)(2x y 是方程(1)的两个解, 则 )()(2211x y C x y C y += 也是(1)的解,其中21,C C 是任意常数。 如果)(1x y 与)(2x y 是方程(1)的两个线性无关的特解, 则 )()(2211x y C x y C y += (21,C C 是任意常数)是(1)的通解. 两个函数)(1x y 与)(2x y 线性无关的充要条件为

C x y x y ≡/) () (21(常数) 2.二阶线性非齐次线性方程 设 )(*x y 是二阶线性非齐次线性方程 )()()(x f y x Q y x P y =+'+'' 的一个特解,)(x Y 是它对应的齐次方程(1)的通解,则 )()(*x y x Y y += 是该方程 的通解. 设)(* 1x y 与 )(*2x y 分别是二阶线性非齐次方程 )()()(1x f y x Q y x P y =+'+'' 与 )()()(2x f y x Q y x P y =+'+'' 的两个特解。则+ )(* 1x y )(* 2x y 是 )()()()(21x f x f y x Q y x P y +=+'+'' 的特解。(叠加原理) 3.二阶线性常系数齐次方程 0'"=++qy py y 特征方程02 =++q pr r ,特征根 ,r r 4.二阶线性常系数非齐次方程 i) 如果 x m e x P x f λ)()(=, 则二阶线性常系数非齐次方程具有形如 x m k e x Q x y λ)(*= 的特解。 其中,)(x P m 是 m 次多项式, )(x Q m 也是系数待定的m 次多项式; 2,1,0=k 依照λ为特征根的重数而取值. i) 如果 []x x P x x P e x f n l x ωωλsin )(cos )()(+=, 则二阶线性常系数非齐次方程的特解可设为 [] x x R x x R e x y m m x k ωωλsin )(cos )() 2()1(*+=

常微分方程解题方法总结.doc

常微分方程解题方法总结 来源:文都教育 复习过半, 课本上的知识点相信大部分考生已经学习过一遍 . 接下来, 如何将零散的知 识点有机地结合起来, 而不容易遗忘是大多数考生面临的问题 . 为了加强记忆, 使知识自成 体系,建议将知识点进行分类系统总结 . 著名数学家华罗庚的读书方法值得借鉴, 他强调读 书要“由薄到厚、由厚到薄”,对同学们的复习尤为重要 . 以常微分方程为例, 本部分内容涉及可分离变量、 一阶齐次、 一阶非齐次、 全微分方程、 高阶线性微分方程等内容, 在看完这部分内容会发现要掌握的解题方法太多, 遇到具体的题 目不知该如何下手, 这种情况往往是因为没有很好地总结和归纳解题方法 . 下面以表格的形 式将常微分方程中的解题方法加以总结,一目了然,便于记忆和查询 . 常微分方程 通解公式或解法 ( 名称、形式 ) 当 g( y) 0 时,得到 dy f (x)dx , g( y) 可分离变量的方程 dy f ( x) g( y) 两边积分即可得到结果; dx 当 g( 0 ) 0 时,则 y( x) 0 也是方程的 解 . 解法:令 u y xdu udx ,代入 ,则 dy 齐次微分方程 dy g( y ) x dx x u g (u) 化为可分离变量方程 得到 x du dx 一 阶 线 性 微 分 方 程 P ( x)dx P ( x) dx dy Q(x) y ( e Q( x)dx C )e P( x) y dx

伯努利方程 解法:令 u y1 n,有 du (1 n) y n dy , dy P( x) y Q( x) y n(n≠0,1)代入得到du (1 n) P(x)u (1 n)Q(x) dx dx 求解特征方程:2 pq 三种情况: 二阶常系数齐次线性微分方程 y p x y q x y0 二阶常系数非齐次线性微分方程 y p x y q x y f ( x) (1)两个不等实根:1, 2 通解: y c1 e 1x c2 e 2x (2) 两个相等实根:1 2 通解: y c1 c2 x e x (3) 一对共轭复根:i , 通解: y e x c1 cos x c2 sin x 通解为 y p x y q x y 0 的通解与 y p x y q x y f ( x) 的特解之和. 常见的 f (x) 有两种情况: x ( 1)f ( x)e P m ( x) 若不是特征方程的根,令特解 y Q m ( x)e x;若是特征方程的单根,令特 解 y xQ m ( x)e x;若是特征方程的重根, 令特解 y*x2Q m (x)e x; (2)f (x) e x[ P m ( x) cos x p n ( x)sin x]

高等数学——微分方程

第八章 常微分方程 一、本章学习要求与内容提要 (一)基本要求 1.了解微分方程和微分方程的阶、解、通解、初始条件与特解等概念. 2.掌握可分离变量的微分方程和一阶线性微分方程的解法. 3.了解二阶线性微分方程解的结构. 4.掌握二阶常系数齐次线性微分方程的解法. 5.会求自由项为x m x P λe )(或x x P x m βαcos e )(,x x P x m βαsin e )(时的二阶常系数非 齐次线性微分方程的解. 6. 知道特殊的高阶微分方程()()(x f y n =,),(y x f y '='',),(y y f y '='')的降阶法. 7.会用微分方程解决一些简单的实际问题. 重点 微分方程的通解与特解等概念,一阶微分方程的分离变量法,一阶线性微分方程的常数变易法,二阶线性微分方程的解的结构,二阶常系数非齐次线性微分方程的待定系数法。 难点 一阶微分方程的分离变量法,一阶线性微分方程的常数变易法,二阶常系数非齐次线性微分方程的待定系数法,高阶微分方程的降阶法,用微分方程解决一些简单的实际问题. (二)内容提要 ⒈ 微分方程的基本概念 ⑴ 微分方程的定义 ①凡是含有未知函数的导数(或微分)的方程,称为微分方程. ②未知函数是一元函数的微分方程称为常微分方程,未知函数是多元函数的微分方程称为偏微分方程.本书只讨论常微分方程,简称微分方程. ⑵ 微分方程的阶、解与通解 微分方程中出现的未知函数最高阶导数的阶数,称为微分方程的阶.如果把函数 )(x f y =代入微分方程后,能使方程成为恒等式,则称该函数为该微分方程的解.若微分方 程的解中含有任意常数,且独立的任意常数的个数与方程的阶数相同,则称这样的解为微分方程的通解. ⑶ 初始条件与特解 用未知函数及其各阶导数在某个特定点的值作为确定通解中任意常数的条件,称为初始条件.满足初始条件的微分方程的解称为该微分方程的特解. ⑷ 独立的任意常数 ①线性相关与线性无关 设)(),(21x y x y 是定义在区间),(b a 内的函数,若存在两个不全为零的数21,k k ,使得对于区间),(b a 内的任一x ,恒有 0)()(2211=+x y k x y k

第七讲 MATLAB中求方程的近似根(解)

第七讲MATLAB中求方程的近似根(解) 教学目的:学习matlab中求根命令,了解代数方程求根求解的四种方法,即图解法、准解析法、数值方法以及迭代方法,掌握对分法、迭代法、牛顿切法线求方程近似根的基本过程;掌握求代数方程(组)的解的求解命令. 教学重点:求方程近似解的几种迭代方法,代数方程(组)的解的求解命令的使用方法.利用所学的编程知识,结合具体的实例,编制程序进行近似求根.掌握相关的代数方程(组)的求解命令及使用技巧. 教学难点:方程的近似求解和非线性方程(组)的求解. 一、问题背景和实验目的 求代数方程0 x f的根是最常见的数学问题之一(这里称为代数方程,主要是想和 (= ) 后面的微分方程区别开.为简明起见,在本实验的以下叙述中,把代数方程简称为方程),当) f为线性方程,否则称之为非线性方程.(x (= x ) f是一次多项式时,称0 当0 (x f的多样性,尚无一般的解析解法可使用,但如f是非线性方程时,由于) ) x (= 果对任意的精度要求,能求出方程的近似根,则可以认为求根的计算问题已经解决,至少能满足实际要求.同时对于多未知量非线性方程(组)而言,简单的迭代法也是可以做出来的,但在这里我们介绍相关的命令来求解,不用迭代方法求解. 通过本实验,达到下面目的: 1. 了解对分法、迭代法、牛顿切线法求方程近似根的基本过程; 2. 求代数方程(组)的解. 首先,我们先介绍几种近似求根有关的方法: 1.对分法 对分法思想:将区域不断对分,判断根在某个分段内,再对该段对分,依此类推,直到满足精度为止.对分法适用于求有根区间内的单实根或奇重实根. 设) a f ?b f,即()0 f a>,()0 f a<,()0 f b<或()0 f b>.则 ) , (< (x [b f在] a上连续,0 ( ) 根据连续函数的介值定理,在) fξ=. a内至少存在一点ξ,使()0 , (b 下面的方法可以求出该根:

微分方程总结

第七章 微分方程 1.一阶微分方程 (1)微分方程的基本概念: ①、微分方程:含有未知函数、未知函数的导数即自变量的等式叫做微分方程。未知函数是一元函数,叫做常微分方程;未知函数是多元函数,叫做偏微分方程。 ②、微分方程的阶:微分方程中所出现的未知函数导数的最高阶数,叫做微分方程的阶。 ③、微分方程的解:若某个函数代入微分方程能使该方程成为恒等式,这个函数就叫做该微分方程的解。 ④、微分方程的通解:若微分方程的解中所含相互独立的任意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解。 ⑤、微分方程的初始条件、特解:用来确定微分方程通解中任意常数的条件叫做初始条件。确定了通解中任意常数的解称为微分方程的特解。 (2)可分离变量方程:形如)()(dx dy x g x f =的方程称为可分离变量微分方程。设g(y)≠0,则可将方程化为dx )() (dy x f y g ,其特点是方程的一端只含有y 的函数dy ,另一端只含有x 的函数dx ,即将两个变量分离在等式两端,其接法是分离变量后两边积分得到通解。 (3)齐次方程:形如)(y x y f ='的方程称为齐次方程。其解法是做变换x y u =,则y=ux,dx du dx dy x u +=,代入方程化为可分离变量的微分方程。 (4)一阶线性微分方程:形如)()(dx dy x Q y x P =+的方程称为一阶线性微分呢方程,其特点是方程中的未知函数及其导数为一次的。如果0)(≡x Q ,则称为一阶线性齐次微分方程;如果Q(x)不恒等于零 ,则称为一阶线性非齐次微分方程,其通解为 C dx e x Q e y dx x P dx x P +?=??-)()()((。 (5)伯努利方程:形如)1,0()()('≠=+n y x Q y x P y n 的方程称为伯努利方程。次方程的特点是未知函数的导数仍是一次的,但未知函数出现n 次方幂。其解法是做变量替换n y z -=1,则: ,dx dz 11dx dy ,dx dy )1(dx dz 11n y y n n n -=-=--即 代入原方程,得: ),()1()()1(dx dz x Q n z x P n -=-+ 这是一个线性非齐次微分方程,再按线性非齐次微分方程的解法求出通解;最后以n y z -=1换回原变量,即为所求。 2、高阶微分方程,常系数线性微分方程: (1)可降价的高阶微分方程: ①、)()(x f y n =:其特点是右端仅含有自变量x ,通过连续积分n 次得到通解。 ②、)',(''y x f y =:其特点是方程不显含未知函数y 。令'''),('p y x p y ==则,代入原方程化为一阶微分

初中数学《方程的近似解》的教案.

初中数学《方程的近似解》的教案 2018-11-30 教学目的知识技能观察估计方程解的大致范围,用试值的方法,得到方程的近似解. 数学思考建立初步的数感和符号感,发展抽象思维 解决问题综合运用所学到的知识和技能解决问题,发展应用意识 情感态度培养学生对数学的好奇心和求知欲 教学难点通过观察估计方程解的大致范围 知识重点用试值的方法得到方程的近似解 教学过程 问题一: 小明的爸爸投资购买某种债券,第一年初购买了1万元,第二年初有购买了2万元,到第二年底本利和为3.35万元.设这种债券的年利润率不变,你能估计出年利润率的近似值吗? 师生活动:共同审题,设未知数,建立方程 设年利润率为r, 一起探究 根据题目的实际意义,总投入3万元,而本利和为3.35万元,所以r>0. 年利润r可能超过0.1吗?可能比0.06小吗? 方程的左边可化为 当r=0.1时,方程的左边=1.13.1 =3.41>3.35 0< r <0.1 当r=0.06时,方程的左边=1.063. 06=3.3.2436 <3.35 0.06< r <0.1

课堂练习 一架长为10m的梯子斜靠在墙上,梯子的顶端A除到地面的距离为8m.如果梯子的顶端沿墙面下滑1m,那么梯子的底端在地面上滑动的.距离也是1m 吗?请列出方程,并估计方程解的大致范围(误差不超过0.1m). 问题二:估计方程 x3-9=0 的解. 解:将方程化成 x3=9 由于23=8<9,33=27>9 通过试值,得到方程的解在2和3之间,并且接近2. 取x=2.1进行试值,2.13=9.261>9 2< x <2.1 再取x=2.08, x=2.09继续试值, 2.08< x <2.09 在实践探索交流中解决问题,逐步领悟解决问题的正确方法,克服畏难情绪。同时调动学生的思维积极性,提高动手能力和活用数学的意识. 通过观察,估计方程解的范围. 用试值的方法得到方程的近似解 通过估计方程的近似解,解决实际问题. 对高次方程进行估算,求其近似解. 小结与作业 课堂小结学生讨论总结,本节课的所得和估算要点 本课作业课本第48页习题1、2、3 课后随笔(课堂设计理念,实际教学效果及改进设想)

微分方程解法小结

微分方程解法小结 PB08207038 司竹 最近学习了微分方程,现对各种方法总结如下: 一、 一阶微分方程: F (x,y,y ')=0 ⒈可变量分离方程 形如φ(x )dx-ψ(y)dy,或可化为该形式的方程称为可变量分离方程。 解法:两边积分得:∫φ〔x 〕dx=∫ψ〔y 〕dy 。 ⒉齐次方程 dx dy =φ)(x y 解法:换元。令y=μx ,则原方程可化为可分离变量方程。 3.一阶线性微分方程dx dy +P (x )y=Q (x )y n 解法:两边同时乘以一个积分因子e ?dx )x (P ,可得其通解公式: y=e ?-dx x )(P ?? ????+??c dx e )x (dx x )(P Q 。 4.Bernouli 方程:dx dy +P (x )y=Q (x )y n 解法:两边除以y n 得:+dx dy y 1n P (x )y n 1-=Q (x ),再做代换μ= y n 1-,就化成 dx dy +(1-n )P (x )μ=Q (x )的线性方程。 二、二阶微分方程F (x ,y ,y ',y '')=0 ⒈可降阶的二阶微分方程 ① f ( x , y ',y '')=0型:令p= y ',则y ''=p ',将方程降阶为f (x ,p ,p ')=0的一阶方程。 ② f (y ,y ',y '')=0型:令p= y ',则y ''=p dy dp ,将方程降阶为f (y ,p ,p dy dp )=0. 2.二阶线性微分方程 ①齐次方程y ''+ P (x )y '+q (x )y=0 由已知条件或观察法或其他方法可得出齐次方程的一个特解y 1,用y=z y 1带入方程,整理后得出另一特解y 2= y 1dx e y 1dx x 21?-?)(P 。(或可通过Liouville 公式,亦可得出另一特解。)再由叠加原理得:齐次方程的通解为y=c 1 y 1+c 2 y 2。 ③非齐次方程y ''+ P (x )y '+q (x )y=f (x )

方程的近似解法word版

第二章 方程求根 在许多实际问题中,常常会遇到方程f(x)=0求解的问题。当f(x)为一次多项式时,f(x)=0称为线性方程,否则称为非线性方程。对于非线性方程,由于f(x)的多样性,求其根尚无一般的解析方法可以使用,因此研究非线性方程的数值解法是十分必要的。 本章主要介绍求非线性方程根的一些常用方法。它们是增值寻根法、二分法、迭代法、牛顿法及割线法。这些方法均是知道根的初始近似值后,进一步把根精确化,直到达到所要求的 精度为止。也即求非线性方程根的数值方法。 第一节 第一节 增值寻根法与二分法 2.1.1 增值寻根法 设非线性方程f(x)=0的根为* x ,增值寻根法的基本思想是,从初始值0x 开始,按规定 的一个初始步长h 来增值。令 1n x +=n x +h(n=0,1,2,…),同时计算f(1n x +)。 在增值的计算过程中可能遇到三种情形: (1) f(1n x +)=0,此时1n x +即为方 程的根* x 。 (2) f(n x )和f(1n x +)同符号。这说明区间[n x , 1n x +]内无根。 (3) f(n x )和f(1n x +)异号,即有 f(n x )·f(1n x +)<0 此时当f(x)在区间[n x , 1n x +]上连续时,方程f(x)=0在[n x , 1n x +] 一定有根。也即我们用增值寻根法找到了方程根的存在区间,n x 或1n x +均可以视为根的近似值。下一步就是设法在该区间内寻找根 * x 更精确的近似值,为此再用增值 寻根法 把n x 作为新的初始近似值,同时把步长缩小,例如选新步长 1 100h h =,这 样会得到区间长度更小的有根区间,从而也得到使f(x)更接近于零的n x ,作为*x 更 精确的近似值,若精度不够,可重复使用增值寻根法,直到有根区间的长度|1n x +-n x |<ε(ε为所要求的精度)为止。此时f(n x )或f(1n x +)就可近似认为是零。n x 或1n x +就是满足精度的方程的近似根(如图2-1). 2—1

一阶常微分方程解法归纳

第 一 章 一阶微分方程的解法的小结 ⑴、可分离变量的方程: ①、形如 )()(y g x f dx dy = 当0)(≠y g 时,得到 dx x f y g dy )() (=,两边积分即可得到结果; 当0)(0=ηg 时,则0)(η=x y 也是方程的解。 例1.1、 xy dx dy = 解:当0≠y 时,有 xdx y dy =,两边积分得到)(2ln 2为常数C C x y += 所以)(112 12 C x e C C e C y ±==为非零常数且 0=y 显然是原方程的解; 综上所述,原方程的解为)(12 12 为常数C e C y x = ②、形如0)()()()(=+dy y Q x P dx y N x M 当0)()(≠y N x P 时,可有 dy y N y Q dx x P x M ) () ()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=) x P 时,0x x =为原方程的解。 例1.2、0)1()1(2 2 =-+-dy x y dx y x 解:当0)1)(1(2 2 ≠--y x 时,有 dx x x dy y y 1 122-=-两边积分得到 )0(ln 1ln 1ln 22≠=-+-C C y x ,所以有)0()1)(1(22≠=--C C y x ; 当0)1)(1(2 2 =--y x 时,也是原方程的解; 综上所述,原方程的解为)()1)(1(2 2 为常数C C y x =--。 ⑵可化为变量可分离方程的方程: ①、形如 )(x y g dx dy =

解法:令x y u =,则udx xdu dy +=,代入得到)(u g u dx du x =+为变量可分离方程,得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x x y f =。 ②、形如)0(),(≠+=ab by ax G dx dy 解法:令by ax u +=,则b du adx dy +=,代入得到)(1u G b a dx du b =+为变量可分离方程, 得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x by ax f =+。 ③、形如 )(2 221 11c y b x a c y b x a f dx dy ++++= 解法:01、 02 2 11=b a b a ,转化为 )(by ax G dx dy +=,下同①; 02、 022 1 1≠b a b a ,???=++=++00 222111 c y b x a c y b x a 的解为),(00y x ,令???-=-=00y y v x x u 得到,)()( )(221 12211u v g u v b a u v b a f v b u a v b u a f du dv =++=++=,下同②; 还有几类:xy u dy xy xg dx xy yf ==+,0)()( xy v xy f dx dy x ==),(2 22),(x y w x y xf dx dy == θθsin ,cos ,0))(,())(,(r y r x ydx xdy y x N ydy xdx y x M ===-++ 以上都可以化为变量可分离方程。 例2.1、 2 5 --+-=y x y x dx dy 解:令2--=y x u ,则du dx dy -=,代入得到u u dx du 7 1+= - ,有dx udu 7-= 所以)(72 2 为常数C C x u +-=,把u 代入得到)(72 22 为常数) (C C x y x =+--。 例2.2、 1 212+-+-=y x y x dx dy

相关文档