文档库 最新最全的文档下载
当前位置:文档库 › C型双柱式车床电气原理图

C型双柱式车床电气原理图

C型双柱式车床电气原理图
C型双柱式车床电气原理图

3.3 C5225型立式车床电气控制电路概述

C5225立式车床电器控制电路原理图如图1所示。

从图1(a)可知,C5225型立式车床由7台电动机拖动;主轴电动机M1、油泵电动机M2、横梁升降电动机M3、右立刀架快速移动电动机M4、右立刀架进给电动机M5、左立刀架快速移动电动机M6、左立刀架进给电动机M7。

从图1(b)、(c)可知,只有在油泵电动机M2启动运行、机场润滑状态良好的情况下,其它的电动机才能启动。

(1)油泵电动机M2控制

按下按钮SB2,接触器KM4通电闭合,油泵电动机M2启动运转,同时14区接触器KM4的常开触点闭合,接通了其它电动机控制电路的电源,为其他电动机的启动运行作好了准备。

(2)主拖动电动机M1控制

主拖动电动机M1可采用降压启动控制,也可采用正、反转电动控制,还可采用停车制动控制,由主动拖动电动机M1拖动的工作台还可以通过电磁阀的控制来达到变速的目的。

①主拖动电动机M1的Y-△降压启动控制。按下按钮SB4(15区),中间继电器K1闭合并自锁,接触器KM1线圈(17区)通电闭合,继而接触器KMY线圈(24区)通电闭合,同时时间继电器KT1线圈(21区)通电闭合,主拖动电动机M1开始Y-△降压启动。经过一定的时间,时间继电器KT1动作,接触器KT1线圈断电释放,接触器KMY线圈断电,接触器KM△线圈(26区)通电闭合,主拖动电动机M1△接法全压运行。

②主拖动电动机 M1正、反转点动控制。按下正转电动按钮SB5(17区),接触器KM1线圈通电闭合,继而接触器KMY通电闭合,主拖动电动机M1正向Y 接法电动启动转动。按下反转电动按钮SB6(20区),接触器KM2线圈(20区)通电闭合。继而接触器KMY通电闭合,主拖动电动机M1反向Y接法点动启动转动。

③主拖动点动机M1停车制动控制。当主拖动电动机M1启动运转时,速度继电器电器KS的常开触点(22区)闭合。按下停止按钮SB3(15区)。中间继电器K1、接触器KM1、接触器KM△线圈失电释放,速度继电器的常开触点(22区)

复位断开,主拖动电动机M1能耗制动。当速度下降至100r/min时,速度继电器的常开触点(22区)复位断开,主拖动电动机M1制动停车完毕。

④工作台的变速控制。工作台变速控制由手动开关SA控制,改变手动开关SA的位置(电路图中35~38区),电磁铁YA1~YA4有不同的通断组合,可得到工作台各种不同的通断组合,可得到工作台各种不同的转速表。

表3.3-1 C5225型立式车床转速表

将SA扳至所需转速位置,按下按钮SB7(31区),中间继电器K3、时间继电器KT4线圈通电吸合,继而电磁铁YA5线圈通电吸合,接通锁杆油路,锁杆压合行程开关ST1(28区)闭合,使中间继电器K2、时间继电器KT2线圈通电吸合,变速指示灯HL2亮,相应的变速电磁铁(YA1~YA4)线圈通电,工作台得到相应的转速。

时间继电器KT2闭合后,经过一定的时间,KT3线圈通电闭合,使基础期KM1、KMY通电吸合,主拖动电动机M1做短时启动运行,促使变速齿轮啮合。变速齿轮啮合后,ST1复位,中间继电器K2、时间继电器KT2、KT3、电磁铁YA1~YA4失电释放,完成工作台的变速过程。

(3)横梁升、降控制

①横梁上升控制。按下横梁上升按钮SB15(68区),中间继电器K12线圈通电吸合,继而横梁放松电磁铁YA6(33区)通电吸合,接通液压系统油路,横梁加紧机构放松,然后行程开关ST7、ST8、ST9、ST10(63区)复位闭合,接触器KM9线圈(64区)通电闭合,横梁升降电动机M3正向启动转动,带动横梁上升。松开按钮SB15,横梁停止上升。

②横梁下降控制。按下横梁下降按钮SB14(66区),时间继电器KT8(66区)、KT9(67区)及中间继电器K12(68区)线圈通电吸合,继而横梁放松电磁铁YA6(33区)通电吸合,接通液压系统油路,横梁夹紧机构放松,然后行程

开关ST7、ST8、ST9、ST10(63区)复位闭合,接触器KM10线圈(65区)通电闭合,横梁升降电动机M3反向启动运转,带动横梁下降。松开按钮SB4,横梁下降停止。

(4)刀架控制

①右立刀架快速移动控制。将十字手动开关SA1扳至“向左”(47区~50区)位置,中间继电器K4(47区)通电吸合,继而右立刀架向左快速离合器电磁铁YC1线圈(72区)通电吸合。然后按下右立刀架快速移动电动机M4启动转动,带动右立刀架快速向左移动。从而控制右立刀架向右、向上、向下快速移动。

同理,将十字手动开关SA1扳至“向右”、“向上”、“向下”位置,分别可使右立刀架各移动方向电磁离合器电磁铁YC2~YC4(74区~79区)线圈吸合,从而控制右立刀架向右、向上、向下快速移动。

与右立刀架快速移动控制的原理相同,左立刀架快速移动通过十字手动开关SA2(59区~62区)扳至不同位置来控制电磁离合器电磁铁YC9~YC12的通断,按下右立刀架快速移动电动机M6启动按钮SB11(15区)控制右立刀架快速移动电动机M6的启停来实现。

②右立刀架进给控制。在工作台电动机M1启动的前提下,将手动开关SA3(43区)扳至接通位置,按下右立刀架进给电动机M5启动按钮SB10,接触器KM6通电吸合,右立刀架进给电动机M5启动运转,带动右立刀架工作进给。按下右立刀架进给电动机M5的停止按钮SB9,右立刀架进给电动机M5停转。

左立刀架进给电动机M7的控制过程相同。

③左、右立刀架快速移动和工作进给制动控制。当右立刀架快速移动电动机M3或右立刀架进给电动机M4启动运转时,时间继电器KT6通电闭合,80区瞬时闭合延时断开触点闭合。当松开右立刀架快速进给移动电动机M3的电动按钮SB8或按下右立刀架进给电动机M4的停止按钮SB9时,接触器KM5或KM6失电释放,由于KT6为断电延时,因而80区中的时间继电器KT6的瞬时闭合延时断开触点仍然闭合,此时按下右立刀架水平制动离合器按钮SB16(80区),右立刀架水平制动离合器电磁铁YC5、YC6线圈通电吸合,使制动离合器动作,对右立刀架的快速进给及工作进给制动。左立刀架快速移动和工作进给制动控制

-

-

-

图2 C5225型立式车床电器控制原理图(一)

图2 C5225型立式车床电器控制原理图(二)

图2 C5225型立式车床电器控制原理图(三)

3.4 C5225型立式车床PLC控制输入输出地址表表3.4-1 PLC控制输入输出地址表

续表3.4-1

X62W万能铣床电气原理图

X62W万能铣床的实训说明 一、X62W万能铣床实训的基本组成 1、面板1 面板上安装有机床的所有主令电器及动作指示灯、机床的所有操作都在这块面板上进行,指示灯可以指示机床的相应动作。 2、面板2 面板上装有断路器、熔断器、接触器、热继电器、变压器等元器件,这些元器件直接安装在面板表面,可以很直观的看它们的动作情况。 3、电动机 三个380V三相鼠笼异步电动机,分别用作主轴电动机、进给电动机和冷却泵电动机。 4、故障开关箱 设有32个开关,其中K1到K29用于故障设置;K30到K31四个开关保留;K32用作指示灯开关,可以用来设置机床动作指示与不指示。 二、原理图

三、机床分析 1、机床的主要结构及运动形式 (1)主要结构由床身、主轴、刀杆、 横梁、工作台、回转盘、横溜板和升降台等 几部分组成,如右图所示。 (2)运动形式 1)主轴转动是由主轴电动机通过弹性 联轴器来驱动传动机构,当机构中的一个双 联滑动齿轮块啮合时,主轴即可旋转。 1)工作台面的移动是由进给电动机驱动,它通过机械机构使工作台能进行三种形式六个方向的移动,即:工作台面能直接在溜板上部可转动部分的导轨上作纵向(左、右)移动;工作台面借助横溜板作横向(前、后)移动;工作台面还能借助升降台作垂直(上、下)移动。 2、机床对电气线路的主要要求 (1)机床要求有三台电动机,分别称为主轴电动机、进给电动机和冷却泵电动机。 (2)由于加工时有顺铣和逆铣两种,所以要求主轴电动机能正反转及在变速时能瞬时冲动一下,以利于齿轮的啮合,并要求还能制动停车和实现两地控制。 (3)工作台的三种运动形式、六个方向的移动是依靠机械的方法来达到的,对进给电动机要求能正反转,且要求纵向、横向、垂直三种运动形式相互间应有联锁,以确保操作安全。同时要求工作台进给变速时,电动机也能瞬间冲动、快速进给及两地控制等要求。 (4)冷却泵电动机只要求正转。 (5)进给电动机与主轴电动机需实现两台电动的联锁控制,即主轴工作后才能进行进给。 3.电气控制线路分析

三相双速异步电动机控制电路

三相双速异步电动机控制电路

————————————————————————————————作者:————————————————————————————————日期:

一、双速电机控制原理调速原理 根据三相异步电动机的转速公式:n1=60f/p 三相异步电动机要实现调速有多种方法,如采用变频调速(YVP变频调速电机配合变频器使用),改变励磁电流调速(使用YCT电磁调速电机配合控制器使用,可实现无极调速),也可通过改变电动机变极调速,即是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。 根据公式;n1=60f/p可知异步电动机的同步转速与磁极对数成反比,磁极对数增加一倍,同步转速n1下降至原转速的一半,电动机额定转速n也将下降近似一半,所以改变磁极对数可以达到改变电动机转速的目的(这也是常见的2极电机同步转速为3000rpm,4极电机同步转速1500rpm,6极电机同步转速1000rpm等)。这种调速方法是有级的,不能平滑调速,而且只适用于鼠笼式电动机,这就是双速电机的调速原理。下图介绍的是最常见的单绕组双速电动机,转速比等于磁极倍数比,如2极/4极、4级/8极,从定子绕组△接法变为YY接法,磁极对数从p=2变为p=1。 ∴转速比=2/1=2 双速电机的变速原理是: 电机的变速采用改变绕组的连接方式,也就是说用改变电机旋转磁场的磁极对数来改变它的转速。 如你单位的双速电机(风机),平时转速低,有时风机就高速转,主要是通过外部控制线路的切换来改变电机线圈的绕组连接方式来实现。 1、在定子槽内嵌有两个不同极对数的共有绕组,通过外部控制线路的切换来改变电机定子绕组的接法来实现变更磁极对数; 2、在定子槽内嵌有两个不同极对数的独立绕组; 3、在定子槽内嵌有两个不同极对数的独立绕组,而且每个绕组又可以有不同的联接。 (一)双速电机定子接线图 三相双速异步电动机的定子绕组有两种接法:△接和YY接法,如下图所示。

接触器控制的双速电动机电气原理图文档

自制各种PLC编程电缆 前言 随着可编程序控制器(PLC)在工业控制领域的广泛应用,PLC编程成了电气工程技术人员必须掌握的专业技能。可编程序控制器的品牌众多,欧、美、日、韩及台湾的PLC纷纷抢滩大陆,在给使用者提供了多种选择的同时,也给使用者带来了小小麻烦。由于不同品牌PLC的编程电缆互不通用,买一根原装电缆往往上千元。对于以学习为主要目的以及经常碰到不同品牌PLC的技术人员来说,如果能够有办法花较低的代价自制一根编程电缆,无疑为他们提供了方便。PLC虽然品牌众多,但各种品牌的PLC其编程接口不外乎几种型式,在PLC随机提供的技术手册里一般也都会提供编程口的引脚定义,这就为自制编程线提供了可能。下面我就PLC编程口的几种串行通信接口标准和物理结构,详细说明如何DIY一根适用的编程电缆。 二.PLC编程口的型式 编程电缆一端与PC的COM口相连,另一端与PLC的编程口相连,PC端的COM 口均为RS232C接口,DB-9针形插头。而PLC的编程口按接口标准一般可分为三种,即RS232、RS485、RS422 。按物理结构可分为五种,即八针圆口(DIN-8),九针D形口(DB-9),二十五针D形口(DB-25),RJ11口以及专用接口,其中以前两种居多,各接口引脚排列如图一所示。 图一

为了做好编程电缆,首先要大概了解一下这三种串行通信接口标准。RS-232、RS-422与RS-485是三种串行数据接口标准,接口标准只对接口的电气特性做出规定,而不涉及接插件、电缆或协议,所以同样一种接口标准可以有不同的物理结构,如DB-9 、DB-25等。RS-232是PC机与通信工业中应用最广泛的一种串行接口,RS-232C总线标准设有25条信号线,包括一个主通道和一个辅助通道。多数情况下只使用主通道,常用九条信号线(九针D形口),各引脚定义如表一所示。对于一般双工通信,仅需几条信号线就可实现,如发送数据线TXD 和接收数据线RXD以及逻辑地线GND,RS232C只能点对点通讯,传输距离短,共模抑制能力差。 RS-485采用平衡发送和差分接收,因此具有抑制共模干扰的能力。它使用一对双绞线,将其中一根定义为A(TXD-/RXD-),另一根定义为B(TXD+/RXD+),不需要数字地线。速率在100kbps及以下时通信距离达1200米以上。RS-485 可以联网构成分布式系统,其允许最多并联32台驱动器和32台接收器。RS-485只能实现半双工通信。 RS-232接口引脚定义 25 针9 针缩写描述 2 3 TXD 发送数据 3 2 RXD 接收数据 4 7 RTS 请求发送 5 8 CTS 允许发送 6 6 DSR 通讯设备准备好 7 5 GND 信号地 8 1 CD 载波检测 20 4 DTR 数据终端准备好 22 9 RI 响铃指示器 表一 RS-422接口标准主要是为克服RS-232接口标准的通讯距离短和传输速率慢而建立

常见电动机控制电路图

电机启动常见方法 1、定时自动循环控制电路 说明:(技师一) 1、题图中的三相异步电动机容量为,要求电路能定时自动循环正反转 控制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮SB2串联的KT1、KT2断电延

时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。

双速电机原理及接线图

双速电机接线图 一、双速电动机简介 双速电动机属于异步电动机变极调速,是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。 根据公式;n1=60f/p可知异步电动机的同步转速与磁极对数成反比,磁极对数增加一倍,同步转速n 1下降至原转速的一半,电动机额定转速n也将下降近似一半,所以改变磁极对数可以达到改变电动机转速的目的。这种调速方法是有级的,不能平滑调速,而且只适用于鼠笼式电动机。 此图介绍的是最常见的单绕组双速电动机,转速比等于磁极倍数比,如2极/4极、4级/8极,从定子绕组△接法变为YY接法,磁极对数从p=2变为p=1。 ∴转速比=2/1=2 二、控制电路分析 1、合上空气开关QF引入三相电源 2、按下起动按钮SB2,交流接触器KM1线圈回路通电并自锁,KM1主触头闭合,为电动机引进三相电源,L1接U1、L2接V1、L3接W1;U2、V2、W2悬空。电动机在△接法下运行,此时电动机p=2、n1=1500转/分。

3、若想转为高速运转,则按SB3按钮,SB3的常闭触点断开使接触器KM1线圈断电,KM1主触头断开使U1、V1、W1与三相电源L1、L2、L3脱离。其辅助常闭触头恢复为闭合,为KM2线圈回路通电准备。同时接触器KM2线圈回路通电并自锁,其常开触点闭合,将定子绕组三个首端U1、V1、W1连在一起,并把三相电源L1、L2、L3引入接U2、V2、W2,此时电动机在YY接法下运行,这时电动机p= 1,n1=3000转/分。KM2的辅助常开触点断开,防KM1误动。 4、FR1、FR2分别为电动机△运行和YY运行的过载保护元件。 5、此控制回路中SB2的常开触点与KM1线圈串联,SB2的常闭触点与KM2线圈串联,同样SB3按钮的常闭触点与KM1线圈串联,SB3的常开于KM2线圈串联,这种控制就是按钮的互锁控制,保证△与YY两种接法不可能同时出现,同时KM2辅助常闭触点接入KM1线圈回路,KM1辅助常闭触点接入K M2线圈回路,也形成互锁控制。 三、定子接线图如下 低速时绕组的接法高速时绕组的接法

(建筑电气工程)接触器控制的双速电动机电气原理图精编

(建筑电气工程)接触器控制的双速电动机电气原理 图

自制各种PLC编程电缆 前言 随着可编程序控制器(PLC)在工业控制领域的广泛应用,PLC编程成了电气工程技术人员必须掌握的专业技能。可编程序控制器的品牌众多,欧、美、日、韩及台湾的PLC 纷纷抢滩大陆,在给使用者提供了多种选择的同时,也给使用者带来了小小麻烦。由于不同品牌PLC的编程电缆互不通用,买壹根原装电缆往往上千元。对于以学习为主要目的以及经常碰到不同品牌PLC的技术人员来说,如果能够有办法花较低的代价自制壹根编程电缆,无疑为他们提供了方便。PLC虽然品牌众多,但各种品牌的PLC其编程接口不外乎几种型式,在PLC随机提供的技术手册里壹般也都会提供编程口的引脚定义,这就为自制编程线提供了可能。下面我就PLC编程口的几种串行通信接口标准和物理结构,详细说明如何DIY壹根适用的编程电缆。 二.PLC编程口的型式 编程电缆壹端和PC的COM口相连,另壹端和PLC的编程口相连,PC端的COM 口均为RS232C接口,DB-9针形插头。而PLC的编程口按接口标准壹般可分为三种,即RS232、RS485、RS422。按物理结构可分为五种,即八针圆口(DIN-8),九针D形口(DB-9),二十五针D形口(DB-25),RJ11口以及专用接口,其中以前俩种居多,各接口引脚排列如图壹所示。 图壹

为了做好编程电缆,首先要大概了解壹下这三种串行通信接口标准。RS-232、RS-422和RS-485是三种串行数据接口标准,接口标准只对接口的电气特性做出规定,而不涉及接插件、电缆或协议,所以同样壹种接口标准能够有不同的物理结构,如DB-9、DB-25等。 RS-232是PC机和通信工业中应用最广泛的壹种串行接口,RS-232C总线标准设有25条信号线,包括壹个主通道和壹个辅助通道。多数情况下只使用主通道,常用九条信号线(九针D形口),各引脚定义如表壹所示。对于壹般双工通信,仅需几条信号线就可实现,如发送数据线TXD和接收数据线RXD以及逻辑地线GND,RS232C只能点对点通讯,传输距离短,共模抑制能力差。 RS-485采用平衡发送和差分接收,因此具有抑制共模干扰的能力。它使用壹对双绞线,将其中壹根定义为A(TXD-/RXD-),另壹根定义为B(TXD+/RXD+),不需要数字地线。速率在100kbps及以下时通信距离达1200米之上。RS-485能够联网构成分布式系统,其允许最多且联32台驱动器和32台接收器。RS-485只能实现半双工通信。 RS-232接口引脚定义 25针9针缩写描述 23TXD发送数据 32RXD接收数据 47RTS请求发送 58CTS允许发送

组合机床电气控制课程设计1

组合机床电气控制课程设计专业:机械设计制造及其自动化 班级: 学号: 姓名: 指导老师: 湖南工业大学 2011年6月11日

目录 1绪论 (3) 2设计方案 (4) 2.1 左、右两动力头进给电机 (4) 2.2电动机控制电路 (5) 2.3液压泵电动机 (5) 2.4液压动力滑台控制 (6) 2.5主电路及照明电路 (7) 2.6保护与调整环节 (8) 2.7继电器电气原理简图 (10) 4 I/O分配表 (12) 5组合机床电气控制电路图 (14) 6课程设计的具体内容 (15) 6.1单循环自动工作 (15) 6.1.1单循环自动工作循环图 (15) 6.1.3单循环自动工作梯形图 (16) 6.2左铣单循环工作 (18) 6.2.1左铣单循环功能表 (18) 6.2.2左铣单循环梯形图 (19) 6.3右铣单循环工作 (21) 6.3.1右铣单循环梯形图 (21) 6.4公用程序 (23) 6.5回原位程序 (23) 6.6手动程序 (24) 6.7 PLC梯形图总体结构图 (24) 6.8面板设计 (25) 7系统调试 (26) 8设计心得 (27) 9参考文献 (28)

1绪论 对于机械—电气结合控制的组合机床,电气控制系统起着重要的神经中枢作用。传统的组合机床采用的继电器—接触器控制系统,接线复杂、故障率高、调试和维护困难。 随着PLC控制技术日益成熟并得到越来越广泛的应用,利用原有的继电器—接触器控制电路设计PLC控制系统,或直接进行PLC控制系统的设计,都能很好地满足组合机床自动化控制的要求。本次设计的要求如下: 组合机床结构示意图 组合机床工作循环图 组合机床采用两个动力头从两个侧面分别加工,左、右动力头的电动机均为2.2kw,

双速电机接线图及控制原理分析

双速电机接线图及控制原理分析 一、双速电机控制原理调速原理 根据三相异步电动机的转速公式:n1=60f/p 三相异步电动机要实现调速有多种方法,如采用变频调速(YVP变频调速电机配合变频器使用),改变励磁电流调速(使用YCT电磁调速电机配合控制器使用,可实现无极调速),也可通过改变电动机变极调速,即是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。 根据公式;n1=60f/p可知异步电动机的同步转速与磁极对数成反比,磁极对数增加一倍,同步转速n1下降至原转速的一半,电动机额定转速n也将下降近似一半,所以改变磁极对数可以达到改变电动机转速的目的(这也是常见的2极电机同步转速为3000rpm,4极电机同步转速1500rpm,6极电机同步转速1000rpm等)。这种调速方法是有级的,不能平滑调速,而且只适用于鼠笼式电动机,这就是双速电机的调速原理。 下图介绍的是最常见的单绕组双速电动机,转速比等于磁极倍数比,如2极/4极、4级/8极,从定子绕组△接法变为YY接法,磁极对数从p=2变为p=1。 ∴转速比=2/1=2 二、控制电路分析(双速电机接线图如下图)

1、合上空气开关QF引入三相电源 2、按下起动按钮SB2,交流接触器KM1线圈回路通电并自锁,KM1主触头闭合,为电动机引进三相电源,L1接U1、L2接V1、L3接W1;U2、V2、W2悬空。电动机在△接法下运行,此时电动机p=2、n1=1500转/分。 3、FR1、FR2分别为电动机△运行和YY运行的过载保护元件。 4、若想转为高速运转,则按SB3按钮,SB3的常闭触点断开使接触器KM1线圈断电,KM1主触头断开使U1、V1、W1与三相电源L1、L2、L3脱离。其辅助常闭触头恢复为闭合,为KM2线圈回路通电准备。同时接触器KM2线圈回路通电并自锁,其常开触点闭合,将定子绕组三个首端U1、V1、W1连在一起,并把三相电源L1、L2、L3引入接U2、V2、W2,此时电动机在YY接法下运行,这时电动机p=1,n1=3000转/分。KM2的辅助常开触点断开,防KM1误动。 5、此控制回路中SB2的常开触点与KM1线圈串联,SB2的常闭触点与KM2线圈串联,同样SB3按钮的常闭触点与KM1线圈串联,SB3的常开于KM2线圈串联,这种控制就是按钮的

典型电动机控制原理图及解说

1、定时自动循环控制电路 说明: 1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转控制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器K A吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并 联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合 触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时 开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电 延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电 。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止 。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动 合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触 点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此

时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮 SB2串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次 起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断 开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理: 图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2, KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机 的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2 电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件 ,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制 KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路 只有满足M1电动机先起动的条件,才能起动M2电动机。 3、电动机顺序控制电路

组合机床电气控制课程设计

目录 一、绪论 (1) 二、组合机床简介 (1) 三、组合机床结构与工作循环 (2) 四、液压动力滑台系统 (4) 五、设计要求 (5) 六、继电器-接触器控制线路的设计 (6) (一)选用控制线路的设计方法 (6) (二)继电器——接触器控制线路 (7) (三)一些低压电器的选择 (9) 七、可编程控制器PLC控制系统的设计 (11) 八、设计总结 (13) 九、参考文献 (13)

一、绪论 本次设计是对组合机床的电气控制设计,根据设计要求设计电气控制系统及连接,使其能实现自动完成各个工作要求。 设计的主要内容包括对继电器电气原理图的设计及绘制,对PLC电器原理图的设计与绘制,制成控制板并进行连接。 这次设计的目的在于通过完成设计,了解可编程控制器的结构、工作原理、特点和用途,掌握对继电器的选型和各型号继电器的用途和作用,掌握可编程控制器的编程方法和指令系统。 二、组合机床简介 组合机床通常是采用多刀、多面、多工序、多工位同时加工,由通用部件和专用部件组成的工序集中的高效率专用机床。它的电气控制电路时将各个部件的工作组合成一个统一的循环系统。在组合机床上可以完成钻孔、扩孔、铰孔、镗孔、攻螺孔、车削、铣削及磨削等工序。组合机床主要用于大批量生产。 组合机床的通用部件有:动力部件,如动力头和动力滑台;支承部件,如滑座、床身、支柱和中间底座;输送部件,如回转分度工作台、回转鼓轮、自动线回转工作台及零件输送装置;控制部件,如液压元件、控制板、按钮台及电气挡铁;其他部件,如机械手;排屑装置和润滑装置等。通用部件已标准化、系列化和通用化。 组合车床的控制系统大多采用机械、液压或气动、电气相结合的控制方式。其中,电气控制又起着中枢连接作用。因此,应注意分析组合机床电气控制系统与机械、液压或气动部分的相互关系。 组合机床组成部件不是一成不变的,它将随着生产力的向前发展而不断更新,因此与其相适应的电器控制线路也是更新换代,目前主要有两种:机械动力滑动控制路线和液压动力滑动控制路线。我们选择的液压动力滑动控制路线。 液压动力滑动与机械动力滑台在结构上的区别在于:液压动力滑台的进给运动是借助压力油道通入液压缸的前腔和后腔来实现的。液压动力滑台由滑台、滑座及液压缸三部分组成,液压缸驱动滑台在滑座上移动。液压动力滑台也具有前面机械动力滑台的典型自动工作循环过程,它是通过电气控制线路控制液压系统来实现的。滑台的工作速度是通过调整节流阀进行无极调速的。电气控制一般采用行程原则、时间原则控制及压力控制方式。

组合机床电气控制课程设计

目录 第一章绪论 (1) 第二章设计方案 (3) 2.1 左、右两动力头进给电机 (3) 2.2电动机控制电路 (3) 2.3液压泵电动机 (4) 2.4液压动力滑台控制 (4) 2.5主电路及照明电路 (6) 2.6保护与调整环节 (6) 2.7继电器电气原理简图 (8) 第三章I/O分配表 (10) 第四章组合机床电气控制电路图 (11) 第五章课程设计的具体内容 (12) 5.1单循环自动工作 (12) 5.1.1单循环自动工作循环图 (12) 5.1.2单循环自动工作功能表 (12) 5.1.3单循环自动工作梯形图 (12) 5.2左铣单循环工作 (13) 5.2.1左铣单循环功能表 (13) 5.2.2左铣单循环梯形图 (13) 5.3右铣单循环工作梯形图 (13) 5.4公用程序 (13) 5.5回原位程序 (14) 5.6手动程序 (15) 5.7 PLC梯形图总体结构图 (15) 5.8面板设计 (16) 第六章系统调试 (17) 第七章设计心得 (18) 第八章参考文献 (19)

第一章绪论 对于机械—电气结合控制的组合机床,电气控制系统起着重要的神经中枢作用。传统的组合机床采用的继电器—接触器控制系统,接线复杂、故障率高、调试和维护困难。 随着PLC控制技术日益成熟并得到越来越广泛的应用,利用原有的继电器—接触器控制电路设计PLC控制系统,或直接进行PLC控制系统的设计,都能很好地满足组合机床自动化控制的要求。本次设计的要求如下: 组合机床结构示意图 组合机床工作循环图 组合机床采用两个动力头从两个侧面分别加工,左、右动力头的电动机均为2.2kw,进给系统和工件夹紧都用液压系统驱动,液压泵电动机的功率为3kw,动力头和夹紧装置的动作由电磁阀控制。设计要求如下: (1)两台铣削动力头分别由两台笼型异步电动机拖动,单向旋转,无须电

C型双柱式车床电气原理图

3.3 C5225型立式车床电气控制电路概述 C5225立式车床电器控制电路原理图如图1所示。 从图1(a)可知,C5225型立式车床由7台电动机拖动;主轴电动机M1、油泵电动机M2、横梁升降电动机M3、右立刀架快速移动电动机M4、右立刀架进给电动机M5、左立刀架快速移动电动机M6、左立刀架进给电动机M7。 从图1(b)、(c)可知,只有在油泵电动机M2启动运行、机场润滑状态良好的情况下,其它的电动机才能启动。 (1)油泵电动机M2控制 按下按钮SB2,接触器KM4通电闭合,油泵电动机M2启动运转,同时14区接触器KM4的常开触点闭合,接通了其它电动机控制电路的电源,为其他电动机的启动运行作好了准备。 (2)主拖动电动机M1控制 主拖动电动机M1可采用降压启动控制,也可采用正、反转电动控制,还可采用停车制动控制,由主动拖动电动机M1拖动的工作台还可以通过电磁阀的控制来达到变速的目的。 ①主拖动电动机M1的Y-△降压启动控制。按下按钮SB4(15区),中间继电器K1闭合并自锁,接触器KM1线圈(17区)通电闭合,继而接触器KMY线圈(24区)通电闭合,同时时间继电器KT1线圈(21区)通电闭合,主拖动电动机M1开始Y-△降压启动。经过一定的时间,时间继电器KT1动作,接触器KT1线圈断电释放,接触器KMY线圈断电,接触器KM△线圈(26区)通电闭合,主拖动电动机M1△接法全压运行。 ②主拖动电动机 M1正、反转点动控制。按下正转电动按钮SB5(17区),接触器KM1线圈通电闭合,继而接触器KMY通电闭合,主拖动电动机M1正向Y 接法电动启动转动。按下反转电动按钮SB6(20区),接触器KM2线圈(20区)通电闭合。继而接触器KMY通电闭合,主拖动电动机M1反向Y接法点动启动转动。 ③主拖动点动机M1停车制动控制。当主拖动电动机M1启动运转时,速度继电器电器KS的常开触点(22区)闭合。按下停止按钮SB3(15区)。中间继电器K1、接触器KM1、接触器KM△线圈失电释放,速度继电器的常开触点(22区)

组合式机床电气控制设计

组合式机床电气控制设计 组合式机床电气控制设计,是为大家精心的关机床电气控制设 计的论文,欢迎各位机电一体化的同学阅读! 【摘要】本文阐述了组合式机床相关知识和PLC的相关概念,论证了组合式机床电气设计的基本理论和过程,并结合PLC编程程序来进行设计。 【关键字】组合式机床;电气设计;PLC编程 1、组合式机床的相关知识 1.1组合式机床的概念 组合式机床是集机电于一体的、自动化程度较高的成套技术装备,它是由一些通用部件及少量的专用部件组成的自动化或者半自动化的专用机床。它的特征是高效率、高质量、低成本、经济实用,因而被广泛应用于工程机械、交通、能源、轻工业等行业。 1.2组合式机床的加工方式 组合式机床加工方式一般为多轴、多刀、多工序、多面或多工 位同时加工,它的生产效率是通用机床的几倍甚至几十倍。组合式机床一般用来加工箱体类或形状特殊的零件,基本上加工物固定不动,由刀具的各方位的旋转以及刀具与工件的相对运动来实现钻孔、扩孔、铰孔、铣削平面、切削内外螺纹等工序。 随着技术日臻成熟,出现了一种新型的组合式机床,它利用原 有的继电接触式控制电路加上PLC控制系统,来完成多位主轴箱、可

换主轴箱等的自动更换,达到任意改变工作循环控制和驱动系统的目的。 2、可编程控制器及应用 2.1可编程控制器(PLC)概述 PLC是一种专门在工业环境下产生的数字运算操作的电子装置。它采用可以编制程序的存储器,在其内部进行存储和执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字信号或模拟信号来进行输入和输出,从而控制各种类型的机械或生产过程。PLC还有一些相关的外围设备与其配合,形成一个整体,这样易于功能性的扩展。 2.2有关组合式机床的电气控制设计的实现方式 组合式机床的电气控制,理论上讲,可以采用继电接触式电气 控制系统、单片机控制系统和PLC控制系统来实现。但PLC控制系统是实际工程中比较经济、有效、性能优越的控制方案。下面做以简单的比较: (1) 控制逻辑继电接触式控制系统采用线路的串联、并联以及串并联的硬接线逻辑,它的连线复杂、体积大、功耗大,不易改革,所以在灵活性和扩展性存在缺陷;而PLC采用逻辑存储,它只有输入 端和输出端的外围设备需要线路连线,逻辑控制是由程序来完成并存储在PLC的内存当中,改变程序就可以改变逻辑控制,所以PLC的灵活性和扩展性更强。

双速电机控制原理图及文字解析

双速电机控制原理图 一、双速电动机简介 双速电动机属于异步电动机变极调速,是通过改变定子绕组的连接方法达到改变定子旋转磁场磁极对数,从而改变电动机的转速。 根据公式;n1=60f/p可知异步电动机的同步转速与磁极对数成反比,磁极对数增加一倍,同步转速n1下降至原转速的一半,电动机额定转速n也将下降近似一半,所以改变磁极对数可以达到改变电动机转速的目的。这种调速方法是有级的,不能平滑调速,而且只适 用于鼠笼式电动机。 此图介绍的是最常见的单绕组双速电动机,转速比等于磁极倍数比,如2极/4极、4级/8极,从定子绕组△接法变为YY接法, 磁极对数从p=2变为p=1。

∴转速比=2/1=2 二、控制电路分析 1、合上空气开关QF引入三相电源 2、按下起动按钮SB2,交流接触器KM1线圈回路通电并自锁,KM1主触头闭合,为电动机引进三相电源,L1接U1、L2接V1、L 3接W1;U2、V2、W2悬空。电动机在△接法下运行,此时电动机 p=2、n1=1500转/分。 3、若想转为高速运转,则按SB3按钮,SB3的常闭触点断开使接触器KM1线圈断电,KM1主触头断开使U1、V1、W1与三相电源L1、L2、L3脱离。其辅助常闭触头恢复为闭合,为KM2线圈回路通电准备。同时接触器KM2线圈回路通电并自锁,其常开触点闭合,将定子绕组三个首端U1、V1、W1连在一起,并把三相电源L 1、L2、L3引入接U2、V2、W2,此时电动机在YY接法下运行,这时电动机p=1,n1=3000转/分。KM2的辅助常开触点断开, 防KM1误动。 4、FR1、FR2分别为电动机△运行和YY运行的过载保护元件。 5、此控制回路中SB2的常开触点与KM1线圈串联,SB2的常闭触点与KM2线圈串联,同样SB3按钮的常闭触点与KM1线圈串联,SB3的常开于KM2线圈串联,这种控制就是按钮的互锁控制,

组合机床电气控制课程设计1

< 组合机床电气控制课程设计 专业:机械设计制造及其自动化 " 班级: 学号: 姓名: 指导老师: ] 湖南工业大学 2011年6月11日

| 目录 1绪论 (3) 2设计方案 (4) 左、右两动力头进给电机 (4) 电动机控制电路 (5) 液压泵电动机 (5) 液压动力滑台控制 (6) 主电路及照明电路 (7) , 保护与调整环节 (8) 继电器电气原理简图 (10) 4 I/O分配表 (12) 5组合机床电气控制电路图 (14) 6课程设计的具体内容 (15) 单循环自动工作 (15) 单循环自动工作循环图 (15) 单循环自动工作梯形图 (16) { 左铣单循环工作 (18) 左铣单循环功能表 (18) 左铣单循环梯形图 (19) 右铣单循环工作 (21) 右铣单循环梯形图 (21) 公用程序 (23) 回原位程序 (23) 手动程序 (24) . PLC梯形图总体结构图 (24) 面板设计 (25) 7系统调试 (26) 8设计心得 (27) 9参考文献 (28) ,

- 1绪论 对于机械—电气结合控制的组合机床,电气控制系统起着重要的神经中枢作用。传统的组合机床采用的继电器—接触器控制系统,接线复杂、故障率高、调试和维护困难。 随着PLC控制技术日益成熟并得到越来越广泛的应用,利用原有的继电器—接触器控制电路设计PLC控制系统,或直接进行PLC控制系统的设计,都能很好地满足组合机床自动化控制的要求。本次设计的要求如下: 组合机床结构示意图 、

组合机床工作循环图 组合机床采用两个动力头从两个侧面分别加工,左、右动力头的电动机均为,进给系统和工件夹紧都用液压系统驱动,液压泵电动机的功率为3kw ,动力头和夹紧装置的动作由电磁阀控制。设计要求如下: (1)两台铣削动力头分别由两台笼型异步电动机拖动,单向旋转,无须电气变速和停机制动控制,但要求铣刀能进行点动对刀。 (2)液压泵电动机单向旋转,机床完成一次半自动工作循环后按下总停机按钮时才停机。 (3)加工到终点,动力头完全停止后,滑台才能快速退回。 (4)液压动力滑台前进、后退能点动调整。 ~ (5)电磁铁1YV 、2YV 采用直流供电。 (6)机床具有照明、保护和调整环节。 2设计方案 左、右两动力头进给电机 根据设计要求知左、右两动力头要求快进→工进→快退的工作循环,并且左、右两动力头可以同时工作,也可进行单独调整。液压泵电动机M1正转,工作进

机床电气控制原理图

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 机床电气控制原理图 机床电气第3章数控机床电气控制原理图本章主要内容:机床电机(交流电机、直流电机、步进电机)的启动、运行(调速)、制动等继电器接触器控制基本线路识图、绘图、设计等;总目录章目录返回上一页下一页 1/ 92

2.2.1 电气原理图图形符号和文字符号机床电气 1、文字符号用来表示电气设备、装置、元器件的名称、功能、状态和特征的字符代码。 例如, FR表示热继电器。 2、图形符号用来表示一台设备或概念的图形、标记或字符。 例如,“~”表示交流,R表示电阻等。 国家电气图用符号标准GB/T4728-1985规定了电气简图中图形符号的画法,该标准及国家电气制图标准GB/T6988-1986于1990年1月1日正式开始执行。 总目录章目录返回上一页下一页

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 机床电气电气控制系统图:指根据国家电气制图标准,用规定的电气符号、图线来表示系统中各电气设备、装置、元器件的连接关系的电气工程图。 电气控制系统图包括: 1、电气原理图 2、电器元件布置图 3、电气安装接线图电气原理图:用图形符号、文字符号、项目代号等表示电路的各个电气元器件之间的关系和工作原理的图。 总目录章目录返回上一页下一页 3/ 92

-某组合机床的电气控制系统设计.

电气控制与PLC 课程设计说明书 题目:某组合机床的电气控制系统设计 专业班级: 姓名: 学号: 指导教师: 成绩: 指导老师签名: 日期:

目录 1 系统概述 (2) 2 方案论证 (3) 3 硬件设计 (6) 3.1系统的原理方框图 (6) 3.2 主电路 (6) 3.3 I/O分配 (9) 3.3 I/O接线图 (11) 3.4 元器件选型 (11) 4 软件设计 (13) 4.1主流程 (13) 4.2梯形图 (15) 5 系统调试 (16) 设计心得 (18) 参考文献 (19) 附电气控制原理图 (20) 1 系统概述 组合机床是以通用部件为基础,配以按工件特定形状和加工工艺设计的专用部件和夹具,组成的半自动或自动专用机床。 组合机床一般采用多轴、多刀、多工序、多面或多工位同时加工的方式,生

产效率比通用机床高几倍至几十倍。由于通用部件已经标准化和系列化,可根据需要灵活配置,能缩短设计和制造周期。因此,组合机床兼有低成本和高效率的优点,在大批、大量生产中得到广泛应用,并可用以组成自动生产线。 组合机床一般用于加工箱体类或特殊形状的零件。加工时,工件一般不旋转,由刀具的旋转运动和刀具与工件的相对进给运动,来实现钻孔、扩孔、锪孔、铰孔、镗孔、铣削平面、切削内外螺纹以及加工外圆和端面等。有的组合机床采用车削头夹持工件使之旋转,由刀具作进给运动,也可实现某些回转体类零件(如飞轮、汽车后桥半轴等)的外圆和端面加工。 随着PLC控制技术日益成熟并得到越来越广泛的应用,利用原有的继电器—接触器控制电路设计PLC控制系统,或直接进行PLC控制系统的设计,都能很好地满足组合机床自动化控制的要求。本次设计的要求如下: 1#2# SQ1SQ2 SQ3SQ4 SQ6 SQ5M4 M3 M2 M1 如图所示为某一组合机床的示意图,左面为1#箱体移动式动力头。主轴电 机M1为5.5KW、1440转/分钟,1#箱体的进给电机为M3为1.5KW、1450转/分钟,工进与快进采用电磁铁YV1(DC24V,10W)进行切换;右面为2#箱体移动式动力头。主轴电机M2为5.5KW、1440转/分钟,2#箱体的工作进给电机为M4,为1.5KW、1450转/分钟,工进与快进采用电磁铁YV2(DC24V,10W)进行切换。SQ1为左动力头的原位限位,SQ3为左动力头的快进限位,SQ5为左动力头的工进限位,SQ2为右动力头的原位限位,SQ4为右动力头的快进限位,SQ6为右动力头的工进限位,具体要求如下: 1.左、右两动力头均要求快进→工进→快退的工作循环。 2.可使左、右两动力头同时工作,也可进行单独调整。 3.加工过程中需要进行冷却。 4.应有电源有信号指示,动力头正在工作信号指示。 5.应有局部照明必要的保护环节。 2 方案论证 组合机床的电气控制,理论上讲,可以采用继电器接触器电气控制系统,单片机控制系统和PLC控制系统来实现。但是在实际工程中往往选择一种经济、有效、性能优越的控制方案,考虑到上述几点,PLC较适合组合机床的电气控制。PLC与单片机、继电器-接触器控制系统相比具有以下优点: 1.PLC与继电器-接触器相比较:

常用电动机控制电路原理图全解

三相异步电机启动常见方法 1、定时自动循环控制电路 说明:(技师一) 1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转控 制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮SB2

串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。

组合机床电气控制课程设计说明书

第一章设计概述 1.1组合机床的发展史 二十世纪70年代以来,随着可转位刀具、密齿铳刀、镇孔尺寸自动检测和刀具自动补偿技术的发展,组合机床的加工精度也有所提高。铳削平面的平面度可达0.05毫米/1000毫米,表面粗糙度可低达2.5-0.63微米;镇孔精度可达IT7?6级,孔距精度可达0.03-0.02微米。专用机床是随着汽车工业的兴起而发展起来的。在专用机床中某些部件因重复使用,逐步发展成为通用部件,因而产生了组合机床。 最早的组合机床是1911年在美国制成的,用于加工汽车零件。初期,各机床制造厂都有各自的通用部件标准。为了提高不同制造厂的通用部件的互换性,便于用户使用和维修,1953年美国福特汽车公司和通用汽车公司与美国机床制造厂协商,确定了组合机床通用部件标准化的原则,即严格规定各部件间的联系尺寸,但对部件结构未作规定。 1.2组合机床方式加工 组合机床一般采用多轴、多刀、多工序、多面或多工位同时加工的方式,生产效率比通用机床高几倍至几十倍。由于通用部件已经标准化和系列化,可根据需要灵活配置,能缩短设计和制造周期。因此,组合机床兼有低成本和高效率的优点,在大批、大量生产中得到广泛应用,并可用以组成自动生产线。 组合机床一般用于加工箱体类或特殊形状的零件。加工时,工件一般不旋转,由刀具的旋转运动和刀具与工件的相对进给运动,来实现钻孔。扩孔、较孔、镇孔、铳削平面、切削内外螺纹以及加工外圆和端面等。有的组合机床采用车削头夹持工件使之旋转,由刀具作进给运动,也可实现某些回转类零件的外圆和端面的加工。 1.3设计要求 设计两面加工组合机床的电气控制线路及其可编程控制器的控制系统。 要求如下: 1)能按照本组最终要求合理设计继电器电气原理图,PLC电气原理图,再做成控制板,最后连线试验。 2)要求上交1份设计说明书,2张图纸,测试结果。

相关文档