文档库 最新最全的文档下载
当前位置:文档库 › 导数历届高考试题精选含答案

导数历届高考试题精选含答案

导数历届高考试题精选含答案
导数历届高考试题精选含答案

导数高考试题精选

一.选择题(共16小题)

1.(2013?河东区二模)已知曲线的一条切线的斜率为,则切点的横坐标为()

A. 3 B.2 C. 1D.

2.(2012?汕头一模)设曲线y=ax2在点(1,a)处的切线与直线2x﹣y﹣6=0平行,则a=()

A.1B.C. D.﹣1

3.(2011?烟台一模)设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()

A. 2B.C.D.﹣2

4.(2010?泸州二模)曲线在点处的切线与坐标轴围成的三角形面积为()

A. B. C.D.

5.(2010?辽宁)已知点P在曲线y=上,α为曲线在点P处的切线的倾斜角,则α的取值范围是()

A.

[0,)

B.C. D.

6.(2010?江西模拟)曲线y=x3﹣2x+4在点(1,3)处的切线的倾斜角为()

A. 30°

B. 45°C.60°D.120°7.(2009?辽宁)曲线y=在点(1,﹣1)处的切线方程为()

A. y=x﹣2

B. y=﹣3x+2C. y=2x﹣3 D. y=﹣2x+1

8.(2009?江西)若存在过点(1,0)的直线与曲线y=x3和都相切,则a等于()

A.

﹣1或B.

﹣1或

C.

D.

或7

9.(2006?四川)曲线y=4x﹣x3在点(﹣1,﹣3)处的切线方程是()

A.y=7x+4 B. y=7x+2 C.y=x﹣4 D.y=x﹣2 10.(2012?海口模拟)已知f(x)=alnx+x2(a>0),若对任意两个不等的正实数x1,x2,都有

>2恒成立,则a的取值范围是()

A. (0,1]B.(1,+∞) C. (0,1) D.[1,+∞)

11.(2013?安徽)函数y=f(x)的图象如图所示,在区间[a,b]上可找到n(n≥2)个不同的数x1,x2,…,x n,使得=…=,则n的取值范围是()

A.{3,4} B. {2,3,4} C. {3,4,5} D.{2,3}

12.(2010?沈阳模拟)如图一圆锥形容器,底面圆的直径等于圆锥母线长,水以每分钟9.3升的速度注入容器内,则注入水的高度在分钟时的瞬时变化率( )(注:π≈3.1)

A.27分米/分钟 B. 9分米/分钟C. 81分米/分钟 D. 分米/分钟

13.若函数f(x)=2x2﹣1的图象上一点(1,1)及邻近一点(1+△x,1+△y),则等于()

A.4B.4x C.4+2△x D.4+2△x2

14.如果f(x)为偶函数,且f(x)导数存在,则f′(0)的值为( )

A.2B. 1C.0D.﹣1

15.设f(x)是可导函数,且=()

A.﹣4 B. ﹣1 C. 0 D.

16.若f′(x0)=2,则等于( )

A.﹣1 B. ﹣2 C.

D.

y 在点)8,2(处的切线方程为( ).

17.曲线3x

A.126-=x y

B.1612-=x y C.108+=x y D .322-=x y

18.设x

x y sin 12

-=,则='y ( ).

A.x x x x x 22sin cos )1(sin 2--- B.x x x x x 2

2sin cos )1(sin 2-+- C .x x x x sin )1(sin 22-+- D.x

x x x sin )

1(sin 22---

19.设1ln

)(2+=x x f ,则=)2('f ( ).

A.

54 B .5

2

C.51

D.53

20.已知2)3(',2)3(-==f f ,则3

)

(32lim 3--→x x f x x 的值为( ).

A.4- B .0 C .8 D .不存在

二.填空题(共5小题)

21.(2013?江西)设函数f (x)在(0,+∞)内可导,且f(e x )=x+e x ,则f ′(1)= _________ .

22.(2009?湖北)已知函数f (x)=f′()cosx +si nx,则f(

)的值为 _________ .

23.已知函数y =x?2x ,当f '(x )=0时,x= _________ .

24.如果函数f(x)=cos x,那么

= _________ .

25.已知函数f(x)在R上可导,且f(x)=x 3+2xf'(2),比较大小:f (﹣1) _________ f (1)(填“>”“<”或“=”)

26.一点沿直线运动,如果由始点起经过t 秒后的位移是23

425

341t t t S +-=,那么速度为零的时刻是______________。 三、解答题:

27已知向量),1(),1,(2t x b x x a -=+=,若函数b a x f ?=)(在区间)1,1(-上是增函数,求t 的取值范围。 ?

2013年10月的高中数学组卷

参考答案与试题解析

一.选择题(共16小题)

1.(2013?河东区二模)已知曲线的一条切线的斜率为,则切点的横坐标为()

A. 3 B. 2 C. 1 D.

考点: 导数的几何意义.

分析:根据斜率,对已知函数求导,解出横坐标,要注意自变量的取值区间.

解答:解:设切点的横坐标为(x

,y0)

∵曲线的一条切线的斜率为,

∴y′=﹣=,解得x0=3或x0=﹣2(舍去,不符合题意),即切点的横坐标为3

故选A.

点评:考查导数的几何意义,属于基础题,对于一个给定的函数来说,要考虑它的定义域.比如,该题的定义域为{x>0}.

2.(2012?汕头一模)设曲线y=ax2在点(1,a)处的切线与直线2x﹣y﹣6=0平行,则a=()

A.1 B. C. D. ﹣1

考点:导数的几何意义.

分析:利用曲线在切点处的导数为斜率求曲线的切线斜率;利用直线平行它们的斜率相等列方程求解.

解答:解:y'=2ax,

于是切线的斜率k=y'|x=1=2a,∵切线与直线2x﹣y﹣6=0平行

∴有2a=2

∴a=1

故选项为A

点评:本题考查导数的几何意义:曲线在切点处的导数值是切线的斜率.

3.(2011?烟台一模)设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()

A.2B. C. D.﹣2

考点:导数的几何意义.

分析:(1)求出已知函数y在点(3,2)处的斜率;(2)利用两条直线互相垂直,斜率之间的关系k

?k2=﹣1,求

1出未知数a.

解答:

解:∵y=∴y′=﹣

∵x=3∴y′=﹣即切线斜率为﹣

∵切线与直线ax+y+1=0垂直

∴直线ax+y+1=0的斜率为2.

∴﹣a=2即a=﹣2

故选D.

点评:函数y=f(x)在x=x

处的导数的几何意义,就是曲线y=f(x)在点P(x0,y0)处的切线的斜率,过点P的切线方

程为:y﹣y0=f′(x0)(x﹣x0)

4.(2010?泸州二模)曲线在点处的切线与坐标轴围成的三角形面积为( )

A. B. C. D.

考点: 导数的几何意义.

专题: 压轴题.

分析:(1)首先利用导数的几何意义,求出曲线在P(x

,y0)处的切线斜率,进而得到切线方程;(2)利用切线方

程与坐标轴直线方程求出交点坐标(3)利用面积公式求出面积.

解答:

解:若y=x3+x,则y′|x=1=2,即曲线在点处的切线方程是,它与坐标轴的交点是(,0),(0,﹣),围成的三角形面积为,故选A.

点评:函数y=f(x)在x=x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,y0)处的切线的斜率,过点P的切线方程为:y﹣y0=f′(x0)(x﹣x0)

5.(2010?辽宁)已知点P在曲线y=上,α为曲线在点P处的切线的倾斜角,则α的取值范围是( )

A.

B. C. D.

[0,)

考点: 导数的几何意义.

专题:计算题;压轴题.

分析:利用导数在切点处的值是曲线的切线斜率,再根据斜率等于倾斜角的正切值求出角的范围.

解答:

解:因为y′==∈[﹣1,0),

即tanα∈[﹣1,0),∵0≤α<π∴≤α<π故选D.

点评:本题考查导数的几何意义及直线的斜率等于倾斜角的正切值.

6.(2010?江西模拟)曲线y=x3﹣2x+4在点(1,3)处的切线的倾斜角为()

A. 30°

B. 45°

C. 60°D.120°

考点:导数的几何意义.

专题: 计算题.

分析:欲求在点(1,3)处的切线倾斜角,先根据导数的几何意义可知k=y′|

,再结合正切函数的值求出角α的

x=1

值即可.

解答:解:y/=3x2﹣2,切线的斜率k=3×12﹣2=1.故倾斜角为45°.

故选B.

点评:本题考查了导数的几何意义,以及利用正切函数的图象求倾斜角,本题属于容易题.

7.(2009?辽宁)曲线y=在点(1,﹣1)处的切线方程为()

A. y=x﹣2 B.y=﹣3x+2 C.y=2x﹣3 D. y=﹣2x+1

考点:导数的几何意义.

专题: 计算题.

分析:根据导数的几何意义求出函数f(x)在x=1处的导数,从而求出切线的斜率,再用点斜式写出切线方程,化成斜截式即可.

解答:

解:y′=()′=,

∴k=y′|x=1=﹣2.

l:y+1=﹣2(x﹣1),则y=﹣2x+1.

故选:D

点评:本题考查了导数的几何意义,以及导数的运算法则,本题属于基础题.

8.(2009?江西)若存在过点(1,0)的直线与曲线y=x3和都相切,则a等于()

A.

﹣1或B.

﹣1或

C.

D.

或7

考点:导数的几何意义.

专题: 压轴题.

分析:已知点(1,0)不在曲线y=x3上,容易求出过点(1,0)的直线与曲线y=x3相切的切点的坐标,进而求出切线所在的方程;再利用切线与y=ax2+x﹣9相切,只有一个公共点,两个方程联系,得到二元一次方程,

利用判别式为0,解出a的值.

解答:解:由y=x3?y'=3x2,设曲线y=x3上任意一点(x0,x03)处的切线方程为y﹣x03=3x02(x﹣x0),(1,0)

代入方程得x0=0或

①当x0=0时,切线方程为y=0,此直线是y=x3的切线,故仅有一解,由△=0,解得a=﹣

②当时,切线方程为,由

,

∴a=﹣1或a=.

故选A

点评:熟练掌握导数的几何意义,本题是直线与曲线联立的题,若出现形如y=ax2+bx+c的式子,应讨论a是否为0.

9.(2006?四川)曲线y=4x﹣x3在点(﹣1,﹣3)处的切线方程是()

A.y=7x+4 B. y=7x+2 C.y=x﹣4 D.y=x﹣2

考点: 导数的几何意义.

分析:已知点(﹣1,﹣3)在曲线上,若求切线方程,只需求出曲线在此点处的斜率,利用点斜式求出切线方程.

解答:解:∵y=4x﹣x3,

∴y'︳x=﹣1=4﹣3x2︳x=﹣1=1,

∴曲线在点(﹣1,﹣3)处的切线的斜率为k=1,

即利用点斜式求出切线方程是y=x﹣2,

故选D.

点评:本题属于求过曲线上点的切线方程的基础题,只要利用导数的几何意义,求出该切线的斜率即可.

10.(2012?海口模拟)已知f(x)=alnx+x2(a>0),若对任意两个不等的正实数x1,x2,都有>

2恒成立,则a的取值范围是()

A. (0,1] B. (1,+∞) C.(0,1) D. [1,+∞)

考点: 导数的几何意义;利用导数研究函数的单调性.

专题:计算题;压轴题.

分析:

先将条件“对任意两个不等的正实数x1,x2,都有>2恒成立”转换成当x>0时,f'(x)≥2

恒成立,然后利用参变量分离的方法求出a的范围即可.

解答:

解:对任意两个不等的正实数x1,x2,都有>2恒成立

则当x>0时,f'(x)>2恒成立

f'(x)=+x>2在(0,+∞)上恒成立

则a>(2x﹣x2)max=1

故选B.

点评:本题主要考查了导数的几何意义,以及函数恒成立问题,同时考查了转化与划归的数学思想,属于基础题. 11.(2013?安徽)函数y=f(x)的图象如图所示,在区间[a,b]上可找到n(n≥2)个不同的数x1,x2,…,x n,使得=…=,则n的取值范围是()

A. {3,4}

B. {2,3,4}

C. {3,4,5}D.{2,3}

考点: 变化的快慢与变化率.

专题: 函数的性质及应用.

分析:

由表示(x,f(x))点与原点连线的斜率,结合函数y=f(x)的图象,数形结合分析可得答案.

解答:

解:∵表示(x,f(x))点与原点连线的斜率

若=…=,

则n可以是2,如图所示:

n可以是3,如图所示:

n可以是4,如图所示:

但n不可能大于4

故选B

点评:

本题考查的知识点是斜率公式,正确理解表示(x,f(x))点与原点连线的斜率是解答的关键. 12.(2010?沈阳模拟)如图一圆锥形容器,底面圆的直径等于圆锥母线长,水以每分钟9.3升的速度注入容器内,则注入水的高度在分钟时的瞬时变化率( )(注:π≈3.1)

A.27分米/分钟B. 9分米/分钟 C. 81分米/分钟D.分米/分钟

考点:变化的快慢与变化率.

专题: 应用题.

分析:圆锥的轴截面是个等边三角形,设经过t分钟的水面高度为h,求出水面的半径,用t和h表示经过t分钟圆锥形容器内水的体积,解出h,并求出它的导数,t=时的导数值,就是注入水的高度在分钟时的瞬时变化率.

解答:解:由题意知,圆锥的轴截面是个等边三角形,经过t分钟的水面高度为h,

则水面的半径是h,t分钟时,圆锥形容器内水的体积为9.3t=π??h,

∴h3==27t,

∴h=3,

∴h′=,t=时,

h′==32=9,

故选B.

点评:本题考查圆锥的体积公式的应用,函数的导数的求法及导数的意义,函数在某点的导数,就是函数在该点的变化率.

13.若函数f(x)=2x2﹣1的图象上一点(1,1)及邻近一点(1+△x,1+△y),则等于()

A.4 B. 4xC.4+2△x D.4+2△x2

考点: 变化的快慢与变化率.

专题: 计算题.

分析:明确△y的意义,根据函数的解析式求出△y的表达式,即可得到答案.

解答:解:∵△y=2(1+△x)2﹣1﹣1=2△x2+4△x,

∴=4+2△x,

故选C.

点评:

本题考查△y的意义,即函数在点(1,1)的变化量,先求△y,即可得到.

14.如果f(x)为偶函数,且f(x)导数存在,则f′(0)的值为( )

A.2B.1C.0D.﹣1

考点:导数的概念;偶函数.

专题:阅读型.

分析:由函数为偶函数得到f(x)等于f(﹣x),然后两边对x求导后,因为导函数在x=0有定义,所以令x等于0,得到关于f′(0)的方程,求出方程的解即可得到f′(0)的值.

解答:解:因为f(x)为偶函数,所以f(x)=f(﹣x),

此时两边对x求导得:f′(x)=﹣f′(﹣x),

又因为f′(0)存在,

把x=0代入得:f′(0)=﹣f′(0),

解得f′(0)=0.

故选C

点评:此题考查了导数的运算,考查偶函数的性质,是一道综合题.

15.设f(x)是可导函数,且=( )

A . ﹣4

B. ﹣1

C. 0

D.

考点: 导数的概念. 专题: 计算题. 分析:

由导数的概念知f ′(x 0)=

,由此结合题设条件能够导出f ′(x0)的值.

解答:

解:∵

=2,

∴f ′(x 0)=

=﹣4

故选A .

点评: 本题考查导数的概念,解题时要注意极限的应用,属于基础题.

16.若f ′(x 0)=2,则等于( )

A . ﹣1

B. ﹣2

C .

D .

考点: 导数的概念;极限及其运算. 专题: 计算题. 分析:

由导数的定义知f′(x0)=

,由此提出分母上的数字2能够求出

的值.

解答:

解:∵f ′(x0)=

=2

==

故选A .

点评: 本题考查导数的概念和极限的运算,解题时要认真审题,解题的关键是凑出符合导数定义的极限形式,属于

基础题. 17.曲线3

x y =在点)8,2(处的切线方程为( B ).

A .126-=x y B.1612-=x y C.108+=x y D.322-=x y

18.设x

x y sin 12

-=,则='y ( B ).

A.x x x x x 22sin cos )1(sin 2---

B.x x x x x 22sin cos )1(sin 2-+-

C.x x x x sin )1(sin 22-+- D .x

x x x sin )

1(sin 22---

19.设1ln

)(2+=x x f ,则=)2('f ( B ).

A.

54 B.5

2

C.51 D .53

20.已知2)3(',2)3(-==f f ,则3

)

(32lim 3--→x x f x x 的值为(C ).

A.4- B.0 C .8 D.不存在

二.填空题(共5小题)

21.(2013?江西)设函数f(x )在(0,+∞)内可导,且f(e x )=x+e x ,则f ′(1)= 2 .

考点: 导数的运算;函数的值.

专题: 计算题;压轴题;函数的性质及应用;导数的概念及应用.

分析: 由题设知,可先用换元法求出f(x)的解析式,再求出它的导数,从而求出f′(1) 解答: 解:函数f (x )在(0,+∞)内可导,且f (ex )=x+e x ,

令e x =t,则x=lnt,故有f (t )=lnt +t ,即f(x)=lnx+x

∴f (x)=+1,故f ′(1)=1+1=2

故答案为2

点评: 本题考查了求导的运算以及换元法求外层函数的解析式,属于基本题型,运算型

22.(2009?湖北)已知函数f(x)=f ′(

)cosx+sinx ,则f (

)的值为 1 .

考点: 导数的运算;函数的值. 专题: 计算题;压轴题. 分析:

利用求导法则:(si nx)′=cos x及(co sx)′=sinx ,求出f ′(x),然后把x等于

代入到f ′(x)中,利用特殊角的

三角函数值即可求出f ′()的值,把f ′()的值代入到f (x)后,把x=代入到f(x )中,利用特殊角的三角函

数值即可求出f(

)的值.

解答:

解:因为f ′(x)=﹣f ′()?s inx+co sx 所以f′()=﹣f ′()?si n

+cos

解得f′(

)=

﹣1

故f()=f′()cos+sin=(﹣1)+=1

故答案为1.

点评:此题考查学生灵活运用求导法则及特殊角的三角函数值化简求值,会根据函数解析式求自变量所对应的函数值,是一道中档题.

23.已知函数y=x?2x,当f'(x)=0时,x=﹣.

考点:导数的运算.

专题: 导数的概念及应用.

分析:先求得函数的导数,然后根据f'(x)=0,求出x的值.

解答:解:∵函数y=x?2xf'(x)=0

∴y'=2x+x(2x)'=2x+x2x ln2=2x(1+xln2)=0

∵2x恒大于0

∴1+xln2=0

∴xln2=﹣1

∴x=﹣

故答案为:﹣

点评:此题考查了导数的运算,熟练掌握导数运算法则是解题的关键,属于基础题.

24.如果函数f(x)=cosx,那么= .

考点: 导数的运算;函数的值.

专题: 计算题.

分析:

根据解析式求出和f′(x),再求出,代入求解即可.

解答:解:由题意知,f(x)=cosx,

∴=cos=,f′(x)=﹣sinx,

∴=﹣sin=﹣

=,

故答案为:.

点评:本题考查了求导公式的应用,以及求函数值,属于基础题.

25.已知函数f(x)在R上可导,且f(x)=x3+2xf'(2),比较大小:f(﹣1) >f(1)(填“>”“<”或“=”)

考点:导数的运算;不等关系与不等式.

专题:计算题.

分析:先对f(x)=x3+2xf'(2)两边求导,然后令x=2可解得f′(2),从而得到f(x),计算出f(﹣1),f(1)可得答案.

解答:解:f′(x)=3x2+2f′(2),

令x=2,得f′(2)=3×22+2f′(2),解得f′(2)=﹣12,

所以f (x)=x 3

﹣24x,

则f (﹣1)=23,f (1)=﹣23,所以f(﹣1)>f(1), 故答案为:>.

点评: 本题考查导数的运算、不等式与不等关系,属基础题. 26.一点沿直线运动,如果由始点起经过t 秒后的位移是23

425

341t t t S +-=,那么速度为零的时刻是__________t =0_____。

三、解答题:27(本小题满分10分)

已知向量),1(),1,(2t x b x x a -=+=,若函数b a x f ?=)(在区间)1,1(-上是增函数,求t 的取值范围。

解:由题意知:t tx x x x t x x x f +++-=++-=2

3

2

)1()1()(,则? t x x x f ++-=23)('2

┅┅┅┅┅┅┅┅┅┅ (3分)

∵)(x f 在区间)1,1(-上是增函数,∴0)('>x f

即x x t 232

->在区间)1,1(-上是恒成立, ┅┅┅┅┅┅┅┅┅┅ (5分)

设x x x g 23)(2

-=,则3

1

)31

(3)(2

-

-=x x g ,于是有 5)1()(max =-=>g x g t

∴当5>t 时,)(x f 在区间)1,1(-上是增函数 ┅┅┅┅┅┅┅┅┅┅ (8分) 又当5=t 时, 3

14)3

1(3523)('2

2

+

--=++-=x x x x f , 在)1,1(-上,有0)('>x f ,即5=t 时,)(x f 在区间)1,1(-上是增函数 当5

∴5≥t ┅┅┅┅┅┅┅┅┅┅ (10分)

2020年高考数学导数压轴题每日一题 (1)

第 1 页 共 1 页 2020年高考数学导数压轴题每日一题 例1已知函数f(x)=e x -ln(x +m).(新课标Ⅱ卷) (1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0. 例1 (1)解 f (x )=e x -ln(x +m )?f ′(x )=e x -1x +m ?f ′(0)=e 0-10+m =0?m =1, 定义域为{x |x >-1}, f ′(x )=e x -1x +m =e x (x +1)-1x +1, 显然f (x )在(-1,0]上单调递减,在[0,+∞)上单调递增. (2)证明 g (x )=e x -ln(x +2), 则g ′(x )=e x -1x +2 (x >-2). h (x )=g ′(x )=e x -1x +2(x >-2)?h ′(x )=e x +1(x +2)2 >0, 所以h (x )是增函数,h (x )=0至多只有一个实数根, 又g ′(-12)=1e -132 <0,g ′(0)=1-12>0, 所以h (x )=g ′(x )=0的唯一实根在区间??? ?-12,0内, 设g ′(x )=0的根为t ,则有g ′(t )=e t -1t +2=0????-12g ′(t )=0,g (x )单调递增; 所以g (x )min =g (t )=e t -ln(t +2)=1t +2+t =(1+t )2t +2>0, 当m ≤2时,有ln(x +m )≤ln(x +2), 所以f (x )=e x -ln(x +m )≥e x -ln(x +2)=g (x )≥g (x )min >0.

高考数学真题导数专题及答案

2017年高考真题导数专题 一.解答题(共12小题) 1.已知函数f(x)2(a﹣2)﹣x. (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 2.已知函数f(x)2﹣﹣,且f(x)≥0. (1)求a; (2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 3.已知函数f(x)﹣1﹣. (1)若f(x)≥0,求a的值; (2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值. 4.已知函数f(x)321(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b关于a的函数关系式,并写出定义域; (2)证明:b2>3a; (3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.5.设函数f(x)=(1﹣x2). (1)讨论f(x)的单调性; (2)当x≥0时,f(x)≤1,求a的取值范围. 6.已知函数f(x)=(x﹣)e﹣x(x≥). (1)求f(x)的导函数; (2)求f(x)在区间[,+∞)上的取值范围. 7.已知函数f(x)2+2,g(x)(﹣2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线(x)在点(π,f(π))处的切线方程; (Ⅱ)令h(x)(x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.

) 10.已知函数f(x)3﹣2,a∈R, (1)当2时,求曲线(x)在点(3,f(3))处的切线方程; (2)设函数g(x)(x)+(x﹣a)﹣,讨论g(x)的单调性并判断有无极值,有极值时求出极值. 11.设a,b∈R,≤1.已知函数f(x)3﹣6x2﹣3a(a﹣4),g(x)(x). (Ⅰ)求f(x)的单调区间; (Ⅱ)已知函数(x)和的图象在公共点(x0,y0)处有相同的切线, (i)求证:f(x)在0处的导数等于0; ()若关于x的不等式g(x)≤在区间[x0﹣1,x0+1]上恒成立,求b的取值范围. 12.已知函数f(x)(﹣a)﹣a2x. (1)讨论f(x)的单调性; (2)若f(x)≥0,求a的取值范围.

2018年高考理科数学全国卷二导数压轴题解析

2018年高考理科数学全国卷二导数压轴题解析 已知函数2()x f x e ax =-. (1) 若1a =,证明:当0x ≥时,()1f x ≥. (2) 若()f x 在(0,)+∞只有一个零点,求a . 题目分析: 本题主要通过函数的性质证明不等式以及判断函数零点的问题考察学生对于函数单调性以及零点存在定理性的应用,综合考察学生化归与分类讨论的数学思想,题目设置相对较易,利于选拔不同能力层次的学生。第1小问,通过对函数以及其导函数的单调性以及值域判断即可求解。官方标准答案中通过()()x g x e f x -=的变形化成2()x ax bx c e C -+++的形式,这种形式的函数求导之后仍为2()x ax bx c e -++这种形式的函数,指数函数的系数为代数函数,非常容易求解零点,并且这种变形并不影响函数零点的变化。这种变形思想值得引起注意,对以后导数命题有着很大的指引作用。但是,这种变形对大多数高考考生而言很难想到。因此,以下求解针对函数()f x 本身以及其导函数的单调性和零点问题进行讨论,始终贯穿最基本的导函数正负号与原函数单调性的关系以及零点存在性定理这些高中阶段的知识点,力求完整的解答该类题目。 题目解答: (1)若1a =,2()x f x e x =-,()2x f x e x '=-,()2x f x e ''=-. 当[0,ln 2)x ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x ∈+∞时,()0f x ''>,()f x '单调递增; 所以()(ln 2)22ln 20f x f ''≥=->,从而()f x 在[0,)+∞单调递增;所以()(0)1f x f ≥=,得证. (2)当0a ≤时,()0f x >恒成立,无零点,不合题意. 当0a >时,()2x f x e ax '=-,()2x f x e a ''=-. 当[0,ln 2)x a ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x a ∈+∞时,()0f x ''>,()f x '单调递增;所以()(ln 2)2(1ln 2)f x f a a a ''≥=-. 当02 e a <≤ 时,()0f x '≥,从而()f x 在[0,)+∞单调递增,()(0)1f x f ≥=,在(0,)+∞无零点,不合题意.

高考真题理科数学导数

2012年高考真题理科数学解析汇编:导数与积分 一、选择题 1 .(2012年高考(新课标理))已知函数1 ()ln(1)f x x x = +-;则()y f x =的图像大致为 2 .(2012年高考(浙江理))设a >0,b >0. ( ) A .若2223a b a b +=+,则a >b B .若2223a b a b +=+,则a b D .若2223a b a b -=-,则a

5 .(2012年高考(山东理))设0a >且1a ≠,则“函数()x f x a =在R 上是减函数 ”,是 “函数3 ()(2)g x a x =-在R 上是增函数”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 6 .(2012年高考(湖北理))已知二次函数()y f x =的图象如图所示,则它与x 轴 所围图形的面积为 ( ) A . 2π 5 B . 43 C . 32 D . π2 7 .(2012年高考(福建理))如图所示,在边长为1的正方形OABC 中任取一点 P,则点P 恰好取自阴影部分的概率为 ( ) A . 14 B . 15 C . 16 D . 17 8 .(2012年高考(大纲理))已知函数3 3y x x c =-+的图像与x 轴恰有两个 公共点,则c = ( ) A .2-或2 B .9-或3 C .1-或1 D .3-或1 二、填空题 9 .(2012年高考(上海理))已知函数 )(x f y =的图像是折线段ABC ,若中 A (0,0), B (21,5), C (1,0). 函数)10()(≤≤=x x xf y 的图像与x 轴围成的图形的面积为_______ . 10.(2012年高考(山东理))设0a >.若曲线y x = 与直线,0x a y ==所围成封闭图形 的面积为2 a ,则a =______. 11.(2012年高考(江西理))计算定积分 1 21 (sin )x x dx -+=? ___________. 12.(2012年高考(广东理))曲线33y x x =-+在点()1,3处的切线方程为 ___________________. 三、解答题 13.(2012年高考(天津理))已知函数 ()=ln (+)f x x x a -的最小值为0,其中>0a . (Ⅰ)求a 的值; (Ⅱ)若对任意的[0,+)x ∈∞,有2 ()f x kx ≤成立,求实数k 的最小值; 1-y x O 第3题图 1 1

精编导数及其应用高考题精选含答案

导数及其应用高考题精选 1.(2010·海南高考·理科T3)曲线y x 在点1,1 处的切线方程为() x 2 (A)y2x1(B)y2x1(C)y2x 3(D)y 2x2 【命题立意】本题主要考查导数的几何意义,以及熟练运用导数的运算法则进行求解. 【思路点拨】先求出导函数,解出斜率,然后根据点斜式求出切线方程. 【规范解答】选A.因为y 2 2,所以,在点 1,1 处的切线斜率 2) (x 2 22 ,所以,切线方程为 y1 2(x 1) ,即 y2x1 ,故选A. ky x1 (12) 2.(2010·山东高考文科·T8)已知某生产厂家的年利润y (单位:万元) 与年产量x (单位:万件)的函数关系式为y 1x3 81x 234,则使该生产厂 3 家获得最大年利润的年产量为() (A)13万件(B)11 万件 (C)9万件(D)7万件 【命题立意】本题考查利用导数解决生活中的优化问题,考查了考生的分析 问题解决问题能力和运算求解能力. 【思路点拨】利用导数求函数的最值. 【规范解答】选C,y' x2 81,令y0得x 9或x 9(舍去),当x 9 时y' 0;

当x9时y'0,故当x 9时函数有极大值,也是最大值,故选C. 3.(2010·山东高考理科·T7)由曲线y=x 2,y= x 3围成的封闭图形面积为() (A)1 (B) 1 (C) 1 (D) 7 12 4 3 12 【命题立意】本题考查定积分的基础知识,由定积分求曲线围成封闭图形的

面积,考查了考生的想象能力、推理论证能力和运算求解能力. 【思路点拨】先求出曲线y=x2,y=x3的交点坐标,再利用定积分求面积. 【规范解答】选A,由题意得:曲线y=x2,y=x3的交点坐标为(0,0) ,(1,1),故 所求封闭图形的面积为1(x2-x3)dx= 1 1 1 0 1- 1= 故选A. 3 4 12 4 4.(2010·辽宁高考理科·T10)已知点P在曲线y= x 上,为曲线在点 e 1 P处的切线的倾斜角,则的取值范围是() (A)[0, )(B)[ , )( ,3 ](D)[ 3 ,) 4 4 2 2 4 4 【命题立意】本题考查了导数的几何意义,考查了基本等式,函数的值域,直线的倾斜角与斜率。 【思路点拨】先求导数的值域,即tan的范围,再根据正切函数的性质求的范围。 【规范解答】选 D. 5.(2010·湖南高考理科·T4) 4 1 dx等于()2x A、2ln2 B、2ln2 C、ln2 D、ln2 【命题立意】考查积分的概念和基本运算. 【思路点拨】记住1 的原函数. x 1 4 【规范解答】选D. dx=(lnx+c)|42=(ln4+c)-(ln2+c)=ln2. 2 x 【方法技巧】关键是记住被积函数的原函数.

2007——2014高考数学新课标卷(理)函数与导数压轴题汇总

2007——2014高考数学新课标卷(理)函数与导数综合大题 【2007新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数2()ln()f x x a x =++ (I )若当1x =-时,()f x 取得极值,求a 的值,并讨论()f x 的单调性; (II )若()f x 存在极值,求a 的取值范围,并证明所有极值之和大于e ln 2 . 【解析】(Ⅰ)1()2f x x x a '= ++,依题意有(1)0f '-=,故32a =. 从而2231(21)(1) ()3322 x x x x f x x x ++++'==++. ()f x 的定义域为32?? -+ ??? ,∞,当312x -<<-时,()0f x '>; 当1 12 x -<<-时,()0f x '<; 当1 2 x >- 时,()0f x '>. 从而,()f x 分别在区间3 1122????---+ ? ?????,,, ∞单调增加,在区间112?? -- ??? ,单调减少. (Ⅱ)()f x 的定义域为()a -+,∞,2221 ()x ax f x x a ++'=+. 方程2 2210x ax ++=的判别式2 48a ?=-. (ⅰ)若0?< ,即a << ()f x 的定义域内()0f x '>,故()f x 的极值. (ⅱ)若0?= ,则a a = 若a = ()x ∈+ ,2 ()f x '= . 当x =时,()0f x '=,

当2 x ? ??∈-+ ? ????? ,∞时, ()0f x '>,所以()f x 无极值. 若a =)x ∈+,()0f x '= >,()f x 也无极值. (ⅲ)若0?>,即a > a <22210x ax ++=有两个不同的实根 1x = 2x = 当a <12x a x a <-<-,,从而()f x '有()f x 的定义域内没有零点, 故()f x 无极值. 当a > 1x a >-,2x a >-,()f x '在()f x 的定义域内有两个不同的零点, 由根值判别方法知()f x 在12x x x x ==,取得极值. 综上,()f x 存在极值时,a 的取值范围为)+. ()f x 的极值之和为 2221211221()()ln()ln()ln 11ln 2ln 22 e f x f x x a x x a x a +=+++++=+->-=. 【2008新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数1 ()()f x ax a b x b =+ ∈+Z ,,曲线()y f x =在点(2(2))f ,处的切线方程为y =3. (Ⅰ)求()f x 的解析式: (Ⅱ)证明:函数()y f x =的图像是一个中心对称图形,并求其对称中心; (Ⅲ)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值. 21.解:(Ⅰ)2 1 ()() f x a x b '=- +,

人教版2017年高考数学真题导数专题

2017年高考真题导数专题   一.解答题(共12小题) 1.已知函数f(x)=ae2x+(a﹣2)e x﹣x. (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 2.已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0. (1)求a; (2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 3.已知函数f(x)=x﹣1﹣alnx. (1)若f(x)≥0,求a的值; (2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值. 4.已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b关于a的函数关系式,并写出定义域; (2)证明:b2>3a; (3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围. 5.设函数f(x)=(1﹣x2)e x. (1)讨论f(x)的单调性; (2)当x≥0时,f(x)≤ax+1,求a的取值范围. 6.已知函数f(x)=(x﹣)e﹣x (x≥). (1)求f(x)的导函数; (2)求f(x)在区间[,+∞)上的取值范围. 7.已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数. (Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;

(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值. 8.已知函数f(x)=e x cosx﹣x. (1)求曲线y=f(x)在点(0,f(0))处的切线方程; (2)求函数f(x)在区间[0,]上的最大值和最小值. 9.设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数. (Ⅰ)求g(x)的单调区间; (Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0; (Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且 ∈[1,x0)∪(x0,2],满足|﹣x0|≥. 10.已知函数f(x)=x3﹣ax2,a∈R, (1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程; (2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值. 11.设a,b∈R,|a|≤1.已知函数f(x)=x3﹣6x2﹣3a(a﹣4)x+b,g(x) =e x f(x). (Ⅰ)求f(x)的单调区间; (Ⅱ)已知函数y=g(x)和y=e x的图象在公共点(x0,y0)处有相同的切线,(i)求证:f(x)在x=x0处的导数等于0; (ii)若关于x的不等式g(x)≤e x在区间[x0﹣1,x0+1]上恒成立,求b的取值范围. 12.已知函数f(x)=e x(e x﹣a)﹣a2x. (1)讨论f(x)的单调性; (2)若f(x)≥0,求a的取值范围.

高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析 已知函数2()(2)ln(1)2f x x ax x x =+++- (1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2) 若0x =是()f x 的极大值点,求a . 考点分析 综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。 具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。 理解什么是函数的极值点是解决第2问的关键。极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。题目中并没有限定参数a 的取值范围,所以要对实数范围内不同a 取值时的情况都进行分类讨论。在第1小问的基础上,可以很容易判断0a =以及0a >时并不能满足极大值点的要求,难点是在于判断0a <时的情况。官方标准答案中将问题等价转化为讨论函数2 ()ln(1)/(2)h x x x x =+++在0x =点的极值情况,非常巧妙,但是思维跨度比较大,在时间相对紧张的选拔性考试中大多数考生很难想到。需要说明的是,官方答案中的函数命题等价转化思想需要引起大家的重视,这种思想在2018年全国卷2以及2011年新课标卷1的压轴题中均有体现,这可能是今后导数压轴题型的重要命题趋势,对学生概念理解以及思维变通的能力要求更高,符合高考命题的思想。 下面就a 值变化对函数()f x 本身在0x =附近的单调性以及极值点变化情况进行详细讨论。

2016年高考导数试题及答案(精选)

1.(新课标1)已知函数 有两个零点. (I)求a 的取值范围;(II)设x 1,x 2是的两个零点,证明: +x 2<2. 解:(Ⅰ) '()(1)2(1)(1)(2)x x f x x e a x x e a =-+-=-+. (i )设0a =,则()(2)x f x x e =-,()f x 只有一个零点.(ii )设0a >,则当(,1)x ∈-∞时,'()0f x <;当(1 ,)x ∈+∞时,'()0f x >.所 以 ()f x 在(,1)-∞上单调递减,在(1,)+∞上单调递增.又(1)f e =-,(2)f a =,取b 满足0 b <且ln 2a b <,则22 3()(2)(1)()022 a f b b a b a b b >-+-=->,故()f x 存在两个零点. (iii )设0a <,由'()0f x =得1x =或ln(2)x a =-.若2 e a ≥-,则ln(2)1a -≤,故当 (1,)x ∈+∞时,'()0f x >,因此()f x 在(1,)+∞上单调递增.又当1x ≤时,()0f x <,所以() f x 不存在两个零点. 若2 e a <- ,则ln(2)1a ->,故当(1,ln(2))x a ∈-时,'()0f x <;当(ln(2),)x a ∈-+∞时,'()0f x >.因此()f x 在(1,ln(2))a -单调递减,在(ln(2),)a -+∞单调递增.又当1x ≤时,()0f x <,所以()f x 不存在两个零点.综上,a 的取值范围为(0,)+∞. (Ⅱ)不妨设1 2x x <,由(Ⅰ)知12(,1),(1,)x x ∈-∞∈+∞,22(,1)x -∈-∞,()f x 在(,1) -∞上单调递减,所以122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<. 由于 222222(2)(1)x f x x e a x --=-+-,而22222()(2)(1)0x f x x e a x =-+-=,所以 222222(2)(2)x x f x x e x e --=---. 设 2()( 2 ) x x g x xe x e -=---, 则 2'()(1)()x x g x x e e -=--.所以当1x >时,'()0g x <,而(1)0g =,故当1x >时,()0g x <.从 而22()(2)0g x f x = -<,故122x x +<. 2(新课标2)(I)讨论函数x x 2f (x) x 2 -= +e 的单调性,并证明当x >0时,(2)20;x x e x -++> (II)证明:当[0,1)a ∈ 时,函数2 x =(0)x e ax a g x x -->() 有最小值.设g (x )的最小值为()h a , 求函数()h a 的值域.

高三数学导数压轴题

导数压轴 一.解答题(共20小题) 1.已知函数f(x)=e x(1+alnx),设f'(x)为f(x)的导函数. (1)设g(x)=e﹣x f(x)+x2﹣x在区间[1,2]上单调递增,求a的取值范围; (2)若a>2时,函数f(x)的零点为x0,函f′(x)的极小值点为x1,求证:x0>x1. 2.设. (1)求证:当x≥1时,f(x)≥0恒成立; (2)讨论关于x的方程根的个数. 3.已知函数f(x)=﹣x2+ax+a﹣e﹣x+1(a∈R).

(1)当a=1时,判断g(x)=e x f(x)的单调性; (2)若函数f(x)无零点,求a的取值范围. 4.已知函数. (1)求函数f(x)的单调区间; (2)若存在成立,求整数a的最小值.5.已知函数f(x)=e x﹣lnx+ax(a∈R).

(Ⅰ)当a=﹣e+1时,求函数f(x)的单调区间; (Ⅱ)当a≥﹣1时,求证:f(x)>0. 6.已知函数f(x)=e x﹣x2﹣ax﹣1. (Ⅰ)若f(x)在定义域内单调递增,求实数a的范围; (Ⅱ)设函数g(x)=xf(x)﹣e x+x3+x,若g(x)至多有一个极值点,求a的取值集合.7.已知函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R).

(2)若对?x∈(0,+∞),f(x)≥0,求实数a的取值范围. 8.设f′(x)是函数f(x)的导函数,我们把使f′(x)=x的实数x叫做函数y=f(x)的好点.已知函数f(x)=. (Ⅰ)若0是函数f(x)的好点,求a; (Ⅱ)若函数f(x)不存在好点,求a的取值范围. 9.已知函数f(x)=lnx+ax2+(a+2)x+2(a为常数).

高考数学导数题型归纳

导数题型归纳 请同学们高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上, ()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,432 3()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- (1) ()y f x =在区间[]0,3上为“凸函数”, 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < 解法二:分离变量法: ∵ 当0x =时, 2 ()330g x x mx ∴=--=-<恒成立, 当03x <≤时, 2 ()30g x x mx =--<恒成立 等价于233 x m x x x ->=-的最大值(03x <≤)恒成立, 而3 ()h x x x =-(03x <≤)是增函数,则max ()(3)2h x h == (2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2 ()30g x x mx =--< 恒成立 解法三:变更主元法 再等价于2 ()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题) 2 2 (2)0230 11(2)0230 F x x x F x x ?->--+>?????-<-+>??? 例2),10(32 R b a b x a ∈<<+- ],2不等式()f x a '≤恒成立,求a 的取值范围.

高考题汇编2010-全国高考数学真题--第21题导数

2017-2019年全国高考数学真题--第21题导数 2018年:设函数2 ()1x f x e x ax =---。 (1)若0a =, 求()f x 的单调区间; (2)若当0x ≥时()0f x ≥, 求a 的取值范围 2019年:已知函数ln ()1a x b f x x x = ++, 曲线()y f x =在点(1,(1))f 处的切线方程为 230x y +-=. (I )求,a b 的值; (II )如果当0x >, 且1x ≠时, ln ()1x k f x x x >+-, 求k 的取值范围. 2019年: 已知函数)(x f 满足2 1 2 1)0()1(')(x x f e f x f x + -=-. (Ⅰ)求)(x f 的解析式及单调区间; (Ⅱ)若b ax x x f ++≥2 2 1)(, 求b a )1(+的最大值.

2019: 一卷:已知函数()f x =2 x ax b ++, ()g x =()x e cx d +, 若曲线()y f x =和 曲线()y g x =都过点P (0, 2), 且在点P 处有相同的切线42y x =+ (Ⅰ)求a , b , c , d 的值; (Ⅱ)若x ≥-2时, ()f x ≤()kg x , 求k 的取值范围. 2019一卷:设函数1 ()ln x x be f x ae x x -=+, 曲线()y f x =在点(1, (1)f 处的切线为 (1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >. 2015一卷:已知函数3 1 ()4 f x x ax =++ , ()ln g x x =-. (Ⅰ)当a 为何值时, x 轴为曲线()y f x = 的切线; (Ⅱ)用min {},m n 表示m , n 中的最小值, 设函数{}()min (),()(0)=>h x f x g x x , 讨论()h x 零点的个数.

高考数学导数与三角函数压轴题综合归纳总结教师版

导数与三角函数压轴题归纳总结 近几年的高考数学试题中频频出现含导数与三角函数零点问题,内容主要包括函数零点个数的确定、根据函数零点个数求参数范围、隐零点问题及零点存在性赋值理论.其形式逐渐多样化、综合化. 一、零点存在定理 例1.【2019全国Ⅰ理20】函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明: (1)()f x '在区间(1,)2 π -存在唯一极大值点; (2)()f x 有且仅有2个零点. 【解析】(1)设()()g x f x '=,则()()() 2 11 cos ,sin 11g x x g x x x x '=- =-+++. 当1,2x π??∈- ?? ?时,()g'x 单调递减,而()00,02g g π?? ''>< ???, 可得()g'x 在1,2π?? - ?? ?有唯一零点,设为α. 则当()1,x α∈-时,()0g x '>;当,2x πα?? ∈ ??? 时,()0g'x <. 所以()g x 在()1,α-单调递增,在,2πα?? ???单调递减,故()g x 在1,2π?? - ???存在唯一极大 值点,即()f x '在1,2π?? - ?? ?存在唯一极大值点. (2)()f x 的定义域为(1,)-+∞. (i )由(1)知, ()f x '在()1,0-单调递增,而()00f '=,所以当(1,0)x ∈-时,()0f 'x <,故()f x 在(1,0)-单调递减,又(0)=0f ,从而0x =是()f x 在(1,0]-的唯一零点. (ii )当0,2x π?? ∈ ???时,由(1)知,()f 'x 在(0,)α单调递增,在,2απ?? ??? 单调递减,而

校级:高考数学试题导数内容探究

高考数学试题导数内容探究 现代中学数学组陈永生 导数是研究函数的工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值;以导数为工具,通过观察、分析三次函数图像的变化趋势,寻找临界状况,并以此为出发点进行推测、论证,实现对考生创造能力的考查是高考的热点问题。在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常把高次多项式函数,分式函数,指数型,对数型函数,以及初等基本函数的和、差、积、商知识结合起来,以解答题形式综合考察利用导数研究函数的单调性、极值、最值,切线,方程的根,参数的范围等问题,这类题难度很大,综合性强,内容新,背景新,方法新,是高考命题的丰富宝藏。解题中需用到函数与方程思想、分类讨论思想、数形结合思想、转化与划归思想。 《课程标准》中导数的内容有:导数概念及其几何意义、导数的运算、导数在研究函数中的应用、生活中的优化问题举例、(理科)定积分与微积分基本定理。文、理科考查形式略有不同。理科基本以一个解答题的形式考查。文科以一个选择题或填空题和一个解答题为主。从新课程高考分析,对导数的要求一般有三个层次:第一层次是主要考查导数的概念、求导公式和求导法则;第二层次是导数的简单应用,包括求切线方程、求函数的单调区间, 求函数的极值;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式和函数的单调性等有机的结合在一起,设计综合试题。本文以高考试题为例,谈谈高考导数的热点问题,供鉴赏。 一、函数,导数,不等式综合在一起,解决单调性,参数的范围等问题。解决单调性问题转化为解含参数的一元二次不等式或高次不等式的问题;求解参数的取值范围问题转化为不等式的恒成立,能成立,恰成立来求解。进一步转化求函数的最值或一元二次不等式在给定区间上(或实数集 )上的恒成立问题来解决,从而达到考查分类与整合、化归与转化的数学思想。

高考导数压轴题题型(精选.)

高考导数压轴题题型 李远敬整理 2018.4.11 一.求函数的单调区间,函数的单调性 1.【2012新课标】21. 已知函数()f x 满足满足12 1()(1)(0)2 x f x f e f x x -'=-+; (1)求()f x 的解析式及单调区间; 【解析】 (1)12 11()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f = 1211 ()(1)(0)(1)1(1)2 x f x f e x x f f e f e --'''=-+?==?= 得:21 ()()()12 x x f x e x x g x f x e x '=-+?==-+ ()10()x g x e y g x '=+>?=在x R ∈上单调递增 ()0(0)0,()0(0)0f x f x f x f x ''''>=?><=?< 得:()f x 的解析式为21()2 x f x e x x =-+ 且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞ 2.【2013新课标2】21.已知函数f (x )=e x -ln(x +m ). (1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性; 【解析】 (1)f ′(x )=1 e x x m - +. 由x =0是f (x )的极值点得f ′(0)=0,所以m =1. 于是f (x )=e x -ln(x +1),定义域为(-1,+∞),f ′(x )=1 e 1 x x -+. 函数f ′(x )=1 e 1 x x -+在(-1,+∞)单调递增,且f ′(0)=0. 因此当x ∈(-1,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0. 所以f (x )在(-1,0)单调递减,在(0,+∞)单调递增. 3.【2014新课标2】21. 已知函数()f x =2x x e e x --- (1)讨论()f x 的单调性; 【解析】 (1)+ -2≥0,等号仅当x=0时成立,所以f (x )在(—∞,+∞)单调递 增 【2015新课标2】21. 设函数 f (x )=e mx +x 2-mx 。 (1)证明: f (x )在 (-¥,0)单调递减,在 (0,+¥)单调递增; (2)若对于任意 x 1,x 2?[-1,1],都有 |f (x 1)-f (x 2)|£e -1,求m 的取值范围。

导数历届高考试题精选含答案

导数高考试题精选 一.选择题(共16小题) 1.(2013?河东区二模)已知曲线的一条切线的斜率为,则切点的横坐标为() A. 3 B.2 C. 1D. 2.(2012?汕头一模)设曲线y=ax2在点(1,a)处的切线与直线2x﹣y﹣6=0平行,则a=() A.1B.C. D.﹣1 3.(2011?烟台一模)设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=() A. 2B.C.D.﹣2 4.(2010?泸州二模)曲线在点处的切线与坐标轴围成的三角形面积为() A. B. C.D. 5.(2010?辽宁)已知点P在曲线y=上,α为曲线在点P处的切线的倾斜角,则α的取值范围是() A. [0,) B.C. D. 6.(2010?江西模拟)曲线y=x3﹣2x+4在点(1,3)处的切线的倾斜角为() A. 30° B. 45°C.60°D.120°7.(2009?辽宁)曲线y=在点(1,﹣1)处的切线方程为() A. y=x﹣2 B. y=﹣3x+2C. y=2x﹣3 D. y=﹣2x+1 8.(2009?江西)若存在过点(1,0)的直线与曲线y=x3和都相切,则a等于() A. ﹣1或B. ﹣1或 C. 或 D. 或7 9.(2006?四川)曲线y=4x﹣x3在点(﹣1,﹣3)处的切线方程是() A.y=7x+4 B. y=7x+2 C.y=x﹣4 D.y=x﹣2 10.(2012?海口模拟)已知f(x)=alnx+x2(a>0),若对任意两个不等的正实数x1,x2,都有 >2恒成立,则a的取值范围是() A. (0,1]B.(1,+∞) C. (0,1) D.[1,+∞)

文科高考导数试题

文科高考导数试题

————————————————————————————————作者:————————————————————————————————日期: 2

导数高中数学组卷 一.选择题(共22小题) 1.(2015?绵阳模拟)设函数f(x)=ax3+3bx(a,b为实数,a<0,b>0),当x∈[0,1]时,有f(x)∈[0,1],则b的最大值是() A.B.C.D. 2.(2015?红河州一模)若函数f(x)=x3+x2﹣在区间(a,a+5)内存在最小值,则实数a的取值范围是()A.[﹣5,0)B.(﹣5,0)C.[﹣3,0)D.(﹣3,0) 3.(2015?开封模拟)函数f(x)=lnx+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2)C.[0,+∞)D.(2,+∞) 4.(2015?泸州模拟)设函数f(x)=ax3+3x,其图象在点(1,f(1))处的切线l与直线x﹣6y﹣7=0垂直,则直线l与坐标轴围成的三角形的面积为() A.1B.3C.9D.12 5.(2014?郑州一模)已知曲线的一条切线的斜率为,则切点的横坐标为()A.3B.2C.1D. 6.(2014?郑州模拟)曲线在点处的切线与坐标轴围成的三角形面积为()A.B.C.D. 7.(2014?西藏一模)已知曲线的一条切线的斜率为,则切点的横坐标为()A.1B.2C.3D.4 8.(2014?广西)曲线y=xe x﹣1在点(1,1)处切线的斜率等于() A.2e B.e C.2D.1 9.(2014?武汉模拟)若函数f(x)=x2+ax+是增函数,则a的取值范围是()A.[﹣1,0]B.[﹣1,∞]C.[0,3]D.[3,+∞] 10.(2014?包头一模)已知函数y=x3﹣3x+c的图象与x轴恰有两个公共点,则c=()A.﹣2或2 B.﹣9或3 C.﹣1或1 D.﹣3或1 11.(2014?郑州模拟)已知f(x)=x2+2xf′(1),则f′(0)等于() A.0B.﹣4 C.﹣2 D.2 12.(2014?江西二模)已知函数f(x)=x2+f′(2)(lnx﹣x),则f′(1)=()

高考数学专题导数题的解题技巧

第十讲 导数题的解题技巧 【命题趋向】导数命题趋势: 综观2007年全国各套高考数学试题,我们发现对导数的考查有以下一些知识类型与特点: (1)多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题. (2)求极值, 函数单调性,应用题,与三角函数或向量结合. 分值在12---17分之间,一般为1个选择题或1个填空题,1个解答题. 【考点透视】 1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念. 2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数. 3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1.(2007年北京卷)()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 . [考查目的] 本题主要考查函数的导数和计算等基础知识和能力. [解答过程] ()2 2 ()2,(1)12 3.f x x f ''=+∴-=-+=Q 故填3. 例2. ( 2006年湖南卷)设函数()1 x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若M P,则实 数a 的取值范围是 ( ) A.(-∞,1) B.(0,1) C.(1,+∞) D. [1,+∞) [考查目的]本题主要考查函数的导数和集合等基础知识的应用能力.

相关文档 最新文档