文档库 最新最全的文档下载
当前位置:文档库 › 上海某管桩接桩断裂质量问题的分析及处理

上海某管桩接桩断裂质量问题的分析及处理

上海某管桩接桩断裂质量问题的分析及处理
上海某管桩接桩断裂质量问题的分析及处理

上海某管桩接桩断裂质量问题的分析及处理

上海某管桩接桩断裂质量问题的分析及处理

摘要: PHC管桩在我国以软土地基为主的沿海城市中被广泛应用,但在近几年的工程中,由于施工工艺不当造成的管桩开裂、偏斜甚至断裂的质量问题屡见不鲜。结合上海某工程实例对PHC管桩断裂质量问题的原因及复位处理进行简要分析。

关键字:PHC管桩接头断裂复位处理

中图分类号: U656.1+14文献标识码:A 文章编号:

引言

PHC管桩由于其单位成本低、单桩承载力高、制作工艺成熟、沉桩速度快等优点,在我国以软土地基为主的沿海城市中被广泛应用。而在近几年的工程中发现,在淤泥质土厚度较大的地区中,由于施工工艺不当造成的管桩开裂、偏斜甚至断裂的工程质量问题屡见不鲜。本文介绍了上海一典型管桩接头断裂的质量问题处理,并通过检测检验了处理效果。

工程概况

上海市某福利院建设内容包括三幢7~9养老用房及配套地下车库,采用现浇钢筋混凝土框架结构,桩基采用PHC管桩,桩径500mm,壁厚为100mm,设计桩长17米,持力层为⑤2层,单桩极限承载力为1300kN,总桩数为1083根。本工程地层特性依次如下:①素填土,松散,②粉质粘土,③灰色淤泥质粉质粘土,④灰色淤泥质粘土,⑤2灰色砂质粉土,⑤3灰色粘质粉土,⑤4暗绿粉质粘土。

质量问题处理

基坑开挖后进行了低应变动测,检测结果发现共计50余根抗压工程桩存在桩身质量缺陷,为III类桩,桩身缺陷位置位于桩顶下

5~6米之间,根据工程桩施工记录,桩身缺陷位置基本都处于桩身上、下两节桩接桩处。由此推测此次问题应该出现在上、下两节桩的接缝处。可能导致该问题出现的原因就是桩缝的焊接、桩帽的平整度、焊

接时铁楔的塞焊以及焊接后的冷却时间等。同时根据现场实际放线测量以及观察露出开挖面的桩身垂直度等情况综合分析,发现桩基没有发生偏位或倾斜。而后选择2根缺陷桩进行单桩竖向抗压静载试验,静载荷曲线见图一。从实验数据可以看出其接桩处存在明显间隙,而经过施加260kN或390kN荷载将接桩间隙压实后,直至设计要求的最大加载量,其后续沉降表现正常,且单桩竖向抗压极限承载力能够达到1300kN。根据静载测试数据也进一步验证了桩身缺陷为上、下两节桩的连接处存在缝隙。

根据该工程特点设计单位制定了复打复压的处理方案,并对复打复压完的问题桩再次进行竖向抗压承载力试验,以确定改桩的实际承载力以及验证复打复压的效果,并对复位成功的工程桩进行灌芯处理。具体加固施工方法如下:

工程桩复打复压。由于基坑均已开挖完毕,采用三脚架固定重锤,并且采用易搬运的组合锤,及多块钢板叠加固定后形成的组合锤,并将组合锤锁具锁死,避免由于冲击导致的反力致使组合锤锁具脱落。桩帽上铺设一钢板以防止锤击时由于偏差破坏桩帽。三脚架三个脚下垫设垫块防止过大的集中荷载导致垫层破坏。调整好三脚架角度,是三脚架中心、组合锤中心及桩轴心三心一线,以避免组合锤下落时的偏心冲击。将塔尺放在钢板上,使用水准仪测试初始高程,该高程为相对高程,仅为方便计算下沉量使用。复打复压直至当前沉降量连续两次小于1mm时,视为桩间缝隙已被压实。

选取3根有代表性的基桩进行承载力测试,结果显示沉降速率稳定、沉降量、回弹和残余沉降量表现正常,在复位后单桩竖向抗压极限承载力能达到1300kN。

桩内填芯。填芯前清洗桩管,然后在管桩内壁涂刷水泥净浆,以提高填芯混凝土与管桩桩身混凝土的整体性。然后下钢筋笼,配筋主筋为6φ18,箍筋φ8@150,钢筋笼下至接头位置下2米,并在钢筋笼底焊接5mm厚薄钢板托板。桩内浇灌C40微膨胀混凝土。

质量问题原因分析

1、在工程桩吊装定位时垂直度控制较差,使上、下两节桩并没有位于同一直线上而存在一定的角度。

2、接桩焊接质量可能存在问题。03SG409《预应力混凝土管桩》明确“焊接层数宜分为三层,内层焊渣必须清理干净后方可施焊外一层,焊缝应饱满、连续,且根部必须焊头”。焊接操作人员由于追求施工速度或操作不到可能会造成接桩焊接存在质量问题。

3、接桩焊接结束后可能未自然冷却。03SG409《预应力混凝土管桩》明确“焊接接头自然冷却后才可继续沉桩,领取额时间不宜少于8min,严禁用水冷却或焊好后立即沉桩”。

反思

管桩接头质量的好坏直接关系到整根桩质量的好坏。对于软土地层,现场施工焊接时间与冷却时间必须满足管桩图集及相关规范要求,尤其在该区域浅层土性较差且地下水位较高的情况下,未冷却即开始打桩极易在接头部位发生冷淬、焊缝震裂和接头错位,从而影响桩身承载力。

本次工程桩桩身缺陷问题的发生,虽然由桩基分包单位工人操作不当造成,但是究其源头主要是施工单位、监理单位等现场质保体系不健全或执行不到位。

1、桩基分包单位项目经理、质量员等项目管理人员未履行质量员职责。项目经理或质量员应完善工序质量控制,建立质量控制点,对关键部位或质量薄弱环节强化管理,使工序处于良好状态。对于PHC管桩的施工,吊装垂直度、桩基焊接等都属于质量薄弱环节,操作工人为了追求施工速度很容易忽视桩基垂直度、接桩焊接自然冷却等关键环节。质量员应根据企业自身的特点制定出切实可行的操作流程及验收流程,并且执行到位才能杜绝类似质量问题的发生。

2、施工总承包单位的责任。桩基分包单位技术力量参差不齐,项目经理及质量员现场到位率不尽人意。施工总承包单位应加强分包施工质量管理,对于不同工序,不同的分包单位有针对性的制定出质量管理制度,并且落实到位。桩身缺陷问题的发生反映出施工总承包单位质量管理人员没有做好施工质量检查,总承包单位质量保证体系运行不顺畅。

3、监理单位的责任。《建设工程监理规范》规定,“总监理工程师应安排监理人员对施工过程进行巡视和检查。对隐蔽工程的隐蔽过程、下道工序施工完成后难以检查的重点部位,专业监理工程师应安排监理员进行旁站”。PHC管桩施工时监理员应进行旁站,复核每根工程桩垂直度,确保接桩焊接的质量及冷却时间满足规范要求。该工程桩身缺陷问题的发生反映出监理单位旁站、检查不到位,没有做到每一根桩全部旁站到位。

该工程工期比较紧,同时安排4台桩机同时开工,工程开工初期,监理单位人员到位人数不能满足现场需要,没有做到每一根桩全部旁站到位,与本次质量问题的发生有直接关系。

目前PHC管桩的应用越来越广泛,虽然其具有质量可靠、施工速度快的优点,但其施工过程中的各参见单位仍要加强重视,一旦施工控制不当,非常容易出现类似工程质量问题,应引起足够重视。

------------最新【精品】范文

预应力管桩断桩原因及处理-预防措施

浅析预应力管桩断桩原因及处理\预防措施摘要:预应力管桩可分为后张法预应力管桩和先张法预应力管桩。因其造价低,施工速度快,可以节约施工周期,加快项目的建设等优点,被广泛应用于工业、房建、高速铁路、高速公路和民用设施工程中。本文在对预应力管桩断桩事故类型的分析基础上,提出了改善和预防预应力管桩断桩的一些可行性建议,具有一定的参考实践价值。 关键词:预应力管桩,断桩,地质,焊接质量,土方回填abstract: prestressed pipe pile can be divided into this method prestressed pipe pile and first prestressed pipe pile of law. because of its low cost, and construction speed is quick, can save the construction period, speed up the construction of the project etc, and is widely used in industry, high speed railway, endowed, highway and civil infrastructure. in this paper the breaking pile prestressed pipe pile are based on the analysis of the accident type, and put forward the improvement and prevent prestressed pipe pile of pile breaking some feasible suggestions to have the certain reference value of practice. keywords: prestressed pipe pile, breaking pile, geology, and the quality of welding, turkmen backfilling

预制管桩接桩处理方案

PHC管桩接桩处理方案 一、工程概况 本工程为。。。 根据勘察结果,本工程。。。 2、基本情况 桩基土方开挖时至少采用5台单斗反铲挖土机,从南向北退挖,逐层挖到挖掘深度,土方临时就近堆放。但在14#、18号楼桩基土方开挖过程中,发现桩有倾斜现象。经对桩位的初步复核,发现14号楼已有6条桩被挖断,并且个别出现明显的裂缝;18号楼已经发现有7条断桩。桩断裂位置均在承台底板标高往下50cm之内,或超过50cm位置,为不影响工程质量,应监理方要求特制定此处理方案,以便之后及时接桩。 二、管桩断裂原因及其解决思路 1、预制管桩断裂的原因分析 1)基坑开挖施工方法不当。因基坑开挖施工方法不当而引起土体位移,造成预制管桩倾斜断裂的现象比较多,原因也比较复杂。 2)一次性挖土深度过大,放坡不够,引起土体滑动。 2、预制管桩断桩预防措施 1)深基坑一定要分层开挖,每层挖土的厚度不应超过1.5米。直到基底设计标高上10cm,随挖土机边挖边人工清底。禁止一次性机械挖到基底,而使基层土方受到扰动。层与层之间留出一定宽度的工作面,并根据土质情况合理放坡,严禁土体滑动。 2)深基坑在接近坑底时应采取接开挖,前边(接近坑底层土)用小挖机,后边用大挖机,这样可减小挖土机械对桩顶土层的挤压作用。 3)基坑挖土不深的情况下可用长臂挖机(如15m长)站在远离桩位的位置开挖。 4)基坑边上不应有重车行走或堆载过大,特别是放坡开挖的无支护基坑。 三、预制管桩断裂的处理 1、对断裂预制桩的检查 在处理前,首先应对断裂的预制管桩进行检查,分别查清断裂桩的数量、位置,断裂的深度数据,具体可采取如下方法: 1)进行现场调查。检查断裂桩的位置、数量。

断桩处理的几种方法

钻孔灌注桩断桩预防及处理方法 钻孔灌注桩基础由于其施工设备简单、易于操作而被广泛应用于桥梁建设中,目前已形成了一套比较成熟的施工技术。但是由于钻孔灌注桩的施工受多种因素影响,处理不好容易引起断桩,因此对断桩的预防是钻孔灌注桩施工中的一个重要问题。 一、断桩原因 断桩是指钻孔灌注桩在灌注混凝土的过程中,泥浆或砂砾进入水泥混凝土,把灌注的混凝土隔开并形成上下两段,造成混凝土变质或截面积受损,从而使桩不能满足受力要求。常见的断桩原因大致可分为以下几种情况: (1)由于混凝土坍落度过小,或由于石料粒径过大、导管直径较小,在灌注过程中堵塞导管,且在混凝土初凝前无法疏通好,不得不提起导管,形成断桩。(2)由于运输或等待时间过长等原因使混凝土发生离析,又没有进行二次搅拌,灌注时大量骨料卡在导管内,不得不提出导管进行清理,引起断桩。(3)由于水泥结块或者在冬季施工时因集料含水量较大而冻结成块,搅拌时没有将结块打开,结块卡在导管内,而在混凝土初凝前不能疏通好,造成断桩。(4)混凝土灌注过程中发生坍孔,无法清理,或使用吸泥机清理不彻底,使灌注中断造成断桩。(5)由于检测和计算错误,导管长度不够使底口与孔底距离过大,首批灌注的混凝土不能埋住导管底部,从而形成断桩。(6)在提拔导管时,盲目提拔,将导管提拔过量,使导管底口拔出混凝土面,或使导管口处于泥浆层,形成断桩。(7)在提拔导管时,钢筋笼卡住导管,在混凝土初凝前无法提起,造成混凝土灌注中断,形成断桩。(8)导管接口渗漏,使泥浆进入导管,在混凝土内形成夹层,造成断桩。(9)处理堵管时,将导管提升到最小埋置深度,猛提猛插导管,使导管内混凝土连续下落与表面的浮浆、泥土相结合,形成夹泥缩孔。(10)导管埋置深度过深,无法提起导管或将导管拔断,造成断桩。(11)由于其他意外原因(如机械故障、停电、材料供应不足等)造成混凝土不能连续灌注,中断时间超过混凝土初凝时间,致使导管无法提起,形成断桩。 由此可见,钻孔灌注桩的施工受多方面因素的影响,灌注前应从各方面做好充分的准备,尽可能避免意外情况发生。 二、可采取的预防措施 1、材料方面 集料的最大粒径应不大于导管内径的1/6~1/8以及钢筋最小净距的1/4,同时不大于40mm。拌和前,应检查水泥是否结块;如果在冬季施工,拌和前还应将细集料过筛,以免因细集料冻结成块造成堵管。控制混凝土的坍落度在18~22cm范围 内,混凝土拌和物应有良好的和易性。在运输和灌注过程中,混凝土不应有离析、泌水现象。 2、混凝土灌注 (1)制作钢筋笼时,为使焊口平顺,最好采用对焊的方法。若采用搭接焊法,要保证接头不在钢筋笼内形成错台,以防钢筋笼卡住导管。(2)根据桩径和石料的最大粒径确定导管的直径,尽量采用大直径导管。使用前要对每节导管编号,进行水密承压和接头抗拉试验,

预应力管桩施工断桩补桩技术

预应力管桩施工断桩补桩技术 摘要:近年来在房建工程基础工程中,预应力管桩获得大量应用,但基础工程场地内的孤石地质,常造成预应力管桩在施工中断桩。本文通过总结深业·御泉山庄预应力管桩工程的施工断桩补桩,为预应力管桩基础工程提供技术参考。 关键词:预应力管桩孤石施工断桩补桩 Abstract: In recent years, building engineering foundation engineering, prestressed pipe pile for a large number of applications, but boulders geological foundation engineering venues, often resulting in prestressed pipe pile construction interrupt pile. By summing up the works of deep industry Royal Spring Hills prestressed pipe pile off pile complement piles provide technical reference for prestressed pipe pile foundation engineering. Keywords: prestressed pipe pile; boulders; broken pile construction; remedial piling 1、前言 近年来在房建工程中,预应力管桩因为造价相对便宜,桩的工厂制造质量较易保证,现场施工快捷,在基础工程中获得大量应用。但对于存在一定范围孤石地质情况的工程场地,预应力管桩在施工中难以避免会因为孤石造成断桩。对于断桩,需要根据承台类型和断桩在承台内的位置进行补桩,以尽可能减少因断桩修改承台类型,减少桩基及承台造价增加,保证桩基工程施工进度。 2、工程概述 深业·御泉山庄位于广东省东莞市南城区科技路与宏图路交汇处,占地面积136914.85m2,建筑面积175936.80m2,分为低层和高层两区,低层区共计有120栋地下1层地上3层的双拼别墅;高层区共计有5栋18层、4栋15层、1栋11层和1栋8层住宅。地下室1层,建筑面积29461 m2,位于高层区,地下室为桩基础,采用Φ500AB预应力管桩,桩端持力层为强风化花岗岩,设计共有单桩~10桩承台。根据地质勘查报告,地下室场地内孤石发育较多,锤击和静压桩断桩风险较大。 3、断桩补桩及承台修改理论 任意单桩和多桩承台中无论断几根桩,理论上都是对每根断桩进行补桩,再根据未断桩的桩和补桩成功的桩构成的几何图形设计承台。如图1,任意单桩和

管桩断裂原因分析及处理方法

高强预应力空心管桩断裂原因分析及处理方法 辽宁省营口市紧邻渤海,属辽河冲积平原,地下水位较浅,挖深0.9m即遇到丰富地下富存水。地表以下12m深度范围内的土质均是粉质粘土(淤泥),土体渗透系数低,土方开挖前需提前两周采取轻型井点降水才能使拟开挖基坑具备开挖条件。若场地条件具备,土方开挖一般均按1:1.5进行自然放坡。超过5层的建筑物,其基础形式基本上都是采用高强混凝土预应力空心管桩(PHC),有效桩长一般则在12~18m之间(太和小区、欢心小区),局部地区有效桩长能达到30m(营东大厦)。 高强混凝土预应力空心管桩(PHC)静压施工完成后,须进行低应变动测检验其桩身完整性;检测合格时,始准施工进行下一道工序。通常情况下,在低应变动测检验时其桩身接桩部位能测出存在质量缺陷,这一表象无妨。用肉眼尚不能识别的微裂缝在低应变动测时亦能测出缺陷存在,但裂缝宽度小于0.2mm的裂缝不会影响到桩体质量及结构安全。这种裂缝一般都分布在桩长中间1/3区段;这是由于桩节过长,若吊点选择不当或运输过程中受到较大震动而因自身重量过大导致的。现就我单位在施的部分工程管桩经低应变动测时检查出的质量问题及处理思路作以简要总结: 一、管桩断裂的原因分析及预防措施 1、预制管桩断裂的原因分析 (1)、堆放方式不合理导致断桩 在预制厂,从蒸养室出来的管桩需在堆放区实施分类堆放,若堆放支承点选择的不合理就极易导致管桩的桩身出现微裂缝。 (2)、出厂强度不足造成的断裂 高强预应力混凝土空心管桩(PHC)的混凝土设计强度为C80,管桩混凝土养护一般均采取蒸养方式进行。有时候,管桩出厂时的混凝土强度会与设计强度存在些许偏差,在场内堆放、出厂运输过程中可能会因存在的震动而导致管桩桩身出现微裂缝。 (3)、吊装过程中发生断裂 管桩在装卸车时需采取“二点吊法”,要求吊点距离桩端0.207L位置且吊绳与桩体的夹角不得小于45度。为节省运输成本,虽然装卸车时采取的也是二点吊法,但吊点是选在了桩端;当单根管桩较长时,受自重较大的影响就有可能在管桩桩身的中部产生微裂缝。 (4)、施工方法选择不当造成断裂

预应力管桩倾斜的质量问题分析及处理

预应力管桩倾斜的质量问题分析及处理 预应力管桩以其对地质条件适应性强、承载力高、单位承载力造价低、施工速度快、工期短、监理难度小、检测方便等特点而被广泛运用于基础工程中。但在施工过程中经常产生偏位、倾斜、断裂等质量问题。 管桩出现倾斜的原因分析 1.桩身偏位 其产生原因不排除施工人员在施工放线与定桩位时产生偏差,但主要原因是由于: (1)淤泥质土的流动性过大,施工机械移位易引起土体流动,以至桩身发生位移偏位; (2)静压管桩属于挤土桩,由于挤土效应,产生了后续施工对先打已经完成的桩产生了一定的影响; (3)基坑开挖时开挖方案不合理、或者一次开挖深度过大,以至土体局部应力释放而使土体移动引起的。 2.地质情况复杂 由于地质条件复杂、勘察难度较大,局部地质情况会出现不均匀性,所以在施工时,常会发生个别桩打不到设计标高的情况,其原因可能是: (1)桩尖碰到了局部的较厚夹层或其他硬层,造成无法送桩; (2)中断沉桩时间过长,以至沉桩阻力增加,使桩无法达到设计标高; (3)施工人员桩头处理较随意,以至桩顶标高失控。 3.施工不当引起的桩倾斜、断桩情况 施工不当引起桩倾斜、断桩情况,直接起因就是土方开挖不当,将基坑挖的太深或挖出的土堆在基坑边坡附近,且未及时采取基坑支护措施,以至产生较大的侧向土压力;加上淤泥本身的流动性以及土体中未消散的孔隙水压力乘机向开挖方向释放,加剧了淤泥向开挖方向流动,而管桩对水平力的抵抗能力小,于是随着土体的位移而向开挖方向倾斜,造成大量桩顶位移,以至桩身断裂。 管桩倾斜的处理方法 一般说来管桩发生了倾斜总会与桩身偏位、断桩等情况一起出现。断桩情况,会对桩身承载力、完整性都产生较大的影响,对整个结构的整体受力及安全性危害极大。

PHC管桩截桩与填芯施工方案

静压桩截桩与填芯施工方案 审批: 审核: 编制:

一、工程概况: 本工程桩基采用PHC-500(125)AB-C80预应力管桩。 二、静压桩截桩施工方案 1、截桩工程概况 在基础静压桩施工过程中,由于地下土质问题,造成大部分的静压桩,实际桩顶标高高于设计桩顶标高,挖土后桩头露出垫层土面一般为0.5米---2.5米,所以在基础土方开挖时大量静压桩需要进行二次截桩。根据现场实际探查结果,,我方决定采用“人机协作,逐层开挖,二次断桩”的方案,具体做法如下。 2、截桩方法 (1)机械设备和工具的准备 主要设备、工具:手提式圆盘切割机、大锤、撬棒、钢丝绳、铁锹、镐等。 (2)作业条件 截桩:在基槽内进行,周围不得有其他机械、人员施工。 (3)截桩方法 a、使用挖掘机从基础一侧开始挖土,挖土深度以设计要求标高,桩侧预留100mm 保护土,工程桩挖出一个承台后,将桩头周围的土方尽量清净(注意挖土机不得碰撞桩头)。 b、用水准仪将桩顶标高确定并用墨线弹出。 c、采用手提式圆盘切割机人工截桩。 d、桩头由挖机运至临近土方堆放场地。 3、施工要点 (1)在基坑土方开挖过程中遇到静压桩桩体时立即停止用330挖机施工,改用铲斗为600mm的210挖机进行掏桩。 (2)本工程地下水位较高,基底出现地下水,土建单位采用水泵进行排水,待地下水清净后,土建单位组织人员将桩顶标高线弹在桩身上,严格按照设计要求标高(即比垫层上标高高50㎜),监理单位确认标高无误后,方可进行下道工序的施工。 (3)掏桩间土、弹线、验线工作完毕后进行截桩工作,截桩用手提式圆盘切割机按照所弹桩顶标高线进行切割。切割时需将桩管外壁切透,以防桩头倒下时破坏下部桩体,如果没有切透管壁,要依据原锯缝进行二次切割,直至将管壁切透。严禁用大锤、钢钎等工具强行将没有锯透管壁的桩头砸倒。 (4)所截下的静压桩桩头需经现场业主、监理、跟踪审计确认长度后再进行外运工作。 (5)截下的桩头必须倒运至静压桩施工区域以外,再用330挖机上车,运土车运出施工现场15公里以外指定堆场。 4、安全生产文明施工

预应力管桩断桩事故分析与处理

预应力管桩断桩事故分析与处理 引言 预应力静压管桩因具有承载力高、单价低、工期短、施工简单、无噪音等优点而深受工程界的青睐,已成为软土地区一种广泛应用的基础形式,并取得了显著的技术、经济和社会效益。但因多方面 的原因,预应力管桩的质量问题时有发生。 1 工程概况 某化工有限公司拟建1#~6#储罐。1#~4#储罐直径12.3m,罐体体积为1250m3,5#~6#储罐直径8.0m,罐体体积为600m3。1#~6#储罐基础形式均为桩基础,采用预应力管桩phc a 400(80),l=19m,桩顶绝对标高为+2.40(场地整平后绝对标高为+2.50~ 2.60),桩端持力层为第5层粉土层,单桩承载力特征值为350kn。1#~4#储罐均布置51根桩;5#~6#储罐均布置22根桩。采用静压机沉桩,6个储罐共沉桩248根。 2 管桩事故简述 在沉桩过程中出现桩头偏移和隆起,最大位移量为20cm,最大隆起量为8cm,但业主、施工方以及监理方均未引起重视。沉桩完成后,静载荷试验不合格,小应变试验表明部分桩为iii,iv类桩, 具体如下表1,表2 3 工程地质条件 ①层素填土,呈松散~稍密状,厚度一般不超过1.0m,主要由粉

质粘土组成,夹有少量砖石碎块,均匀性差。 ①-1层淤泥质素填土,主要分布在新近填没的河塘部位,灰色,松散,主要由粉质粘土组成,为暗浜填土,夹少量砖瓦碎块,土质软弱,不均匀。 ②-1层粉质粘土,褐黄色~灰黄色,可塑,较均匀,具有一定的强度,属中等压缩性地基土,构成了拟建场地浅部的“硬壳层”,但厚度较小(厚度在80cm左右)。 ③-2层淤泥质粉质粘土,黄灰色,流塑,顶部为软塑,由上往下渐软,见少量氧化物斑点,较均匀,属高缩性软弱地基土,工程性能较差; ④层淤泥,含水率高,属高压缩性,低渗透性软弱地基土,工程性能差,为天然地基软弱下卧层; ⑤层淤泥质粘土,分布稳定,厚度大,属高压缩性,低渗透性软 弱地基土,工程性能差; ⑥层粉土:全场地分布,呈中密~稍密状。 4 事故原因分析 综合土层地质条件,以及沉桩施工记录,初步分析管桩事故原因如下: 1)浅层土体土性较差:储罐区大部分位于暗浜区域,尤其是 1#,4#,5#罐,暗浜厚度达3m左右。浜填土为淤泥质土,土性较差,

预应力管桩断桩处理方案

预应力管桩断桩处理方案 中达电子(芜湖)冲压厂新建工程 断桩处理方案 江苏南通六建建设集团有限公司 预应力管桩断裂得处理 一、工程概况 管桩基本情况 本工程承台基础所在土层位于杂填土与淤泥质粘土层内,挖土深度约2、8m.薄壁预应力混凝土管桩纵向间距为1、1~1、6m。先采用机械挖土至桩顶标高以上0、3~0、5m处,然后再采用人工挖掘得方法。机械挖土时?采用一台单斗反铲挖土机,从北向南退挖,一次挖到挖掘深度,土方临时堆放在基坑东侧,高约1、5m,施工十分顺利。但在人工修挖承台基槽时,发现西侧区域基坑部分桩有倾斜现象。经对桩位得初步复核,发现有3根断桩,断裂位置位置承台底板标高往下2~2、5m处(管桩焊接接头位置),为不影响工程质量,制定此加固处理方案. 二、管桩断裂原因及其解决思路 1、预制管桩断裂得原因分析 1、1打桩施工方法选择不当。 1.1.1地表土层较软.当地基土得上部土层较软或地表面较薄得硬土层下有较厚得软土层时,如打桩时不采取相应技术措施,桩基支脚直接站压在桩顶或桩顶土层上,形成对地表土层得挤压作用,硬将管桩推挤倾斜. 1、2基坑开挖施工方法不当.因基坑开挖施工方法不当而引起土体位移,造成预制管桩倾斜断裂得现象比较多,原因也比较复杂。 1.2.1土质软,土体中富含地下水,抗剪强度低。 1.2。2一次性挖土深度过大,放坡不够,引起土体滑动。 1、3接桩不良。现预应力管桩接桩一般均采用焊接,焊接时由于操作方法不当,使得焊缝不饱满,不连续、不均匀,特别值得注意得就是,由于地下水位较浅,如冷却时间不够,焊接得都开始沉桩,则相当于焊缝淬火,极易发生焊口裂缝。 2、预制管桩断桩预防措施 2、1合理选择基坑开挖施工方法. 2。1.1深基坑一定要分层开挖,每层挖土得厚度不应超过1、5米,层与层之间留出一定宽度得工作面,并根据土质情况合理放坡,严禁土体滑动。 2.1.2深基坑在接近坑底时应采取接开挖,前边(接近坑底层土)用小挖机,后边用大挖机,这样可减小挖土机械对桩顶土层得挤压作用。 2。1。3基坑挖土不深得情况下可用长臂挖机(如15m长)站在远离桩位得位置开挖。 2.1.4挖机与运输车辆距桩位较近时加垫路基板. 2。1.5基坑边上不应有重车行走或堆载过大,特别就是放坡开挖得无支护基坑。 2、2合理选择基坑支护措施。基坑支护方法选择时应特注意基坑外地下水位及就是否存在给排水管道,往往由于管道年久失修渗漏,基坑外土体富含地下水或因基坑边渗流水而引起基坑坍塌。 三、预制管桩断裂得处理 1、1对断裂预制桩得检查.在处理前,首先应对断裂得预制管桩进行检查,分别查清断裂桩得数量、位置,断裂得深度数据,具体可采取如下方法: 1.1.1进行现场调查。检查断裂桩得位置、数量。 1。1.2采用拉线等方法标定出建筑物轴线,测量出每个桩偏移得平面距离及断裂位置,标注

预制管桩接桩处理方案

PHC f桩接桩处理方案 一、工程概况 本工程为。。。 根据勘察结果,本工程。。。 2、基本情况 桩基土方开挖时至少采用5台单斗反铲挖土机,从南向北退挖,逐层挖到挖掘深度, 土方临时就近堆放。但在14#、18号楼桩基土方开挖过程中,发现桩有倾斜现象。经对桩位的初步复核,发现14号楼已有6条桩被挖断,并且个别出现明显的裂缝;18号楼已经发现有7条断桩。桩断裂位置均在承台底板标高往下50cm之内,或超过50cm位置, 为不影响工程质量,应监理方要求特制定此处理方案,以便之后及时接桩。 二、管桩断裂原因及其解决思路 1、预制管桩断裂的原因分析 1)基坑开挖施工方法不当。因基坑开挖施工方法不当而引起土体位移,造成预制管桩倾斜断裂的现象比较多,原因也比较复杂。 2)一次性挖土深度过大,放坡不够,引起土体滑动。 2、预制管桩断桩预防措施 1)深基坑一定要分层开挖,每层挖土的厚度不应超过1.5米。直到基底设计标高上10cm随挖土机边挖边人工清底。禁止一次性机械挖到基底,而使基层土方受到扰动。层与层之间留出一定宽度的工作面,并根据土质情况合理放坡,严禁土体滑动。 2)深基坑在接近坑底时应采取接开挖,前边(接近坑底层土)用小挖机,后边用大挖机,这样可减小挖土机械对桩顶土层的挤压作用。 3)基坑挖土不深的情况下可用长臂挖机(如15m长)站在远离桩位的位置开挖。 4)基坑边上不应有重车行走或堆载过大,特别是放坡开挖的无支护基坑。 三、预制管桩断裂的处理 1、对断裂预制桩的检查 在处理前,首先应对断裂的预制管桩进行检查,分别查清断裂桩的数量、位置,断

裂的深度数据,具体可采取如下方法: 1)进行现场调查。检查断裂桩的位置、数量 2)采用全站仪、拉线等方法标定出建筑物轴线,测量出每个桩偏移的平面距离及 断裂位置,标注在图纸上。 2、断桩的处理 桩断裂的位置均在承台垫层标高往下50cm之内,或超过50cm位置,具体接桩处理 方法,参考预应力管桩图集(10G409,根据现场实际分为三种情况去处理: 1 )桩断裂的位置均在承台垫层标高往下h v 50cm; 2 )桩断裂的位置均在承台垫层标高往下50cm> h> 1m 3)桩断裂的位置均在承台垫层标高往下h> 1m> 依据预应力管桩图集(10G409中相关处理办法,结合我项目施工设计图纸与现场实际情况,特制定以下具体处理办法。(送桩送入过深也可参照此办法处理) 3 、第1)、2)种情况的处理办法 桩顶与承台连接的配筋表

预应力管桩断桩处理方案精编版

预应力管桩断桩处理方案 中达电子(芜湖)冲压厂新建工程 断桩处理方案 江苏南通六建建设集团有限公司 预应力管桩断裂的处理 一、工程概况 管桩基本情况 本工程承台基础所在土层位于杂填土与淤泥质粘土层内,挖土深度约2.8m。薄壁预应力混凝土管桩纵向间距为1.1~1.6m。先采用机械挖土至桩顶标高以上0.3~0.5m处,然后再采用人工挖掘的方法。机械挖土时 采用一台单斗反铲挖土机,从北向南退挖,一次挖到挖掘深度,土方临时堆放在基坑东侧,高约1.5m,施工十分顺利。但在人工修挖承台基槽时,发现西侧区域基坑部分桩有倾斜现象。经对桩位的初步复核,发现有3根断桩,断裂位置位置承台底板标高往下2~2.5m处(管桩焊接接头位置),为不影响工程质量,制定此加固处理方案。 二、管桩断裂原因及其解决思路 1、预制管桩断裂的原因分析 1.1打桩施工方法选择不当。 1.1.1地表土层较软。当地基土的上部土层较软或地表面较薄的硬土层下有较厚的软土层时,如打桩时不采取相应技术措施,桩基支脚直接站压在桩顶或桩顶土层上,形成对地表土层的挤压作用,硬将管桩推挤倾斜。 1.2基坑开挖施工方法不当。因基坑开挖施工方法不当而引起土体位移,造成预制管桩倾斜断裂的现象比较多,原因也比较复杂。 1.2.1土质软,土体中富含地下水,抗剪强度低。 1.2.2一次性挖土深度过大,放坡不够,引起土体滑动。 1.3接桩不良。现预应力管桩接桩一般均采用焊接,焊接时由于操作方法不当,使得焊缝不饱满,不连续、不均匀,特别值得注意的是,由于地下水位较浅,如冷却时间不够,焊接的都开始沉桩,则相当于焊缝淬火,极易发生焊口裂缝。 2、预制管桩断桩预防措施 2.1合理选择基坑开挖施工方法。 2.1.1深基坑一定要分层开挖,每层挖土的厚度不应超过1.5米,层与层之间留出一定宽度的工作面,并根据土质情况合理放坡,严禁土体滑动。 2.1.2深基坑在接近坑底时应采取接开挖,前边(接近坑底层土)用小挖机,后边用大挖机,这样可减小挖土机械对桩顶土层的挤压作用。 2.1.3基坑挖土不深的情况下可用长臂挖机(如15m长)站在远离桩位的位置开挖。 2.1.4挖机和运输车辆距桩位较近时加垫路基板。 2.1.5基坑边上不应有重车行走或堆载过大,特别是放坡开挖的无支护基坑。 2.2合理选择基坑支护措施。基坑支护方法选择时应特注意基坑外地下水位及是否存在给排

工程预应力管桩基础三类桩处理

工程预应力管桩基础三 类桩处理 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

某工程预应力管桩基础Ⅲ类桩的处理与预防措施 摘要:通过某工程的预应力管桩基础出现Ⅲ类桩的情况进行分析处理,并提出预防措施。 关键词:预应力混凝土管桩;Ⅲ类桩;加固处理;预防 一、引言 预应力混凝土管桩以其单位成本相对不高、施工进度快、承载力高、采用静压法时没噪音等优点,符合绿色环保的要求,目前广泛用于各项建筑工程。但在地质条件较差(如软土中存在硬夹层或孤石等)或者打桩施工顺序的不合理,还有管桩自身承受水平荷载能力差等原因,管桩在施工过程中容易发生断桩、倾斜等缺陷。对于断桩,在施工过程中能够及早发现时,一般采用补桩进行处理,简单快捷。若是对于桩群密度大或者在桩机退场后才发现有缺陷的情况,仍采用补桩的方法,在经济与技术上可能不尽合理。下面通过某工程实例浅谈Ⅲ类桩的处理方法及预防措施。 二、工程概况 该工程位于广州市市区一所医院内,场地所处地貌属于珠江三角洲平原,地形较平坦。勘查场地上部为填土、淤泥、淤泥质粉细砂,局部夹有薄层淤泥质土,下部为粉质粘土、粉土。基岩为白垩系沉积岩,岩性主要为粉砂岩、含砾粉砂岩、砂砾层等。场地没有大断层通过,构造稳定性较好。场地土的类型属于软弱场地土,建筑场地类别为Ⅲ类。本工程为上部九层楼的框架结构,局部有一层地下室,由于该项目处于医院内,对施工所造成环境影响的要求较高,故设计采用PHC-AB400(95)的预应力高强混凝土管桩基础,持力

层为白垩系强风化岩层,沉桩采用静压法进行施工。单桩承载力特征值为1200KPa,桩长约为25~30米。 在施工过程中出现了三次断桩,由于施工单位及时发现,采用补桩的方法进行处理,在此不再具体阐述。管桩施工完毕后,抽取41根桩进行低应变法检测,最后检测结果为:Ⅰ类桩29根,占%,Ⅱ类桩10根,占%,Ⅲ类桩2根,占%,无Ⅳ类桩。其中有两根Ⅲ类桩的桩号为41#、90#,桩身出现明显缺陷。根据《建筑基桩检测技术规范》(JGJ106—2003),Ⅲ类桩对桩身结构承载力有影响,必须进行处理。由于某些原因造成检测时间的滞后,检测报告出来时压桩机已经退场,要求压桩机重新进场补桩显然不合理,故建设单位要求设计单位就此两根Ⅲ类桩提出处理方案。 三、原因分析 通过施工单位了解到,由于之前的补桩,压桩机的施工路线有所变化,在已施工完毕的桩附近往返经过。由于场地浅层土体性质较差,主要是淤泥或淤泥质粉细砂,抗剪强度低,压桩机对土体的碾压,造成上层的土体产生位移,对靠近桩机的管桩形成单侧挤压力,在软硬土分界点形成一个支点,当支点处侧压力对管桩形成的弯矩大于桩本身的极限弯矩时,桩身就出现了水平裂缝。 本文以90#桩为例进行说明。根据检测单位《桩基低应变法试验检测报告》的动测曲线图(图1)看出,90#桩在距离顶面处有明显缺陷。对于桩身出现明显缺陷或严重缺陷的桩,关键是确定其断桩位置是否位于桩的接驳位置上。当断裂位置处于桩接驳位置时,由于桩接驳处没有桩身钢筋连接,有可能出现错位,从而影响桩的承载力;若不是,则桩身的钢筋仍然将断裂处两端的部分连接在一起,断裂处出现错位的几率较小,管桩仍能够承受一定的荷载。根据施工单位提供的管桩施工记录表的接桩长度推算,该管桩的断裂位置不在接驳位置,断裂位置距离接头约米。经垂直检测,41#及90#桩均没有发生错

预应力管桩断桩原因及防治的探讨

预应力管桩断桩原因及防治的探讨 发表时间:2016-03-30T10:38:43.373Z 来源:《基层建设》2015年21期供稿作者:叶建禹 [导读] 宏建建工集团有限公司桩基是建筑工程的最重要组成部分,其质量问题给结构造成的问题是巨大的甚至是致命的。 宏建建工集团有限公司福建宁德 352100 摘要:桩基是建筑工程的最重要组成部分,其质量问题给结构造成的问题是巨大的甚至是致命的,因此有效的预防断桩问题,避免工程损失已成为业界的讨论关注问题,本文以沿海某城市断桩实例,结合工程实际,从断桩原因分析,防治,断桩处理三方面做了些探讨,以供借鉴。 关键词:预应力管桩;断桩;防治 前言:预应力管桩生产、施工技术自从上世纪70年代进入国内以来,得到迅猛发展,特别是在长江三角洲和珠江三角洲地区,由于地质条件适合管桩施工的使用特点,在工业与民用建筑中得到广泛应用。在预应力管桩施工技术飞速发展的同时,其伴随而来的质量问题特别是断桩问题屡有发生,造成工期、成本的极大损失。 1 断桩原因分析: 该沿海城市小区e#、f#楼地下室一层,地上二十七层,总建筑面积33759平米,在基础施工开挖中出现断桩情况,其中e#楼主楼172根桩,断桩37根,断桩率22%,f#楼主楼141桩,断桩77根,断桩率高达55%,其邻近的g#、h#楼也出现小部分断桩。断桩呈现断桩位置一致、断桩区域集中的特点,如下图: 该小区断桩质量事故给工程进展带来重大影响及造成重大经济损失。经现场实际勘察,发现多因素影响造成了断桩,首先从地质条件分析: 该小区e#楼、f#楼地质分布情况如下表 从地勘资料上看,原地块还为自然渔塘,回填砂均达2.5m厚,回填砂具有保水性,水分不易蒸发,其下的淤泥层较厚,最厚达7.6m,且为流塑性,极易造成挤淤,塌方。在土方开挖时,流砂、流塑性淤泥先推倒支护桩,断桩位置均集中于淤泥层与卵石层交接处,因此,流塑性淤泥太厚造成挤淤,塌方直接导致断桩。 从现场图片上看到,该项目在桩基施工时,送桩长度明显不足。该项目桩基施工前场地平均标高为-1.8m,设计桩顶标高为-6.5m(电梯基坑为-8.5),因此送桩4.7m为理想状态(电梯基坑除外),而断桩的送桩深度为0—4m,且主要集中0—3m范围内,特别是f#楼,送桩均不到位,只为0-1.5m,因此在开挖过程中,挖机在淤泥质土中行走,土侧压力直接作用于桩身,出现第一根断桩后,就形成多米诺骨牌效应,造成大面积断桩。因此,桩基施工中送桩长度不足也造成了断桩。 从现场土方开挖放坡上察看,该项目采取大放坡式开挖,在塔吊安装施工时,塔吊安装距离超长,塔吊无法安装,又回填出一条临时便道安装塔吊,对管桩造成二次挤压,造成断桩。e#、f#楼断桩集中于安装塔吊的临时便道下。因此,没有针对e#、f#楼地质情况制定具体的土方开挖开案就臆测开挖是造成断桩的重要原因。 该项目在基础开挖时还遇到三个台风影响,台风带来的降水更易造成土方滑坡、溜方,未制定行之有效的降水、排水措施也加大了塌方的概率,也间接造成断桩。 2 预应力管桩断桩防治措施 断桩给项目进度及经济成本带来重大损失,为避免在以后的工程中再次出现类似的质量问题,针对以上的断桩原因,结合实际情况,

预应力管桩大量断桩后的事故处理

预应力管桩大量断桩后的事故处理 【摘要】结合工程实例,介绍预应力管桩大量断桩后的事故处理。 【关键词】预应力管桩;推偏; 断桩;检测;加桩 1.工程概况 南京某商住小区,占地28000 m2,总建筑面积70000 m2 ,由南排四栋11 层商住楼和北排4栋19层商住楼组成,两排之间间距60 m ,拟作地下车库。商住楼基础采用桩径500 预应力管桩。 该小区工程地质自上而下土层分布特征如下: ①素填土:疏松,厚度为0.60~2.70m;②淤泥:饱和、流塑,厚度为5.30~9.90 m:③粉质粘土:粘性强,较湿,可塑~硬塑,厚度变化较大,为0.30~11.70 m ;④强风化泥岩:泥质结构,含粉砂质,厚度变化大,为1.00~10.10 m勘探至此层终孔。 本工程场地紧邻长江口,地下水位高,据终孔后动态水位观测,其水位埋藏在孔深0.70~1. 40 m。 2.事故原因分析 完成预应力管桩施工后,先进行北排深基坑开挖,基坑深度3.5 m ,边坡采用1:1放坡。根据建设单位要求,地下车库建设需要回填约7000 m3土方,要求施工单位在基坑开挖时,保留7000 m3土方不外运。施工单位决定利用中心空地堆放土方,堆土高度3m,距基坑边20m。根据现场地质资料,经边坡稳定性验算,以上堆土距离和高度是安全的。基坑开挖全部完成后,未发现明显异常现象,第二天,部份基坑边坡和基坑底的淤泥突然发生大面积滑动,基坑坑底淤泥层涌起30cm ,邻近边坡的大量桩被推偏倾斜,同时中心空地部份堆土土方高度下降约1m 。 设计、施、监理、建设单位等各方立即察看现场,讨论事故原因,制定应急方案。 根据现场目测,边坡滑动主要发生在场地的中央部位,北排位于中间的两栋建筑基桩受到影响,靠近中心空地的边轴线桩倾斜程度最大, 进入建筑内轴线后倾斜程度逐渐减小。查看地质报告,发现场地中间局部地段淤泥层的含水量和可塑性明显高于场地周边,经了解此场地为几年前回填,回填前场地中央有一小型水塘,此次边坡滑动的区域正是水塘位置。分析事故原因:边坡和基坑底部的土体主要为旧水塘周边含水量高的饱和流塑淤泥,且场地地下水位较高,造成边坡的抗剪强度低。 3.处理方案

预制方管桩断桩处理方案

接桩处理方案 一、工程概况: 楼,层数为1+26层,使用400*400预制空心管桩,桩长11米,基坑开挖后,发现有21根桩标高不够,桩顶往下分别是0.13米、1.13米、0.33米、0.31米、0.43米、0.13米、0.05米、0.08米、0.43米、0.1米、0.13米、0.1米、0.11米、0.1米、0.1米、0.17米、0.17米、0.13米、0.12米、0.1米、0.13米。查验基坑现场,验明因打桩时打超引起。为不影响工程质量,制定加固处理方案。 二、施工准备: 1、技术准备:基底水平标高点抄至基坑内。 2、机具准备:铁锹、毛刷、手推车、木抹子、铁抹子、塔吊。 三、预制桩接桩的处理方法: ①接桩方案附图1(大于300mm)。 ②经建设单位、监理单位、施工单位一致研究决定,挖土至 接桩处,C45砼接桩,接桩长度为1.13米、0.33米、0.43 米、0.31米、0.43米,所挖土方随接桩时一同浇筑。 ③挖除接桩四周的土方,按四周留400宽工作面,挖土为 1200×1200,基地清理平整,底部土无扰动。

④在接桩部位撬动,剔凿,将上部断桩用塔吊配合吊走,并 将桩头剔平,清理干净。 ⑤接桩方案附图2(小于300mm)。 ⑥经建设单位、监理单位、施工单位一致研究决定,挖土至 接桩处,接桩长度为0.13米、0.13米、0.05米、0.08米、 0.1米、0.13米、0.1米、0.11米、0.1米、0.1米、0.17米、 0.17米、0.13米、0.12米、0.1米、0.13米,所挖土方随基 础一同浇筑。 ⑦挖除接桩四周的土方,按四周留400宽工作面,挖土为 1200×1200(下部放坡后1000×1000),基地清理平整,底 部土无扰动。 ⑧在接桩部位撬动,剔凿,将上部断桩用塔吊配合吊走,并 将桩头剔平,清理干净。 三、施工要求: 1、人工清挖桩头,断桩接头必须处理干净、平整,外运基槽外弃土,杜绝有存在土、灰尘等杂物、断口出刷水泥浆。 2、混凝土浇筑时要振捣密实,防止出现漏振现象,振捣后要收抹,并用薄膜覆盖。

预应力管桩施工断桩原因和预防措施

预应力管桩施工断桩原因和预防措施 邹泓荣 CAUSE OF PILE-BREAKAGE AND ITS PREVENTION MEASURE OF PRESTRESSED TUBULAR PILE DURING CONSTRVCTION ZOU Hongrong 某粮库采用 500×125 mm预应力管桩,单桩竖向承载力标准值R k=2 500 kN,以硬塑残积土为桩基持力层(或强风化层),控制贯入度为2 cm/10击。施工断裂桩总数23根,破桩率达8%,损失30万元,其中7号、155号、156号、269号桩位分别断桩5根、3根、2根(均无一成桩)。 1断桩过多的原因 1.1地质情况比较复杂 该场地软弱土层(填土、淤泥)厚度达15 m以上,从地质剖面图看,粮库(北座)场地强风化岩面较浅,残积层较薄。后来在ZK1和ZK7附近的补钻孔证明,该部位淤泥层直接覆盖基岩,基岩表面强风化层和中风化岩层很薄,甚至缺失(直接到微风化)。在这种“上软下硬,软硬突变”的地质条件下打桩,管桩很快穿越软覆盖层后即遇硬层,贯入度突然变小;桩身反弹剧烈,桩身容易断裂。从打桩记录看,212号桩仅23击就断裂;而同一承台未断桩211号桩,从1~21 m 管桩自沉,其第22 m、23 m、24 m分别为3击、16击、213击。269号和269号补桩,分别以20击、22击断裂。粮库(南座)场地强风化岩层较深,有明显陡坡(其偏北部位残积层较薄)。桩尖在锤击振动下沿岩面陡坡滑移,造成桩身断裂。 1.2地质资料不够详尽 《软土地区工程地质勘察规范》(JGJ 83-91)第七章“桩基工程勘察”第7.0.3条二规定:“当相邻勘探点揭露的持力层层面高差大于2m,或土层性质变化较大时,宜适当加密,必要时尚应查明持力层厚度的变化”。该工程地质报告在持力层层面高差太大,并有明显陡坡的情况下未按规范要求进一步加密钻孔;ZK1、ZK7钻孔强风化岩层薄且无标贯数据。 该地质报告在强风化层上做了8个标贯测试,最小N=50,最大N=82.9。该地质报告采用“平均值”N=64.2,这样的“平均值”会误导设计和施工。 1.3设计和施工有疏忽 在地质比较复杂、地质报告不够详尽、某些剖面明显不利于采用管桩的情况下,该设计与一般情况基本无异,当桩端嵌岩很浅时,若单桩承载力取较高值,不利于桩端和桩身在受压时的稳定;无专项技术交底。这样的设计,打桩必然会有困难。 施工前未经图纸会审,施工单位未认真熟悉地质资料和设计图纸,就开始从

管桩断桩原因

内容提要:本文是笔者于1994年11月15日在番禺市召开的中国水泥制品工业协会预制混凝土桩专业委员会九四年度年会上的发言稿。文章比较详细地论述了预应力管桩在制作和应用两大方面所曾经出现过的质量问题,并且指出产生这些质量问题的主要原因及其危害性,供制作厂家和使用单位的工程技术人员作参考借鉴之用。 预应力管桩的质量应包括产品质量(严格来说应为商品质量)和工程质量两大方面,而工程质量又有勘察设计质量和施工质量之分;就施工质量来说,也不单指打桩质量,还包括吊装、运输、堆放及打桩后的开挖土方、修筑承台时的质量问题。 衡量管桩产品质量最终最直观的尺度是它的耐打性;评价管桩工程质量最主要的指标是桩的承载力,检查桩体的完整性、桩的偏位值和斜倾率就是为了保证桩的承载力。本文将根据我国尤其是广东地区近十年来生产和应用上千万米预应力管桩的过程中所曾出现过的产品质量和工程质量问题逐一加以列举,并指出产生原因及危害性。“前事不忘,后事之师”,尽管有些产品质量问题是个别现象且现已不复存在,但作为教训,对制造厂家尤其是新近投产的厂家可能有所帮助;至于工程质量问题,更应引起各设计、建设和施工单位的重视;作为制造厂家,熟悉工程质量问题,对加强管桩质量、合理使用管桩等方面也都是有益的。 下面就管桩的质量问题发表一些粗浅的看法: 一、管桩的产品质量问题 为叙述方便,将管桩在吊装、运输、堆放中出现的问题归入产品质量之中,同时也将桩尖质量问题一并列出: (1)端头板的设计宽度小于管桩设计壁厚。如曾有Ф550—100管桩,端板实用宽度只有70mm。 原因:设计错误,偷工减料。 危害:无端板处的混凝土高出端板2—3mm,很难接驳,若要接驳,只能将高出部分的混凝土敲掉,不仅费时费工,而且往往将内壁混凝土敲掉桩壁变薄,使桩的传力性能减弱。 (2)端板四周的坡口不按设计要求加工,误差大,坡口尺寸偏小。 原因:加工设备和工艺落后;加工质量差;未认真检查验收;有些甚至是施工单位提出的加工要求。 危害:焊缝厚度得不到保证;有的坡口甚至塞不进焊条,接头质量差。 (3)端头板焊接性能差。 原因:不用A3或AY3钢板,而用一些如旧船板等可焊性差的钢板作端头板。

预应力管桩断桩原因及防治的探讨

预应力管桩断桩原因及防治的探讨 摘要:桩基是建筑工程的最重要组成部分,其质量问题给结构造成的问题是巨 大的甚至是致命的,因此有效的预防断桩问题,避免工程损失已成为业界的讨论 关注问题,本文以沿海某城市断桩实例,结合工程实际,从断桩原因分析,防治,断桩处理三方面做了些探讨,以供借鉴。 关键词:预应力管桩;断桩;防治 前言:预应力管桩生产、施工技术自从上世纪70年代进入国内以来,得到迅猛发展,特 别是在长江三角洲和珠江三角洲地区,由于地质条件适合管桩施工的使用特点,在工业与民 用建筑中得到广泛应用。在预应力管桩施工技术飞速发展的同时,其伴随而来的质量问题特 别是断桩问题屡有发生,造成工期、成本的极大损失。 1 断桩原因分析: 该沿海城市小区e#、f#楼地下室一层,地上二十七层,总建筑面积33759平米,在基础 施工开挖中出现断桩情况,其中e#楼主楼172根桩,断桩37根,断桩率22%,f#楼主楼141桩,断桩77根,断桩率高达55%,其邻近的g#、h#楼也出现小部分断桩。断桩呈现断桩位 置一致、断桩区域集中的特点,如下图: 该小区断桩质量事故给工程进展带来重大影响及造成重大经济损失。经现场实际勘察, 发现多因素影响造成了断桩,首先从地质条件分析: 该小区e#楼、f#楼地质分布情况如下表 从地勘资料上看,原地块还为自然渔塘,回填砂均达2.5m厚,回填砂具有保水性,水分 不易蒸发,其下的淤泥层较厚,最厚达7.6m,且为流塑性,极易造成挤淤,塌方。在土方开 挖时,流砂、流塑性淤泥先推倒支护桩,断桩位置均集中于淤泥层与卵石层交接处,因此, 流塑性淤泥太厚造成挤淤,塌方直接导致断桩。 从现场图片上看到,该项目在桩基施工时,送桩长度明显不足。该项目桩基施工前场地 平均标高为-1.8m,设计桩顶标高为-6.5m(电梯基坑为-8.5),因此送桩4.7m为理想状态 (电梯基坑除外),而断桩的送桩深度为0—4m,且主要集中0—3m范围内,特别是f#楼, 送桩均不到位,只为0-1.5m,因此在开挖过程中,挖机在淤泥质土中行走,土侧压力直接作 用于桩身,出现第一根断桩后,就形成多米诺骨牌效应,造成大面积断桩。因此,桩基施工 中送桩长度不足也造成了断桩。 从现场土方开挖放坡上察看,该项目采取大放坡式开挖,在塔吊安装施工时,塔吊安装 距离超长,塔吊无法安装,又回填出一条临时便道安装塔吊,对管桩造成二次挤压,造成断桩。e#、f#楼断桩集中于安装塔吊的临时便道下。因此,没有针对e#、f#楼地质情况制定具 体的土方开挖开案就臆测开挖是造成断桩的重要原因。 该项目在基础开挖时还遇到三个台风影响,台风带来的降水更易造成土方滑坡、溜方, 未制定行之有效的降水、排水措施也加大了塌方的概率,也间接造成断桩。 2 预应力管桩断桩防治措施 断桩给项目进度及经济成本带来重大损失,为避免在以后的工程中再次出现类似的质量 问题,针对以上的断桩原因,结合实际情况,做出以下防治措施以期亡羊补牢 2.1对于地质原因,项目地质勘察报告应能详尽、真实反映地质情况,以为设计提供依据,针对e#、f#楼的地质情况,在场地处理时,有必要进行换填土,并且选择好的砂包土进 行回填。 2.2在桩基施工中,应加强现场施工管理,对每个桩位进行原地面标高测量,计算配桩 长度、送桩长度(因地质突变等原因引起配桩异常除外)。如该项目的送桩长度大于4m, 在土方分层开挖中就不会对桩造成挤压,不会形成土体的侧压力,就不会引起断桩。合理配桩、送桩到位也能减少管桩材料的浪费,节约成本。送桩一致,桩体之间与土体也能形成一 个整体,就不易因溜方而引起断桩。在预防断桩事故的过程中,也要把握好沉桩顺序。施工

相关文档
相关文档 最新文档