文档库 最新最全的文档下载
当前位置:文档库 › MRI成像技术

MRI成像技术

MRI成像技术
MRI成像技术

第一节MRI常规成像技术

所谓常规MRI成像技术,是指各受检部位进行MRI检查时需要常规进行的MRI检查技术,包括成像序列(通常包括T1WI和T2WI序列)、序列的成像参数、扫描方位等。下面以1.5 T扫描机为例简单介绍临床上常见检查部位的MRI常规成像技术。

一、颅脑

颅脑是MRI最为常用的检查部位,颅脑常规的MRI检查包括:(1)横断面SE T1WI:TR=300 ~500ms,TE=8 ~15ms,层厚5 ~ 8mm,层间距1 ~2.5mm,层数15 ~25层,矩阵256×192 ~ 512×256,FOV = 220 ~ 240 mm,NEX = 2;(2)横断面FSE T2WI:TR = 2500 ~ 5000 ms,TE为100ms左右,ETL = 8 ~16,其他参数同SE T1WI;(3)矢状面SE T1WI或FSE T2WI:有助于中线结构的显示,成像参数同横断面SE T1WI或FSE T2WI;(4)冠状面SE T1WI 或FSE T2WI:有助于病变定位及近颅底或颅顶部病变的显示,成像参数同前。

除上述常规检查外,颅脑检查常需要增加的检查技术包括:(1)横断面IR-FSE FLAIR序列:TR = 6000 ~ 10000 ms,TE = 100 ~ 120 ms,TI=2100 ~ 2500 ms,ETL = 10 ~ 20,其他成像参数同前,该序列有助于被脑脊液掩盖病变的显示,如皮层病变,脑室或脑池内病变等;(2)横断面DWI序列:常用单次激发SE-EPI序列,TR无穷大,TE = 60 ~ 100 ms,b值为1000 s/mm2左右,矩阵128×128 ~ 256×256,其他成像参数同前;(3)增强扫描:静脉注射对比剂(常为Gd-DTPA)后,利用SE-T1WI序列进行扫描,常规扫描横断面,必要时加扫矢状面或冠状面,成像参数同前。

二、垂体

MRI是目前显示垂体最佳的无创性检查方法,垂体的MRI常规技术包括:(1)矢状面SE T1WI序列:TR=300 ~500ms,TE=8 ~15ms,层厚3 mm,层间距0 ~0.5mm,层数8 ~12层,矩阵256×192 ~ 256×256,FOV = 150 ~ 200 mm,NEX = 2;(2)冠状面SE T1WI序列:扫描参数同矢状面;(3)增强扫描:注射对比剂后,进行冠状面和矢状面SE T1WI,成像参数同前。

垂体MRI检查根据需要可增加以下技术:(1)冠状面或矢状面FSE T2WI:TR=2500 ~ 3000 ms,TE = 100 ms,ETL = 8 ~16,其他参数同SE T1WI;(2)动态增强扫描:可选用FSE T1WI (TR=200 ~ 300 ms,TE=10 ~15ms,ETL=2 ~4)或扰相GRE T1WI(TR=100 ~150 ms,TE 约为4.4ms,激发角度60 ~70°),其他参数同SE T1WI,于注射对比剂后30s、1min、2min、3min、5min、7min、10min进行扫描。

三、眼眶和眼球

眼球和眼眶检查时,需要嘱病人不能运动眼球,检查可使用普通头颅线圈或专用表面线圈。扫描常规序列包括:(1)横断面SE T1WI:层厚3 ~4 mm,层间距0 ~1mm,其他参数同头颅横断面SE T1WI;(2)横断面FSE T2WI,层厚和层间距同SE T1WI,其他参数同头颅横断面FSE T2WI,由于眼眶内富含脂肪组织,常需要采用脂肪抑制技术;(3)根据需要加扫冠状面和矢状面SE T1WI或/和FSE T2WI,扫描参数同前;(4)增强扫描:注射对比剂后进行横断面SE T1WI,参数同前,必要时加扫冠状面和矢状面,一般需要施加脂肪抑制技术。

四、脊柱脊髓

MRI是目前检查脊柱脊髓最佳的无创性检查方法。椎管内病变应该首选MRI检查。脊柱脊髓MRI扫描应该选用脊柱专用线圈,最好选用相控阵列线圈。常规扫描序列包括:(1)矢状面SE(或FSE)T1WI:TR = 300 ~400ms;TE=8 ~15ms;层厚3 ~ 4mm,层间距0.5 ~1.5mm,层数10 ~15层,矩阵256×192 ~ 512×256,FOV = 250 ~ 320 mm,NEX = 2,相位编码选择上下方向以减少心脏大血管搏动伪影;(2)矢状面FSE T2WI:TR大于2500 ms;TE=100ms;ETL= 12 ~ 16,其他参数同SE T1WI;(3)横断面FSE T2WI:层厚3 ~ 5 mm,层间距1~2mm,其他参数同矢状面FSE T2WI;(4)根据需要可增加冠状面扫描、脂肪抑制技

术或增强扫描等。

五、肺、纵膈、心脏

尽管随着MRI技术的进步,肺、纵膈、心脏的MRI检查在临床上日益增多,但在MRI临床工作中,这些部位的MRI检查仍属于少数,特别是心脏MRI检查,目前所用的技术很多,序列也比较复杂,本讲义不作重点介绍,请参阅本讲义的相应章节。

六、肝、胆、胰、脾

(一)肝脏

肝脏的MRI检查一般以横断面为主,必要增加冠状面或矢状面扫描。常规序列包括:(1)横断面FSE T2WI,首选ETL较短的FSE序列配用呼吸触发技术,TR一般为1~2个呼吸周期,TE为70~90ms,层厚5~10mm,层间距1~2mm,最好采用脂肪抑制技术。(2)横断面SE T1WI,TR = 300~500ms,TE=10~20ms,配用呼吸补偿技术,其他参数同T2WI;或扰相GRE T1WI,TR=100~200ms,TE约为4.4 ms,激发角70o~85o,其他同T2WI。(3)冠状面扫描,有助于病变定位,序列可选择FSE T2WI或扰相GRE T1WI等。

肝脏MRI检查中非常重要的是动态增强扫描,可以发现平扫不能发现的病灶,并有助于病变的定性诊断。技术要点如下:(1)对比剂及其注射方式。常用Gd-DTPA,常规剂量0.1mmol/kg体重。给药途径一般经肘前静脉注射,需用MRI兼容的塑料套管针及连接管进行注射,最好能采用MR专用高压注射器推注,速率为2~4ml/s。对比剂注射完毕应立刻用生理盐水冲管,以保证足量的对比剂按时进入血管,利用高压注射器可自动完成上述注射和冲管。如无专用高压注射器,在扫描时用手推也能达到目的,只是注射速率及冲管时机的控制不如高压注射器准确。(2)扫描序列及其参数。一般选用二维扰相GRE T1WI序列,TR 为100~200ms,TE约为4.4ms左右,层厚5~8ms,层间距1~2mm。该序列一次屏气(15~25s)可完成全肝扫描。(3)扫描时机的掌握。理想的动脉期图像的标准是动脉的信号强度升至最高,门静脉主干可有轻微显影,肝静脉无对比剂进入;门静脉的标准是肝实质的信号强度达到峰值,肝静脉和门静脉均显示良好。肝脏MRI动态增强扫描由于对比剂剂量小,注射时间较短,一般仅为5~10s,因而增强的各期要比CT动态增强扫描更容易分开,准确捕捉扫描时机将能提高增强扫描的效果。在临床工作中,如果每个病人都进行循环时间的测量显然不太方便,由于大多数人的循环时间都在一定的范围之内,因而对于多数的病人仅需按常规进行扫描即可。从注射对比剂开始到对比剂进入肝脏一般需要25s左右,因此CT动态增强扫描动脉期一般在25s左右开始扫描,但MRI动态增强时还应该考虑到序列扫描本身所占用的时间,由于图像的对比主要由K空间中央的一部分相位编码线决定,一般的序列中,这部分相位编码线的采集是在扫描时间的一半时进行的,如所用的序列扫描时间为20s,则这部分相位编码线是在扫描进行到10s左右时被采集的,实际上就是说扫描序列应该提早10s开始,即应该在对比剂开始注射后15s启动动脉期扫描。笔者进行肝脏MRI动态增强(二维扰相GRE序列,K空间对称循序填充,序列采集时间为20s)的时相如下:动脉期15s;门静脉50~60s;平衡期3min;根据需要5~15min后进行延时扫描。

(二)胰腺

胰腺MRI常规检查与肝脏相仿,但有其特点:(1)层厚应该更薄,一般为3~5mm;(2)T1WI 比T2WI更为重要。胰腺检查最重要的序列为脂肪抑制T1WI,一般选用二维或三维扰相GRE T1WI序列。在脂肪抑制的T1WI上,正常胰腺组织呈现较高信号(高于正常肝实质),病变一般呈现相对低信号,且与正常胰腺组织的对比优于T2WI。(3)动态增强扫描。与肝脏动态增强扫描类似,但层厚应该更薄,动脉期时相可比肝脏动态增强动脉期延后5 ~ 8s。(三)胆管

胆管病变的检查一般需要进行肝胆的常规MRI检查(同前)。需要注意的是:(1)对于胆道梗阻的病例,在梗阻水平应该加扫薄层;(2)MRCP有利于胆道病变的显示(详见本章第四

节)。

(四)脾脏

脾脏的常规MRI检查与肝脏相仿。

七、肾上腺、肾脏、输尿管、膀胱

(一)肾上腺

肾上腺检查常规应该包括横断面和冠状面,常用的序列有脂肪抑制FSE T2WI、SE T1WI和扰相GRE T1WI。一般成像参数同肝脏,不同之处为:(1)需要进行3~5mm的薄层扫描;(2)利用扰相GRE T1WI进行的同相位/反相位成像有助于腺瘤和非腺瘤病变的鉴别诊断。(二)肾脏

肾脏的MRI常规检查及动态增强扫描所用的序列与肝脏相同,不同之处在于:(1)常采用横断面扫描与冠状面扫描相结合,必要时加扫矢状面;(2)FSE T2WI的T2权重较重,TE 一般宜选择在120~150ms;(3)冠状面一般宜采用3~5mm的薄层扫描。

(三)输尿管

没有梗阻和扩张的输尿管一般在MRI显示不佳,因此输尿管MRI检查主要用于尿路积水的诊断。一般先利用MRU进行检查(详见本章第四节),发现梗阻部位后在局部进行薄层扫描,序列同肾脏MRI。

(四)膀胱

膀胱的常规MRI检查以横断面为主,辅以矢状面和冠状面扫描。扫描序列主要有:(1)FSE T2WI,TR>2500 ms,TE 100ms左右,层厚5mm,层间距1~1.5mm,一般需要施加脂肪抑制技术,有利于减少化学位移伪影和腹壁运动伪影。(2)SE T1WI,TR为400~500ms,TE 为10~20ms,其余参数同T2WI。(3)可增加水成像序列的扫描。

八、前列腺

前列腺位于盆腔底部,体积较小,一般需要进行小视野高分辨扫描,而且一般需要进行横断面、冠状面和矢状面扫描。具体序列如下:(1)横断面FSE T2WI,TR>3000ms,TE为120ms 左右,层厚3~4mm,层间距1mm,FOV 15~20cm,采用脂肪抑制技术。(2)横断面SE T1WI,TR 300~500ms,TE 10~20ms,其他参数同T2WI。(3)冠状面FSE T2WI,参数同横断面。(4)矢状面FSE T2WI,参数同横断面。(5)前列腺癌的病例需要加扫大视野SE T1WI,扫描范围包括全骨盆,观察有无骨转移或盆腔淋巴结肿大。

九、女性盆腔

子宫的MRI检查以矢状面为主,辅以冠状面和横断面;附件的检查以横断面和冠状面为主。具体序列包括:(1)矢状面FSE T2WI,TR>2500ms,TE为80~100ms,层厚3~4mm,层间距1mm,常需要脂肪抑制。(2)矢状面SE T1WI,TR 300~500ms,TE 10~20ms,其他参数同T2WI。(3)横断面FSE T2WI,参数同矢状面。(4)横断面SE T1WI,参数同矢状面。(5)冠状面FSE T2WI,参数同矢状面。

十、四肢大关节

四肢大关节的MRI检查一般也采用FSE PDWI或T2WI、SE T1WI、扰相GRE T1WI及扰相GRE T2*WI等序列。大关节检查有其一定的特殊性:(1)由于软骨、韧带、肌腱及骨组织的T2值较短,因此多采用FSE PDWI或权重较轻的T2WI,一般TE应该在80ms以下(多为15~60ms),否则图像的信噪比太低。(2)扰相GRE T2*WI有助于纤维软骨病变的显示(如半月板损伤);(3)扰相GRE T1WI有助于透明软骨的显示。

各关节由于解剖特点不同,采用的扫描方位也有特殊要求:(1)膝关节半月板检查以矢状面和冠状面为主;(2)膝关节侧副韧带检查以冠状面为主;(3)膝关节交叉韧带检查以斜冠状面和斜矢状面为主;(5)髌股关节面关节软骨的检查以横断面为主,辅以矢状面;(5)肩袖损伤的检查以斜冠状面为主,辅以斜矢状面和横断面;(6)髋关节的检查以冠状面为主,辅

以横断面。

第二节MRI脂肪抑制技术

脂肪抑制是MRI检查中非常重要的技术,合理利用脂肪抑制技术不仅可以明显改善图像的质量,提高病变的检出率,还可为鉴别诊断提供重要信息。

一、MRI检查使用脂肪抑制技术的意义

脂肪组织不仅质子密度较高,且T1值很短(1.5T场强下约为200 ~ 250ms),T2值较长,因此在T1WI上呈现很高信号,在T2WI呈现较高信号,在目前普遍采用的FSE T2WI图像上,其信号强度将进一步增高(详见FSE序列)。

脂肪组织的这些特性在一方面可能为病变的检出提供了很好的天然对比,如在皮下组织内或骨髓腔中生长一个肿瘤,那么在T1WI上骨髓组织或皮下组织因为富含脂肪呈现很高信号,肿瘤由于T1值明显长于脂肪组织而呈现相对低信号,两者间形成很好的对比,因此病变的检出非常容易。

从另外一个角度看,脂肪组织的这些特性也可能会降低MR图像的质量,从而影响病变的检出。具体表现在:(1)脂肪组织引起的运动伪影。MRI扫描过程中,如果被检组织出现宏观运动,则图像上将出现不同程度的运动伪影,而且组织的信号强度越高,运动伪影将越明显。如腹部部检查时,无论在T1WI还是在T2WI上,皮下脂肪均呈现高信号,表面线圈的应用更增高了脂肪组织的信号强度,由于呼吸运动腹壁的皮下脂肪将出现严重的运动伪影,明显降低图像的质量。(2)水脂肪界面上的化学位移伪影(详见MRI伪影一节)。(3)脂肪组织的存在降低了图像的对比。如骨髓腔中的病变在T2WI上呈现高信号,而骨髓由于富含脂肪组织也呈现高信号,两者之间因此缺乏对比,从而掩盖了病变。又如肝细胞癌通常发生在慢性肝病的基础上,慢性肝病一般都存在不同程度的脂肪变性,这些脂肪变性在FSE T2WI上将使肝脏背景信号偏高,而肝细胞癌特别是小肝癌在T2WI上也往往表现为略高信号,肝脏脂肪变性的存在势必降低病灶与背景肝脏之间的对比,影响小病灶的检出。(4)脂肪组织的存在降低增强扫描的效果。在T1WI上脂肪组织呈现高信号,而注射对比剂后被增强的组织或病变也呈现高信号,两者之间对比降低,脂肪组织将可能掩盖病变。如眼眶内球后血管瘤增强后呈现明显高信号,但球后脂肪组织也呈现高信号,两者之间因此缺乏对比,影响增强效果。

因此MRI中脂肪抑制的主要意义在于:(1)减少运动伪影、化学位移伪影或其他相关伪影;(2)抑制脂肪组织信号,增加图像的组织对比;(3)增加增强扫描的效果;(4)鉴别病灶内是否含有脂肪,因为在T1WI上除脂肪外,含蛋白的液体、出血均可表现为高信号,脂肪抑制技术可以判断是否含脂,为鉴别诊断提供信息。如肾脏含成熟脂肪组织的肿瘤常常为血管平滑肌脂肪瘤,肝脏内具有脂肪变性的病变常为高分化肝细胞癌或肝细胞腺瘤等。

二、与脂肪抑制技术相关的脂肪组织特性

MRI脂肪抑制技术多种多样,但总的来说主要基于两种机制:(1)脂肪和水的化学位移;(2)脂肪与其他组织的纵向弛豫差别。

(一)化学位移现象

同一种磁性原子核,处于同一磁场环境中,如果不受其他因素干扰,其进动频率应该相同。但是我们知道,一般的物质通常是以分子形式存在的,分子中的其他原子核或电子将对某一磁性原子核产生影响。那么同一磁性原子核如果在不同分子中,即便处于同一均匀的主磁场中,其进动频率将出现差别。在磁共振学中,我们把这种现象称为化学位移现象。化学位移的程度与主磁场的强度成正比,场强越高,化学位移越明显。

常规MRI时,成像的对象是质子,处于不同分子中的质子的进动频率也将出现差异,也即

存在化学位移。在人体组织中,最典型的质子化学位移现象存在于是水分子与脂肪之间。这两种分子中的质子进动频率相差约3.5PPM,在1.5 T的场强下相差约220HZ,在1.0 T场强下约为150HZ,在0.5 T场强下约为75HZ。脂肪和水中质子的进动频率差别为脂肪抑制技术提供了一个切入点。

(二)脂肪与其他组织的纵向弛豫差别

在人体正常组织中,脂肪的纵向弛豫速度最快,T1值最短。不同场强下,组织的T1值也将发生变化,在1.5 T的场强下,脂肪组织的T1值约为250ms,明显短于其他组织。脂肪组织与其他组织的T1值差别也是脂肪抑制技术的一个切入点。

三、MRI常用的脂肪抑制技术

针对上述脂肪组织的特性,MRI可采用多种技术进行脂肪抑制。不同场强的MRI仪宜采用不同的技术,同一场强的扫描机也可因检查的部位、目的或扫描序列的不同而采用不同的脂肪抑制技术。

(一)频率选择饱和法

频率选择饱和法是最常用的脂肪抑制技术之一,该技术利用的就是脂肪与水的化学位移效应。由于化学位移,脂肪和水分子中质子的进动频率将存在差别。如果在成像序列的激发脉冲施加前,先连续施加数个预脉冲,这些预脉冲的频率与脂肪中质子进动频率一致,这样脂肪组织的将被连续激发而发生饱和现象,而水分子中的质子由于进动频率不同不被激发。这时再施加真正的激发射频脉冲,脂肪组织因为饱和不能再接受能量,因而不产生信号,而水分子中的质子可被激发产生信号,从而达到脂肪抑制的目的。

频率选择脂肪抑制技术的优点在于:(1)高选择性。该技术利用的是脂肪和水的化学位移效应,因此信号抑制的特异性较高,主要抑制脂肪组织信号,对其他组织的信号影响较小。(2)可用于多种序列。该方法可用于SE T1WI或T2WI序列、FSE T1WI或T2WI序列、TR较长的常规GRE或扰相GRE序列。(3)简便宜行,在执行扫描序列前,加上脂肪抑制选项即可。(4)在中高场强下使用可取得很好的脂肪抑制效果。

该方法也存在一些缺点:(1)场强依赖性较大。前面已经介绍过,化学位移现象的程度与主磁场强度成正比。在高场强下,脂肪和水中的质子进动频率差别较大,因此选择性施加一定频率的预脉冲进行脂肪抑制比较容易。但在低场强下,脂肪和水中的质子进动频率差别很小,执行频率选择脂肪抑制比较困难。因此该方法在1.0 T以上的中高场强扫描机上效果较好,但在0.5 T以下的低场强扫描机上效果很差,因而不宜采用。(2)对磁场的均匀度要求很高。由于该技术利用的是脂肪中质子的进动频率与水分子中质子的进动频率的微小差别,如果磁场不均匀,则将直接影响质子的进动频率,预脉冲的频率将与脂肪中质子的进动频率不一致,从而严重影响脂肪抑制效果。因此在使用该技术进行脂肪抑制前,需要对主磁场进行自动或手动匀场,同时应该去除病人体内或体表有可能影响磁场均匀度的任何物品。(3)进行大FOV扫描时,视野周边区域脂肪抑制效果较差,这也与磁场的均匀度及梯度线性有关。(4)增加了人体吸收射频的能量。(5)预脉冲将占据TR间期的一个时段,因此施加该技术将减少同一TR内可采集的层数,如需要保持一定的扫描层数则需要延长TR,这势必会延长扫描时间,并有可能影响图像的对比度。如在1.5 T扫描机中,SE T1WI,如果选择TR=500ms,TE=8ms,在不施加脂肪抑制技术时,最多可采集26层,如果施加脂肪抑制技术,则最多只能采集12层。

(二)STIR技术

STIR技术原理我们在反转恢复序列一节中已经作了介绍。STIR技术是基于脂肪组织短T1特性的脂肪抑制技术,也是目前临床上常用的脂肪抑制技术之一。STIR技术可用IR或FIR 序列来完成,目前多采用FIR序列。

由于人体组织中脂肪的T1值最短,因此180°脉冲后其纵向磁化矢量从反向最大到过零点

所需的时间很短,因此如果选择短TI则可有效抑制脂肪组织的信号。抑制脂肪组织信号的TI等于脂肪组织T1值的69%。由于在不同的场强下,脂肪组织的T1值将发生改变,因此抑制脂肪组织的TI值也应作相应调整。在1.5 T的扫描机中,脂肪组织的T1值约为200 ~ 250 ms,则TI =140 ~ 175 ms时可有效抑制脂肪组织的信号。在1.0 T扫描机上TI应为125 ~ 140ms;在0.5 T扫描机上TI应为85 ~ 120ms,在0.35 T扫描机上TI应为75 ~ 100ms,在0.2 T扫描机上TI应为60 ~ 80ms。

STIR技术的优点在于:(1)场强依赖性低。由于该技术基于脂肪组织的T1值,所以对场强的要求不高,低场MRI仪也能取得较好的脂肪抑制效果;(2)与频率选择饱和法相比,STIR 技术对磁场的均匀度要求较低。(3)大FOV扫描也能取得较好的脂肪抑制效果。

STIR技术的缺点表现为:(1)信号抑制的选择性较低。如果某种组织(如血肿等)的T1值接近于脂肪,其信号也被抑制。(2)由于TR延长,扫描时间较长。(3)一般不能应用增强扫描,因为被增强组织的T1值有可能缩短到与脂肪组织相近,信号被抑制,从而可能影响对增强程度的判断。

(三)频率选择反转脉冲脂肪抑制技术

频率选择脂肪抑制技术需要利用连续的脉冲对脂肪组织进行预饱和,脉冲在TR间期占据的时间约需要12 ~ 20ms。STIR技术需要在TR间期占据的时间更长(1.5 T时需要150ms左右)。因此大大减少能够采集的层数,或需要延长TR从而增加TA。而且在超快速梯度回波序列时,由于TR很短(往往小于10ms),利用上述两种技术进行脂肪抑制显然是不现实的。近年来在三维超快速梯度回波成像序列(如体部三维屏气扰相GRE T1WI或CE-MRA)中,推出一种新的脂肪抑制技术,即频率选择反转脉冲脂肪抑制技术。该技术既考虑了脂肪的进动频率,又考虑了脂肪组织的短T1值特性。其方法是在真正射频脉冲激发前,先对三维成像容积进行预脉冲激发,这种预脉冲的带宽很窄,中心频率为脂肪中质子的进动频率,因此仅有脂肪组织被激发。同时这一脉冲略大于90°,这样脂肪组织将出现一个较小的反方向纵向磁化矢量,预脉冲结束后,脂肪组织发生纵向弛豫,其纵向磁化矢量将发生从反向到零,然后到正向并逐渐增大,直至最大值(平衡状态)。由于预脉冲仅略大于90°,因此从反向到零需要的时间很短,如果选择很短的TI(10 ~ 20ms),则仅需要一次预脉冲激发就能对三维扫描容积内的脂肪组织进行很好的抑制,因此采集时间仅略有延长。

该种技术在GE公司生产的扫描机上称之为SPECIAL(spectral inversion at lipids),飞利浦公司称之为SPIR。该技术的优点在于:(1)仅少量增加扫描时间;(2)一次预脉冲激发即完成三维容积内的脂肪抑制;(3)几乎不增加人体射频的能量吸收。缺点在于:(1)对场强的要求较高,在低场扫描机上不能进行;(2)对磁场均匀度要求较高。

频率选择反转脉冲脂肪抑制技术一般用于三维快速GRE序列。但如果在SITR技术中采用的180°反转脉冲是针对脂肪中质子的进动频率,则该技术也可用于T2WI,这种技术可以增加STIR技术的脂肪组织抑制的特异性。

(四)Dixon技术

Dixon技术是一种水脂分离成像技术,通过对自旋回波序列TE的调整,获得水脂相位一致(同相位)图像和水脂相位相反(反相位)的图像。通过两组图像信息相加或相减可得到水质子图像和脂肪质子图像。把同相位图像加上反相位图像后再除以2,即得到水质子图像;把同相位图像减去反相位图像后再除以2,将得到脂肪质子图像。Dixon技术目前在临床上应用相对较少。

(五)预饱和带技术

严格地说,添加预饱和带并不能算是脂肪抑制技术,因为在添加饱和带的区域接受预脉冲激发,使质子达到饱和,该区域的任何质子(包括脂肪和水)的信号都受到了抑制。腹部MRI 的有些序列图像上皮下脂肪造成的运动伪影较重,在腹壁上添加饱和带能有效地抑制这种运

动伪影。

第三节MRI化学位移成像技术

化学位移成像(chemical shift imaging)也称同相位(in phase)/反相位(out of phase)成像。目前在临床上,化学位移成像技术得到越来越广泛的应用。

一、化学位移成像技术的原理

化学位移成像技术基于脂肪和水分子中质子的化学位移效应。由于分子结构的不同,脂肪中的质子周围受电子云的屏蔽作用比水分子中的质子明显,因此在同一场强下脂肪中质子所感受的磁场强度略低于水分子中的质子,其进动频率也略低于后者,其差别约为3.5PPM,即147HZ / T。也就是说在某种场强下,这两种质子的进动频率差别是恒定的。

由于我们检测到的MR信号实际上是组织的宏观横向磁化矢量,而宏观横向磁化矢量是质子的横向磁化分矢量的合成。由于质子的进动,其横向磁化分矢量实际上是在以Z轴为圆心,在XY平面作圆周运动,犹如时钟的指针。在某一场强下,水分子中和脂肪中的质子的进动频率差别是恒定的,也犹如时钟的分针和时针的运动频率差别。我们就是时钟为例介绍化学位移成像技术的原理。

在射频脉冲激发后,由于脉冲的聚相位效应,水分子中和脂肪中质子处于同一相位,相当于时针和分针在12点钟时完全重叠。射频脉冲关闭后,这两种质子将以自己的频率进动,由于水分子的质子进动频率略高于脂肪中的质子,两者的相位将逐渐开始离散,到某个时刻,水分子中的质子的相位将超过脂肪中的质子半圈,即两种质子的相位相差180°,相当于时钟到了6点钟时针和分针相差180°,这两种质子的横向磁化分矢量将相互抵消。如果组织中同时含有这两种质子,那么此时采集到MR信号相当于这两种组织信号相减的差值,我们把这种图像称为反相位(out of phase或opposed phase)图像。过了这一时刻后,水分子的质子又将逐渐赶上脂肪中的质子,两种之间的相位差又开始逐渐缩小,又经过相同的时间段,水分子中质子的进动将超过脂肪中质子一整圈,这两种质子的相位又完全重叠,相当于时钟到了24点时针和分针又一次重叠,这时两种质子横向磁化分矢量相互叠加,此时采集到的MR信号为这两种组织叠加的信息,我们把这种图像称为同相位(in phase)图像。过了同相位时刻,两种质子的相位有开始逐渐离散,直至出现相位相差180°(反相位);反相位后又开始逐渐聚相位,直至又出现相位完全重聚(同相位)。因此实际上射频脉冲激发后,反相位、同相位是周期性出现的。

a b c

图48 化学位移成像技术示意图我们以时钟的方式来演示,以分针(长细箭)表示进动较快的水分子中质子,以时针(短空箭)表示进动较慢的脂肪中质子。射频脉冲激发时刻(t0),由于射频脉冲的聚相位作用,两种质子的相位一致(图a),相当于12点整;射频脉冲关闭后,由于水分子中质子进动较快,其相位将超前于脂肪中质子,到一定时刻(t/),其相位将超过后者半圈,即相差180°(图b),相当于6点整,这时由于相位相差180°,这两种质子的横向磁化矢量相互抵消,如果此时采集回波得到的将是反相位图像;过了此时刻后,水分子中质子的相位将超前脂肪中质子更多,经过与(t/ -t0)相同的时间段后,其相位将

比脂肪中质子超前一整圈(360°),实际上又重叠在一起(图c),相当于24点整,两种质子的横向磁化矢量相互叠加,此时如果采集回波得到的将是同相位图像。

二、化学位移成像技术的实现

目前临床上化学位移成像技术多采用扰相GRE T1WI序列,利用该序列可很容易获得反相位和同相位图像。

扰相GRE T1WI序列需要选择不同的TE可得到反相位或同相位图像,关键在于如何选择合适的TE。不同场强的扫描机获得反相位的TE不同,获得同相位的TE也不同。同相位TE =1000 ms ÷〔147HZ/T×场强(T)〕,反相位TE=同相位TE÷2。1.5 T扫描机同相位TE =1000ms ÷〔147HZ/T×1.5 T〕≈ 4.5ms,反相位TE≈2.2 ms。表3所列为不同场强MRI 仪同相位、反相位应该选择的TE值。

表3 不同场强MRI仪化学位移成像的TE值

场强回波时间(ms)

反相位同相位反相位同相位反相位同相位

3.0 T 1.1 2.3 3.4

4.5

5.7

6.8

2.0 T 1.7

3.4 5.1 6.8 8.5 10.2

1.5 T

2.3 4.5 6.8 9.1 11.3 1

3.6

1.0 T 3.4 6.8 10.2 13.6 17.0 20.4

0.5 T 6.8 13.6 20.4 27.2 34.0 40.8

0.35 T 9.7 19.4 29.2 38.9 48.6 58.3

0.2 T 17 34 51 68 85 102

上表所列的反相位、同相位的TE值是根据公式计算的理论值,临床应用中实际上只要所选TE值与表中所列TE值接近,即可获得较好的成像效果。如在1.5 T扫描机中TE选择在1.8 ~ 2.7ms,都可获得较理想的反相位图像。

在实际应用中,化学位移成像最好能同时采集反相位和同相位图像,以便比较。同相位图像实际上就是普通的扰相GRE T1WI,反相位图像与同相位图像相比,可初步判断组织或病灶内是否含脂及其大概比例。目前在1.5T以上的新型MRI仪上利用扰相GRE T1WI序列,选用双回波(dual echo)技术可在同一次扫描中同时获得反相位和同相位图像,所获图像更具可比性。

三、化学位移成像技术的临床应用

目前化学位移成像技术在临床上得以较为广泛的应用,同相位图像即普通的T1WI,在介绍化学位移成像的临床应用之前首先来了解一下反相位图像的特点。

(一)反相位图像的特点

与扰相GRE普通T1WI(同相位图像)相比,反相位图像具有以下主要特点。

1. 水脂混合组织信号明显衰减,其衰减程度一般超过频率选择饱和法脂肪抑制技术假设某组织的信号的30%来自脂质,70%来自水分子。如果利用频率选择饱和法进行脂肪抑制,即便所有来自脂质的信号完全被抑制,那么还保留70%来自水分子的信号,即信号衰减幅度为30%。而在反相位图像上,则不仅30%的脂质信号消失,同时70%来自水分子的信号中,也有30%被脂肪质子抵消,组织仅保留原来40%信号,信号衰减幅度达60%。

2. 纯脂肪组织的信号没有明显衰减在几乎接近于纯脂肪的组织如皮下脂肪、肠系膜、网膜等,其信号来源主要是脂肪,所含的水分子极少,在反相位图像上,两种质子能够相互抵消的横向磁化矢量很少,因此组织的信号没有明显衰减。

3. 勾边效应反相位图像上,周围富有脂肪组织的脏器边缘会出现一条黑线,把脏器的轮廓勾画出来。因为一般脏器的信号主要来自与水分子,而其周围的脂肪组织的信号主要来自脂肪,所以在反相位图像上,脏器和周围脂肪组织的信号都下降不明显,但在两者交界线上的各体素中同时夹杂有脏器(水分子)和脂肪,因此在反相位图像上信号明显降低,从而出现勾边效应。

(二)化学位移成像技术的临床应用

目前临床上化学位移成像技术多用在腹部脏器中,主要用途有:(1)肾上腺病变的鉴别诊断。因为肾上腺腺瘤中常含有脂质,在反相位图像上信号强度常有明显降低,利用化学位移成像技术判断肾上腺结节是否为腺瘤的敏感性约为70%~80%,特异性高达90%~95%。(2)脂肪肝的诊断与鉴别诊断。对于脂肪肝的诊断敏感性超过常规MRI和CT。(3)判断肝脏局灶病灶内是否存在脂肪变性。因为肝脏局灶病变中发生脂肪变性者多为肝细胞腺瘤或高分化肝细胞癌。(4)其他。利用化学位移成像技术还有助于肾脏或肝脏血管平滑肌脂肪瘤的诊断和鉴别诊断。

核磁共振成像技术分析

电磁波成像 一、核磁共振成像技术分析 1.基本概况 核磁共振成像(Nuclear Magnetic Resonance Imaging,简称NMRI),又称自旋成像(spin imaging),也称磁共振成像(Magnetic Resonance Imaging,简称MRI),台湾又称磁振造影,是利用核磁共振(nuclear magnetic resonnance,简称NMR)原理,依据所释放的能量在物质内部不同结构环境中不同的衰减,通过外加梯度磁场检测所发射出的电磁波,即可得知构成这一物体原子核的位置和种类,据此可以绘制成物体内部的结构图像。 将这种技术用于人体内部结构的成像,就产生出一种革命性的医学诊断工具。快速变化的梯度磁场的应用,大大加快了核磁共振成像的速度,使该技术在临床诊断、科学研究的应用成为现实,极大地推动了医学、神经生理学和认知神经科学的迅速发展。 2.检测设备及原理 核磁共振谱仪是专门用于观测核磁共振的仪器,主要由磁铁、探头和谱仪三大部分组成。磁铁的功用是产生一个恒定的磁场;探头置于磁极之间,用于探测核磁共振信号;核磁共振谱仪是将共振信号放大处理并显示和记录下来。采用调节频率的方法来达到核磁共振。由线圈向样品发射电磁波,调制振荡器的作用是使射频电磁波的频率在样品共振频率附近连续变化。当频率正好与核磁共振频率吻合时,射频振荡器的输出就会出现一个吸收峰,这可以在示波器上显示出来,同时由频率计即刻读出这时的共振频率值。 3.核磁共振成像优缺点 磁共振成像的最大优点是它是目前少有的对人体没有任何伤害的安全、快速、准确的临床诊断方法。如今全球每年至少有6000万病例利用核磁共振成像技术进行检查。具体说来有以下几点优点: 1.对软组织有极好的分辨力。对膀胱、直肠、子宫、阴道、骨、关节、肌肉等部位的检查优于CT;

医学实习报告——核磁共振成像仪的原理和应用

医学实习报告 ——核磁共振成像仪的原理和应用 班级:生物医学0902 姓名:xx 日期:2010年1月6日

核磁共振成像仪的原理和应用 摘要 核磁共振(MRI)又叫核磁共振成像技术。核磁共振成像仪就是因这项技术而产生的仪器。它是继CT后医学影像学的又一重大进步。自80年代应用以来,它以极快的速度得到发展。核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学、生物等领域,到1973年才将它用于医学临床检测。为了避免与核医学中放射成像混淆,把它称为核磁共振成像术(MRI)。 关键词 核磁共振、扫描、成像、计算机 正文: 前言 1930年代,物理学家伊西多?拉比发现在磁场中的原子核会沿磁场方向 呈正向或反向有序平行排列,而施加无线电波之后,原子核的自旋方向发生翻转。 1946年,美国哈佛大学的珀塞尔和斯坦福大学的布洛赫发现,将具有奇数个核子(包括质子和中子)的原子核置于磁场中,再施加以特定频率的射频场,就会发生原子核吸收射频场能量的现象,这就是人们最初对核磁共振现象的认识。 人们在发现核磁共振现象之后很快就产生了实际用途,早期核磁共振主要用于对核结构和性质的研究,如测量核磁矩、电四极距、及

核自旋等,化学家利用分子结构对氢原子周围磁场产生的影响,发展出了核磁共振谱,用于解析分子结构,随着时间的推移,核磁共振谱技术不断发展,从最初的一维氢谱发展到碳谱、二维核磁共振谱等高级谱图,核磁共振技术解析分子结构的能力也越来越强。 进入1990年代以后,人们甚至发展出了依靠核磁共振信息确定蛋白质分子三级结构的技术,使得溶液相蛋白质分子结构的精确测定成为可能。后来核磁共振广泛应用于分子组成和结构分析,生物组织与活体组织分析,病理分析、医疗诊断、产品无损监测等方面。 20世纪70年代,脉冲傅里叶变换核磁共振仪出现了,它使13C 谱的应用也日益增多。 仪器结构 MRI是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显示图像。 其中型台式核磁共振成像仪主要由谱仪、磁体柜、电子柜、梯度柜、监视器等部分组成。

磁共振各部位扫描技术

磁共振各部位扫描技术-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

磁共振常见部位扫描技术 一.颅脑常规扫描技术: 线圈选择:颅脑正交叉线圈。 体位要点及采集中心:患者仰卧位,使人体长轴与床面长轴一致,头置于线圈内。儿童及颈部较长者两肩尽量向下,使头部伸入线圈。采集中心对准两眼连线中点。 扫描方位、脉冲序列扫描参数:取矢状定位像做横断位。 横断位:层厚6-8cm;层间距:0.5-3mm(T1T2保持一致)。 采集矩阵:256×256或 256×192;FOV:220mm×220mm。 矢状位:T1加权T2加权。层厚4-6mm;层间距0.5-1mm。 采集矩阵:256×256或 256×192;FOV:220mm×220mm。 二、腰骶椎、腰髓成像技术: 线圈选择:脊柱相控阵表面线圈。 体位要点及采集中心:患者仰卧位,使身体正中矢状面与床面长轴中线一致。采集中心对准肚脐. 扫描方位、脉冲序列及扫描参数 矢状位:T1加权T2加权层厚4mm;层间距0.5-1mm 采集矩阵:256×256 或312mm×256mm FOV:320mm×240mm. 横断位:扫描方位、脉冲序列T2加权。层厚5-8mm;层间 距1-2mm采集。矩阵:256×192 或312mm×192mm FOV: 180mm×180mm. 三、胸椎、胸髓的成像技术: 线圈选择:脊柱相控阵表面线圈。 体位要点及采集中心:患者仰卧位,使人体正中矢状面与床面长轴中线一致,病变在胸8以上,上段要平第7颈椎;病变在胸8以下,下段要平腰1、2。采集中心对准胸骨中心。 扫描方位、脉冲序列及扫描参数: 矢状位:T1加权T2加权层厚3-4mm;层间距0.5-1mm。 采集矩阵:256×192或 312×256;FOV:320mm×240mm。 横断位:扫描方位及脉冲序列T2加权层厚5-8mm。 层间距:1-2mm采集矩阵:256×256 FOV:180mm× 180mm。

核磁共振成像

磁共振成像技术(核磁共振,MRI)是与CT几乎同步发展起来的医学成像技术。MRI 作为最先进的影像检查技术之一,在许多方面有其独到的优势,尤其是近年来高场磁共振超快速成像与功能成像的出现,使得MRI的优势更为明显。但是,由于国情所限,MRI远没有CT普及,实际工作中,大量的病例本应首选MRI检查,却都进行了CT检查,因此造成的误诊及漏诊屡见不鲜。除病人经济情况的原因之外,临床医生对MRI的了解不足也是一个重要原因。目前关于磁共振成像的书籍虽很多,专业性均很强,信息量也非常大,临床医生很难有时间仔细翻阅,但临床医生又急需了解磁共振的相关知识。鉴于此,我们编写了这本小册子,以期临床医生在阅读之后能够了解磁共振成像的临床应用价值、哪些情况下应当建议病人进行MRI检查、以及一些磁共振基本读片知识。 1 磁共振成像的特点一、无损伤性检查。CT、X线、核医学等检查,病人都要受到电离辐射的危害,而MRI投入临床20多年来,已证实对人体没有明确损害。孕妇可以进行MRI检查而不能进行CT检查。 二、多种图像类型。CT、X线只有一种图像类型,即X线吸收率成像。而MRI常用的图像类型就有几十种,且新的技术和序列不断更新,理论上有无限多种图像类型。可根据组织特意性用不同的技术制造对比,制造影像,力求诊断疾病证据充分、客观、可靠。有更丰富的细节和依据方便医师作出明确的诊断,对疾病的治疗前及愈后作出更详细、系统的评估。 三、图像对比度高。磁共振图像的软组织对比度要明显高于CT。磁共振的信号来源于氢原子核,人体各处都主要由水、脂肪、蛋白质三种成分构成,它们均含有丰富的氢原子核作为信号源,且三种成分的MRI信号强度明显不同,使得MRI图像的对比度非常高,正常组织与异常组织之间对比更显而易见。CT的信号对比来源于X线吸收率,而软组织的X线吸收率都非常接近,所以MRI的软组织对比度要明显高于CT. 四、任意方位断层。由于我院MRI拥有1.5T高场强主磁体及先进的三维梯度系统逐点获得容积数据,所以可以在任意设定的成像断面上获得图像。五、心血管成像无须造影剂增强。基于MRI特有的时间飞逝法(TOF)和相位对比法(PC)血流成像技术,磁共振血管成像(MRA)与传统的血管造影(DSA)相比,对人体无损伤性(不需要注射造影剂)、费用低、检查方便等优点。且随着MRI技术的不断进步,我院磁共振MRA的图像质量与诊断能力已与DSA非常接近,基于以上MR血管成像特性,MRA完全可作DSA术前筛查以及血管手术后复查。六、代谢、功能成像。MRI的成像原理决定了MRI信号对于组织的化学成分变化极为敏感。我院在高场MRI系统上拥有丰富磁共振功能成像技术,划时代地实现了对于功能性疾病、代谢性疾病的影像诊断,同时也大大提高了对一些疾病的早期诊断能力,甚至可达到分子水平。 2 磁共振成像的原理想获得人体的体层图像,任何成像系统都需要解决三方面问题:图像信号的来源、图像组织对比度的来源、图像空间信息的来源。磁共振成像也同样要解决这些问题。现对磁共振成像的原理作一简单介绍。 2.1 核磁共振信号的来源磁共振成像,是依靠核磁共振现象来成像的。核磁共振现象,是指处于静磁场中的原子核系统受到一定频率的电磁波作用时,将在他们的磁能级间产生共振跃迁。上述过程,是原子核与磁场发生的共振,所以称为核磁共振,因为“核”字涉嫌核辐射,所以业内将其改称为磁共振。氢原子是人体中含量最多的元素,它的核只有一个质子,是最活跃、最易受磁场影响的原子核。所以磁共振成像采集的是氢原子核的信号。业内常把氢原子核简称为质子。核磁共振现象是一个无法直观观察的现象,理解起来较为抽象,在此只作简要解释。 层厚、层间距。MRI中层厚的概念与CT是一致的。层间距与非螺旋CT的层间距概念一致。层间距一般显示为层厚加上两层之间的间隔。如果层间距大于层厚,两层之间就有未扫描到的区域,需要注意是否有遗漏病灶的可能性。扫描矩阵(resolution)。扫描矩阵代表扫描时图像点阵的密度。扫描矩阵越大,图像空间分辨率越高,但信噪比就越低;扫描矩阵越小,

核磁共振的成像原理

核磁共振的成像原理 核磁共振成像术又叫磁共振成像术,简称核磁共振、磁共振或核磁,是80年代发展起来的一种全新的影像检查技术。它的全称是:核磁共振电子计算机断层扫描术(简称MRI--CT 或者MRl)。什么是核磁共振成像技术呢?简单地说,就是利用核磁共振成像技术(英文简写MRI、MR或NMR,法文简写RMN)进行医学诊断的一种新颖的医学影像技术。核磁共振是一种物理现象,早在1946年就被美国的布劳克和相塞尔等人分。别发现,作为一种分析手段广泛应用于物理、化学等领域,用作研究物质的分子结构。直到1971年,美国人达曼迪恩才提出,将核磁共振用于医学的诊断,当时,未能被科学界所接受。然而,仅仅10 年的时间,到1981年,就取得了人体全身核磁共振的图像。使人们长期以来,设想用无损伤的方法,既能取得活体器官和组织的详细诊断图像,又能监测活体器官和组织中的化学成分和反应的梦想终于得以实现。 核磁共振完全不同于传统的X线和CT,它是一种生物磁自旋成像技术,利用人体中的遍布全身的氢原子在外加的强磁场内受到射频脉冲的激发,产生核磁共振现象,经过空间编码技术,用探测器检测并接受以电磁形式放出的核磁共振信号,输入计算机,经过数据处理转换,最后将人体各组织的形态形成图像,以作诊断。 核磁共振所获得的图像异常清晰、精细、分辨率高,对比度好,信息量大,特别对软组织层次显示得好。使医生如同直接看到了人体内部组织那样清晰、明了,大大提高了诊断效率。避免了许多以往因手术前诊断不明而不得不进行的开颅、开胸、开腹探查及其他的一些探查诊断性手术,使病人避免了不必要的手术痛苦以及探查性手术所带来的副损伤及并发症。所以它一出现就受到影像工作者和临床医生的欢迎,目前已普遍的应用于临床,对一些疾病的诊断成为必不可少的检查手段。 核磁共振提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术,它是一项革命性的影像诊断技术。因此,它对疾病的诊断具有很大的潜在优越性。 80年代美国政府开始批准核磁共振机的商品化生产,并开始临床应用。我国从1985年引进第1台核磁共振机至今已有超过1000台在工作,目前医生们越来越认识到它在诊断各种疾病中的重要作用,其使用范围也越来越广泛。

学习心得:关于磁共振成像技术学习的点滴体会

关于磁共振成像技术学习的点滴体会 每一次到医院拜访或会议上讲完课总有老师问该如何学习磁共振成像技术?到底应该看哪本书?这些的确是很多磁共振使用者一个共同的困惑。 坦率的说我和大家有着相同的困惑和痛苦。我是纯学临床医学的,当时大学课程里所学习的唯一一门影像课程就是放射诊断学。其中连CT的内容都没有,就更别提磁共振了。毕业后从事放射诊断工作,渐渐的接触到CT和磁共振诊断内容。 相比于其他影像学设备而言磁共振成像技术原理复杂,也更具多学科交叉的属性。由于我们大多数影像科医生在大学阶段渐渐淡化了数学和物理学等的学习,所以这给我们学习磁共振成像技术带来了很大挑战。那么,以我个人的经验看我们到底应不应该学习磁共振成像技术?我们又该怎样学习磁共振成像技术且能学以致用呢?在此,谈一点个人体会。需要提前声明这些绝不是什么经验,仅仅想以此抛砖引玉而已。 Q1 作为读片医生或者磁共振操作者,到底有没有必要学习磁共振技术? 显而易见,答案是肯定的。 磁共振成像技术非常复杂,学习起来耗时耗力,很容易让人望而却步、从而采取消极抵抗策略。但是我要告诉所有有这些想法的老师如果这样做牺牲的一定是自己。大家知道随着磁共振成像设备性能的不断进步和完善,新的技术也层出

不穷,然而非常遗憾的是,真正能把这些新技术用起来的医院少之又少。究其原因就是因为使用者因为不了解这些新技术就主观上产生了畏难和恐惧心理。 事实上,要能真正快速理解、掌握新技术,就必须要有扎实的基础知识。我要告诉大家一点:所有的新技术都是在常规序列基础之上衍生出来的,如果我们有夯实的基础,那么面对每一个新技术你只需了解它的革新和变化点即可,而且通过与相关传统技术对比你也更容易感觉和认识到这些新技术的临床优势可能有哪些。这些对于你的临床和科研切入都至关重要。 我常常见到一些从事某项课题研究的医生或研究生,当深入谈及其课题所采用的相关技术时却没有完整或清醒的认识,每一天都懵懵懂懂的在盲目的扫描着。我不理解这样的研究工作乐趣何在? 另一方面,磁共振本身作为一门多序列多参数对比的成像技术,充分利用好其优势不仅可以大大提高病变的检出率也能为诊断和鉴别诊断提供更特异性的信息。 举个例子: 对于一个怀疑脊髓内病变的患者,如果你在颈椎轴位扫描时还只是墨守成规的扫描了FSE T2加权像,你就很难发现早期脊髓内改变。如果此时你深入了解到梯度回波准T2加权像更有利于显示脊髓内灰质结构,再进一步你还知道在GE 磁共振平台的MERGE序列较常规梯度回波序列更敏感,那你就会根据临床需求而加扫MERGE这个序列了。当然这其中的原因很简单就是因为这些脊髓内病变的含水量没有那么丰富,在FSE序列T2加权像一般TE时间很长导致这些髓内病变的高信号衰减掉了,而在梯度回波我们可以在相对短的时间内获取准T2加

膝关节MR成像技术

膝关节MR成像技术 一、目的要求: 1. 了解MRI设备的工作原理。 2. 掌握膝关节MRI检查的线圈和体位选择。 3. 掌握膝关节MRI检查成像序列的原理。 4. 掌握膝关节MRI检查的适应证和禁忌证;检查方法。 5. 根据不同的患者合理地选择成像序列,并熟练地应用到检查中去。 二、MRI成像原理: MR是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显示图像。 三、主要设备 1. 见习地点:郴州市第一人民医院医学影像中心MRI室第2机房 2. 设备:GE1.5T超导磁共振机,锐柯680干式激光相机。 3. 郴州市第一人民医院医学影像中心PACS系统 四、掌握要点 膝关节MRI检查的步骤、体位、增强扫描的三期延时时间、线圈选择、成像序列。 五、见习内容 1. 膝关节MRI检查的线圈: 膝关节专用线圈 2. 检查前准备和体位: 检查前准备: ①去掉身上的金属饰物及信用卡等物品。 ②嘱咐患者在检查期间不要随意移动体位。 体位: 仰卧位,足先进,双下肢伸直。将被检查侧的膝部置于线圈内,使线圈中心正对膝关节。膝关节稍外旋时更有利于显示前交叉韧带。对侧膝部及双足加海绵垫使患者体位舒适。轴位定位光标应正对线圈中心,锁定位置后进床至磁体孔中心。 3. MRI扫描: ①常规扫描方位:矢状位及冠状位,辅以轴位。

②扫描定位像:先取轴位GRE序列T2*WI作为定位像,确定冠状位及矢状位扫描层面。 ③成像序列:常规选SE、FSE、GRE序列,选用IR序列用于脂肪抑制。可选用流动补偿、预饱和、去相位包裹等功能。矢状位和轴位层面成像以前后方向、冠状位层面成像以左右方向为相位编码方向。 六、分析与讨论: 1.使用高SNR相控阵表面线圈的3.0T图像质量优于1.5T,成像时间更短。 2.TIWI加脂肪抑制序列在半月板及关节软骨结构方面比其他的序列显示更加清楚。 3.膝关节扫描序列:3-pl T2*FGRE OSag T1FSE OSag fs PD OCor fs T2FSE OAx fs T2FSE OSag STIR 4.膝关节补充序列扫描:3-pl T2*FGRE OSag T2*GRE Radial T2*GRE Sag fs 3D T1FSPGR Sag 3D Fiesta

MRI也就是核磁共振成像

MRI也就是核磁共振成像,英文全称是:nuclear magnetic resonance imaging,之所以后来不称为核磁共振而改称磁共振,是因为日本科学家提出其国家备受核武器伤害,为表示尊重,就把核字去掉了。 核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。为了避免与核医学中放射成像混淆,把它称为核磁共振成像术(MR)。 MR是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显示图像。 MR提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术,因此,它对疾病的诊断具有很大的潜在优越性。它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。MR对检测脑内血肿、脑外血肿、脑肿瘤、颅内动脉瘤、动静脉血管畸形、脑缺血、椎管内肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。 MR也存在不足之处。它的空间分辨率不及CT,带有心脏起搏器的患者或有某些金属异物的部位不能作MR的检查,另外价格比较昂贵。 磁共振成像是断层成像的一种,它利用磁共振现象从人体中获得电磁信号,并重建出人体信息。1946年斯坦福大学的Flelix Bloch和哈佛大学的Edward Purcell各自独立的发现了核磁共振现象。磁共振成像技术正是基于这一物理现象。1972年Paul Lauterbur 发展了一套对核磁共振信号进行空间编码的方法,这种方法可以重建出人体图像。 磁共振成像技术与其它断层成像技术(如CT)有一些共同点,比如它们都可以显示某种物理量(如密度)在空间中的分布;同时也有它自身的特色,磁共振成像可以得到任何方向的断层图像,三维体图像,甚至可以得到空间-波谱分布的四维图像。

-MRI成像技术(1)

第七讲-MRI成像技术(1) 1 MRI成像系统简介 ●1.1M R I影像设备发展概况 ●磁共振成像技术是在磁共振波谱学的基础上发展起来的。磁共振成像自出现以来曾被 称为:核磁共振成像、自旋体层成像、核磁共振体层成像、核磁共振C T等。 ●1945年由美国加州斯坦福大学的布洛克(B l o c h)和麻省哈佛大学的普塞尔(P u r c e l l) 教授同时发现了磁共振的物理现象,即处在某一静磁场中的原子核受到相应频率的电磁波作用时,在它们的核能级之间发生共振跃迁现象。因此两位教授共同获得1952年诺贝尔物理学奖。 ●F o r p e r s o n a l u s e o n l y i n s t u d y a n d r e s e a r c h;n o t f o r c o m m e r c i a l u s e ● ●磁共振的物理现象被发现以后,很快形成一门新兴的医学影像学科—磁共振波谱学。 ●1971年纽约州立大学的达曼迪恩(Damadian)教授在《科学》杂志上发表了题为“核 磁共振(NMR)信号可检测疾病”和“癌组织中氢的T1时间延长”等论文, ●1973年曼斯菲德(Mansfields)研制出脉冲梯度法选择成像断层。 ●1974年英国科学家研制成功组织内磁共振光谱仪。 ●1975年恩斯托(Ernst)研制出相位编码成像方法。 ●1976年,得到了第一张人体MR图像(活体手指)。 ●1977年磁共振成像技术进入体层摄影实验阶段。 ●几十年期间,有关磁共振的研究曾在三个领域(物理、化学、生理学或医学)内获得了 六次诺贝尔奖。(2003年10月6日,瑞典卡罗林斯卡医学院宣布,2003年诺贝尔生理学或医学奖授予美国化学家保罗·劳特布尔(Paul C. Lauterbur)和英国物理学家彼得·曼斯菲尔德(Peter Mansfield),以表彰他们在医学诊断和研究领域内所使用的核磁共振成像技术领域的突破性成就。) 雷蒙德·达马蒂安的“用于癌组织检测的设备和方法” 幻灯片7 1.2 MRI影像设备功能 现代磁共振成像系统大体结构都很相似,基本上由四个系统组成:即磁体系统、梯度磁场系统、射频系统和计算机系统。 ●1.磁体系统 ●磁体系统是磁共振成像系统最重要、成本最高的部件,是磁共振系统中最强大的磁场, 平时我们评论磁共振设备的大小就是指静磁场的场强数值,单位用特斯拉(Tesla,简称T,垂直于磁场方向的1米长的导线,通过1安培的电流,受到磁场的作用力为1牛顿时,通电导线所在处的磁感应强度就是1特斯拉。)或高斯(Gauss)表示,1T=1万高斯。 ●临床上磁共振成像要求磁场强度在0.05~3T范围内。一般将≤0.3T称为低场,0.3T~ 1.0T称为中场,>1.0T称为高场。磁场强度越高,信噪比越高,图像质量越好。但磁 场强度过高也带来一些不利的因素。 ●为了获得不同场强的磁体,生产厂商制造出了不同类型的磁体,常见的磁体有永久磁 体、常导磁体和超导磁体。

磁共振成像原理

磁共振成像是利用原子核在磁场内共振所产生信号经重建成像的一种成像技术。核磁共振(nuclear magnetic resonance,NMR)是一种核物理现象。早在1946年Block与Purcell就报道了这种现象并应用于波谱学。Lauterbur1973年发表了MR成像技术,使核磁共振不仅用于物理学和化学。也应用于临床医学领域。近年来,核磁共振成像技术发展十分迅速,已日臻成熟完善。检查范围基本上覆盖了全身各系统,并在世界范围内推广应用。为了准确反映其成像基础,避免与核素成像混淆,现改称为磁共振成像。参与MRI 成像的因素较多,信息量大而且不同于现有各种影像学成像,在诊断疾病中有很大优越性和应用潜力。 一、磁共振现象与MRI 含单数质子的原子核,例如人体内广泛存在的氢原子核,其质子有自旋运动,带正电,产生磁矩,有如一个小磁体。小磁体自旋轴的排列无一定规律。但如在均匀的强磁场中,则小磁体的自旋轴将按磁场磁力线的方向重新排列。在这种状态下,质子带正电荷,它们像地球一样在不停地绕轴旋转,并有自己的磁场. 正常情况下,质子处于杂乱无章的排列状态。当把它们放入一个强外磁场中,就会发生改变。它们仅在平行或反平行于外磁场两个方向上排列 用特定频率的射频脉冲(radionfrequency,RF)进行激发,作为小磁体的氢原子核吸收一定量的能而共振,即发生了磁共振现象。停止发射射频脉冲,则被激发的氢原子核把所吸收的能逐步释放出来,其相位和能级都恢复到激发前的状态。这一恢复过程称为弛豫过程(relaxationprocess),而恢复到原来平衡状态所需的时间则称之为弛豫时间(relaxationtime)。有两种弛豫时间,一种是自旋-晶格弛豫时间(spin-lattice relaxationtime)又称纵向弛豫时间(longitudinal relaxation time)反映自旋核把吸收的能传给周围晶格所需要的时间,也是90°射频脉冲质子由纵向磁化转到横向磁化之后再恢复到纵向磁化激发前状态所需时间,称T1。另一种是自旋-自旋弛豫时间(spin-spin relaxation time),又称横向弛豫时间(transverse relaxation time)反映横向磁化衰减、丧失的过程,也即是横向磁化所维持的时间,称T2。T2衰减是由共振质子之间相互磁化作用所引起,与T1不同,它引起相位的变化。 人体不同器官的正常组织与病理组织的T1是相对固定的,而且它们之间有一定的差别,T2也是如此。这种组织间弛豫时间上的差别,是MRI的成像基础。有如CT时,组织间吸收系数(CT值)差别是CT成像基础的道理。但MRI不像CT只有一个参数,即吸收系数,而是有T1、T2和自旋核密度(P)等几个参数,其中T1与T2尤为重要。因此,获得选定层面中各种组织的T1(或T2)值,就可获得该层面中包括各种组织影像的图像。 MRI的成像方法也与CT相似。有如把检查层面分成Nx,Ny,Nz……一定数量的小体积,即体素,用接收器收集信息,数字化后输入计算机处理,获得每个体素的T1值(或T2值),进行空间编码。用转换器将每个T值转为模拟灰度,而重建图像。 表1 人体正常与病变组织的T1值(ms) 肝 140~170 脑膜瘤 200~300 胰 180~200 肝癌 300~450 肾 300~340 肝血管瘤 340~370 胆汁 250~300 胰腺癌 275~400 血液 340~370 肾癌 400~450

MRI成像原理

T1加权像高信号的产生机制 在射频脉冲的激发下,人体组织内氢质子吸收能量处于激发状态。射频脉冲终止后,处于激发状态的氢质子恢复其原始状态,这个过程称为弛豫。【简单的理解就是本来处于平衡状态的粒子在吸收了外加磁场能量后,粒子发生跃迁,总体能量升高,MR给的磁场是射频,也就是说不是恒定的,这样当外加磁场撤去的时候,粒子就会恢复原来的稳态而释放出能量,并被计算机捕获成像。那为什么MR需要非常强的磁场呢?原子核吸收交变磁场的能量并被激发.其表现的行为就是粒子向不同能阶跃迁的机率都变为相等,低能阶的核子数略高於高能阶,所以在跃迁机率相等的条件下就会有比较多的粒子从低能阶跃升到高能阶,所以整体的能量提升。这个向高能阶和向低能阶移动的核子数差会随着高低能阶粒子数趋近相等而趋缓,假设在低能阶以及高能阶的原子核数目分别为 +与 -,那么吸收能阶在磁场中分开,越大的磁场能量差越大,恢复的时候释放的能量也就越大。】在弛豫过程中,氢质子将其吸收的能量释放到周围环境中,若质子及所处晶格中的质子也以与Larmo r频率相似的频率进动,那么氢质子的能量释放就较快【这说的就是一种共振现象,即射频脉冲的频率越接近晶格中的质子的固有频率那么它能量释放的就越快,若分子运动频率远高于或远低于MRI的Larmor频率,那么能量释放的就慢,后面的成像都是这个道理】,组织的T1弛豫时间越短,T1加权像其信号强度就越高。【我现在说的可以说是高中物化得难度,或稍深化了一点。弛豫过程有两类。其一为自旋-晶格弛豫,亦称为纵向弛豫。其结果是一些核由高能级回到低能级。该能量被转移至周围的分子(固体的晶格,液体则为周围的同类分子或溶剂分子)而转变成热运动,即纵向弛豫反映了体系和环境的能量交换;第二种弛豫过程为自旋-自旋弛豫,亦称为横向弛豫。这种弛豫影响具体的(任一选定的)核在高能级停留的时间。这个过程是样品分子的核之间的作用,是一个熵的效应。T1叫自旋-晶格弛豫时间,T2叫自旋-自旋弛豫时间。那从

核磁共振成像技术原理及国内外发展

核磁共振成像技术原理及国内外发展 核磁共振成像(Nuclear Magnetic Resonance Imaging?,简称NMRI?),又称自旋成像(spin imaging?),也称磁共振成像(Magnetic Resonance Imaging?,简称MRI?),是利用核磁共振(nuclear magnetic resonnance?,简称NMR?)原理,依据所释放的能量在物质内部不同结构环境中不同的衰减,通过外加梯度磁场检测所发射出的电磁波,即可得知构成这一物体原子核的位置和种类,据此可以绘制成物体内部的结构图像。 将这种技术用于人体内部结构的成像,就产生出一种革命性的医学诊断工具。快速变化的梯度磁场的应用,大大加快了核磁共振成像的速度,使该技术在临床诊断、科学研究的应用成为现实,极大地推动了医学、神经生理学和认知神经科学的迅速发展。 核磁共振成像是随着计算机技术、电子电路技术、超导体技术的发展而迅速发展起来的一种生物磁学核自旋成像技术。它是利用磁场与射频脉冲使人体组织内进动的氢核(即H+)发生章动产生射频信号,经计算机处理而成像的。原子核在进动中,吸收与原子核进动频率相同的射频脉冲,即外加交变磁场的频率等于拉莫频率,原子核就发生共振吸收,去掉射频脉冲之后,原子核磁矩又把所吸收的能量中的一部分以电磁波的形式发射出来,称为共振发射。共振吸收和共振发射的过程叫做“核磁共振”。核磁共振成像的“核”指的是氢原子核,因为人体的约70%是由水组成的,MRI即依赖水中氢原子。当把物体放置在磁场中,用适当的电磁波照射它,使之共振,然后分析它释放的电磁波,就可以得知构成这一物体的原子核的位置和种类,据此可以绘制成物体内部的精确立体图像。通过一个磁共振成像扫描人类大脑获得的一个连续切片的动画,由头顶开始,一直到基部。 核磁共振成像是随着电脑技术、电子电路技术、超导体技术的发展而迅速发

膝关节MRI诊断之正常解剖

专题-膝关节MRI诊断之正常解剖 膝关节是人体最大的承重关节之一,膝关节疾病临床上很常见,种类也很多。目前,膝关节疾病的影像学检查手段主要有传统X线、CT、MRI、B超和核医学检查。磁共振成像具有高度的软组织分辨力、多平面成像以及软骨和骨髓显像能力,其在膝关节疾病诊断中的应用口益广泛并显示出独特的优势。 MRI能清晰地显示半月板、交叉韧带、关节软骨、滑膜、关节囊及内、外侧副韧带、骨骼和肌肉等解剖结构,对其治疗及估计预后具有重义。 下面我们一起复习解剖及MRI正常解剖。 一、半月板 半月板是膝关节重要的解剖结构。多数外侧半月板似“O”型;多数内侧半月板似“C”型。其切断面成三角形,MRI完整且信号均匀一致。当膝关节屈伸运动时,半月板在股骨及胫骨的挤压和周围纤维和韧带的牵拉而前后移位。但是半月板的前角后是固定的,所以半月板随前后移位并扭曲运动。 内侧半月板与周围关节囊关系紧密;外侧半月板的运动比内侧半月板大一倍。 盘状半月板是侧份的宽度超过半月板横径的一半时,其韧度较低且活动不灵活。 内侧半月板类型

内侧半月板开口类型 外侧半月板类型 运动时半月板的位置移动

半月板MRI冠状扫描示意 常规X片只能显示骨组织及其关节间隙和肌肉大体情况,不能显示半月板等软组织。

过去用X造影非常不便,而且是间接征象。 膝关节MRI解剖常用的矢状和冠状扫描方式成像, 下面是T1相,矢状从外至内,以图来说明解剖关系 可以看见腓骨,黄箭头是外侧半月板,绿箭头是腘肌腱通过外侧半月板后方

向内,外侧半月板前后角出现几乎类似形态,尖相向而对。注意前角没有达到胫骨前缘(绿线),

专题-膝关节MRI诊断之正常解剖

专题:膝关节MRI诊断之正常解剖 膝关节是人体最大的承重关节之一,膝关节疾病临床上很常见,种类也很多。目前,膝关节疾病的影像学检查手段主要有传统x线、ct、mri、b超和核医学检查。磁共振成像具有高度的软组织分辨力、多平面成像以及软骨和骨髓显像能力,其在膝关节疾病诊断中的应用口益广泛并显示出独特的优势。 mri能清晰地显示半月板、交叉韧带、关节软骨、滑膜、关节囊及内、外侧副韧带、骨骼和肌肉等解剖结构,对其治疗及估计预后具有重义。 下面我们一起复习解剖及mri正常解剖。 一、半月板 半月板是膝关节重要的解剖结构。多数外侧半月板似“o”型;多数内侧半月板似“c”型。其切断面成三角形,mri完整且信号均匀一致。当膝关节屈伸运动时,半月板在股骨及胫骨的挤压和周围纤维和韧带的牵拉而前后移位。但是半月板的前角后是固定的,所以半月板随前后移位并扭曲运动。 内侧半月板与周围关节囊关系紧密;外侧半月板的运动比内侧半月板大一倍。盘状半月板是侧份的宽度超过半月板横径的一半时,其韧度较低且活动不灵活。内侧半月板类型 内侧半月板开口类型

外侧半月板类型 半月板mri冠状扫描示意 膝关节mri解剖常用的矢状和冠状扫描方式成像, 下面是t1相,矢状从外至内,以图来说明解剖关系 可以看见腓骨,黄箭头是外侧半月板,绿箭头是腘肌腱通过外侧半月板后方向内,外侧半月板前后角出现几乎类似形态,尖相向而对。注意前角没有达到胫骨前缘

内侧半月板开始出现(黄箭),绿箭指后角比前角大。内侧半月板前后角大小不一是明显的;而与外侧半月板相反,说明切面正好通过半月板的中1/3区域。

冠状显示外半月板后角切面的变化,而内侧半月板正常情况绝对不会出现这种情况。 冠状----中间层面显示内(黄箭)外(红箭)半月板。这个时候如何判断内外半月板?应该注意胫骨的形态并前后连续观察

相关文档