文档库 最新最全的文档下载
当前位置:文档库 › 酶化学

酶化学

酶化学
酶化学

酶化学、维生素与辅酶1

一、名词解释(每小题10分,共20分)

1、酶活力:酶催化反应的能力,一般用酶促反应速度来表征酶活力。

2、米氏常数:当酶促反应速度达到最大反应速度一半时的底物浓度。

二、填空题(每空3分,共30分)

1、通常讨论酶促反应的反应速度时,指的是反应的_____速度,即底物消耗在______以内时测得的反应速度。(初;5%)

2、酶的活性中心包括_____和_____两个功能部位,前者决定酶的专一性,后者决定催化反应的性质。(结合部位;催化部位)

3、酶促动力学的双倒数作图(Lineweaver-Burk作图法),得到的直线在横轴的截距为_____,纵轴上的截距为_____。(-1/Km;1/Vmax)

4、解释酶专一性比较合理的学说是__________,在酶的三种专一性类型中,专一性程度最高的是__________。(诱导契合假说;立体专一性)

5、请写出下列符号的中文名称:FMN__________;NAD+__________。(黄素单核苷酸;烟酰胺腺嘌呤二核苷酸)

三、判断题(请用√或×表示下列各题的正误,每题5分,共10分)

1、在非竞争性抑制剂存在下,加入足量的底物,酶促的反应能够达到正常Vmax。(×)

2、所有B族维生素都是杂环化合物。(×)

四、简答题(40分)

1、酶高效催化的实质是什么?可以用什么理论来解释它?

酶高效催化的实质是酶能降低反应的活化能。

可以用中间产物学说和过渡态理论来解释。中间产物学说认为酶促反应时E和S先结合形成中间产物ES,当S在E 作用下发生化学变化后,ES中间复合物再分解成E和P。过渡态理论则认为在ES状态下,E通过多种因素促使S仅需较少的能量即可活化,达到过渡态ES#,实现旧键断裂,新键生成,S转化为P。

即E+S == ES == ES# == E P →E+P(注意==均为可逆符号)

酶化学、维生素与辅酶2

一、名词解释(每小题10分,共20分)

1、活性中心:酶与底物结合并催化底物发生反应的部位。

2、竞争性抑制作用:抑制剂(I)与底物(S)结构相似,能与S竞争酶(E)的结合位点,一旦I结合上E,S就不能结合,酶的活力就被抑制了。

二、填空题(每空3分,共30分)

1、欲使某一酶促反应的速度等于Vmax的80%,此时的[S]应该是此酶Km的______倍。(4)

2、根据国际系统分类法,EC 5.3.1.4属于______酶。(异构)

3、当一种酶有多个底物时,酶的天然底物指的是Km最______的底物,它与底物的亲和力最______。(小;强)

4、多吃糖应注意补充维生素______,夜盲症患者可以通过吃胡萝卜缓解症状,这是因为胡萝卜在人体内可以转化成维生素______。(B1;A)

5、温度对酶促反应速度的影响表现为______曲线,而pH对酶促反应速度的影响表现为______曲线。(偏钟形/偏钟罩形;钟形/钟罩形)

6、请写出下列符号的中文名称:TPP____________;FAD____________。(焦磷酸硫胺素;黄素腺嘌呤二核苷酸)

三、判断题(请用√或×表示下列各题的正误,每题5分,共10分)

1、某酶的同工酶,能催化相同的反应,但对底物的亲和能力不同。(√)

2、别构酶一般都是寡聚酶,其动力学曲线符合米氏方程。(×)

四、简答题(共40分)

1、酶高效催化的实质是什么?可以用什么理论来解释它?

酶高效催化的实质是酶能降低反应的活化能。

可以用中间产物学说和过渡态理论来解释。中间产物学说认为酶促反应时E和S先结合形成中间产物ES,当S在E 作用下发生化学变化后,ES中间复合物再分解成E和P。过渡态理论则认为在ES状态下,E通过多种因素促使S仅需较少的能量即可活化,达到过渡态ES#,实现旧键断裂,新键生成,S转化为P。

即E+S == ES == ES# == E P →E+P(注意==均为可逆符号)

酶化学、维生素与辅酶3

一、名词解释(每小题10分,共20分)

1、比酶活:单位质量或单位体积的酶制剂中所含的酶活力。

2、酶原激活:没有活力的酶的前体转变为有活力的酶的过程。

二、填空题(每空3分,共30分)

1、对于一个遵循米氏动力学的酶而言,当[S]=Km时,若V=35 μmol/min,Vmax等于_____ μmol/min。(70)

2、酶促动力学的双倒数作图(Lineweaver-Burk作图法),得到的直线的斜率是_____。(Km/Vmax)

3、酶的活性中心往往位于酶分子表面一个_____性裂缝内,具有一定的_____,以适应不同底物的结合。一般占酶总体积很_____的一部分。(疏水或非极性;柔性或可调整性;小)

4、酶的共价修饰中最常见的类型是____________。(磷酸化和去磷酸化)

5、维生素B1别名为______,它形成的辅酶为______,其缩写符号为______,该辅酶的功能为____________。(硫胺素;焦磷酸硫胺素;TPP;脱羧酶的辅酶)

三、判断题(请用√或×表示下列各题的正误,每题5分,共10分)

1、对于可逆反应而言,酶既可以改变正反应速度,也可以改变逆反应速度。(√)

2、当底物处于饱和水平时,酶促反应的速度与酶浓度成正比。(√)

四、简答题(共40分)

1、酶高效催化的实质是什么?请写出影响酶高效催化的因素。

酶高效催化的实质是酶能降低反应的活化能。

影响因素:邻近与定向、电子云张力(张力与变形)、酸碱催化、共价催化、金属离子的影响、微环境的影响78ui8

现代组织化学技术问答题详解(同济)

1.组织化学的基本原理及其与生物化学的基本区别 组织化学是在保持组织或细胞基本上不改变其生活状态时的细微结构的条件下,采用显微镜技术观察某些化学成分和酶活性在组织或细胞内的定性、定位和定量及其变化规律,以便阐明它们在组织或细胞中的存在和含量及其变化的机能意义。 基本原理:在组织切片或细胞涂片上加入一定的化学试剂,该试剂与组织或细胞内的拟检成分起化学反应,形成有颜色的的终末反应产物,该产物沉淀在相应成分所在的位置上,可在显微镜下观察得到,用以研究糖类、脂类、蛋白质、酶类和核酸等物质在组织或细胞内的分布和含量。 组织化学与生物化学的区别在于:虽然两者都着眼于组织和细胞内的化学组成及其含量和酶的存在及其活性,但生物化学技术中通常是将组织和细胞打碎,制成匀浆,然后进行化学测定,故其定位性能差,而组织化学技术中是尽可能在组织或细胞内原位显示各种化学成分,故其定位性能好;生物学技术中的化学反应是在试管内进行的,而组织化学技术中的化学反应通常是在组织切片或细胞涂片中进行的。 2.试述组织化学技术的基本要求 在应用组织化学技术显示组织和细胞内化学物质及其定位和定量以及代谢状态时,必须满足一下基本要求: 1.保持组织和细胞形态结构的良好状态,以便反应产物的定位精确,如果形态结构破坏而失真,则定位困难。 2.具备一定的特异性,以便获取正确的实验结果。 3.具备一定的灵敏性,以便含量很少的物质也能被显示出来。 4.生成的产物必须是有色沉淀,颗粒细微不被溶解,定位于原位。反应物沉淀的颜色深度与相反应物质含量或酶的活性具有一定的量效关系。 5.反应产物具有稳定性,以便于重复观察。 6.要有重复性。 (一) 保持组织和细胞形态结构的良好状态 (二) 具备一定的特异性 (三) 具备一定的灵敏性 (四) 生成的反应产物必须是有色沉淀 (五) 反应产物具有稳定性 (六) 要有重复性。 3.试述酸性磷酸酶,乙酰胆碱酯酶和NO合酶的反应原理?以任意三种酶为例说明酶显示的基本原理?NO 合酶的分类及其组化原理? 酸性磷酸酶反应原理:铅法和重氮偶联法 1.铅法:在PH为5.0的条件下,酸性磷酸酶(ACP)水解其底物:β-甘油酸钠,产生PO43-,后者被捕获剂Pb(NO3)2的Pb2+直接捕获形成无色的Pb3 (PO4)2沉淀,后者又与(NH4)2S发生置换反应,最终形成棕黑色沉淀。 2.重氮偶联法:α-苯酚磷酸钠或萘酚AS-BI磷酸被酶水解放出萘酚,后者立即被重氮盐捕获偶联而生成有色偶氮色素沉淀(红色)。 乙酰胆碱酯酶反应原理: 亚铁氰化铜法:乙酰胆碱酯酶(AChE)能将乙酰胆碱盐水解产生硫胆碱,使铁氰化物还原为亚铁氰化物,后者与铜离子结合成亚铁氰化铜而呈现有色沉淀(棕色)。 NO合酶反应原理: NADPH-d法:一氧化氮合酶可催化前体物质L-精氨酸转变成为L-瓜氨酸和NO,由于NOS和NADPH-d可能为同一种酶,并且都可以还原辅酶Ⅱ(NADPH)为辅助因子,介导NOS催化L-精氨酸转变成为L-瓜氨酸和NO,并释放电子,后者又被NADPH传递给硝基四唑兰(N-BT), N-BT可被还原为有色沉淀(蓝色)。

《酶工程》期末复习题整理#(精选.)

第一章 1.酶工程:是生物工程的重要组成部分,是随着酶学研究迅速发展,特别是酶的推广应用,使酶学和工程学相互渗透、结合、发展而成的一门新的技术科学,是酶学、微生物学的基本原理与化学工程有机结合而产生的边缘科学技术。 2.化学酶工程:指自然酶、化学修饰酶、固定化酶及化学人工酶的研究和应用 3.生物酶工程:是酶学和以基因重组技术为主的现代分子生物学技术结合的产物,亦称高级酶工程。 4.酶工程的组成部分? 答:酶工程主要指自然酶和工程酶(经化学修饰、基因工程、蛋白质工程改造的酶)在国民经济各个领域中的应用。内容包括:酶的产生;酶的分离纯化;酶的改造;生物反应器。5.酶的结构特点? 答:虽然少数有催化活性的RNA分子已经鉴定,但几乎所有的酶都是蛋白质,因而酶必然具有蛋白质四级结构形式。其中一级结构是指具有一定氨基酸顺序的多肽链的共价骨架;二级结构为在一级结构中相近的氨基酸残基间由氢键的相互作用而形成的带有螺旋、折叠、转角、卷曲等细微结构;三级结构系在二级结构基础上进一步进行分子盘区以形成包括主侧链的专一性三维排列;四级结构是指低聚蛋白中各折叠多肽链在空间的专一性三维排列。具有低聚蛋白结构的酶(寡聚酶)必须具有正确的四级结构才有活性。具有活性的酶都是球蛋白,即被广泛折叠、结构紧密的多肽链,其氨基酸亲水基团在外表,而疏水基团向内。 6.酶活性中心:是酶结合底物和将底物转化为产物的区域,通常是整个酶分子中相当小的一部分,它是由在线性多肽链中可能相隔很远的氨基酸残基形成的三维实体。 7.酶作用机制有哪几种学说? 答:锁和钥匙模型、诱导契合模型 8.酶催化活力的影响因素? 答:底物浓度、酶浓度、温度、pH等。 9.酶的分离纯化的初步分离纯化的步骤? 答:(一)材料的选择和细胞抽提液的制备 1.材料的选择:目的蛋白含量要高,而且容易获得 2.细胞破碎方法及细胞抽提液的制备。为了确保可溶性细胞成分全部抽提出来,应当使用类似于生理条件下的缓冲液。动物组织和器官要尽可能除去结缔组织和脂肪、切碎后放人捣碎机中。完全破碎酵母和细菌细胞。 3.膜蛋白的释放:膜蛋白存在于细胞膜或有关细胞器的膜上。按其所在位置大体可分为外周 蛋白和固有蛋白两种类型 4.胞外酶的分离:胞外酶是在微生物发酵时分泌到发酵液中的。发酵后可通过离心或过滤将菌体从发酵液中分离弃去,所得发酵清液通常要适当浓缩,然后再作进一步纯化。目前常用的浓缩方法是超滤法。 (二)蛋白质的浓缩和脱盐 浓缩方法主要有:沉淀法、吸附法、干胶吸附法、渗透浓缩法、超滤浓缩法

酶工程 (2)

第二章 1.六大类酶基本概念和特点 (1)氧化还原酶:催化氧化还原反应,需要电子供体或受体 (2)转移酶:催化基团转移反应,即将一个底物分子的基团或原子转移到另一个底物的分子上 (3)水解酶:催化底物的加水分解反应 (4)裂合酶:脱去底物上某一基团留下双键,或可相反地在双键外加入某一基团。 (5)异构酶:催化生成异构体反应的酶,分别进行外消旋,差向异构,顺反异构,醛酮异构,分子内转移,分子内裂解等 (6)连接酶:需要三磷酸腺苷等高能磷酸酯作为结合能源,有的还需要金属离子辅助因子。 应用最多的是氧化还原酶,利用率最高的是水解酶 2.必需基团及其作用特点 必需基团包括:(1)活性部位,包括结合基团和催化基团 (2)维持酶空间结构的基团 必需基团是酶分子氨基酸残基侧链的化学基团中,一些与酶活性密切相关的基团。必需基团在空间结构上相互靠近,组成具有特定空间结构的区域,能与底物特异性结合并将其转化为产物 3.两种酶与底物的结合模型 (1)锁钥模型:底物结合部位由酶分子表面的凹槽或空穴组成,这是酶的活性中心,它的形状与底物分子形状互补。底物分子或其一部分像钥匙一样,可专一地插入酶活性中心,通过多个结合位点的结合,形成酶—底物复合物,同时酶活性中心的催化基团正好对准底物的有关敏感键,进行催化反应。 三点结合学说指出,底物分子与酶活性中心的基团必须三点都互补匹配,酶才作用于这个底物。 (2)诱导锲合模型:酶分子与底物分子接近时,酶蛋白质受底物分子诱导,构象发生有利于与底物结合的变化,酶与底物在此基础上互补楔合,进行反应。 4.影响酶催化作用的五种模型 (1)广义的酸碱催化 能供给质子的物质即为酸,能接受质子的物质即为碱。广义的酸碱催化就是指组成酶活性中心的极性基团,在底物的变化中起质子的供体或受体的作用,这就是广义的酸碱催化。发生在细胞内的许多类型的有机反应都是广义的酸碱催化。 组氨酸的咪唑基值得特别注意,因为它既是一个很强的亲核基团,又是一个有效的广义酸碱功能基团。 影响酸碱催化速率的因素:一是酸碱的强度,在这些功能基团中,组氨酸的咪唑基的解离情况pK值为6.0,在生理pH条件下,既可以作质子的供体又可作质子的受体。因此,咪唑基是催化中最有效最活泼的一个催化功能基团;二是这些功能基团供出质子或接受质子的速度,其中的咪唑基的情况特别突出,它供出或接受质子的速度十分迅速,其半衰期小于10-10秒。而且,供出或接受质子的速度几乎相等。由于咪唑基有如此的优点,所以虽然组氨酸在大多数蛋白质中含量很少,却很重要,在许多酶的活性中心处都含有组氨酸 (2)共价催化 酶活性中心处的极性基团,在催化底物发生反应的过程中,首先以共价键与底物结合,生成一个活性很高的共价型的中间产物,此中间产物很容易向着最终产物的方向变化,故反应所需的活化能大大降低,反应速度明显加快。 常见形式是酶的催化基团中亲核原子对底物的亲电原子攻击。 (3)邻近效应和定向效应 邻近效应:在酶促反应中,由酶和底物分子之间的亲和性,底物分子有向酶的活性中心靠近的趋势,最终结合到酶的活性中心,使底物在酶活性中心的有效浓度增加。

免疫组织化学(傅琦博)-免疫组织化学

免疫组织化学 傅琦博 引言 酶工程是生物工程的重要组成部分,近几十年来,随着研究手段的更新和技术水平的提高,产生了一门以研究酶在细胞内的存在及其动态,以阐明组织细胞的结构和功能为主要内容的科学——酶组织化学。酶组织化学是利用酶化学反应的产物可在光学显微镜或电子显微镜下被识别的特性,借以从形态学角度判定酶在组织细胞内的存在的部位的一门技术,其基础是组织化学。它具有将形态学、生物化学和生理学联系起来的特点,在生物学、生物化学、医学生物领域内日益发挥着重要的作用。研究组织细胞内特定酶分布的酶组织化学方法大致分为:(1)利用酶的活性反映的方法;(2)利用抗原抗体反应(免疫应答)证实酶的存在部位的方法。后者也被称之为免疫组织化学。 免疫组织化学概述 免疫组织化学简称免疫组化,是应用免疫学及组织化学原理,对组织切片或细胞标本中的某些化学成分,进行原位的定性、定位或定量的研究。这种技术称为免疫组织化学技术。免疫组化是利用抗体与抗原的结合具有高度特异性的特点,采用一直的抗体检测组织或细胞的抗原物质,以期确定组织或细胞是否存在未知抗原,并进行定性、定位或定量的研究。抗原与抗体结合形成的免疫复合物是无色的,故必须借助组织化学方法,将抗体抗原反应部位显示出来。它的主要研究方法是免疫组织染色法(简称免疫染色法),食用该方法检测细胞内物质,必须具备两个条件:①作为检测对象的物质须具有抗原性,能制作出与之相应的特异、高效价的抗体;②在免疫反应发生之前,目标物质要保持抗原性,同时还要保持在组织细胞内的稳定状态。要检测抗原,就要用与之相应的抗体进行免疫反应,同时要用可视的标记标出抗原或抗体,采用这种方法的免疫染色法称为标识抗体法或标识抗原法,常用的表示抗体法有直接法、间接法、补体结合法以及多重染色法等。直接法是标识要检出的抗原的抗体,然后进行反应的方法,其特异性高,但检出的敏感度不如间接法,标识抗体的食用范围手局限。间接法是以未标识的第一抗体进行反应,接着标识以第一抗体为抗原所制作的抗体(即第二抗体)进行重叠反应,间接的证明抗原,这种方法的缺点是容易出现非特异性反应,但敏感度较高,标识抗体的用途也广;补体结合法是将间接法中的第二抗体作为标识抗补体抗体食用;多重染色法则是在同一标本上检出多种抗原物质的方法,可以用反复进行的重复标记的直接法,也可以用酶标记的重复进行的间接法。此外,还有后标识抗体的免疫染色法,此法先采用未标识的抗体进行反应,反应结束后,通过免疫化学反应或其他化学反应,用适当的标记物质来识别已与组织细胞内抗原发生结合的抗体。 免疫组织化学技术的发展 免疫组织化学技术是形态学研究领域一门新兴方法学。自它问世以来发展迅猛,用“日新月异”一词形容它毫不过分。酶标免疫组织化学技术是由Nakane 等人于60 年代末期创立的最早的免疫酶组织化学技术,之后Sternberger 等人于70 年代初期便在此基础上建立了非标记抗体酶法(又称间接法) 和PAP 法(过氧化酶抗过氧化酶法) 。80 年代初期美籍华人Hsu 又建立了卵白素生物素复合物法(ABC法) ,自此之后,免疫金银染色法、免疫电镜等技术相继问世。80 年代末期人们又发现链霉菌抗生物素蛋白(或译成链霉菌亲合素,St reptavidin) 与生物素结合力极强,遂用它标记过氧化酶建立起了SP 法,或称LSAB 法(链霉菌亲合素生物素过氧化酶法) 。由于链霉菌亲合素不与人组织中的内源性生物素起非特异性结合反应,故背景染色更加清晰,且敏感性比ABC 法高4~8 倍,比PAP 法高8~16 倍。进入90 年代,免疫组织化学又向基因水平深入发展,与分子生物学技术的结合日益紧密。如原位杂交后信 号的放大与显示便是采用了免疫组织化学显色技术,因而又可称之为原位杂交免疫组织化学技术。而图象分析、流式细胞仪的运用,是免疫细胞化学定量分析技术提高到更精确的水平。现就该技术的发展及其应用作一概述。 1利用免疫荧光标记技术可以分辨出标记抗原抗体所在的位置及其性质, 并可利用荧光定量技术计算抗原(或抗体) 的含量, 以达到对定性、定位、定量测定的目的[2 ]。如黄祥瑞等人(1999) 利用免疫荧光细胞化学技术研究西藏环状病毒细胞生物学特性和敏感细胞范围(CPE) , 成功地观察到该病毒的细胞病变效应特异荧光发生的部位、细胞数量和病毒的形态发生。辛德毕斯热是由辛德毕斯病毒Sindbis V irus (SiN ) 引起的人兽共患虫媒病毒病, 1974 年南非发生辛德毕斯热大流行。1991年梁国栋等通

酶学与酶工程

Lecture1 酶学与酶工程 1、酶的概念,命名、酶的活性中心 1)酶是由活细胞产生的,具有催化活性和高度转移性的特殊蛋白质,是一类生物催化剂。 酶工程:将酶学理论与化工技术相结合,研究酶的产生和应用的一门新的技术性学科,包括了酶制剂的制备、酶的固定化、酶的修饰与改造及酶反应器等方面。 主要:酶的生产、酶的分离纯化、酶的固定化和酶生物反应器。 化学酶工程:用化学手段修饰、改造、模拟天然酶,使其更适合人们的需要,主要包括天然酶、化学修饰酶、固定化酶以及化学人工合成酶的研究与应用。 生物酶工程:用生物学的方法,特别是基因工程、蛋白质工程和组合库筛选法改造天然酶,创造性能优异的新酶,主要是抗体酶、杂合酶、进化酶和核酸酶的研究与应用。 2)命名:系统命名法!! 催化下列反应酶的命名:ATP+D—葡萄糖→ADP+D—葡萄糖-6-磷酸 该酶的正式系统命名是:ATP:葡萄糖磷酸转移酶,表示该酶催化从ATP中转移一个磷酸到葡萄糖分子上的反应。 它的分类数字是:E.C.2.7.1.1 E.C代表按国际酶学委员会规定的命名 第1个数字(2)代表酶的分类名称(转移酶类) 第2个数字(7)代表亚类(磷酸转移酶类) 第3个数字(1)代表亚亚类(以羟基作为受体的磷酸转移酶类) 第4个数字(1)代表该酶在亚-亚类中的排号(D葡萄糖作为磷酸基的受体) 3)活性中心 必需基团:酶分子中氨基酸残基侧链的化学基团中,一些与酶活性密切相关的基因 酶的活性中心:必需基团在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合并将底物转化为产物。 2、酶的分类、组成、结构特点和作用机制 分类:按酶促反应的性质分类(六大类):氧化还原酶、转移酶、水解酶、裂解酶类、异构酶类、合成酶类 全酶=酶蛋白+辅因子 辅因子包括:有机辅因子(辅酶非共价结合/辅基非共价结合或共价结合)和金属辅因子(金属酶/金属激活酶) 3、酶作为催化剂的显著特点 强大的催化能力:可以加快至1017倍; 没有副反应,酶在较温和的条件下催化反应的进行; 高度的专一性,各种酶都有专一性但是专一程度的严格性上有所差别; 可调节性,包括了抑制剂和激活剂的调节、反馈抑制调节、共价修饰调节和变构调节等;

第五章 酶化学

第五章酶与维生素 一、名词解释 1.米氏常数(Km值):用Km值表示,是酶的一个重要参数。Km值是酶反应 速度(V)达到最大反应速度(Vmax)一半时底物的浓度。 2. 活性中心:酶分子中直接与底物结合,并催化底物发生化学反应的部位,称 为酶的活性中心。 3.辅基:酶的辅因子或结合蛋白质的非蛋白部分,与酶或蛋白质结合得非常紧密,用透析法不能除去。 4.单体酶:只有一条多肽链的酶称为单体酶,它们不能解离为更小的单位。5. 酶的比活力:比活力是指每毫克蛋白质所具有的活力单位数,可以用下式表 示:比活力=活力单位数/蛋白质量(mg) 6.多酶体系:由几个酶彼此嵌合形成的复合体称为多酶体系。多酶复合体有利于细胞中一系列反应的连续进行,以提高酶的催化效率,同时便 于机体对酶的调控。 7.激活剂:凡能增强酶活性的物质,统称为激活剂。 8.抑制剂:凡能降低或抑制酶活性但不引起酶变性的物质称为酶的抑制剂。9.变构酶:或称别构酶,是代谢过程中的关键酶,它的催化活性受其三维结构中的构象变化的调节。 10.同工酶:是指有机体内能够催化同一种化学反应,但其酶蛋白本身的分子结构组成却有所不同的一组酶 11.酶原:酶的无活性前体,通常在有限度的蛋白质水解作用后,转变为具有活性的酶。 二、填空题 1.酶是活细胞产生的,具有催化活性的蛋白质和核酸。 2.酶具有高效性、专一性、作用条件温和和受调控等催化特点。3.影响酶促反应速度的因素有底物浓度S 、酶浓度E 、PH 、温度、激活剂I 和抑制剂A 。 4. 与酶催化高效率有关的因素有邻近效应、定向效应、诱导应变、共价 催化、活性中心酸碱催化等。 5.丙二酸和戊二酸都是琥珀酸脱氢酶的竞争性抑制剂。 6.变构酶的特点是:(1)由多个亚基组成,(2)除活性中心外还有变构中心,它不符合一般的米氏方程,当以V对[S]作图时,它表现出 S 型曲线,而非双曲线。它是寡聚酶。 7.一条多肽链Asn-His-Lys-Asp-Phe-Glu-Ile-Arg-Glu-Tyr-Gly-Arg经胰蛋白酶水解可得到 3 个多肽。 8.全酶由酶蛋白和辅助因子组成,在催化反应时,二者所起的作用不同,其中酶蛋白决定酶的专一性和高效率,辅助因子起传递电子、原子或化学基团的作用。 9.辅助因子包括辅酶、辅基和金属离子等。其中辅基与酶蛋白结合紧密,需要化学方法处理除去,辅酶与酶蛋白结合疏松,可以用透析法除去。 10.根据国际系统分类法,所有的酶按所催化的化学反应的性质可分为六类氧化还原酶类、转移酶类、水解酶类、裂合酶类、异构酶类和合成酶类。

组织与细胞化学考试重点

1.异染现象:染料离子以某种方式使它对所吸收的波长有所改变,因而观察到 被染的组织显示与该染料本身颜色不一样,此现象为异染现象。 2.自发荧光:由于紫外线的照射,标本中的荧光物质吸收光能后,呈现出不同 颜色的荧光,这是自发荧光。 3.诱发荧光:细胞内的某些成分只有与荧光素结合后,在紫外线的激发下,始 可呈现一定颜色的荧光,称为诱发荧光。 4.点计数:计数落于所测图像(轮廓面)内的测点数。 5.交叉点计数:计数侧线与所测图像的周界线之间形成的交叉点的数目。 6.DAB:是3,3ˊ-二氨基联苯胺(DAB),HRP使DAB氧化形成棕黄色产 物,可在光镜和电镜下观察。 7.形态计量术(morphometry):是运用数学和统计学原理对组织和细胞内各种 成分的数量、体积、表面积等的相对值与绝对值的测量。 8.各向同性:是指特征物在各个方向上都分布均匀的特性。 9.各向异性:是指特征物在各个方向上分布不均匀的特性。 10.饲养细胞:在体外的细胞培养中,单个的或数量很少的细胞不易生存与繁殖, 必须加入其他活的细胞才能使其生长繁殖,加人的细胞称为饲养细胞(feeder cell)。 11.不完全抗原:只有反应原性而无免疫原性的物质称半抗原或不完全抗原,绝 大多数低分子量的多糖和所有的类脂均属半抗原。 12.生物素标记法:将生物素用酶学方法或化学方法连接在核酸探针上,分子杂 交后利用抗生物素对生物素具有高度亲和力的特性,用标记的生物素蛋白或链酶抗生素蛋白进行检测。 13.灰度:是指一个像素色泽的深浅,它以整数值的形式表示,可表示为 K=0,1,2…K个级别,称量化级别。灰度值越小,表示染色深度越强,物质含量越高。 14.特征物:就是指要定量研究的形态结构,即感兴趣的某种组织结构,它具有 一定的形状和分界,在肉眼或显微镜下可以识别或分辨。 15.荧光免疫组化:采用荧光素标记已知抗体,在适合的情况下,与组织细胞中 的靶抗原(或抗体)反应,可在荧光显微镜下观察结果。 16.原位杂交组化:是应用已知碱基顺序并带有标记物核酸按碱基配对的原则进 行特异性结合,形成杂交体,然后再应用与标记物相应的检测系统通过组织化学或免疫组织化学在核酸原有的位置进行细胞内定位。 二、简答题 1、试述荧光显微镜的原理、结构及生物学应用 答:①原理:由于紫外线的照射,标本中的荧光物质吸收光能后,呈现出不同颜色的荧光,这是自发荧光,如维生素A呈绿色荧光、心肌细胞内脂褐素呈棕黄色~金黄色荧光。但是,细胞内的某些成分只有与荧光素结合后,在紫外线的激发下,始可呈现一定颜色的荧光;如应吖啶橙(荧光素)处理细胞后,细胞核内的DNA 呈绿~黄绿色荧光,细胞质及核仁内的RNA呈桔黄~桔红色荧光。 ②结构:它是装有、能产生紫外线(短波长)的光源及系列滤片装置的显

酶化学习题集(答案)

酶化学习题 1、酶反应速度对底物浓度作图,当底物浓度达一定程度时,得到的是零级反应,对此最恰当的解释是:( ) A、形变底物与酶产生不可逆结合 B、酶与未形变底物形成复合物 C、酶的活性部位为底物所饱和 D、过多底物与酶发生不利于催化反应的结合 2、米氏常数Km是一个用来度量( ) A、酶和底物亲和力大小的常数 B、酶促反应速度大小的常数 C、酶被底物饱和程度的常数 D、酶的稳定性的常数 3、酶催化的反应与无催化剂的反应相比,在于酶能够:( ) A. 提高反应所需活化能 B、降低反应所需活化能 C、促使正向反应速度提高,但逆向反应速度不变或减小 4、辅酶与酶的结合比辅基与酶的结合更为( ) A、紧 B、松 C、专一 5、下列关于辅基的叙述哪项是正确的?( ) A、是一种结合蛋白质 B、只决定酶的专一性,不参与化学基因的传递 C、与酶蛋白的结合比较疏松 D、一般不能用透析和超滤法与酶蛋白分开 6、酶促反应中决定酶专一性的部分是( ) A、酶蛋白 B、底物 C、辅酶或辅基 D、催化基团 7、重金属Hg、Ag是一类( ) A、竞争性抑制剂 B、不可逆抑制剂 C、非竞争性抑制剂 D、反竞争性抑制剂 8、全酶是指什么?( ) A、酶的辅助因子以外的部分 B、酶的无活性前体 C、一种酶一抑制剂复合物 D、一种需要辅助因子的酶,具备了酶蛋白、辅助因子各种成分 9、根据米氏方程,有关[s]与Km之间关系的说法不正确的是( ) A、当[s]< < Km时,V与[s]成正比 B、当[s]=Km时,V=1/2Vmax C、当[s] > >Km 时,反应速度与底物浓度无关 D、当[s]=2/3Km时,V=25%Vmax 10、已知某酶的Km值为0.05mol.L-1,?要使此酶所催化的反应速度达到最大反应速度的80%时底物的浓度应为多少?() A、0.2mol.L-1 B、0.4mol.L-1 C、0.1mol.L-1 D、0.05mol.L-1 11、某酶今有4种底物(S),其Km值如下,该酶的最适底物为() A、S1:Km=5×10-5M B、S2:Km=1×10-5M C、S3:Km=10×10-5M D、S4:Km= 0.1×10-5M 12、酶促反应速度为其最大反应速度的80%时,Km等于( )

(完整版)酶学与酶工程总结

?Lecture 1 酶学与酶工程 ?酶的概念:酶(enzyme)是一类由活细胞产生的,具有催化活性和高度专一性的特殊蛋白质,是一类生物催化剂。 ? ?酶的分类(6类)、组成、结构特点?和作用机制? 组成:单体酶、寡聚酶、多酶复合体 Note:一个酶蛋白可有多种催化活性,相当于多个酶(关注原核和真核生物的差别) 除水解酶和连接酶外,其他酶在反应时都需要特定的辅酶。 金属在酶催化中的作用:稳定酶构象、参与酶的催化作用(如激活底物)、电子传递体 ?酶作为催化剂的显著特点: 强大的催化能力:加快反应速度可高达1017倍; 没有副反应; 高度的专一性:各种酶都有专一性,但专一程度的严格性上有所差别; 可调节性; ?同工酶的概念:同一种属中由不同基因或(复)等位基因编码的多肽链所组成的单体、纯聚体或杂交体,其理化及生物学性质不同而能催化相同反应的酶称同工酶。 同一基因生成的不同mRNA所翻译出来的酶蛋白也列入同工酶的范畴。 酶蛋白合成后经不同类型的共价修饰(如糖基化等)而造成的多种酶分子形式,严格来说不属于同工酶而称为synzyme,但也有人称其为次生性同工酶(secondary isozyme)。 不同种属中催化相同反应的酶称为xenozyme,也不属于同工酶。

?酶的活性中心 指必需基团在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合并将底物转化为产物 必需基团(essential group):酶分子中氨基酸残基侧链的化学基团中,一些与酶活性密切相关的基团。 活性中心内的必需基团:结合基团(与底物相结合)和催化基团(催化底物转变成产物) 活性中心外的必需基团:维持酶活性中心应有的空间构象所必需; 构成酶活性中心的常见基团:His的咪唑基、Ser的-OH、Cys的-SH、Glu的γ-COOH。 ?酶的作用机制 ?酶活力的调节 ?酶的应用 食品加工方面:生物技术在食品工业中应用的代表就是酶的应用,目前已经有几十种酶成功用于食品工业。如葡萄糖、饴糖、果葡糖浆的生产、蛋白质制品加工、果蔬加工、食品保鲜以及改善食品品质与风味等。 常用的酶制剂主要有:淀粉酶、糖化酶、蛋白酶、葡萄糖异构酶、果胶酶、脂肪酶、纤维素酶葡萄糖氧化酶等。 酶在轻工业方面的应用:用酶进行原料处理(发酵原料、淀粉原料、纤维素原料、含戊聚糖的植物原料的处理、纺织原料、造纸原料的制浆、生丝的脱胶处理、羊毛的除垢),用酶生产各种产品(L-氨基酸、核苷酸、酱油或豆酱、制革),用酶增强产品的使用效果(加酶洗涤剂;加酶牙膏、牙粉和嗽口水) 酶在医学中的应用:主要的医药用酶、用酶进行疾病的诊断、用酶治疗各种疾病、用酶制造各种药物 ?酶与食品质量安全 酶制剂作为食品添加剂进入食品的潜在危害 酶催化有毒物质的产生 酶作用导致食品中营养组分的损失 潜在的产毒素性 潜在的致病性 对策:安全菌株,体外基因毒理学测试,酶制剂的安全评价,酶制剂来源安全性的评估标准 ?Lecture 2 基因工程的酶学基础 ?核酶(Ribozyme):概念:具有生物催化功能的RNA。 看课件 ?基因工程的酶学基础 ?基因克隆表达的过程 基因克隆常用的酶,有什么应用,注意事项(补充后两者)

酶工程名词解释

名词解释 第一章酶学与酶工程 酶:生物体内进行新陈代谢不可缺少的受多种因素调节控制的具有催化能力的生物催化剂。 酶工程:是酶学和工程学相互渗透结合形成的一门新的技术科学。从应用目的出发研究酶,在一定的生物反应装置中利用酶的催化性质,将相应原料转化成有用的物质。 单体酶(monomeric enzyme):由一条多肽链组成,如溶菌酶;由多条肽链组成,肽链间二硫键相连构成一整体。 寡聚酶(oligomeric enzyme):由两个或两个以上的亚基组成的酶。 多酶复合体(multienzyme complex):由几种酶非共价键彼此嵌合而成。 催化转换数:每个酶分子每分钟催化底物转化的分子数。 酶活力(酶活性):指酶催化一定化学反应的能力。 酶活力的大小:一定条件下所催化的某一化学反应的反应速度, 酶反应速度:单位时间内底物的减少量或产物的增加量。 酶的活力单位(U,activity unit):酶活力的大小及酶含量的多少。 酶单位:在一定条件下,一定时间内将一定量的底物转化为产物所需要的酶量。这样酶的含量可以用每克酶制剂或每毫升酶制剂含有多少酶单位来表示(U/g或U/ml)。 Katal(Kat)单位:一个katal单位是指在最适反应条件下,1秒钟催化1moL底物转化为产物所需要的酶量。 酶的比活力(specific activity):代表酶的纯度,比活力用每mg蛋白质所含有的酶活力单位数表示。对同一种酶比活力愈大,纯度愈高。 酶的转换数:以一定条件下每秒钟每个酶分子转换底物的分子数来表示酶的催化效率。 酶动力学:是研究酶促反应的速度以及影响此速度的各种因素的科学。 抑制剂:任何分子直接作用于酶使他的催化速度降低即称为~。 不可逆抑制作用:抑制剂与酶的必需基团以共价键结合而引起酶活性丧失,不能用透析,超滤或凝胶过滤等物理方法去除抑制剂而使酶复活。 可逆抑制作用:抑制剂与酶以非共价键结合而引起酶活性的降低或丧失,能用物理的方法除去抑制剂而使酶复活。 第二章酶的发酵生产 酶的生物合成:生物体在一定的条件下都能产生多种多样的酶。酶在生物体内产生的过程,称为~。 酶的发酵生产:经过预先设计,通过人工操作控制,利用细胞的生命活动,产生人们所需要的酶的过程,称为酶的发酵生产——是现在酶生产的主要方法。 固体发酵法(麸曲培养法):以麸皮和米糠为主要原料,添加谷糠、豆饼,无机盐和适量水分,制成固体或半固体状态,经灭菌、冷却后,供微生物生长和产酶用。 液体表面发酵法:将已灭菌的液体培养基接种后,装入可密闭的发酵箱内的浅盘中,液体厚约1~2cm,然后向盘架间通入无菌空气,维持一定的温度进行发酵。 液体深层发酵法:采用液体培养基,置于发酵罐中,经灭菌、冷却后接入产酶细胞,在一定条件下进行发酵。 保藏:性能优良的产酶细胞选育出来后,必须尽可能保持其生长和产酶特性不变异,不死亡,不被杂菌污染等。 细胞活化:保藏细胞在使用前必须接种于新鲜的斜面培养基上,在一定的条件下进行培养,以恢复细胞的生命活动能力,这叫做~。

《酶组织化学与免疫组织化学》习题(学习资料)

《酶组织化学与免疫组织化学技术》习题第一部分组织学技术和免疫组织化学技术 一、选择题 (一)A1型题(标准型) 1.C 2.B 3.A 4.C 5.A 8.B 9.C 10.D 14.A 23.D 1.免疫组化技术的关键步骤是 A.标本处理 B.抗体的处理与保存 C.免疫染色 D.设立对照试验 E.结果判断 2.免疫组化技术的首要试剂是 A.抗原 B.抗体 C.标记物 D.固定剂 E.洗涤液 3.酶免疫组化技术中,关于标本处理的说法正确的是 A.充分洗后于室温用0.3%H2O2和80%甲醇处理20~30min。 B.充分洗后于室温用0.3%H2O2和80%甲醇处理40~50min。 C.充分洗后于室温用0.5%H2O2和90%甲醇处理20~30min。 D.充分洗后于4℃用0.3%H2O2和80%甲醇处理20~30min。 E.充分洗后于4℃用0.3%H2O2和80%甲醇处理40~50min。 4.PAP法是Sterberger等于哪一年建立的 A.1950 B.1960 C.1970 D.1980 E.1990 5.PAP复合物中的酶是 A.辣根过氧化物酶 B.碱性磷酸酶 C.葡萄糖氧化酶 D.胃蛋白酶 E.胶原酶 8.PAP法中的“桥”是 A.第一抗体 B. 第二抗体 C. 第三抗体 D.亲和素 E.第四抗体 9.ABC技术由美籍华人Hsu于哪一年建立,已广泛应用于免疫学检测技术

A.1961 B.1975 C.1981 D.1985 E.1990 10.ABC法中的“桥”是指 A.第一抗体 B. 第二抗体 C. 第三抗体 D.亲和素 E.链霉素亲和素 14.免疫组化法吸收试验是用过量已知抗原与抗体在多少度以下充分反应,离心后再行免疫组化染色 A.4℃ B.20℃ C.40℃ D.37℃ E.50℃ 23.PAS反应是检测组织内的: A.核酸 B.脂 C.蛋白质 D.多糖 E.抗原 一、填空 1、免疫组织化学中最常用的标记物是__荧光素________、___酶_________ 、____生物素和亲和素_______、___________。原位杂交组织化学中常用的标记物有___________和___________两大类。 2、常用的粘附剂有__________、____________ 、__________等。 3、抗原决定簇是指_____________分子表面的、具有活性的___________。 4、一般组织化学是利用化学或物理反应,在组织标本上加入一定的_____________,使其发生反应,形成_____________,能在显微镜下观察。常用于检测__________、____________ 、__________等。 5、酶组织化学是利用酶对其____________的催化作用,生成__________,再与某种__________反应,形成____________沉淀,检测___________分布及活性的方法。常用的方法有___________ 、___________、____________、__________和____________。 6、最常用于显示细胞、组织内的多糖和蛋白多糖的方法是过碘酸-雪夫反应PAS。 7.、免疫染色对特殊标本的进一步处理常用________和________法。 8、免疫组化中最常用的制片方法是________和________。 9、免疫组化染色后,阳性细胞的染色分布有三种类型,分别是_________、_________

酶的化学修饰基本原理及修饰酶的基本性质

酶的化学修饰基本原理及修饰酶的性质特点 【摘要】酶是高效生物催化剂,在工业、医学、科研等领域有着非常广泛的应用,尤其在工业生产中创造出巨大的经济效益。但由于酶是蛋白质,稳定性差且在生物体内具有较大的免疫原性,因而严重制约了其应用。对酶分子进行化学修饰是提高其稳定性的方法并且能够降低在生物体内的免疫原性,能够扩大其应用范围,极大地改善酶本质的不足。简要介绍酶的化学修饰基本原理及修饰酶的性质特点。 1 酶的化学修饰的基本原理 酶分子的化学修饰就是在分子水平上对酶进行改造,包括对酶分子主链结构的改变和对其侧链基团的改变。前者是分子生物学层次上的修饰,即在己知酶的结构与功能盖系的基础上,有目的地改变酶的某个活性基团或氨基酸残基,从而使酶产生新的性状,又称理性分子设计,理性分子设计主要应用于改造酶的底物特异性.催化特性以及热稳定性,Shaffer等通过将天冬氨酸转氨酶的Val39、 Lys41、Thr47、Ash69、Thrl09和Ash297突变为酪氨酸转氨酶所对应的Lcu、Tyr、Ile、Leu、Set和Ser,修饰酶对Phe的活性增加3个数量级,而对Asp的活件没有影响,然而,由于酶的结构、功能和作用机制没自完全了解,而且仅仅把氨基酸序列的同源性作为氨基酸取代的标准,加上氨基酸取代后有可能导致没构想的改变,所以,并非所有理性分子设计都能取得预期效果,这就严重制约了理性分子设计的应用。 1. 1功能基团的修饰 酶分子可离解的基团如氨基(NH2)、羧基(~COOH)、羟基(OH)、巯基(sH)、咪锉基等都可用来修饰。脱氨基作用可改善酶的稳定性,消除酶分子表面的氨基酸的电荷,酰化反应,可改变侧链羟基性质。这些修饰反应,可稳定酶分子有利的催化活性现象,提高抗变性的能力。 1.2用表面活性剂对酶进行化学修饰 除糖基修饰外,也有人用表面活性剂对酶进行化学修饰。表面活性剂的亲水部分与酶连在一起,而亲油部分伸向有机溶剂,从而提高了酶在有机溶剂中的溶

酶组织化学和组织化学染色

第14章酶组织化学和组织化学染色 酶 酶是由细胞合成的生物催化剂,它们增加整个过程的反应速率,而自身的数量和特性不会改变。 组织化学 组织化学被Pearse定义为“用化学或物理的测试方法对细胞和组织中的特定物质、反应基团和酶催化物质进行鉴定、定位和定量的方法”。因此,采用化学方法技术将组织细胞中的物质进行定位,以用于显微观察的过程就是组织化学技术。 酶组织化学技术 酶组织化学技术是将免疫学和分子生物学相结合的一种组织学技术。组织中酶的表现与其他无活性组织成分完全不同,酶必须是具有活性的。而且,细胞内酶的表达主要取决于酶在活性位点的特定底物和形成不溶物质,这种不溶物质随后变成有色体或不透明体。 组织必须尽可能新鲜才适合酶的表达,尸检组织/尸体解剖通常不适合用于研究。经处理不能被用于酶表达的组织要保存在冰箱中。对于大多数酶来说,它们的表达需要新鲜组织(如细胞培养物)或冷冻/晶体组织和冷冻干燥的组织切片,但是,一些酶如碱性磷酸酶或酸性磷酸酶对底物具有抵抗性,因此它们无法表达。 定影液 冰箱冷却丙酮,并用甲醛盐水或95%乙醇作为缓冲剂,在大多数情况下,冷丙酮用于酶的表达。 酶组织化学原理 组织化学方法是基于生化反应,含有酶的组织或细胞当置于溶液中时,它们与溶液发生化学反应,产生着色的不溶性产物,然后可以在细胞或组织中评估最终产品的位置和数量。 经典组织化学反应 通常遵循以下四个原则之一: *简单离子相互作用。 *醛与希夫试剂或银化合物的反应。 *芳香族重氮盐与芳香族残基的偶联。 *底物和酶的转化形成着色沉淀。 酶的分类 *氧化还原酶:它是一个大组,由以下亚组组成: -氧化酶:在氧气存在下催化底物的氧化。 -脱氢酶:通过除去氢原子来催化底物的氧化。 -过氧化物酶:通过除去与过氧化氢结合的氢原子来催化底物氧化。 -Diaphoresis酶:通过除去氢原子来催化NADH和NADPH的氧化。 *水解酶:催化引入水中元素成为特定的底物键。 *转移酶:催化两种化合物基团的转移,但不利用也不损失水分。 *裂解酶:催化从底物中去除基团从而形成碳双键。脱羧酶是该组一个亚类。 组织化学反应类型 主要有四种类型:

酶工程的原理及发展

酶工程的原理及发展 概述: 在生命活动中,构成新陈代谢以及生物体内的一切化学变化都是在酶的催化作用下进行的,可以说没有酶生命就不能进行下去。没有两个主要的特点:1,强大的催化能力;2,高度的专一性。酶的催化反应速率比其他相似的非酶催化反应速率高1010~1014倍,换句话说,5秒内能完成的反应,若无酶时则需要1500年才能完成。酶的高度转一性催化机制可以用“锁和钥匙模型”来解释。由于酶分子的空间结构,可以使酶分子形成特定形状的空穴,成为活性中心,犹如钥匙和锁一样发生催化反应。 关键字:蛋白质维生素氨基酸脂肪酸固醇脂类半乳聚糖矿物质生物催化剂荷尔蒙内切酶 ○酶工程的介绍: 酶既可以催化一个反应的正反应,也可以催化其逆反应,但用上述内容就无法解释,而可以用“诱导契合模型”说明之。所谓的酶工程就是指酶制剂在工业上的大规模生产及利用。由于美不但广泛存在于动植物组织细胞中,而且也存在于微生物细胞中和他的培养基中,可通过各种理化反应方法把它提取出来,制成纯净的酶制剂,这种酶制剂保存了他的生物催化特性。不同种类的酶制剂可以借不同种类的微生物来制取。某些不同种类的微生物热可以生产出同一种酶制剂。 酶工程的主要研究内容有:酶的制备,酶和细胞的固定化,酶反应器的设计和放大,反应条件的设计和优化等。 酶工程的主要任务是:通过预先设计,经过人工操作加以控制,从而大量获得生产实践所需要的酶,并通过各种方法保持酶的稳定性,发挥其最大的催化功能。 酶催化反应的基本步骤:酶制剂得到后,应用酶的固定化技术将酶制剂精制成固态酶(固态),然后将其组装在特殊设计的器件当中(叫做生物反应器)中,利用这种反应器将原料(底物)转化为人类所需要的产品。例如,将天冬酰胺酶提纯,做成反应器,以富马酸为底物,则可以将富马酸转变成天冬氨酸,转化率达到百分之九十五以上,反应产物几乎是纯品。酶工程的实质:把酶或细胞直接应用于生物工程和化学工业的反应系统,其特点是转化率高,产品回收和提纯工艺简单,节约能源。酶工程的应用前景非常广阔。酶工程就是将酶或者微生物细胞,动植物细胞,细胞器等在一定的生物反应装置中,利用酶所具有的生物催化功能,借助工程手段将相应的原料转化成有用物质并应用于社会生活的 一门科学技术。它包括酶制剂的制备,酶的固定化,酶的修饰与改造及酶反应器等方面内容。酶工程的应用,主要集中于食品工业,轻工业以及医药工业中。 酶是一种在生物体内具有新陈代谢摧化剂作用的蛋白质,酶工程就是利用酶摧化的作用。是指利用酶或者微生物细胞,动植物细胞,细胞器等,借助酶所具有推动功能,通过工程学的手段向人类提供产品或向社会提供服务的一门科学技术。酶工程的应用,主要集中于食品工业,轻工业以及医药工业中。 酶的特性及机理: 1、酶与无机催化剂比较: ⑴相同点: ①、改变化学反应速率,本身几乎不被消耗; ②、只催化已存在的化学反应; ③、加快化学反应速率,缩短达到平衡时间,但不改变平衡点; ④、降低活化能,使化学反应速率加快。5)都会出现中毒现象。

酶工程复习要点

1、酶的催化作用特点:具有专一性,催化效率高和反应条件温和等显著特点。 2、酶研究的两个方向:理论研究方向和应用研究方向。理论研究方向:酶的理化性质、催化性质、催化机制等。应用研究:促进了酶工程的形成。 3、酶工程的定义:利用酶或者微生物细胞,动植物细胞,细胞器,借助于酶的催化作用,通过工程学手段生产产品或提供社会服务的科学体系。 4、酶工程的应用范围:①对生物资源中天然酶的开发和生产②自然酶的分离纯化与鉴定技术③酶的固定化技术④酶反应器的研制与应用⑤与其它生物技术领域的交叉与渗透。 5、酶工程的组成:①酶的发酵生产②酶的分离纯化③酶分子修饰④酶和细胞固定化⑤酶反应器和酶的应用等方面。 6、酶工程的主要任务:通过预先设计,经过人工操作控制而获得大量所需的酶,并通过各种方法使酶发挥其最大的催化功能。 8、酶的分类:第1类,氧化还原酶;第2类,转移酶;第3类,水解酶;第4类,裂合酶;第5类,异构酶;第6类,合成酶;第7类,核酸类酶。 9、酶的作用机制:酶的催化机理可能与几种因素有关:酶与底物结合时,两者构象的改变使它们互相契合,底物分子适当地向酶分子活性中心靠近,并且趋向于酶的催化部位,使活性中心这一局部地区额底物浓度大大增高,并使底物分子发生扭曲,易于断裂。在另一些情况中,可能还有一些其他的因素使酶反应速度稍有一些提高,如酶与底物形成有一定稳定度的过渡态中间物——共价的ES中间物,这种ES中间物又可迅速地分解成产物,又如酶活性中心的质子供体和质子受体对底物分子进行了广义的酸碱催化等。 10、酶的催化能力:酶仅能改变化学反应的速度,并不不能改变化学反应的平衡点。酶本身在反应前后也不发生变化例如肽键遇水自发地进行水解的反应极为缓慢,当有蛋白酶存在时,这个反应则进行得十分迅速,可降低反应的活化能。在一个化学反应体系中,反应开始时,反应物(S)分子的平均能量水平较低为“初态”,在反应的任何一瞬间反应物中都有一部

生物化学第六章酶化学

生物化学第六章酶化学 第一节概述 一、酶的概念 1、酶的概念---酶是生物催化剂 (1)所有酶均由生物体产生 几乎所有的生物都能合成酶,甚至病毒也能合成或含有某些酶。 (2)酶和生命活动密切相关 几乎所有的生命活动或过程都有酶参加 A 执行具体的生理机制,如乙酰胆碱酯酶和神经冲动有关。 B 参与消除药物毒物转化的过程,如限制性核酸内切酶能特异性地水解外源DNA,防止异种生物遗传物质的侵入。 C 协同激素等物质起信号转化、传递与放大作用,如细胞膜上的腺苷酸环化酶。 D 催化代谢反应,在生物体内建立各种代谢途径,形成相应的代谢体系。 ◆酶的组成和分布是生物进化与组织功能分化的基础。 不同生物,有各自相应的酶系和辅酶;即使同类生物,酶的组成与分布也有明显的种属差异,例如精氨酸酶只在排尿素动物的肝脏内,在排尿酸的动物中没有;例如,肝脏是氨基酸代谢与尿素形成的主要场所,因此,精氨酸酶几乎全部集中在肝脏内。 ◆在生物的长期进化过程中,为适应各种生理机能的需要,为适应外界条件的千变万化,还形成了从酶的合成到酶的结构和活性各种水平的调节机制。 2、酶的化学本质---大多数酶都是蛋白质 (1)酶的相对分子质量很大,如胃蛋白酶的相对分子质量为36000. (2)酶由氨基酸组成,将酶制剂水解后可得到氨基酸。 (3)酶具有两性性质 (4)酶的变性失活与水解一切可以使蛋白质失活变性的因素同样可以使酶变性。酶都是蛋白质?核酶不是 二、酶的催化特性 1、高效率酶的催化效率比一般化学剂高106—1013倍 2、专一性 一种酶只能作用于一类或某一种物质的性质称为酶作用的专一性或特异性。 蔗糖酶只能催化蔗糖等。 三、酶的组成及分类 1、酶的组成—根据组成分为单纯酶和结合酶 单纯酶:由简单蛋白质构成,如水解酶(淀粉酶、蛋白酶等) 结合酶:结构中含有蛋白质和非蛋白成分,结合酶分为酶蛋白或脱辅基酶蛋白,非蛋白成分称为辅因子,辅因子又分为辅酶(与酶蛋白结合疏松,可用透析法除去)和辅基(不能用透析法去除)两类。 辅酶及辅基从化学本质来看分为两类:一类为无机金属元素(铜/锌/镁/锰等),另一类为小分子有机物,如维生素。 酶蛋白决定酶的专一性。 2、酶的命名 3、酶的分类—酶按其催化的反应分类

相关文档