文档库 最新最全的文档下载
当前位置:文档库 › 最新费马点相关题目

最新费马点相关题目

最新费马点相关题目
最新费马点相关题目

费马点相关问题全掌握

1、如图,点P是△ABC内一动点,求证:当∠APB=∠BPC=∠APC=120o时,PA+PB+PC取得最小值。

例1、(三角形)如图1,点P是等腰Rt△ABC内一动点,AB=,求PA+PB+PC的最小值。

例2、(四边形)如图,在矩形ABCD中,AB=2,BC=6,P为矩形ABCD内部的任意一点,求PA+PB+PCD的最小值。

(四边形)已知正方形ABCD内一动点P到A、B、C三点的距离之和的最小值为,求例3、

此正方形的边长。

例4、(动费马问题)矩形ABCD边AD上有一动点F,矩形内有一动点E,AB=6,BC=10,求EF+EB+EC的最小值。

例5、(费马点思想)如图,设点P到等边三角形ABC两顶点A、B 的距离分别为2,3。则PC的最大值为。

例6、(费马点思想)如图,设点P到正方形ABCD两顶点A、D 的距离分别为2,。则PC 的最大值为。

例7、(费马点思想)如图,设点P到正方形ABCD两顶点A、D 的距离分别为2,。则PO 的最大值为。

费马点问题(含答案)

费马点的问题 定义:数学上称,到三角形3个顶点距离之和最小的点为费马点。它是这样确定的: 1. 如果三角形有一个内角大于或等于120°,这个内角的顶点就是费马点; 2. 如果3个内角均小于120°,则在三角形内部对3边张角均为120°的点,是三角形的费马点。 3. 费马点与3个顶点连成的线段是沟通3点的最短路线,容易理解,这个路线是唯一的。我们称这一结果为最短路线原理。 性质:费马点有如下主要性质: 1.费马点到三角形三个顶点距离之和最小。 2.费马点连接三顶点所成的三夹角皆为120°。 3.费马点为三角形中能量最低点。 4.三力平衡时三力夹角皆为120°,所以费马点是三力平衡的点。 例1:已知:△ABH是等边三角形。 求证:GA+GB+GH最小 证明:∵△ABH是等边三角形。G是其重心。 ∴∠AGH=∠AGB=∠BGH=120°。 以HB为边向右上方作等边三角形△DBH. 以HG为边向右上方作等边三角形△GHP. ∵AH=BH=AB=12. ∴∠AGH=120°, ∠HGP=60°. ∴A、G、P三点一线。 再连PD两点。 ∵△ABH、△GHP和△BDH都是等边三角形,∠GHB=30°. ∴∠PHD=30°,.

在△HGB和△HPD中 ∵HG=HP ∠GHB=∠PHD; HB=HD; ∴△HGB≌△HPD;(SAS) ∴∠HPD=∠HGB=120°; ∵∠HPG=60°. ∴G、P、D三点一线。 ∴AG=GP=PD,且同在一条直线上。 ∵GA+GH+GB=GA+GP+PD=AD. ∴G点是等边三角形内到三个顶点的距离之和最小的哪一点,费马点。也就是重心。 例2:已知:△ABC是等腰三角形,G是三角形内一点。∠AGC=∠AGB=∠BGC=120°。 求证:GA+GB+GC最小

费马定理介绍

()?? ????-+++=222221x a H x H n OB n AO n L += 费马定理 费马原理是光学中最为基础的原理,它在物理学发展的历程中有着至关重要的作用。它用一种新的看法将几何光学的三个基本实验定律(光的反射定律和折射定律、光的独立传播定律光的直线传播定律直线传播)进行统一,并表述了三者的联系。通过研究几何光学问题,能彰显出费马定理的重要性,能更加系统化光学理论。可见通过费马原理推导上述三个基本实验定律,能使我们更加系统的理解光学理论,这对广大学者都有着不可或缺的意义。 费马原理的直观表达:光从空间的一点到另一点的实际路径是沿着光程为极值的路径传播的。或者说, 光沿着光程为极大、极小或者常量的路径传播。 光线从Q 点传播到P 点所需的总时间:?∑∑ =?=?===ndl c t l n c v l t P Q i i i i i i 1111 费马原理:在所有可能的光传播路径中,实际路径所需的时间 取极值。?==01ndl c t P Q δδ 在光传播的所有可能存在的路径中,其实际路径所对应的光程取极致。?==0ndl L P Q δδ ① 直线传播定律:两点间的所有可能连线中,线段最短——光程取极小值。 ② 内椭球面的反射: 椭球面上任一点到两个焦点连线的角平分线即过该点 的面法线,且两线段长度之和相等。 用费马原理导出反射定律 如下图,PQ 为两个介质间的平面反射镜,从A 点发射出的光线照射到PQ 平面上的O 点,经过反射到达B 点。假设光线所处的介质为均匀介质。光线的透射点O 到A 点与反射平面垂足P 的长度为x 。那么点A 到点B 的光程为:

(word完整版)关于费马点知识总结,推荐文档

费马点 一、研究目的 费马点是17世纪法国著名的数学家费马发现的。所指的是在三角形所在的平面上,有一个点到三角形三个顶点距离之和最小。而费马点有许多有意义的性质,即为此,本人以费马点的性质为因来进行一系列的调查与研究。 二、研究结果 (一)费马点的发现者 费马点的发现者是费马[Fermat, Pierre de, 1601-1665],17世纪的法国数学家。1601年8月17日在法国南部图卢兹附近波蒙--德洛马涅出生。早年于家乡受教育,后入图卢兹大学供读法律,毕业后任职律师。自1631年起任图卢兹议会议员。任职期间,他利用工余时间钻研数学,并经常以书信与笛卡儿、梅森、惠更斯等著名学者交往,讨论数学问题。他饱览群书,精通数国文字,掌握多门自然科学的知识。虽年近三十才认真注意数学,但成就累累。最后于1665年1月12日在卡斯特尔逝世。 他生前由于性情淡泊,为人谦逊,因此较少发表论着,大多成果只留在手稿、通信或书页之空白处。他的儿子于1679年把这些遗作整理汇集成书[共两卷],在图卢兹出版。 由于他在数论、解析几何、概率论等方面贡献良多,被后世誉为「业余数学家之王」。 (二)费马点的求法 △ABC需是三个内角皆小于120°三角形,分别以AB、BC、CA为边,向三角形外侧做正三角形△ABD、△ACE,然后连接DC、BE,则二线交于一点,记作点P,则点P就是所求的费马点。 (三)费马点的验证 1.△ABC是等边三角形,以边AB、AC分别向△ABC外 侧作等边三角形,连接DC、EB,交点为点P,点P为 费马点。则可得出结论: ①AP=BP=CP;②∠APB=∠BPC=∠APC=120°;③点P 是内心,是在三角形三个内角的角平分线的交点;④ 点P是垂心,是△ABC各边的高线的交点;⑤△ABP、 △ACP、△BCP全等。⑥点P是△ABC各边的中线的交 点;⑦△ABC的三顶点的距离之和为AP+BP+CP,且点 P为费马点时和最小。 2.△ABC是等腰三角形,以边AB、AC分别向△ABC外 侧作等边三角形,连接DC、EB,交点为点P,点P为 费马点。则可得出结论: ①△ABC的三顶点的距离之和为AP+BP+CP,且点P为 费马点时和最小;②∠APB=∠BPC=∠APC=120°;③ △ABP与△ACP全等;④△BCP为等腰三角形。 3.△ABC是直角三角形,以边AB、AC分别向△ABC外 侧作等边三角形,连接DC、EB,交点为点P,点P为

世界数学难题——费马大定理

世界数学难题——费马大定理 费马大定理简介: 当整数n > 2时,关于x, y, z的不定方程 x^n + y^n = z^n. ((x , y) = (x , z) = (y , z) = 1[n是一个奇素数]x>0,y>0,z>0)无整数解。 这个定理,本来又称费马最后定理,由17世纪法国数学家费马提出,而当时人们称之为“定理”,并不是真的相信费马已经证明了它。虽然费马宣称他已找到一个绝妙证明,但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁?怀尔斯和他的学生理查?泰勒于1995年成功证明。证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明。而安德鲁?怀尔斯(Andrew Wiles)由于成功证明此定理,获得了1998年的菲尔兹奖特别奖以及2005年度邵逸夫奖的数学奖。 [编辑本段] 理论发展 1637年,费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。”(拉丁文原文: "Cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.")毕竟费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。数学家们的有关工作丰富了数论的内容,推动了数论的发展。 对很多不同的n,费马定理早被证明了。但数学家对一般情况在首二百年内仍一筹莫展。 1908年,德国佛尔夫斯克宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。在一战之后,马克大幅贬值,该定理的魅力也大大地下降。 1983年,en:Gerd Faltings证明了Mordell猜测,从而得出当n > 2时(n为整数),只存在有限组互质的a,b,c使得a^n + b^n = c*n。 1986年,Gerhard Frey 提出了“ε-猜想”:若存在a,b,c使得a^n + b^n = c^n,即如果费马大定理是错的,则椭圆曲线y^2 = x(x - a^n)(x + b^n) 会是谷山-志村猜想的一个反例。Frey的猜想随即被Kenneth Ribet证实。此猜想显示了费马大定理与椭圆曲线及模形式的密切关系。 1995年,怀尔斯和泰勒在一特例范围内证明了谷山-志村猜想,Frey的椭圆曲线刚好在这一特例范围内,从而证明了费马大定理。 怀尔斯证明费马大定理的过程亦甚具戏剧性。他用了七年时间,在不为人知的情况下,得出了证明的大部分;然后于1993年6月在一个学术会议上宣布了他的证明,并瞬即成为世界头条。但在审批证明的过程中,专家发现了一个极严重的错误。怀尔斯和泰勒然后用了近一年时间尝试补救,终在1994年9月以一个之前怀尔斯抛弃过的方法得到成功,这部份的证明与岩泽理论有关。他们的证明刊在1995年的数学年刊(en:Annals of Mathematics)之上。 1:欧拉证明了n=3的情形,用的是唯一因子分解定理。 2:费马自己证明了n=4的情形。 3:1825年,狄利克雷和勒让德证明了n=5的情形,用的是欧拉所用方法的延伸,但避开了唯一因子分解定理。 4:1839年,法国数学家拉梅证明了n=7的情形,他的证明使用了跟7本身结合的很紧

中考数学押轴题型-费马点相关问题

费马点及其在中考中的应用 一、费马点的由来 费马(Pierre de Fermat,1601—1665)是法国数学家、物理学家.费马一生从未受过专门的数学教育,数学研究也不过是业余爱好.然而,在17世纪的法国还找不到哪位数学家可以与之匹敌.他是解析几何的发明者之一;概率论的主要创始人;以及独承1 7世纪数论天地的人.一代数学大师费马堪称是17世纪法国最伟大的数学家.尤其他提出的费马大定理更是困惑了世间智者358年.费马曾提出关于三角形的一个有趣问题:在△ABC内求一点P,使 PA+PB+PC之值为最小,人们称这个点为“费马点”. 二、探索费马点 1.当三角形有一个内角大于或等于120°的时候,则费马点就是这个内角的顶点.

下面来验证这个结论:如图1,对三角形内任意一点P,延长BA至点C′,使得A C′=AC, 作∠C′AP′=∠CAP,并且使得AP′= AP.即把△APC以A为中心做旋转变换.则△APC≌△AP′C′, ∵∠BAC≥120°,∴∠PAP′≤6 0°.∴在等腰三角形PAP′中,AP≥P P′, ∴PA+PB+PC≥PP′+PB+ P′C′>BC′= AB+AC.所以A是费马点. 2.如果三个内角都在120°以内,那么,费马点就是三角形内与三角形三顶点的连线两两夹角为 120°的点.

如图2,以B点为中心,将△APB旋转60°到△A′B P′.因为旋转60°,且PB=P′B,所以△P′PB为正三 角形.因此,PA+PB+PC=P′A′+P′P+PC. 由此可知当A′,P′,P,C四点共线时,PA+PB+PC =P′A′+P′P+PC为最小. 当A′,P′,P共线时,∵∠BP′P=60°,∴∠A′P′B=∠APB=120°.同理,若P′,P,C共线时,则∵∠ BPP′=60°,∴∠BPC=120°. 所以点P为满足∠APB=∠BPC=∠CPA=120°的点. 费马点相关问题 等腰直角三角形,已知在直角平分线上的一点P,PA+PB+PC最小值为√6 +√2,求直角边的长度? 解答:如图 将三角形PAC逆时针旋转60度得三角形DEC,则角PCD=60度, 三角形PCD是正三角形,PC=PD且DE=PA, 所以PA+PB+PC=DE+PD+PB,根据两点之间线段最短,当点E、D、P、B在一条直线上时,DE+PD+P B最小,这时角BPC=120度,角APC=EDC=120。 下证这时的点P就在角ACB的平分线上。 在三角形DCE和PCB中,因CE=CA=CB得角E=角PBC,又有角EDC=BPC=120度, 得三角形CDE、CPA、CBP全等,角ECD=ACP=BCP,点P在角ACB的平分线上。 所以点P是这样一个点:它使角APC=BPC=APB=120度(这个点叫三角形的费马点)。 延长CP交AB于F,则CF垂直AB,且由三角形CPA、CBP全等知PA=PB,得角FPA=60度, 设PF=x,则PA=PB=2x ,AF=CF=√3*x,PC=(√3-1)x, 有2x+2x+(√3-1)x=√6+√2,x=1/3√6。

费马大定理公式

储备公式 1.费马大定理(Fermat Last Theore m ): 当2n >时,n n n x y z +=无0xyz ≠的整数解; 当3n =时,3 3 3 x y z +=无0xyz ≠的整数解; 当4n =时,4 4 4 x y z +=无0xyz ≠的整数解; 当5n =时,5 5 5 x y z +=无0xyz ≠的整数解; 当7n =时,7 7 7 x y z +=无0xyz ≠的整数解; (2)n n n x y z n +=> 2.商高方程2 2 2 x y z +=满足(,)(,)(,)1x y y z z x ===,,x y 奇偶性不同的全体本原解为: 22222;;x pq y p q z p q ==-=+其中,p q 满足下面的条件: 0;(,)1;,p q p q p q >>=奇偶性不同 3.Fermat 无穷递降法 4.4n =时,Fermat 大定理证明过程 当4n =时,444 x y z +=无0xyz ≠的整数解; 原理:无穷递降法和毕达哥拉斯三元数组 证明:用反证法。若有正整数解,那么在所有正整数解中,必有一组解 假如存在,,x y z 满足444 x y z +=,且满足(,)(,)(,)1x y y z z x === 初等数论(P99) 定理4:不定方程:442 x y z +=无0xyz ≠的解。 证:用反证法。假若方程有正整数解,那么在全体正整数解中,必有一组解000,,x y z ,使得0z 取得最小值。我们要找出一组正整数解111,,x y z ,满足10z z <,得出矛盾。 (1)必有00(,)1x y =。若不然,就有素数00|,|p x p y 。由此及式442 x y z +=推出 42200|,|p z p z 。因此,2 000000,,x p y p z p 也是方程的正整数解,这和0z 的最小性矛盾。因此,22 000,,x y z 是方程的本原解,00,x y 必为一奇一偶,不妨设02|y ,以及00(,)1z y =

费马最后定理的故事

●今年6月间,德国哥庭根大学的大会堂里,500名数学家齐聚,观看普林斯顿大学数学家魏尔斯(Andrew Wiles)领取沃夫斯柯奖。沃夫斯柯是一位德国工业家的名字,他在20世纪初遗赠10万马克设立此一奖项,给予世界上头一个能解决费马最后定理之人。当时10万马克是不小的一笔数目,约等于200万美金,而几个月前由魏尔斯领到时,不过相当5万美金左右,但是这确是近世数学界的盛事,魏尔斯不只是证明了费马最后定理,也替未来的数学带来革命性新发展。费马最后定理的发明者自然是一个叫费马的人。费马(Pierre deFermat)1601年出生在法国西南方小镇。费马并不是一个数学家,他的职业是一名法官。当时为了保持法官立场的公正,通常不鼓励他们出外社交,因此每天晚上费马便钻研在他嗜好的数学之中,悠然自得。在1637年的某一天,费马正在阅读古希腊大数学家戴奥芬多斯的数学译本,忽然灵光乍现,就在书页空白处,写下有名的费马定理。费马定理的内容其实很简单,它只是基于一个方程式(X+Y=Z)。这个方程式当n等于2时,就是人们熟知的毕氏定理,中国数学上所称的勾股弦定理,其内容即直角三角形两边平方和等于其斜边的平方。如32.+42.=52.(9+16=25)。费马当时提出的难题是,当这个方程式(X+Y=Z)的n大于2时,就找不到任何整数来符合这个方程式。例如33.+43.(27+64)=91,但是91却不是任何整体的3次方。费马不仅写下了这个问题,他同时也写道,自己已经发现了证明这个问题的妙法,只是书页的空白处不够大,无法写下证明。结果他至死都没有提出他的证明,却弄得300多年来数学界群贤束手,也使他的难题得到一个费马最后定理的称号。19世纪时,法国的法兰西科学院,曾经分别两度提供金质奖章和300法郎之赏,给予任何可以解决此一难题之人,不过并没有多大进展。20世纪初捐出10万马克奖金的沃夫斯柯,事实上也是一个对费马最后定理着迷的“数痴”,据一些历史学家研究,沃夫斯柯原本一度已打算自杀,但由于对解决费马定理着迷,而放弃求死之心,因此他后来便在遗嘱中捐出巨款,原因是他认为正是费马定理救了他一命。重赏之下必有勇夫,但是解决数学难题却非人人可为。20世纪公认的德国天才数学家希伯特(D. Hilbert)就不愿去碰费马定理,他的理由是自己没那么多时间,而且到头来还可能落得失败的下场。虽然费马定理还是让许多数学家萦怀于心,但是他们看这个难题就有如化学家看炼金术一样,只是一个古老的浪漫梦。秘密钻研7年突破难题最后解决这个世纪难题的魏尔斯,早在1936年他10岁之时,便有着挑战费马定理的浪漫梦想,他在英国桥剑地方的图书馆中读到这个问题,便决心一定要找出证明方法。他学校的老师并不鼓励他浪费时间于这个不可能之事,大学老师也试图劝阻他,最后他进了英国剑桥大学数学研究所,他的指导教授指引他转入数学中比较主流的领域做椭圆曲线。魏尔斯自己也没有料到,这个由古希腊起始的数学研究训练,最后会导致他再回到费马定理之上。1927年,日本数学家谷山丰提出一个讨论椭圆曲线的数学结构,后来在美国普林斯顿大学的日本数学家志村五郎,再将这个结构发展得更为完备。这个被称为“志村—谷山猜想”的数学结构,居然成为化繁为简,通向解决费马定理的绝妙佳径。1984年德国萨兰大学的数学家佛列发展出一种很奇特也很简单的关联,将“志村—谷山猜想”和费马定理扯在一块,佛列提出的关联经过好几位数学家的努力,最后终于证明了如果要证明费马最后定理,可以经由证明“志村—谷山猜想”来完成。魏尔斯是1993年在英国剑桥大学,正式宣布他已解决费马最后定理,在此之前他已秘密的工作达7年之久,原因不只是怕受到公众压力,也害怕其他数学家抄袭他的想法,在这段期间,魏尔斯连和太太去度蜜月中都未能从“附魔”脱身。最后的结果是魏尔斯并不需要证明整个的“志村—谷山猜想”,他只要证明一些特定的椭圆形曲线是具备某种特性。但是这些特定的椭圆曲线还是有无穷多个,因此证明技巧上依然十分困难。魏尔斯基本上利用了数学上常用的归纳法,他的办法有点像推倒骨牌的游戏,如果要推倒无限多张的骨牌,你必须确知的乃是一张骨牌倒下时,一定会碰到的下张骨牌。魏尔斯在1993年6月23日觉得他的证明已十分完整,于是便在剑桥大学牛顿数学研究所的研讨会上正式宣布。300年悬案终有解300多年数学悬案终于解决,不只数学界哗然震惊,数学门墙之外的社会大众亦感

平面几何知识点总结.

平面几何知识点总结 4.托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组 对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和). 即: 1 PC BP R Q P AB CA BC ABC ABC l .1=????RB AR QA CQ ,则、、长线分别交于或它们的延 、、的三边并且与的顶点,不经过梅涅劳斯定理:若直线三点共线; 、、,则,这时若 或数为边上的点的个三点中,位于、、并且三点,上或它们的延长线上的、、三边的分别是、、梅涅劳斯逆定理:设R Q P 1PC BP 20ABC R Q P AB CA BC ABC R Q P .2=????RB AR QA CQ 1 :.3=???RB AR QA CQ PC BP CR BQ AP AB CA BC ABC R Q P 条件是三线共点的充要、、边上的点,则、 、的分别是、、塞瓦定理:设M Q R A C P B ; 内接于圆,则有: 设四边形BD AC BC AD CD AB ABCD ?=?+?; 内接于圆时,等式成立并且当且仅当四边形中,有:定理:在四边形ABCD BD AC BC AD CD AB ABCD ?≥?+?三点共线; 、、则,、、的垂线,垂足分别为、、作外接圆上一点西姆松定理:若从F E D F E D AC AB BC P ABC ?.5的外接圆上; 在则在同一直线上,、、若其垂足作垂线,的延长线或它们的三边向点西姆松的逆定理:从一ABC P N M L ABC P ??)(.6

; ,则、 于分别交和,连接和弦任意引 的中点蝴蝶定理:一个圆的弦NP MP N M AB CF DE EF CD P AB =.7 ; 2.8GH OG H G O H G O ABC =?且三点共线, 、、,则、、分别为的外心、重心、垂心欧拉定理:设 三线共点。 、、则,、、外面,做三个正三角形的的小于费马点:在每个内角都''''''120.9CC BB AA ABC CAB BCA ABC ?? 三角形。 ,此三角形称为拿破仑中心组成一个正三角形,则此三角形的边为边作三个正三角形三角形的外面,各以三拿破仑三角形:在任意.10 的莫莱恩线。 为三点共线。这条直线称、、,则、、长线交于的延、、别和作其外接圆的切线,分、、三个顶点莫莱恩线:过ABC F E D F E D AB CA BC C B A ABC ??.11 三点共线。 、、,则、、的中点分别是以及线段、,对角线延长线交于的、,另一组对边的延长线交于、的一组对边牛顿定理:设四边形Z Y X Z Y X EF BD AC F BC AD E CD BA ABCD .12 共线。 、、的交点和、和、和三边对边求是凸的不要边形巴斯卡定理:圆内接六N M L BC EF FA CD DE AB ABCDEF )(.13 共点。、、的三条对角线六边形卜利安香定理:圆外切CF BE AD ABCDEF .14 15.到三角形三顶点距离之和最小的点――费马点 到三角形顶点距离的平方和最小的点――重心 三角形内到三边距离之和最大的点――重心

胡不归及费马点问题

胡不归及费马点问题 一.选择题(共2小题) 1.如图,P为正方形ABCD对角线BD上一动点,若AB=2,则AP+BP+CP的最小值为() A.+B.+C.4 D.3 2.如图,△ABC在直角坐标系中,AB=AC,A(0,2),C(1,0),D为射线AO上一点,一动点P从A出发,运动路径为A→D→C,点P在AD上的运动速度是在CD上的3倍,要使整个运动时间最少,则点D的坐标应为() A.(0,)B.(0,)C.(0,)D.(0,) 二.填空题(共5小题) 3.如图,菱形ABCD的对角线AC上有一动点P,BC=6,∠ABC=150°,则线段AP+BP+PD的最小值为. 4.如图,一条笔直的公路l穿过草原,公路边有一消防站A,距离公路5千米的地方有一居民点B,A、B的直线距离是13千米.一天,居民点B着火,消防员受命欲前往救火,若消防车在公路上的最快速度是80千米/小时,而在草地上的

最快速度是40千米/小时,则消防车在出发后最快经过小时可到达居民点B.(友情提醒:消防车可从公路的任意位置进入草地行驶.) 5.等边三角形ABC的边长为6,将其放置在如图所示的平面直角坐标系中,其中BC边在x轴上,BC边的高OA在Y轴上.一只电子虫从A出发,先沿y轴到达G点,再沿GC到达C点,已知电子虫在Y轴上运动的速度是在GC上运动速度的2倍,若电子虫走完全程的时间最短,则点G的坐标为. 6.如图,在平面直角坐标系中,已知A(0,4),B(﹣1,0),在y轴上有一动点G,则BG+AG的最小值为. 7.如图所示,已知P是正方形ABCD外一点,且PA=3,PB=4,则PC的最大值是.

费马原理

费马原理的运用 王瑞林(03010425) (东南大学能源与环境学院,南京 210010) 摘要:本文介绍了几何光学的基本定理——费马原理的定义、传统表述及运用波动光学对其本质的介绍。并且运用费马原理证明了几何光学的三大定律,并求出了最速降线。 关键词:费马原理;折射定律;圆锥曲线光学性质;最速降线;最小作用量原理 The use of Fermat’s principle Wangruilin (The college of environment and energy , Southeast University, Nanjing 210096 ) Abstract: We introduced the Fundamental theorem of geometrical optics- Fermat’s principle. We introduced the definition and presentation of Fermat's principle, analysis its essemce . we also got the three basic laws of geometrical optics, and find the brachistochrone with proof of Fermat's principle. key words: Fermat’s principle;Law of ref raction;Optical properties of coni c;Brachistochrone;Principle of least action 我们之前在初高中就已经学习过几何光学,并了解了其中的一些重要定律,但是都只是一些经验的描述和一些实验的简单验证,本文我们运用几何光学的基础原理——费马原理对已学过的几何定律做一个简单的梳理并简单介绍一下运用费马原理对最速降线问题的求解。 费马原理简介 一、费马定理的表述 关于费马原理的定义,教科书上的表述如下:“过空间中两定点的光,实际路径总是光程最短、最长或恒定值的路径。”其实表述并不足够准确,因为对于某些路程,不能简单的以光程极值来加以限定,最为准确而精炼的表述要利用到数学上的泛函知识,具体描述为:“过两个定点的光走且仅走光程的一阶变分为零的路径。”其中光程的定义为光通过的介质对光的折射率与光通过的路程的乘积。费马原理的数学表述形式为 其中,δ是变分符号,p1、p2表示空间中两个固定点,n为介质的折射率,s表示路程。我们将路径视为一个函数,而变分则是对泛函求导,其结果类似于我们函数求导,我们可以用函数求导来类似理解变分的求解。 费马定理还有另外一种表述:“过空间中两定点的光,实际路径总是时间最短、最长或恒定值的路径。”其实就是把光程换成了时间t

费马点与中考试题

识别“费马点”思路快突破 解题的成功取决于多种因素,其中最基本的有:解题的知识因素、解题的能力因素、解题的经 验因素和解题的非智力因素,这也就是我们常说的解题基本功.可见解题的知识因素是第一位的,足以说明它的重要性.下面我们从解题的知识因素上关注两道中考题的思路获取. 例1 (2010湖南永州)探究问题: (1)阅读理解: ①如图(A),在已知△ABC所在平面上存在一点P,使它到三角形顶点的距离之和最小,则 称点P为△ABC的费马点,此时P A+PB+PC的值为△ABC的费马距离. ②如图(B),若四边形ABCD的四个顶点在同一圆上,则有AB·CD+BC·DA=AC·BD.此为托勒密定理. (2)知识迁移: ①请你利用托勒密定理,解决如下问题: 如图(C),已知点P为等边△ABC外接圆的BC上任意一点.求证:PB+PC=P A. ②根据(2)①的结论,我们有如下探寻△ABC(其中∠A、∠B、∠C均小于120°)的费马点和费马距离的方法: 第一步:如图(D),在△ABC的外部以BC为边长作等边△BCD及其外接圆; 第二步:在BC上任取一点P′,连结P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C) =P′A+; 第三步:请你根据(1)①中定义,在图(D)中找出△ABC的费马点P,并请指出线段的长度即为△ABC的费马距离. (3)知识应用: 2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水. 已知三村庄A、B、C构成了如图(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),现选

一只会下金蛋的鸡——费马大定理

一只会下金蛋的鸡 ——费马大定理 学了勾股定理,我们都知道直角三角形的三边满足关系式 a2+b2=c2, 同时还知道,有无数组正整数满足这个关系式。如果a、b、c的次数不是2,而是大于2的正整数,能不能找到正整数满足这个关系式呢? 十七世纪,法国的一位法官、著名的业余数学大师费马,在阅读古希腊数学家丢番图的《算术》第2卷第8个命题:“将一个平方数分解为两个平方数之和”时,在书的空白处写下了一段引人注目的文字:“要想把一个立方数分成两个立方数,把一个四次幂分成两个四次幂,一般地说,把任何高于二次的幂分成两个同次幂,都是不可能的。关于此,我确信已发现一种美妙的证法。可惜这里空白的地方太小,无法写下。”费马去世后,人们在整理他的遗物时发现了这段话,却没有找到证明,这更引起了数学界的兴趣。这就是说,费马自称证明了定理: x n+y n=z n,(n≥3) 无正整数解。人称费马大定理,也称费马最后定理。为什么叫这个名称呢?因为费马提出了数论方面许多引人注目的、富有洞察力的结论,这些结论一直到他去世后很久才被人证明大多是正确的,只有一个是错的。到1840年左右,其中只剩下上述这一个结论还没有被证明,因此称为费马的最后定理。把该定理称为费马大定理,是用以区别费马小定理。费马小定理是费马在1640年10月18日给他朋友的一封信中传出去的,这定理说,若p是一个素数而a与p互素,则a p-a能被p整除。 费马真的证明了自己的定理吗?人们普遍持怀疑的态度。费马逝世后,他的后人翻箱倒柜,也只找到了n=4的证明。他是用直角三角形三边长为整数,面积决不是平方数这一事实来证明的。后来,有人经过详实的考证,认为费马不可能完全证明了自己的定理。 三百多年来,上百名最优秀的数学家为了证明它付出了巨大的精力,其中有欧拉、勒让德、高斯、阿贝尔、狄利赫勒、拉梅、柯西、库默等。问题表述的简单和证明的困难,吸引了更多的人投入证明工作,有些数学家,如库默和近代的范迪维尔,为此献出了毕生的精力。林德曼在1882年证明了π是超越数后,也终身研究费马定理,而未获结果。 布鲁塞尔和巴黎科学院曾设奖金悬赏数次,但也未得到解决。1908年,数学家佛尔夫斯克尔在哥廷根皇家科学会又悬赏十万马克,征求正确的证明。一大批业余爱好者也进行了尝试,并寄去了自己的解答。据说,著名的数论专家朗道请人印了许多明信片,上面写道:“亲爱的先生或女士:你对费马大定理的证明已经收到,现予退回。第一个错误出现在第 页,第 行”。朗道将这些明信片分发给他的学生们,吩咐他们将相应的数字填上去。 最初的证明是从n=3开始一个数一个数的进行的。后来,库默经过终生的努力,“成

费马大定理的启示

“费马大定理”的启示 “设想你进入大厦的第一间房子,里面很黑,一片漆黑,你在家具之间跌跌撞撞,但是你搞清楚了每一件家具所在的位置,最后你经过6个月或者再长些的时间,你找到了开关,拉开了灯,突然整个房间充满光明,你能确切地明白你身在何处。然后,你又进入下一个房间,又在黑暗中摸索了6个月。因此每一次这样的突破,尽管有的时候只是一瞬间的事,有时候是一两天的时间,但它们实际上是之前许多个月在黑暗中跌跌撞撞的最终结果,没有前面的这一切它们是不可能出现的”——1996年3月,维尔斯因证明费马大定理获得沃尔夫奖作为一个数学老师,数学是大多数学生讨厌的学科,而我们教师更多的只是告诉、教会学生就这么用,就这么做。怎么才能让学生不那么讨厌数学呢?我想应该从尊重数学开始。 当我第二次翻看《明朝那些事》时,我不禁又一次感慨:历史原来可以这样写?历史就应该这样写。本着这样的思维,在严谨的数学叙事中加上事件节点人物的历史,可能更有意思一些,最起码,让学生喜欢读,读的有趣味。从而使学生明白伟大的数学家是怎么影响整个世界的。尊重应该从这里开始。 这个念头一直萦绕脑海,直到我无意中打开选修3-1,才鼓舞起余勇,翻找资料,以费马大定理为主线说说几千年来数学家们前仆后继的历史。 首先,我们来看一个公式: 2 2 2z y x= +。 有人说:“这不就是勾股定理吗?直角三角形的两条直角边的平方等于斜边的平方。谁不知道?” 没错我们中国人知道勾股定理十分久远,公元前1100年,西周开国时期,周公与商高讨论测量时,商高就提到过“勾广三,股修四。径隅五”。这段话被记载于《周脾算经》中。而西方记载勾股定理的是哥伦比亚大学图书馆的泥版“普林顿322”大约公元前1900~公元前1600年的事。 但是中国人说的数学严格的说,应该叫算学。我国古代就有丰富的数学典籍[]1注,但是你看这些书籍的章节结构,就不难看出它鲜明的特点——实用。比如:《九章》中的方田、粟米、差分、少广、商功、均输等,就字面意思也能看出它就是为了解决实际问题。 我们中国就是一个实用的民族,就比如勾股定理,你拿去用就可以,不用计较为什么这样,这也就是为什么我们的典籍中很少有公理和定律的原因了。所以在世界主流数学史中,我国数学家是没有太多地位的,说起这个就不得不说有一个让国人气愤的事情,1972年,美国数学史家莫里斯·克莱因的《古今数学思想》[]2注序言里有这么一段话:“为了不让本书内容漫无目的的铺张,所以有些民族的数学我们就自动忽略了,如:日本、玛雅、中国。”他还说:“他们的数学对世界人类的主流思想是没有什么贡献的。”很让人不服气的说法,但是你回到数学历史的主流,不难发现我国的算学,跟世界主流数学的目的就不一样。 言归正传,我们回到古希腊。说道古希腊,就不得不提一个人——毕达哥拉斯。我们引以为豪的勾股定理,在初中的课本中也是用的毕达哥拉斯定理来引入的。毕达哥拉斯定理和勾股定理的区别就在于他们要证明这个结论。从这里你就可以发现东西方数学的区别,西方数学史这种死心眼般的研究精神,完全就是一种剔除了理性的宗教迷狂,是一种不出于实用的目的完全的智力上的比拼竞赛。就是佛教里的“贪嗔痴”!比如那些著名的数学问题:“四色问题”,不就是四种颜色就可以区分出复杂地图的行政区域么,放在我国,知道了就可以,但是在西方就一定要搞清楚为什么?还有“哥德堡七桥问题”,就是不重复的走过七座桥,对中国人来说

初二数学最短路径问题知识归纳+练习

初二数学最短路径问题 【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括: -①确定起点的最短路径问题即已知起始结点,求最短路径的问题.-②确定终点的最短路径问题与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题. -③确定起点终点的最短路径问题即已知起点和终点,求两结点之间的最短路径. ④全局最短路径问题-求图中所有的最短路径. 【问题原型】.“将军饮马”,“造桥选址”,“费马点”【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等. 【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.】【十二个基本问题

】1作法图形【问题原理 A A 两点之间线段最短.P l.交点即为P连AB,与l l PA+PB 最小值为AB.B B,使上求一点P在直线l 值最小.PA+PB 【问题2】“将军饮马”作法图形原理 A A B'B关于作B l 的对称点两点之间线段最短.B

l l PA+PB 最小值为 A B P.'.连A B ',与l 交点即为 P,使P在直线l 上求一点B' PA+PB 值最小. 3】作法图形原理【问题 P'l 1l 1 分别作点P 关于两直线的两点之间线段最短.M P PM +MN +PN 的最小值为对称点P'和P',连P'P',P l l l 、上2.M,P'''的长.N与两直线交点即为线段P 分别求点在直线l212N M 、N,使△PMN的周长P'' 最小. 4】作法【问题图形原理 l 1l1Q' Q关于直线分别作点Q 、P Q两点之间线段最短.MP l 、l P'Q'和的对称点21P周长的最小四边形PQMN l2',与两直线交点即Q连'P值为线段P'P''的长.l 2、l l 上分别求点在直线.,N为M21N ,使四边形N 、M PQMN P' 的周长最小. 【问题5】“造桥选址”作法图形原理范文

费马点与中考试题

识别“费马点”思路快突破 例1 探究问题: (1)阅读理解: ①如图(A),在已知△ABC所在平面上存在一点P,使它到三角形顶点的 距离之和最小,则称点P为△ABC的费马点,此时PA+PB+PC的值为△ABC的费马距离. ②如图(B),若四边形ABCD的四个顶点在同一圆上,则有AB·CD+BC·DA =AC·BD.此为托勒密定理. (2)知识迁移: ①请你利用托勒密定理,解决如下问题: 如图(C),已知点P为等边△ABC外接圆的BC上任意一点.求证:PB+PC=PA. ②根据(2)①的结论,我们有如下探寻△ABC(其中∠A、∠B、∠C均小于120°)的费马点和费马距离的方法: 第一步:如图(D),在△ABC的外部以BC为边长作等边△BCD及其外接圆;第二步:在BC上任取一点P′,连结P′A、P′B、P′C、P′D.易知P′A+P′B +P′C=P′A+(P′B+P′C)=P′A+; 第三步:请你根据(1)①中定义,在图(D)中找出△ABC的费马点P,并请指出线段的长度即为△ABC的费马距离. (3)知识应用: 2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水.

已知三村庄A、B、C构成了如图(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),现选取一点P打水井,使从水井P到三村庄A、B、C所铺设的输水管总长度最小,求输水管总长度的最小值. (1)平面内一点P到△ABC三顶点的之和为PA+PB+PC,当点P为费马点时,距离之和最小. 特殊三角形中: (2)三内角皆小于120°的三角形,分别以 AB,BC,CA,为边,向三角 形外侧做正三角形ABC 1,ACB 1 ,BCA 1 ,然后连接AA 1 ,BB 1 ,CC 1 ,则三线交于一 点P,则点P就是所求的费马点. (3)若三角形有一内角大于或等于120度,则此钝角的顶点就是所求. (4)当△ABC为等边三角形时,此时外心与费马点重合. 可见,永州卷这道考题对于费马点只是以课题学习为问题载体,考得比较直截了当;巧合的是 例2 如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM. ⑴ 求证:△AMB≌△ENB; ⑵ ①当M点在何处时,AM+CM的值最小; ②当M点在何处时,AM+BM+CM的值最小,并说明理由; ⑶ 当AM+BM+CM的最小值为1 3 时,求正方形的边长.

2019高二数学上学期十五个重要知识点总结语文

高二数学上学期十五个重要知识点总结 一、集合、简易逻辑(14课时,8个)1.集合;2.子集; 3.补集; 4.交集; 5.并集; 6.逻辑连结词; 7.四种命题; 8.充要条件. 二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数; 10.对数的运算性质;11.对数函数.12.函数的应用举例. 三、数列(12课时,5个)1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式; 5.等比数列前n项和公式. 四、三角函数(46课时17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4,单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式'7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质; 14.已知三角函数值求角;15.正弦定理;16余弦定理;17斜三角形解法举例. 五、平面向量(12课时,8个)1.向量2.向量的加法与减法

3.实数与向量的积; 4.平面向量的坐标表示; 5.线段的定比分点; 6.平面向量的数量积; 7.平面两点间的距离; 8.平移. 页 1 第 六、不等式(22课时,5个)1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式. 七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式; 4.两条直线平行与垂直的条件; 5.两条直线的交角; 6.点到直线的距离; 7.用二元一次不等式表示平面区域; 8.简单线性规划问题. 9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程. 八、圆锥曲线(18课时,7个)1椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程; 7.抛物线的简单几何性质. 九、(B)直线、平面、简单何体(36课时,28个)1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5,直线和平面垂直的判与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示; 10.空间向量的数量积;11.直线的方向向量;12.异面直线所

(完整word版)最值问题(费马点)

最值问题2(费马点) 1、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值. 2、已知:P是边长为1的等边三角形ABC内的一点,求PA+PB+PC的最小值.

图2 图1 A' A A B C B C 3、(延庆)(本题满分4分)阅读下面材料: 阅读下面材料: 小伟遇到这样一个问题:如图1,在△ABC (其中∠BAC 是一个可以变化的角)中,AB=2,AC=4,以BC 为边在BC 的下方作等边△PBC ,求AP 的最大值。 小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B 为旋转中心将△ABP 逆时针旋转60°得到△A ’BC,连接A A ' ,当点A 落在C A ' 上时,此题可解(如图2). 请你回答:AP 的最大值是 . 参考小伟同学思考问题的方法,解决下列问题: 如图3,等腰Rt △ABC .边AB=4,P 为△ABC 内部一点, 则AP+BP+CP 的最小值是 .(结果可以不化简) 图3 A B P

4、(朝阳二模)阅读下列材料: 小华遇到这样一个问题,如图1, △ABC 中,∠ACB =30o,BC =6,AC =5,在△ABC 内部有一点P ,连接P A 、PB 、PC ,求P A +PB +PC 的最小值. 小华是这样思考的:要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为定点,这样依据“两点之间,线段最短”,就可以求出这三条线段和的最小值了.他先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题.他的做法是,如图2,将△APC 绕点C 顺时针旋转60o,得到△EDC ,连接PD 、BE ,则BE 的长即为所求. (1)请你写出图2中,P A +PB +PC 的最小值为 ; (2)参考小华的思考问题的方法,解决下列问题: ①如图3,菱形ABCD 中,∠ABC =60o,在菱形ABCD 内部有一点P ,请在图3 中画出并指明长度等于P A +PB +PC 最小值的线段(保留画图痕迹,画出一条即可);②若①中菱形ABCD 的边长为4,请直接写出当P A +PB +PC 值最小时PB 的长. B 图 2 B 图 3 C B 图1

相关文档
相关文档 最新文档