文档库 最新最全的文档下载
当前位置:文档库 › 提高热轧宽厚板CT精度

提高热轧宽厚板CT精度

提高热轧宽厚板CT精度
提高热轧宽厚板CT精度

提高热轧宽厚板CT精度

刘笑丰 白春雷 蔡延擘 康新成 周一中

武汉钢铁(集团)公司热轧总厂,武汉市,430080

摘要:武钢热轧一分厂改造后,层流冷却设备及模型都得到了较大的改进,所有钢种的CT精度有了明显的提升。

但是在轧制宽厚规格带钢时,CT精度依然不高。本文主要通过分析武钢热轧一分厂CT模型以及宽厚板在热输出辊道上的温度变化来特点,并根据现场的实际情况来制定合理的宽厚板冷却制度,以达到提高其CT精度的目的。

关键词:层流冷却、数学模型、热传导、间拔控制

1.立题背景:

武钢热轧一分厂改造后,层流冷却设备系统全部得到了更换,控制上由原来的一个电磁阀控制两根集管变为一个电磁阀控制一根集管,控制精度更高;侧喷数量也相应增加,每一组集管后面都有侧喷,加强了吹扫效果。但是层流冷却模型依然沿用的新日铁开发的统计数学模型,稍有改动。

图1 热轧一分厂改造后层流冷却布局

热轧总一分厂2010年轧制宽厚板(厚度≥6mm,宽度≥1300mm)约63万吨,但由于宽厚板CT精度不高,全年宽厚板CT精度约为85%,严重影响带钢板形和成品的机械性能,2010年热轧一分厂宽厚板因浪形以及性能不合造成的改判约8300吨,占总改判量的20%。因此提高宽厚板CT精度有着重要的意义。

2.现状水平以及原因分析:

2.1宽厚板冷却状况:

层流冷却的目的是把热轧带钢从终轧温度冷却到规定的卷取温度。层流冷却系统的控制思想是确定一个临界表面温度,在该温度以上采取密集喷水,使其快速冷却达到临界值;然后采取稀疏喷水方式或空气冷却方式使带钢内外热交换,达到均匀冷却;最后根据实测带钢温度进行精调冷却,使其达到卷取温度的允许公差范围。

宽厚板的F7出口厚度在6mm以上,宽度在1300以上,带钢基本上布满在热输出辊道上,由于辊道两边有挡板,层流冷却水的流动受到一定限制,冷却水积聚在带钢中部便会造成中部冷却过快,急剧收缩,形成边部浪形,影响板形。如图2。

图2 宽厚板在热输出辊道上产生的边浪现象

同时,由于积水不能被及时吹扫干净以及带钢中心的热量释放,CT模型检测到实时温度不断变化,导致程序不断进行加减水,因此便造成了CT曲线“毛刺”和“乱画”的现象,如图3。

图3 宽厚板实测CT曲线

2.2数学模型:

热轧一分厂CT模型主要应用的是新日铁公司开发的统计数学模型。该模型冷却水水阀数与各主要影响因素之间的关系描述如下:

式中:f为非线性函数;H为带钢厚度;V 为带钢速度;T终轧为终轧温度;T目标为目标卷取温度。

对上式按照不同厚度规格的带钢分别进行统计,获得一组近似的数学模型。从数学的角度来讲,就是应用增量公式对非线性函数线性化,得到一组线性模型。新日铁公司就是按上述原理形成如下统计模型的:

式中:CT 为目标卷取温度;CT R为实际卷取温度;FDT R为精轧机出口实际温度;FDT0为 FDT 的初始温度值;HF为目标卷取厚度;V为带钢实际运行速度;Vi为轧制基准速度,根据带钢厚度查表选取;Pi为根据预测的精轧机出口参数(Vi,FDT0,HF)设定的冷却水段数,它是根据带钢厚度HF按下式计算的:

式中:Ai和Bi用插值法从存取表中获得;Ri为速度影响系数,也是根据带钢厚度用插值法按下式计算的:

式中:Ci和Di用插值法从存取表中获得;Q sec为常数,相当于一段冷却水所带走的热量;α1为带钢在精轧机出口侧的温度变化对卷取温度的影响系数;α2为冷却水温度变化及硅含量所决定的系数。

新日铁公司冷却模型的使用效果主要取决于带钢厚度规格和速度级别的统计数据以及对控制参数的学习, 对于厚规格带钢很难保证较高的精度。而热轧一分厂在实际生产宽厚板时也恰恰验证了这一结论。

2.3带钢在层流冷却时的传热分析:

层流冷却时带钢的传热过程主要包括空冷及水冷两部分。空冷指带钢在空气中向环境散热的温降过程,其传热方式以辐射为主;水冷指带钢向喷淋至其表面的冷却水传热的温降过程。

根据相关文献的综述,采用沿钢板厚度方向的一维传热方程来模拟带钢的温度变化是相对准确的。

式中:ρ为钢的密度;Cp(T)为带钢的定压比热容;k(T)为钢的导热系数;T为带钢温度;t为时间;y为带钢截面温度分布的法线方向;g(T)内热源的热流密度。

带钢在层流冷却时有三种冷却方式:

每个集管冲击区内为强制对流换热,此区内冷却水与带钢直接接触,称为水紊流区。如图4。冲击区带钢表面传热系数应为5~100kW·m‐2·K‐1,冲击区为水柱直径的2~3倍。

冲击区外,带钢与其表面的水之间,有一个蒸汽层的稳定水膜气化区,称为水平流区。一旦稳定的水膜气化区建立,带钢表面传热系数就显著减少。

带钢在空气中运行时主要为辐射热交换。在辐射散热情况下带钢表面传热系数用Stefan‐Boltzmann(斯蒂芬‐波尔茨曼)方程计算,即:

式中:hr为辐射传热系数;T air为环境温度;T s为带钢的表面温度;σ为Stefan-Boltzmann常数;ε为辐射率。

图4 带钢上的表面冷却

通过查阅文献的模拟结果,得到如下结论:

厚度为12 mm 和6.3 mm的带钢在层流冷却过程中,表面温度和中心温度随时间的变化趋势如图5。可见随着带钢厚度的减小,带钢厚度方向上的温差逐渐缩小。

图5 两种厚度带钢表面温度与中心温度的变化曲线

从图中可以看出,厚度为12mm 的带钢,表面与中心的温差约为80℃;厚度为6.3mm 的带钢,表面与中心的温差为40℃左右。在空冷过程中,带钢表面温度迅速回升。12mm 厚的带钢返红温度可达60℃,返红时间可持续4s ,而厚度为6.3mm 的带钢的返红温度35℃,返红时间持续了1.5s 左右。

通过上述分析结果,可制定出热轧一分厂宽厚板CT 控制原则——间拔控制。

3.整改措施及效果:

为保证层流冷却间拔的效果,首先要保证层流冷却设备运行的正常,以及电磁阀控制的准确性。我们对层流冷却系统作了如下要求:

3.1在层流冷却全部打开的情况下,上喷集管液位计高度为充满整管,稍有水溢出;

在层流冷却全部打开的情况下,下喷高度为水柱高出辊面350‐400mm ;

侧喷要求:上侧喷喷嘴中心线与辊面夹角为14°,喷射的扇形面上缘应覆盖到远端辊面边缘。下侧喷喷嘴中心线与辊面夹角为21°,喷射的扇形面下缘应覆盖到近端辊面边缘。侧喷的喷射线与轧制线基本垂直,略偏向来水方向,下侧喷偏10°,上侧喷偏5°;

每根集管的电磁阀响应时间控制在3s 以内。

满足上述要求后,在轧制宽厚板时,通过采用间拔控制方式,来提高其CT 精度。根据热轧一分厂层流冷却模型的现状以及传热理论,带钢在热输出辊道上运行时,如果层流冷却集管开的比较密集,势必会造成带钢中间和两边的冷却不均,而且水量过大,水膜气化区不易被吹扫,进而产生浪形。因此,必须在连续打开层流集管中间拔1~2根集管,即设置故障阀,这样既可以减少每组集管的水量,有利于侧喷吹扫水膜气化区,又可以使带钢间断暴漏在空气中充分返红,有利于使带钢表面以及中心温度趋于一致。形成良好的组织结构,达到预期的机械性能。设置故障阀并不会使CT 偏离控制目标范围。

带钢在间拔冷却过程中,中心的热量得以充分释放,使得表面和中心的金相组织结构基本一致,机械性能稳定。

采用了间拔控制后,宽厚板的实物质量以及CT 精度都得到了较大幅度的提升,如图6、7。

图6 采取间拔控制后的实物板形质量

同时,CT精度也得到了较大幅度的改进,曲线平滑,波动较小。

图7 采用间拔后的CT曲线

为了便于生产操作,热轧一分厂将间拔控制做成了程序,如果需要进行间拔控制时,操作工只需在相应的操作界面上选择即可实现。如图8。

图8 间拔模式选择界面

采用间拔模式后,2011年1~3月热轧一分厂宽厚板轧制量为7.2万吨,因浪形以及性能改判的宽厚板约为1100吨,占总改判量的14%。目前生产运行情况良好,全年基本可以维持在这一水平。4.结论:

采用间拔控制方式轧制宽厚板,具有以下优点:

1.热轧宽厚板的实物质量以及CT精度都得到了较大幅度的提升,降低了浪形以及性能不合的改判量,降低了成本,增加了效益;

2.由于间拔控制对设备要求比较高,因此加强了层流冷却设备日常的点巡检,保证了其稳定性,为其它品种也创造了良好的生产条件;

参考文献

[1] 刚塑性有限元及其在轧制过程中的应用[M]。北京:刘相华。冶金工业出版社,1994。

[2] 层流冷却过程中带钢温度场数值模拟。沈阳:谢海波等。东北大学轧制技术及连轧自动化国家重点实验室,2005。

[3] 热轧钢板在加速冷却时的温度模型。北京:余万华等。北京科技大学与工程学院,2005。

[4] 热轧带钢层流冷却数学模型述评。沈阳:彭良贵等。东北大学轧制技术及连轧自动化国家重点实验室,2003。

[5] 热轧生产自动化技术。北京:刘玠等。冶金工业出版社,2006。

[6] 带钢热连轧的模型与控制。北京:孙一康。冶金工业出版社,2002。

(完整版)机械加工精度

第七章机械加工精度 本章主要介绍以下内容: 1.机械加工精度的基本概念 2.影响机械加工精度的因素 3.加工误差的统计分析 4.提高加工精度的途径 课时分配:1、4,各0.5学时,2、 3,各1.5学时 重点:影响机械加工精度的因素 难点:加工误差的统计分析 随着机器速度、负载的增高以及自动化生产的需要,对机器性能的要求也不断提高,因此保证机器零件具有更高的加工精度也越显得重要。我们在实际生产中经常遇到和需要解决的工艺问题,多数也是加工精度问题。 研究机械加工精度的目的是研究加工系统中各种误差的物理实质,掌握其变化的基本规律,分析工艺系统中各种误差与加工精度之间的关系,寻求提高加工精度的途径,以保征零件的机械加工质量,机械加工精度是本课程的核心内容之一。 本章讨论的内容有机械加工精度的基本概念、影响加工精度的因素、加工误差的综合分析及提高加工精度的途径四个方面。 7.1机械加工精度概述 一、加工精度与加工误差(见P194) 1、加工精度是指零件加工后的实际几何参数(尺寸、形状和位置)与理想几何参数的符合程度。符合程度越高,加工精度越高。一般机械加工精度是在零件工作图上给定的,其包括:1)零件的尺寸精度:加工后零件的实际尺寸与零件理想尺寸相符的程度。 2)零件的形状精度:加工后零件的实际形状与零件理想形状相符的程度。 3)零件的位置精度:加工后零件的实际位置与零件理想位置相符的程度。 2、获得加工精度的方法: 1)试切法:即试切--测量--再试切--直至测量结果达到图纸给定要求的方法。 2)定尺寸刀具法:用刀具的相应尺寸来保证加工表面的尺寸。 3)调整法:按零件规定的尺寸预先调整好刀具与工件的相对位置来保证加工表面尺寸的方法。 3、加工误差:实际加工不可能做得与理想零件完全一致,总会有大小不同的偏差,零件加工后的实际几何参数对理想几何参数的偏离程度,称为加工误差。加工误差的大小表示了加工精度的高低。生产实际中用控制加工误差的方法来保证加工精度。 4、误差的敏感方向:加工误差对加工精度影响最大的方向,为误差的敏感方向。例如:车削外圆柱面,加工误差敏感方向为外圆的直径方向。(见P195图7.2)

(机械制造行业)第二章机械加工精度

第二章机械加工精度 第一节概述 一、加工精度的概念 高产、优质、低消耗,产品技术性能好、使用寿命长,这是机械制造企业的基本要求。而质量总是则是最根本的问题。 机械加工质量指标包括两方面的参数:一方面是宏观几何参数,指机械加工精度;另一方面是微观几何参数和表面物理-机械性能等方面的参数,指机械加工表面质量。 所谓机械加工精度,是指零件在加工后的几何参数(尺寸大小、几何形状、表面间的相互位置)的实际值与理论值相符合的程度。符合程度高,加工精度也高;反之则加工精度低。机械加工精度包括尺寸精度、形状精度、位置精度三项内容,三者有联系,也有区别。 由于机械加工中的种种原因,不可能把零件做得绝对精确,总会产生偏差。这种偏差即加工误差。实际生产中加工精度的高低用加工误差的大小表示。加工误差小,则加工精度高;反之则低。保证零件的加工精度就是设法将加工误差控制在允许的偏差范围内;提高零件的加工精度就是设法降低零件的加工误差。 随着对产品性能要求的不断提高和现代加工技术的发展,对零件的加工精度要求也在不断的提高。一般来说,零件的加工精度越高则加工成本越高,生产率则相对越低。因此,设计人员应根据零件的使用要求,合理地确定零件的加工精度,工艺人员则应根据设计要求、生产条件等采取适当的加工工艺方法,以保证零件的加工误差不超过零件图上规定的公差范围,并在保证加工精度的前提下,尽量提高生产率和降低成本。 二获得零件加工精度的方法 1.获得尺寸精度的方法 在机械加工中获得尺寸精度的方法有试切法、调整法、定尺寸刀具法、自动控制法和主动测量法等五种。 ⑴试切法通过试切─测量─调整─再试切,反复进行到被加工尺寸达到要求的精度为止的加工方法。试切法不需要复杂的装备,加工精度取决于工人的技术水平和量具的精度,常用于单件小批生产。 ⑵调整法按零件规定的尺寸预先调整机床、夹具、刀具和工件的相互位置,并在加工

浅议切削用量对加工精度的影响

浅议切削用量对加工精度的影响 机械零件的加工必须要保证零件达到图样的要求,满足其加工精度。而尺寸精度、形位精度和表面粗糙度是检验零件加工精度最主要的三个方面。三者任何一项达不到要求都会造成零件质量的下降或报废等问题。其中形状和位置精度可以通过设备,夹具,刀具,工艺等来加以保证,而尺寸精度和表面粗糙度的控制就成了很多人较为伤脑筋的难点!他们往往控制了表面粗糙度,尺寸精度却超差了,而控制了尺寸精度后,表面粗糙度又下降了。本人通过多年的实践总结及潜心研究,知道了造成零件加工误差的因素很多,以下是机械零件在切削加工时造成尺寸误差的原因分析,也是我综合较多书本资料后再结合自己的理解汇总叙述的(仅以车削加工为说明对象)。 1、尺寸计算错误或刻度盘操作错误 这里包含看错图纸;图纸尺寸链计算错误;机床刻度盘松动(不能与手柄作同步运动);操作刻度盘时,未消除其传动间隙等几个方面。 2、量具误差或测量技术误差 这里包含使用量具前未校准量具和没有正确学会使用量具造成的:

比方说常用量具游标卡尺的使用,其尺身上锁紧螺钉的松紧度是影响测量误差的关键因素;使用千分尺时,测量力的手感也很关键;测量时的量点位置是否正确和阅读数值时的视线是否正对刻线等等也会有误差。 以上两方面的误差是初学者容易产生的,下面的几方面的误差因隐蔽性较大,所以不容易引起切削加工人员注意,有时即使我们注意了,也不容易把握它的度。 3、刀具角度误差和刀具磨损钝了产生误差 刀具角度对切削加工的多方面影响都很大,刀具角度要根据其本身材料结合工件材料和加工性质等多方面综合选择的。刀具角度的改变对切削刃口的锋利程度,切削力的大小,切屑厚薄和切屑变形的大小,表面粗糙度的优劣影响都比较明显,对刀尖强度和散热性能的影响也较突出,但是其对尺寸精度的影响是比较隐蔽的,如刀具磨损钝了产生尺寸误差和刀尖装得是否对准机床的旋转中心,对尺寸和表面粗糙度的影响也是比较大的,在数控机床加工中,书上曾经特别提到过车刀要严格对准中心这一点。 4、加工系统的刚性不足导致误差; 加工系统的刚性包含机床、工件和刀具三个方面。机床的功率与切削

提高数控磨床加工精度的方法

提高数控磨床加工精度的方法 数控磨床动态优化设计是提高机床加工精度的关键,外在的调整只是辅助而已。 精确的原始数控磨床的有限元模型包括联合表面的动态模型,它是基于具体的动态测试和理论分析的比较结果而建立的。应用敏感性分析方法来优化部件的加强筋的布局和参数。应用模态频率分离技术使主要部件的频率相互分离,并优化主要部件的结构。 动态优化设计的结果表明新数控磨床的一阶固有频率比原来提高了17%,而磨床头架和工件之间的相对振动位移相应减少了10%。磨削振纹消除了,加工精度大大提高了。动态优化设计是提高机床加工精度的关键问题。 目前的机床制造企业在开发新的机床时倾向于采用经验,类比和静态设计等方法。简单的力学计算是优化部件的强度,刚度和振动稳定性的主要方法。几乎没有引进先进的动态设计技术和动态优化软件。 所以很难实现轻重量设计、获得高精度。由于振动稳定性和主轴系统的热变形等各种影响因素,高速机床更难提高加工精度。这篇文章用了计算机模拟和分析的方式研究机床设计的动态优化方法。 首先建立有限元模型,用动态测试结果修改理论有限元模型,以提高模型精度。 第二,用灵敏度分析方法优化部件加强筋的布局和参数。 第三,应用模态频率分离技术使主要部件的频率相互分离,并优化主要部件的结构。最后,达到整个数控磨床机床的动态优化目标。 富信成-哈特曼公司创立于2000年,专业从事磨床机械的研发与制造。由于引进日本和台湾精湛制造技术,生产效率高,使得本公司成为磨床机械界后起之秀。目前本公司生产的高精度无心磨床,CNC外圆磨床,高精度外圆磨床,数控外径研磨机,数控无心磨床,高精密平面磨床,高精密数控内圆磨床,高精密数控复合磨床等产品,品质已居同行最佳之林,致力打造中国磨床机械制造业第一品牌。哈特曼身为基础工业,兢兢业业为业界以最理想的价格提供最精良的机械加工设备,以其能提升整体业界品质,让中国的机械设备,模具零件,机械加工业得以超越发展。

有限元复习题库

有限元复习 一、选择题(每题1分,共10分) 二、判断题(每空1分,共10分) 三、填空题(每空1分,共10分) 三、简答题(共44分)共6题 四、综述题(共26分)两题 一.基本概念 1. 平面应力/平面应变问题;空间问题/轴对称问题;杆梁问题;线 性与非线性问题 平面应力问题 (1) 均匀薄板(2)载荷平行于板面且沿厚度方向均匀分布 在六个应力分量中,只需要研究剩下的平行于XOY 平面的三个应力分量,即x y xy yx σσττ=、、 (000z zx xz zy yz σττττ=====,,)。 一般0z σ=,z ε并不一定等于零,但可由x σ及y σ求得,在分析问题时不必 考虑。于是只需要考虑 x y xy εεγ、、三个应变分量即可。 平面应变问题

(1) 纵向很长,且横截面沿纵向不变。(2)载荷平行于横截面且沿纵向 均匀分布 z yz zx εγγ===只剩下三个应变分量x y xy εεγ、、。也只需要考虑x y xy σστ、、三个应力分量即可 轴对称问题 物体的几何形状、约束情况及所受外力都对称于空间的某一根轴。 轴对称单元的特点(与平面三角形单元的区别):轴对称单元为圆环体,单元与单元间为节圆相连接;节点力与节点载荷是施加于节圆上的均布力;单元边界是一回转面;应变不是常量。 在轴对称问题中,周向应变分量θε是与r 有关。 板壳问题 一个方向的尺寸比另外两个方向尺寸小很多,且能承受弯矩的结构称为板壳结构,并把平分板壳结构上下表面的面称为中面。如果中面是平面或平面组成的折平面,则称为平板;反之,中面为曲面的称为壳。 杆梁问题 杆梁结构是指长度远大于其横断面尺寸的构件组成的系统。在结构力学中常将承受轴力或扭矩的杆件称为杆,而将承受横向力和弯矩的杆件称为梁。 平面(应力应变)问题与板壳问题的区别与联系 平面应力问题是指很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力,同时,体力也平行于板面并且不沿厚度变化。而平面应变问题是指很长的柱形体,在柱面上受有平行于横截面并且不沿长度变化的面力,同时

论如何提高机械加工精度

加工精度是指零件加工后的实际几何参数(尺寸、形状和位置)与理想几何参数的符合程度。在机械加工中,误差是不可避免的,但误差必须在允许的范围内。通过误差分析,掌握其变化的基本规律,从而采取相应的措施减少加工误差,提高加工精度。 一、机械加工产生误差主要原因 1、主轴回转误差。主轴回转误差是指主轴各瞬间的实际回转轴线相对其平均回转轴线的变动量。产生主轴径向回转误差的主要原因有:主轴几段轴颈的同轴度误差、轴承本身的各种误差、轴承之间的同轴度误差、主轴绕度等。适当提高主轴及箱体的制造精度,选用高精度的轴承,提高主轴部件的装配精度,对高速主轴部件进行平衡,对滚动轴承进行预紧等,均可提高机床主轴的回转精度。 2、导轨误差。导轨是机床上确定各机床部件相对位置关系的基准,也是机床运动的基准。车床导轨的精度要求主要有以下三个方面:在水平面内的直线度;在垂直面内的直线度;前后导轨的平行度(扭曲)。除了导轨本身的制造误差外,导轨的不均匀磨损和安装质量,也是造成导轨误差的重要因素。 3、传动链误差。传动链的传动误差是指内联系的传动链中首末两端传动元件之间相对运动的误差。传动误差是由传动链中各组成环节的制造和装配误差,以及使用过程中的磨损所引起。 4、刀具的几何误差。任何刀具在切削过程中,都不可避免要产生磨损,并由此引起工件尺寸和形状地改变。正确地选用刀具材料和选用新型耐磨的刀具材料,合理地选用刀具几何参数和切削用量,正确地采用冷却液等,均能最大限度地减少刀具的尺寸磨损。必要时还可采用补偿装置对刀具尺寸磨损进行自动补偿。 5、定位误差。一是基准不重合误差。在零件图上用来确定某一表面尺寸、位置所依据的基准称为设计基准。在工序图上用来确定本工序被加工表面加工后的尺寸、位置所依据的基准称为工序基准。在机床上对工件进行加工时,须选择工件上若干几何要素作为加工时的定位基准,如果所选用的定位基准与设计基准不重合,就会产生基准不重合误差。二是定位副制造不准确误差。夹具上的定位元件不可能按基本尺寸制造得绝对准确,它们的实际尺寸(或位置)都允许在分别规定的公差范围内变动。工件定位面与夹具定位元件共同构成定位副,由于定位副制造得不准确和定位副间的配合间隙引起的工件最大位置变动量,称为定位副制造不准确误差。 6、工艺系统受力变形产生的误差。一是工件刚度。工艺系统中如果工件刚度相对于机床、刀具、夹具来说比较低,在切削力的作用下,工件由于刚度不足而引起的变形对加工精度的影响就比较大。 一是刀具刚度。外圆车刀在加工表面法线(y)方向上的刚度很大,其变形可以忽略不计。镗直径较小的内孔,刀杆刚度很差,刀杆受力变形对孔加工精度就有很大影响。 二是机床部件刚度。机床部件由许多零件组成,机床部件刚度迄今尚无合适的简易计算方法,目前主要还是用实验方法来测定机床部件刚度。变形与载荷不成线性关系,加载曲线和卸载曲线不重合,卸载曲线滞后于加载曲线。两曲线线间所包容的面积就是载加载和卸载循环中所损耗的能量,它消耗于摩擦力所做的功和接触变形功;第一次卸载后,变形恢复不到第一次加载的起点,这说明有残余变形存在,经多次加载卸载后,加载曲线起点才和卸载曲线终点重合,残余变形才逐渐减小到零。 7、工艺系统受热变形引起的误差。工艺系统热变形对加工精度的影响比较大,特别是在精密加工和大件加工中,由热变形所引起的加工误差有时可占工件总误差的50%。机床、刀具和工件受到各种热源的作用,温度会逐渐升高,同时它们也通过各种传热方式向周围的物质和空间散发热量。 8、调整误差。在机械加工的每一工序中,总要对工艺系统进行这样或那样的调整工作。由于调整不可能绝对地准确,因而产生调整误差。在工艺系统中,工件、刀具在机床上的互相位置精度,是通过调整机床、刀具、夹具或工件等来保证的。当机床、刀具、夹具和工件毛坯等的原始精度都达到工艺要求而又不考虑动态因素时,调整误差的影响,对加工精度起到决定性的作用。 9、测量误差。零件在加工时或加工后进行测量时,由于测量方法、量具精度以及工件和主客观因素都直接影响测量精度。 二、提高机械加工精度的措施 1、减少原始误差。提高零件加工所使用机床的几何精度,提高夹具、量具及工具本身精度,控制工 论如何提高机械加工精度 向云红1冯培淑2 【关键词】机械加工精度误差 技术报告 50 各界·科技与教育

软硬结合板Rigid-Flex pcb

软硬结合板是一种兼具刚性PCB的耐久力和柔性PCB的适应力的新型印刷电路板,在所有类型的PCB中,软硬结合是对恶劣应用环境的抵抗力最强的,因此受到医疗与军事设备生产商的青睐,我国的企业也正在逐步提高软硬结合板占总体产量的比例。 软硬结合板的分类 若是依制程分类,软板与硬板接合的方式,可区分为软硬复合板与软硬结合板两大类产品,差别在于软硬复合板的技术,可于制程中将软板和硬板组合,其中,有共通的盲孔和埋孔设计,因此可以有更高密度的电路设计,而软硬结合板的技术,则是软板和硬板分开制作后再行压合成单一片电路板,有讯号连接但无贯通孔的设计。但目前惯用”软硬结合板”统称全部的软硬结合板产品,而不细分两者。 软硬结合板的物理特性 软硬结合板在材料、设备与制程上,与原先软板、硬板各有差异。在材料方面,硬板的材质是PCB的FR4之类的材质,软板的材质是PI或是PET类的材质,两材料之间有接合、热压收缩率不同等的问题,对于产品的稳定度而言是困难点,而且软硬结合板因为立体空间配置的特性,除XY轴面方向应力的考量,Z轴方向应力承受也是重要的考量,目前有材料供货商对PCB硬板或软板厂商,提供软硬结合板适用的改良型材料,如环氧树脂(Epoxy)或是改良型树脂(Resin)等材料,以符合PCB硬板或软板间的接合问题。 在设备方面,软硬结合板因为材料特性与产品规格的差异,在压合与镀铜部份的设备必需作修正,设备的适用程度将影响产品良率与稳定度,因此跨入软硬结合板的生产前须先考虑到设备的适用程度。 软硬结合板的优点 软硬结合板相较於一般P.C.B之优点: 1.重量轻 2.介层薄 3.传输路径短 4.导通孔径小 5.杂讯少,信赖性高 软硬结合板较于硬板之优点: 1.具曲挠性,可立体配线,依空间限制改变形状. 2.耐高低温,耐燃. 3.可折叠而不影响讯号传递功能. 4.可防止静电干扰. 5.化学变化稳定,安定性,可信赖度高. 6.利于相关产品的设计,可减少装配工时及错误,并提高有关产品的使用寿命. 7.使应用产品体积缩小,重量大幅减轻,功能增加,成本降低.

工件的装夹与获得加工精度的方法

工件的装夹与获得加工精度的方法 一、工件装夹的概念 工件在开始加工前,首先必须使工件在机床上或夹具中占有某一正确的位置,这个过程称为定位。为了使定位好的工件不致于在切削力的作用下发生位移,使其在加工过程始终保持正确的位置,还需将工件压紧夹牢,这个过程称为夹紧。定位和夹紧的整个过程合起来称为装夹。 工件的装夹不仅影响加工质量,而且对生产率、加工成本及操作安全都有直接影响。 二、工件装夹的方式 1.直接找正装夹 此法是用百分表、划线盘或目测直接在机床上找正工件位置的装夹方法。 2.划线找正装夹 此法是先在毛坯上按照零件图划出中心线、对称线和各待加工表面的加工线,然后将工件装上机床,按照划好的线找正工件在机床上的装夹位置。 这种装夹方法生产率低,精度低,且对工人技术水平要求高,一般用于单件小批生产中加工复杂而笨重的零件,或毛坯尺寸公差大而无法直接用夹具装夹的场合。 3.用夹具装夹 夹具是按照被加工工序要求专门设计的,夹具上的定位元件能使工件相对于机床与刀具迅速占有正确位置,不需找正就能保证工件的装夹定位精度,用夹具装夹生产率高,定位精度高,但需要设计、制造专用夹具,广泛用于成批及大量生产。 三、获得加工精度的方法 机械加工是为了使工件获得一定的尺寸精度、形状精度、位置精度及表面质量要求。机械加工中获得这些精度的主要方法有: 1.获得尺寸精度的方法

(1)试切法该法是通过试切—测量—调整—再试切,反复进行,直至达到要求的加工尺寸。 试切法生产效率低,加工精度取决于工人的技术水平,但有可能获得较高精度,且不需复杂的装置。主要用于单件小批生产。 (2)调整法调整法是先按要求的尺寸调整好刀具相对于工件的位置,并在一批零件的加工过程中始终保持这个位置不变,以获得规定的加工尺寸。 调整法比试切法加工精度的保持性好,且具有较高的生产率,对操作工人要求不高,但对调整工要求较高,在成批及大量生产中广泛应用。 (3)定尺寸刀具法该法是用具有一定尺寸精度的刀具来保证工件的加工尺寸的。如钻头、扩孔钻、铰刀、拉刀、槽铣刀等。这种方法具有较高的生产率,加工精度主要取决于刀具的精度及刀具与工件的位置精度。为了消除刀具与工件位置精度对加工精度的影响,可采用将刀具与机床主轴浮动联接的方法来解决。 (4)自动控制法这种方法是将测量装置、进给装置和控制系统组成一个自动加工系统。加工过程中由自动测量装置测量工件的加工尺寸,并与所要求的尺寸进行比较后发出信号,信号通过转换、放大后控制机床或刀具作相应调整,直到达到规定的加工尺寸要求,加工自动停止。早期的自动控制法多采用机械—液压控制系统,近年来,由于数控技术的发展,数控机床得到广泛的应用。在数控机床上,加工尺寸的获得,由预先编好的程序自动控制,使工件获得规定的加工精度更为方便。特别是计算机数字控制(CNC),更为发展计算机辅助制造(CAM)奠定了基础。 2.获得形状精度的方法 (1)轨迹法这种加工方法是利用刀尖运动的轨迹来形成被加工表面的形状的。普通的车削、铣削、刨削和磨削等均属于刀尖轨迹法。用这种方法得到的形状精度主要取决于成形运动的精度。 (2)成形法成形法是利用成形刀具的几何形状来代替机床的某些成形运动而获得加工表面形状的。如成形车削、铣削、磨削等。成形法所获得的形状精度主要取决于刀刃的形状。

浅谈如何提高机械加工精度 王卫光

浅谈如何提高机械加工精度王卫光 发表时间:2018-08-13T11:59:41.400Z 来源:《基层建设》2018年第17期作者:王卫光[导读] 摘要:进入新时期以后,我国社会经济水平逐渐提高,相对各领域在机械零部件加工方面的要求也在不断提升,这就给机械制造企业带来很大的挑战,激励其早日达到理想的生产效率。 身份证号:13242519811006xxxx 摘要:进入新时期以后,我国社会经济水平逐渐提高,相对各领域在机械零部件加工方面的要求也在不断提升,这就给机械制造企业带来很大的挑战,激励其早日达到理想的生产效率。然而在零件实际加工过程中,由于受到多种因素的制约,使得机械加工的精度不能完全得到保证,严重影响了机械制造企业的信誉程度及经济效益。因此,相关企业应提高对机械加工精度的重视,大力采用行之有效的解决 措施,从根本上抵消一切影响加工精度的生产因素,从而为提升我国机械加工技术水平打下坚实的基础。 关键词:机械加工;减少误差;提高精度 1、机械加工精度的概念及内容 机械加工精度是指零件加工后的实际几何参数(尺寸、形状和位置)与理想几何参数相符合的程度。它们之间的差异称为加工误差。加工误差的大小反映了加工精度的高低。误差越大加工精度越低,误差越小加工精度越高。 加工精度包括三个方面内容:尺寸精度指加工后零件的实际尺寸与零件尺寸的公差带中心的相符合程度;形状精度指加工后的零件表面的实际几何形状与理想的几何形状的相符合程度;位置精度指加工后零件有关表面之间的实际位置与理想。 在相同中的各种因对准确和完足产品的工加工方法,的生产条件下所加工出来的一批零件,由于加工素的影响,其尺寸、形状和表面相互位置不会绝全一致,总是存在一定的加工误差。同时,从满作要求的公差范围的前提下,要采取合理的经济以提高机械加工的生产率和经济性。 2、加工中导致误差出现的主要因素 随着国民经济实力的不断提高,科学技术水平的不断发展,对产品的适量的要求也随着提高。加工精度已经成为衡量零件加工质量非常重要的指标,因此,有效地保证零件的加工精度显得尤为重要。在机械加工工作的过程中,要求我们对影响机械加工精度的因素非常地了解,从而使机械加工的精度不断提高。在机械加工的过程中,工艺系统会产生各种误差,这些误差与工艺系统本身的结构状态与切削过程有关系,产生加工误差的主要因素有: 2.1 加工原理误差 近似的加工方法,在加工过程中已经被广泛的运用,加工误差也由近似的加工运动或近似的刀具轮廓而产生。 2.1.1采用近似的刀具轮廓造成的误差 要使刀具刃口做得与合理论曲线的轮廓相一致,用成形刀具加工复杂的曲面时,是比较困难的,理论曲线通常会用圆弧、直线等简单近似的线型来代替。 2.1.2采用近似的加工运动造成的误差 工件和刀具在运动之间为了达到对工件表面理想的要求,往往建立了某种必然的联系。 从理论上讲这种联系的建立应该是完全准确的。但此种准确的联系,却似乎起不到理想的效果,难以提升加工精度,在此种准确的联系下,很容易导致加工原理发生误差,机床和夹具面的变得更加复杂,制造起来变得比较困难。 2.2 工艺系统受热变形引起的误差 机械加工过程中,在各种热源的共同作用下,工艺系统很容易发生一定的热变形。工艺系统各部分的变形产生差异,主要是由各个环节的材料、结构有所不同,工艺系统热源分布的不均匀所导致的。其中热变形引起的加工误差中,精密加工占总加工误差的十分之四到十分之七左右。 2.2.1 刀具热变形影响着加工精度 刀具的尺寸和热熔量并不是很大,切削加工过程中,虽然掺入道具的热量较小,但是对刀具来说也会产生重要的影响。进行粗加工时,可以忽略不计加工精度受刀具热变形的影响,但对于某些高精度的零件,刀具的热变形带来的影响非常大,使加工表面产生形状误差。 2.2.2 加工精度受机床热变形的影响 由于热源的影响,机床各个部分的温度都会发生变化,机床机构的复杂性和热源分布的不均匀,机床的各个部件发生不同程度的热变形,破坏了机床原有的各部件之间的相互位置关系,影响了加工精度。机床的类型不同,热源也不同,对加工精度的影响也不同。 2.3加工精度受机床几何误差及磨损的影响 加工中刀具对工件进行加工运动的活动场所是机床,工件的成型运动离不开机床的运行,机床的精度直接受加工工件精度的影响。在机床制造误差中对工件加工精度影响较大的,主要有传动链误差、主轴回转误差、导轨误差。 2.3.1传动链误差 在加工、装配、和使用的过程中,容易对这些基础元件造成磨碎,从而产生误差,是引起传动链误差的基础。机床传动链误差是影响表面加工精度的主要原因之一,传动误差因传动机构越多,传动路线越长而越大。 2.3.2 主轴回转误差 工件的形状和位置精度主要受到主轴的回转误差直接影响,可分解为径向跳动、轴向跳动和角度摆动。在对不同表面加工的时候,由于存在误差敏感方向,加工误差也随主轴的径向跳动而有所不同。 2.3.3 导轨误差 导轨承担着机床的导向和承载作用,机床主要部件相对位置的基准、运动的基准也由导轨来完成。形状精度受导轨各项误差的直接影响较为明显。在被加工工件表面的法线方向上,导轨在水平面内的直线误差将被直接反应出来,对加工精度的影响最大。前后导轨的平行度误差致使工作台在运动过程中产生摆动,刀尖的运动形成一条空间曲线,它使得工件形状发生变化。 3、提高机械加工精度的措施

软硬结合板的设计及生产工艺

软硬结合板的设计与生产工艺 (论文) 1. 前言 工业、医疗设备、3G手机、LCD电视及其它消费类电子如:电子计算机用的硬盘驱动器、软盘驱动器、手机、笔记本电脑、照相机、摄录机、PDA等便携式电子产品市场需求的不断扩大,电子设备越来越向着轻、薄、短、小且多功能化的方向发展。特别是高密度互连结构(HDI)用的柔性板的应用,将极大地带动柔性印制电路技术的迅猛发展,同时随着印制电路技术的发展与提高,软硬结合板(Rigid-Flex PCB)的开发研究并得到大量的应用,预计全球今后软硬结合板的供应量将会大量增加。同时,软硬结合板的耐久性与挠性,亦使其更适合于医疗与军事领域应用,逐步蚕食刚性PCB的市场份额。 由于韩国、台湾地区有大量手机厂商,因此这些厂商主导了软硬结合板市场。据台湾电路板协会(TPCA)的数据,目前该地区约有200家PCB生产商。香港地区也有少数企业在生产软硬结合板,但大约有不到五家企业具备良好的生产技术。 在中国大陆,这类产品在总体PCB市场中所占比例不大,台湾地区工业技术研究院(IEK)估计仅占2%左右。但大陆的生产份额正不断增长,厂商们都意识到,软硬结合板既轻且薄,而且紧凑,特别适合最新式的便携电子和高端医疗及军事设备——这些终端产品目前都在推升大陆软硬结合板的产量。因此,业内人士预计软硬结合板将在未来几年超越其它类型的P CB。 产品虽好,制造门槛有些高,在所有类型的PCB中,软硬结合板对于恶劣应用环境的抵抗力最强,因此受到医疗与军事设备生产商的青睐。软硬结合板兼具刚性PCB的耐久力和柔性PCB的适应力。中国大陆的企业正在提高此类PCB占总体产量的比例,以充分利用需求不断增长的大好机会。减少电子产品的组装尺寸、重量、避免连线错误,增加组装灵活性,提高可靠性,实现不同装配条件下的三维立体组装,是电子产品日益发展的必然需求,挠性电路作为一种具有薄、轻、可挠曲等可满足三维组装需求的特点的互连技术,在电子及通讯行业得到日趋广泛的应用和重视。 随着其应用领域的不断扩大,挠性线路板本身也在不断发展,如从单面挠性板到双面、多层乃至刚——挠性板等,细线宽/间距、表面安装等技术的应用以及挠性基材本身的材料特性等、对挠性板的制作提出了更严格的要求,如基材的处理,层间对位,尺寸的稳定性的控制,去沾污,小孔金属化及电镀的可靠性及表面保护性涂覆等方面都应予以高度的重视,本文仅就在研究和生产过程中所选择的重点工艺部分以及应注意的问题进行总结和阐述。

机械加工中获得零件加工精度的方法

机械加工中获得零件加工精度的方法 【摘要】本文对机械加工过程中如何获得零件加工的精度进行了讨论,并分析了多种影响零件加工质量的因素,希望可以减少生产过程中不必要的麻烦,并且对如何使工件的加工质量达到要求,同时还能保证生产效率进行了介绍。 【关键词】机械加工;零件加工;精度随着科学技术的飞速发展和市场竞争日益激烈,现代企业在高目标和低成本的追求过程中,对零件制造的基本要求就是要做到多、快、好、省。其中“好”的含义包括不断提高零件的质量,提高其使用效能与使用寿命,最大限度地消灭废品,降低次品率,提高零件的合格率。因为零件的质量直接影响着机器的性能、寿命、效率、可靠性等指标,是保证机器质量的基础,而零件的制造质量,是依靠其毛坯的制造方法、机械加工、热处理以及表面处理等工艺来保证的。因此,在零件制造的各个环节都要始终把保证质量放在首位。 1.对加工精度和加工误差的分析 加工精度是指零件加工后的实际几何参数与图纸规定的理想几何参数符合的程度,这种相符合的程度越高,加工精度也越高。在加工中,由于各种因素的影响,实际上不可能将零件的每一个几何参数加工的与理想几何参数完全相符,总会产生一些偏离,这种偏离,就是加工误差。实际上,只要零件的加上误差不超出零件图上按零件的设计要求所规定的公差,就可以说保证了零件的加工精度要求。由此可见,“加工精度”和“加工误差”这两个概念是从两个侧面来评定零件几何参数这个同一事物的。加工精度的低和高是通过加工误差的大和小来表示的。所以,保证和提高加工精度的问题,实际上就是限制和减小加工误差的问题。 2.如何获得加工精度 由于在加工过程中有很多因素影响加工精度,所以同一种加工方法在不同的工作条件下所能达到的精度是不同的。如果盲目追求加工精度,就会降低生产效率,增加加工成本。所以,我们在保证加工质量的前提下,应尽量达到提高效率,降低生产成本的目的。加工精度可以分为尺寸精度、形状精度和位置精度,因此,加工精度的高、低是以尺寸公差、形状公差和位置公差来衡量的。 2.1零件尺寸的精度方法 零件尺寸的加工方法首先包括试切法,就是先试切出很小部分加工表面,测量试切所得的尺寸,按照加工要求适当调刀具切削刃相对工件的位置,再试切,再测量,如此经过两三次试切和测量,当被加工尺寸达到要求后,再切削整个待加工表面。其次是调整法,就是预先用样件或标准件调整好机床、夹具、刀具和工件的准确相对位置,用以保证工件的尺寸精度,并在一批零件加工过程中尺寸保持不变,这就是调整法。还有定尺寸法,即用刀具的相应尺寸来保证工件被加工部位尺寸的方法,它是利用标准尺寸的刀具加工,加工面的尺寸由刀具尺寸决

提高孔加工的精度的方法终审稿)

提高孔加工的精度的方 法 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

提高孔加工的精度的方法 对于钳工专业而言,钻孔是其中最重要的加工操作,它是一种确定孔系和孔位置准确度的方式。钻削加工时,操作者可以利用理论联系实际的方法分析出孔的中心位置、确定钻床主轴线和被加工工件表面的垂直度以及做好麻花钻刃磨的质量提升工作,从而达到不断提升钻孔工艺以及提高钳工操作能力的目的,希望本文能够使更多的人掌握钳工孔加工精度的方法 在钳工专业的基本实习训练中,孔加工是相对比较难掌握的基本操作之一。在孔加工实习训练中反映问题最多的是单孔的直径控制和多孔的孔距精度控制,特别是对孔距的精度控制最为突出。在实践中,如果是成批量的生产加工,可以通过制做工卡具来实现对孔距的控制,这样不仅能满足产品的技术要求,还能极大地提高工作效率。但在小批量的生产加工中,对孔和孔距的形状和位置精度控制,则要通过划线、找正等方法来予以保证。 一、钳工孔加工实习课题训练中容易出现的问题: 1、钻孔时孔径超出尺寸要求,一般是孔径过大; 2、孔的表面粗糙度超出规定的技术要求; 3、孔的垂直度超出位置公差要求; 4、孔距(包括边心距和孔距)超出尺寸公差的要求; 二、孔加工中出现问题的主要原因分析: 1、钻头刃磨时两个主切削刃不对称,在钻削过程中,使钻头的径向受力; 2、对钻削的切削速度选择不当; 3、钻削时工件未与钻头保持垂直; 4、未对孔距尺寸公差进行跟踪控制;

三、提高孔加工精度的方法: 在孔加工的课题训练中,对于前三个问题,需要加强练习。比如主切削刃的不对称问题,在刃磨时,要对砂轮面进行检查,如果砂轮的磨削面不平整,应及时进行修整,刃磨的角度应保持一致。对于不同的孔径,要选择相应的切削速度。在钻孔过程中,自始至终都要避免钻头的径向受力。钻孔时,不仅要保证平口钳的上平面与钻头的垂直,也要保证夹持工件时夹持面与加工表面的垂直。夹持要牢固,避免在钻孔过程中,由于夹持不牢使工件发生滑陷。这些都需要在实习的过程中让学生慢慢体会和认真掌握的。 最容易出现也是最难掌握的问题是孔距精度的控制问题,在这里作一下重点阐述。传统的孔的位置精度的检查是靠划出“检查圆”和“检查框”的方法。“检查圆”它是在钻孔划线完毕后,用划规以样冲眼为中心,划出比需要加工孔的直径大的“检查圆”,作为钻孔时检查位置是否准确的参照基准。由于划规在旋转中其确定圆心的脚尖与样冲眼的接触中会产生滑动,使划规划的“检查圆”容易产生误差。“检查框”是利用高度游标卡尺在孔的十字中心线上划出等距的方格,是在钻孔的初期样冲眼灭失时,用来替代样冲眼检查孔位置是否正确的依据,“检查框”确定的找正基准可以保证钻孔的中心与样冲眼定位的中心重合,保证划线精度,也避免了划“检查圆”的误差。这两种保证孔位置精度的做法在教学中很难被学生掌握。在多年的钳工实习教学实践中,对于孔距的控制我采用的是“跟踪控制法”。所谓“跟踪控制”,就是从划线开始,到加工结束,每一道加工工序都要通过认真的检查来保证孔距的精度要求在加工者的控制之中。做到前道加工工序是后一道加工工序的精度控制前提,后一道加工序是前一道加工工序的精度控制保证。一环扣一环,从而实现对孔距精度的控制。 首先是划线,划线是孔加工的第一道工序,划线的质量是确保孔加工孔距精度的重要前提。俗话说“工欲善其事,必先利其器”。在孔加工确定孔中心位置的划线中,一般是采用高度游标卡尺,要划线前一是要检查高度尺的示值误差是否在规定的精度误差范

机械加工精度参考答案

机械加工精度参考答案 一、判断题(正确的在题后括号内划“√”,错误的划“×”。) 1.精密丝杠可采用冷校直方法克服其弯曲变形。(×) 2.误差复映是由于工艺系统受力变形所引起的。(√) 3.误差复映指的是机床的几何误差反映到被加工工件上的现象。(×) 4.减小误差复映的有效方法是提高工艺系统的刚度。(√) 5.加工原理误差是由于机床几何误差所引起的。(×) 6.由于刀具磨损所引起的加工误差属于随机误差。(×) 7.机械加工中允许有原理误差。(√) 8.在加工一批工件时,若多次调整机床,其调整误差仍为随机性误差。(√) 9.在加工一批工件时因机床磨损速度很慢,机床制造误差在一定时间内可视为常值,所以其调整误差为常值系统性误差。(√) 10.复映误差属于变值系统性误差。(×) 11.定位误差属于常值系统性误差。(×) 12.刀具和机床磨损造成的误差属于随机性误差。(×) 13.工件受热变形造成的误差属于随机性误差。(×) 二、单项选择题(在每小题的四个备选答案中选出一个正确的答案,并将正确答案的标号填在题干的括号内。) 1.工件在车床三爪卡盘上一次装夹车削外圆及端面,加工后检验发现端面与外圆不垂直,其可能原因是(C)。 A.车床主轴径向跳动 B.车床主轴回转轴线与纵导轨不平行 C.车床横导轨与主轴回转轴线不垂直 D.三爪卡盘装夹面与车削主轴回转轴线不同轴 2.薄壁套筒零件安装在车床三爪卡盘上,以外圆定位车内孔,加工后发现孔有较大圆度误差,其主要原因是( A )。 A.工件夹紧变形B.工件热变形 C.刀具受力变形D.刀具热变形 3.车削细长轴时,由于工件刚度不足造成在工件轴向截面上的形状是(C )。 A.矩形B.梯形C.鼓形D.鞍形 4.下列影响加工误差的因素中,造成随机误差的因素是( D )。 A.原理误差B.机床几何误差C.机床热变形D.安装误差 5.零件加工尺寸符合正态分布时,其均方根偏差越大,表明尺寸(A)。 A.分散范围越大B.分散范围越小 C.分布中心与公差带中心偏差越大D.分布中心与公差带中心偏差越小 6.在车床两顶尖上装夹车削光轴,加工后检验发现中间直径偏小,两端直径偏大,其最可能的原因是( A )。 A.两顶尖处刚度不足B.刀具刚度不足 C.工件刚度不足D.刀尖高度位置不准确 7.车削加工中大部分切削热传给了(D )。 A.机床B.工件C.刀具D.切屑 8.工艺系统刚度( B )其实体刚度。 A.大于B.小于C.等于D.大于或等于

浅谈提高机械加工精度方法与注意事项

浅谈提高机械加工精度方法与注意事项 一方面,要在知晓加工误差的基础上,深入分析其中的原因; 另一方面,要能够采取有效的补救方法来降低生产误差,提高产品生产性能。 1 机械加工中出现的误差 机械加工的精度往往与实际存在的误差有一定的区别和联系。机械中的精度与加工后的实际数值要求有一定的差异,越是接近规定的要求,越能够体现生产加工的系数标准。 误差则是由机床、夹具、刀具和工件组成的机械加工工艺系统过程中往往因人为或者机械等不可避免而造成的,与实际生产标准有一定差距,但可通过一定的策略措施予以弥补。 2 工艺生产中影响精度的要素 2.1 工艺系统中机械性误差 机械加工是在一定的操作系统中进行的,往往受到机床的几何、主轴回转、刀具几何等因素影响。这样的机械物质因素影响,不仅影响了机械精度,更是容易导致生产效率低下。 根据这些误差中,主要包括:

1)传输运动误差,在传动链始末两端中因传动元件间相对运动导致频率不同而产生一定的误差,主要在机械的转角中。 2)刀具切削误差,因刀具在切削过程中,产生磨损,并由此引起工件尺寸和形状地改变。 3)主轴回转误差,主轴在运转过程中和实际回转轴线相对其平均回转轴线的变动量不再严格参数范围内,可分解为径向圆跳动、轴向窜动和角度摆动三种基本形式。产生主轴径向回转误差的主要原因有:主轴几段轴颈的同轴度误差、轴承本身的各种误差、轴承之间的同轴度误差、主轴绕度等。但它们对主轴径向回转精度的影响大小随加工方式的不同而不同。 4)导轨误差,在机械生产过程中,各机床部件相对位置关系不在正确的运转系数范围而导致其运转速度产生偏差,主要与在水平面内(垂直面内)直线度和前后导轨的平行度(扭曲)相关。这些机械性误差存在,不仅使得机械不能在正确运转范围内生产,还容易使得机械生产精度大为减少。 2.2 定位过程中误差 机械在生产过程中,往往需要一定的制作设计图本,应该充分考虑实际生产的中可能存在的不确定因素。须选择工件上若干几何要素作为加工时的定位基准(或测量基准),如果所选用的定位基准(或测量基准)与设计基准不重合,就会产生基准不重合误差。在生产过程中,基准不重合误差等于定位基准相对于设计基准在工序尺寸方向上的最大变动量。这样的定位误差,不仅

提高孔加工的精度的方法

提高孔加工的精度的方法 对于钳工专业而言,钻孔是其中最重要的加工操作,它是一种确定孔系和孔位置准确度的方式。钻削加工时,操作者可以利用理论联系实际的方法分析出孔的中心位置、确定钻床主轴线和被加工工件表面的垂直度以及做好麻花钻刃磨的质量提升工作,从而达到不断提升钻孔工艺以及提高钳工操作能力的目的,希望本文能够使更多的人掌握钳工孔加工精度的方法 在钳工专业的基本实习训练中,孔加工是相对比较难掌握的基本操作之一。在孔加工实习训练中反映问题最多的是单孔的直径控制和多孔的孔距精度控制,特别是对孔距的精度控制最为突出。在实践中,如果是成批量的生产加工,可以通过制做工卡具来实现对孔距的控制,这样不仅能满足产品的技术要求,还能极大地提高工作效率。但在小批量的生产加工中,对孔和孔距的形状和位置精度控制,则要通过划线、找正等方法来予以保证。? 一、钳工孔加工实习课题训练中容易出现的问题:? 1、钻孔时孔径超出尺寸要求,一般是孔径过大;? 2、孔的表面粗糙度超出规定的技术要求;? 3、孔的垂直度超出位置公差要求;? 4、孔距(包括边心距和孔距)超出尺寸公差的要求;? 二、孔加工中出现问题的主要原因分析:? 1、钻头刃磨时两个主切削刃不对称,在钻削过程中,使钻头的径向受力;? 2、对钻削的切削速度选择不当;? 3、钻削时工件未与钻头保持垂直;?

4、未对孔距尺寸公差进行跟踪控制;? 三、提高孔加工精度的方法:? 在孔加工的课题训练中,对于前三个问题,需要加强练习。比如主切削刃的不对称问题,在刃磨时,要对砂轮面进行检查,如果砂轮的磨削面不平整,应及时进行修整,刃磨的角度应保持一致。对于不同的孔径,要选择相应的切削速度。在钻孔过程中,自始至终都要避免钻头的径向受力。钻孔时,不仅要保证平口钳的上平面与钻头的垂直,也要保证夹持工件时夹持面与加工表面的垂直。夹持要牢固,避免在钻孔过程中,由于夹持不牢使工件发生滑陷。这些都需要在实习的过程中让学生慢慢体会和认真掌握的。? 最容易出现也是最难掌握的问题是孔距精度的控制问题,在这里作一下重点阐述。传统的孔的位置精度的检查是靠划出“检查圆”和“检查框”的方法。“检查圆”它是在钻孔划线完毕后,用划规以样冲眼为中心,划出比需要加工孔的直径大的“检查圆”,作为钻孔时检查位置是否准确的参照基准。由于划规在旋转中其确定圆心的脚尖与样冲眼的接触中会产生滑动,使划规划的“检查圆”容易产生误差。“检查框”是利用高度游标卡尺在孔的十字中心线上划出等距的方格,是在钻孔的初期样冲眼灭失时,用来替代样冲眼检查孔位置是否正确的依据,“检查框”确定的找正基准可以保证钻孔的中心与样冲眼定位的中心重合,保证划线精度,也避免了划“检查圆”的误差。这两种保证孔位置精度的做法在教学中很难被学生掌握。在多年的钳工实习教学实践中,对于孔距的控制我采用的是“跟踪控制法”。所谓“跟踪控制”,就是从划线开始,到加工结束,每一道加工工序都要通过认真的检查来保证孔距的精度要求在加工者的控制之中。做到前道加工工序是后一道加工工序的精度控制前提,后一道加工序是前一道加工工序的精度控制保证。一环扣一环,从

提高加工精度的方法

提高加工精度的方法 机械加工(以下简称机加工)精度是指零件加工后的实际几何参数(尺寸、形状和位置)与理想几何参数的符合程度。符合程度越高,加工精度就越高。在机加工中,产生误差是不可避免的,但误差必须在规定允许的范围内。 机械加工精度包括尺寸精度、形状精度和位置精度三个方面。 A.尺寸精度:尺寸精度是加工后的零件表面本身或表面之间的实际尺寸与理想零件尺寸之间的符合程度。理想零件尺寸是指零件图上标注尺寸的中间值。 B.形状精度:形状精度是加工后的零件表面本身的实际形状与理想零件表面形状相符合的程度,国家标准中规定用直线度、平面度、圆度、圆柱度、线轮廓度和面轮廓度作为评定形状精度的项目。理想表面的形状是指绝对的表面形状。 C.位置精度:位置精度是加工后零件各表面间实际位置与理想零件表面的位置符合的程度,国家标准中规定用平行度、垂直度、同轴度、对称度、位置度、圆跳动和全跳动作为评定位置精确项目。理想零件各表面间的位置是指各表面间绝对准确的位置。 零件尺寸精度的获得与加工过程中的调整、测量有关,也与刀具的制造和磨损等因素有关。零件的形状主要依靠刀具和工件作相对成形运动来获得,所以形状精度取决于机床成形运动精度,有时也取决于切削刃的形状精度。零件的位置精度则受机床精度以及工件装夹方法等因素的影响。 根据以上内容,下文对机加工中的误差进行了分析归纳,根据其变化的一些基本规律,从而采取相应的措施减少机加工误差,以提高机加工精度。现与大家一起探讨。 1机加工产生误差主要因素 1.1 定位误差。一是基准不重合误差。在零件图上用来确定某一表面尺寸、位置所依据的基准称为设计基准。在工序图上用来确定本工序被加工表面加工后的尺寸、位置所依据的基准称为工序基准。在机床上对工件进行加工时,须选择工件上若干几何要素作为加工时的定位基准,如果所选用的定位基准与设计基准不吻合,就会产生基准不重合误差。二是定位副制造不准确误差。夹具上的定位元件不可能按基本尺寸制造得绝对准确,它们的实际尺寸(或位置)都允许在分别

相关文档
相关文档 最新文档