文档库 最新最全的文档下载
当前位置:文档库 › 导数在函数求最大值和最小值中的应用解读

导数在函数求最大值和最小值中的应用解读

导数在函数求最大值和最小值中的应用解读
导数在函数求最大值和最小值中的应用解读

导数在函数求最大值和最小值中的应用

例1.求函数f (x )=5x +

.

解析:由3040x x +??-?

≥≥得f (x )的定义域为-3≤x ≤4,原问题转化为求f (x )在区间[-3, 4]上的最值问题。 ∵ y ’=f ’(x )

=5 在[-3,4]上f ’(x )>0恒成立, ∴ f (x )在[-3,4]上单调递增.

∴ 当x =-3时y min =-15-7, 当x =4时y max =20+27,

∴ 函数的值域为[-15-7,20+27].

例2.设32

求a , b 的值。 解析:f ’(x )=3x 2-3ax =3x (x -a ),当x 变化时,f ’(x ), f (x )的变化情况列表如下:

当x =0时, f (x )取极大值b ,而f (0)>f (a ),f (-1)

∴ 需要比较f (0)与f (1)的大小,

∵ f (0)-f (1)=

2

3a -1>0,∴ f (x )的最大值为f (0)=b -1, 又f (-1)-f (a )=21(a 3-3a -2)=21(a +1)2(a -)<0, ∴ f (x )|min =f (-1),∴ -23a -1+b =-23a =

∴ a

b =1. 例3.若函数f (x )在[0,a ]上单调递增且可导,f (x )<0,f (x )是严格单调递增的,求

()f x x 在(0,a ]上的最大值。 解析:2()'()()[]'f x f x x f x x x

?-=,∵ f (x )是严格单调递增的, ∴ f ’(x )>0,∵ f (x )<0,x >0,∴f ’(x )·x -f (x )>0,

∴ 2()'()()[

]'f x f x x f x x x ?-=>0,∴ ()f x x

在(0,a ]上是增函数。 ∴ ()f x x 在(0,a ]上最大值为()f a a . 例4.设g (y )=1-x 2+4 xy 3-y 4在y ∈[-1,0]上最大值为f (x ),x ∈R ,

① 求f (x )表达式;② 求f (x )最大值。

解析:g ’(y )=-4y 2(y -3x ), y ∈[-1, 0],

当x ≥0时,g ’(y )≥0,∴ g (y )在[-1, 0]上递增, ∴ f (x )=g (0)=1-x 2. 当-3

10,在[-1,3x ]上恒成立,在(3x ,0)上恒成立, ∴ f (x )=g (3x )=1-x 2+27x 4

.

当x ≤-3

1时,g ’(y ),g (y )在[-1,0]上递减, ∴ f (x )=g (-1)=-x 2-4x , ∴ f (x )=2

24

210112703143

x x x x x x x x ??-??-+-<

当x ∈(-

31,0)时,f (x )=27[(x -154

)2-2154]+1

1时, f (x )=-( x +2)2+4≤f (-2)=4, ∵ 1<119

< 4,∴ f (x )|max =f (-2)=4. 例5.设函数f ( x )=3x 2+3a x (x ∈(0,+∞)),求正数a 的范围,使对任意的x ∈(0,+∞),都有不等式f (x )>20成立。 解析:f ’(x )=6x -43a x ,令f ’(x )=0得 x =1

5()2

a , 当015()2a 时f ’(x )>0, ∴ x =1

5()2

a 是唯一的极值点,是极小值点且是最小值点. 要使f (x )≥20恒成立,∴ f (x )|min ≥20,

∴ 1225553255

5(())3()2022()22

a a a f a a =?+=?≥, 解得a ≥64. 例6.圆柱形金属饮料罐的表面积一定时,应怎样制作,其容积最大?

解析:设圆柱的高为h ,底面半径为R ,则S =2πRh +2πR 2,

∴ h =222S R R

ππ-, ∴ V (R )=S 底面·h =2222122S R R SR R R ππππ-?=-, 由V ’(R )=0得2

1S -3πR 2=0得S =6πR 2,∴ 6πR 2=2πRh +2πR 2,∴ h =2R , 即当罐的高和底面直径相等时容积最大.

例7.已知三次函数f (x )=x (x -a )(x -b ),其中0<a <b .

(1)设f (x )在x =s 及x =t 处取最值,其中s <t ,求证:0<s <a <t <b ;

(2)设A (s ,f (s )),B (t ,f (t )),求证:AB 中点C 在曲线y =f (x )上;

(3)若a +b <22,求证:过原点且与曲线y =f (x )相切的两直线不可能垂直。

解析:(1)f ’(x )=3x 2-2(a +b )x +ab ,

由f (x )在x =s 和x =t 处取最值,∴ s ,t 分别是方程f ’(x )=0的两实根.

∵ f ’(0)=ab >0,f ’(a )=3a 2-2(a +b )a +ab =a (a -b )<0,

f ’(b )=b 2-ab =b (b -a )>0,∴ f ’(x )=0在(0,a )及(a ,b )内分别有一个实根,

∵ s

(2)由s ,t 是方程f ’(x )=0的两根.∴ 2()33a b s t ab st +?+=????=??

, ∴ f (s )+f (t )=342()()273

a b ab a b -

+++, ∵ 3211()()()()[()()]232732

s t a b f f a b ab a b f s f t ++==-+++=+, ∴ AB 的中点C (2s t +,f (2s t +))在曲线y =f (x )上. (3)过曲线上点(x 1,y 1)的切线方程为y -y 1=[3x 12-2(a +b )x 1+ab ](x -x 1),

由y 1=x 1(x 1-a )(x 1-b )且切线过原点.

∴ -x 1(x 1-a )(x 1-b )=-x 1[3x 12-2(a +b )x 1+ab ],

当x 1=0时,切线的斜率为k 1=ab ,

当x 1=2

a b +时,切线斜率为-41(a +b )2+ab , ∵ a , b >0,a +b <22,∴ k 1k 2=[-4

1(a +b )2+ab ], Ab =(ab )2-4

1(a +b )2+ab >(ab )2-2ab =(ab -1)2-1≥-1 ∴ k 1k 2≠-1,即两切线不可能垂直。

例8 、设函数f (x )=x 3+mx 2+nx +p 在(-∞,0]上是增函数,在[0,2]上是减函数,x =2是方程f (x )=0的一个根.

(1)求n 的值;

(2)求证:f (1)≥2.

剖析:由题知x =0是极值点,那么另一个极值点在哪儿呢?是x =2吗?不一定.会在x =2的哪一侧呢?

解:(1)f '(x )=3x 2+2mx +n .

∵f (x )在(-∞,0]上是增函数,在[0,2]上是减函数,

∴当x =0时,f (x )取到极大值.

∴f '(0)=0.∴n =0.

(2)∵f (2)=0,∴p =-4(m +2),

f '(x )=3x 2+2mx =0的两个根分别为x 1=0,x 2=-3

2m , ∵函数f (x )在[0,2]上是减函数,

∴x 2=-

3

2m ≥2.∴m ≤-3. ∴f (1)=m +p +1=m -4(m +2)+1=-7-3m ≥2.

评述:此题学生往往错误地认为x =2是另一个极值点.再证f (1)≥2时,首先将f (1)化成关于m 的式子,知道m 的范围,便可证之.

例9、已知函数f (x )=4x 3+ax 2+bx +5的图象在x =1处的切线方程为y =-12x .

(1)求函数f (x )的解析式;

(2)求函数f (x )在[-3,1]上的最值.

解:(1)f '(x )=12x 2+2ax +b ,f '(1)=12+2a +b =-12. ① 又x =1,y =-12在f (x )的图象上,

∴4+a +b +5=-12.

由①②得a =-3,b =-18,

∴f (x )=4x 3-3x 2-18x +5. (2)f '(x )=12x 2-6x -18=0,得x =-1,

23,f (-1)=16,f (23)=-4

61,f (-3)=-76,f (1)=-13. ∴f (x )的最大值为16,最小值为-76.

例14(安徽省皖南八校2009届高三第二次联考理科数学第22题)已知函数()ln a f x x x =-

, (1)当0a >时,判断()f x 在定义域上的单调性;

(2)若()f x 在[1,]e 上的最小值为

32,求a 的值; (3)若2()f x x <在(1,)+∞上恒成立,求a 的取值范围.

(2)由(1)可知:2

()x a f x x +'= ① 若1a ≥-,则0x a +≥,()f x 在[1,]e 上为增函数,② 若a e ≤-,则0x a +≤,()f x 在[1,]e 上为减函数,

③ 若1e a -<<-,令()0f x '=得x a =-,当1x a <<-时,()0,()f x f x '<∴在(1,)a -上为减函数,

当a x e -<<时,()0,()f x f x '>∴在(,)a e -上为增函数,min 3[()]()ln()12

f x f a a a ∴=-=-+=?= (3)令2

32116()ln ,()()1ln 3,()6x g x x x x h x g x x x h x x x x -''=-==+-=-=,

第13讲 函数与导数之导数及其应用(学生版)

第13讲 函数与导数之导数及其应用 一. 基础知识回顾 1.函数的平均变化率:一般地,已知函数y =f (x ),x 0,x 1是其定义域内不同的两点,记Δx =x 1-x 0,Δy =y 1-y 0=f (x 1)-f (x 0)=f (x 0+Δx )-f (x 0),则当Δx ≠0时,商 =Δy Δx 称作函数y =f (x )在区间[x 0,x 0+Δx ](或[x 0+Δx ,x 0])的平均变化率. 2.函数y =f (x )在x =x 0处的导数:(1)定义:函数y =f (x)在点x 0处的瞬时变化率 通 常称为f (x )在x =x 0处的导数,并记作f ′(x 0),即 . (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是过曲线y =f (x )上点(x 0,f (x 0)) 的 .导函数y =f ′(x )的值域即为 . 3.函数f (x )的导函数:如果函数y =f (x )在开区间(a ,b )内每一点都是可导的,就说f (x )在开 区间(a ,b )内可导,其导数也是开区间(a ,b )内的函数,又称作f (x )的导函数,记作 . 4.基本初等函数的导数公式表(右表) 5.导数运算法则 (1)[f (x )±g (x )]′= ; (2)[f (x )g (x )]′= ; (3)????f (x )g (x )′= [g (x )≠0]. 5.导数和函数单调性的关系:(1)若f ′(x )>0在(a ,b )上恒成立,则f (x )在(a ,b )上是 函数,f ′(x )>0的解集与定义域的交集的对应区间为 区间;(2)若f ′(x )<0在(a ,b )上恒成立,则f (x )在(a , b )上是 函数,f ′(x )<0的解集与定义域的交集的对应区间为 区间(3)若在(a ,b )上, f ′(x )≥0,且f ′(x )在(a ,b )的任何子区间内都不恒等于零?f (x )在(a ,b )上为 函数,若在 (a ,b )上,f ′(x )≤0,且f ′(x )在(a ,b )的任何子区间内都不恒等于零?f (x )在(a ,b )上为 函 数. 6.函数的极值:(1)判断f (x 0)是极值的方法:一般地,当函数f (x )在点x 0处连续时,①如果 在x 0附近的左侧 ,右侧 ,那么f (x 0)是极大值;②如果在x 0附近的左侧 , 右侧 ,那么f (x 0)是极小值.(2)求可导函数极值的步骤①求f ′(x );②求方程 的根;③检查f ′(x )在方程 的根左右值的符号.如果左正右负,那么f (x )在这个根处 取得 ;如果左负右正,那么f (x )在这个根处取得 . 7.函数的最值:(1)函数f (x )在[a ,b ]上必有最值的条件如果函数y =f (x )的图象在区间[a ,b ] 上 ,那么它必有最大值和最小值.(2)求函数y =f (x )在[a ,b ]上的最大值与最小值的步 骤:①求函数y =f (x )在(a ,b )内的 ;②将函数y =f (x )的各极值与 比较,其中最大 的一个是最大值,最小的一个是最小值. 二.典例精析 探究点一:导数的运算 例1:求下列函数的导数: (1)y =(1-x )? ???1+1x ; (2)y =ln x x ;(3)y =x e x ; (4)y =tan x .

函数的最大值与导数.doc

第1课时 课型:新授课 主备人:武果果 一、学习目标 1?借助函数图像,直观的理解函数的最大值和最小值概念; 2. 弄清函数最大值、最小值与极大值、极小值的区别与联系,理解和熟悉函数于(兀)必有最大 值和最小值的充分条件; 3. 会利用导数求连续函数/(兀)在闭区间["]上的最大值和最小值。 二、 考情分析 1. 考纲要求:会求闭区间上函数的最大值与最小值; 2?考情分析:运用导数研究函数的最值; 3?备考要求:注重导数在研究函数极值与最值中的工具性作用。 三、 课前自主学习 1?导入学习 复习:(1)极大(小)值概念: ____________________________________________________ (2)求函数极值的方法: ________________________________________________ 实例导入:预习课本心完成下面问题: ⑴你能找出函数 尸/(兀)在区间上的极大值、极小值、最大值、最小值吗? (2)函数y = /(x)在开区间仏b)上的极大值、极小值、最大值、最小值存在吗? ⑶若函数)/(x)在区间[d,b ]上不连续还存在极大值、极小值、最大值、最小值吗? 新知:函数y = 在闭区间[⑦切上的最值: 一般地,如果在区间[⑦切上函数y = /(x)的图像是一条 ________ 的曲线,那么它必有最 大值和最小值. 例1?求函数/*(%) = 6 + 12x-x 3在【-亍3]上的最大值与最小值。 选2?2 § 13.3函数的最大(小)值与导数

解-7/(X)=6+12X-A3???广(0 = 由厂(兀) = 0,解得兀= 当X变化时,f(x)与#(尢)的变化情况如下表: ???函数心在[-事3]上的最大值是____ ;最小值是_______ 结论:求函数y = /(x)在[d,b]上的最值的步骤: ⑴.求函数y = /(%)在(d,b)内的_______ ; ⑵.将函数〉,= /&)的 _____ 与____________ 比较,其中最大的一个是最大值,最小的一个 是________ O 2. 自我检测 练习(1)?已知a为实数,/(x) = (x2-4)(x-a),若广(-1) = 0,求/⑴在 [-2, 2]上的最大值和最小值. 7i n (2).求函数/(x) =-2cosx-x在区间[-亍,-]上的最大值与最小值。

高中高考数学专题复习《函数与导数》

高中高考数学专题复习<函数与导数> 1.下列函数中,在区间()0,+∞上是增函数的是 ( ) A .1y x = B. 12x y ?? = ??? C. 2log y x = D.2x y -= 2.函数()x x x f -= 1 的图象关于( ) A .y 轴对称 B .直线y =-x 对称 C .坐标原点对称 D .直线y =x 对称 3.下列四组函数中,表示同一函数的是( ) A .y =x -1与y .y y C .y =4lgx 与y =2lgx 2 D .y =lgx -2与y =lg x 100 4.下列函数中,既不是奇函数又不是偶函数,且在)0,(-∞上为减函数的是( ) A .x x f ?? ? ??=23)( B .1)(2+=x x f C.3)(x x f -= D.)lg()(x x f -= 5.已知0,0a b >>,且12 (2)y a b x =+为幂函数,则ab 的最大值为 A . 18 B .14 C .12 D .34 6.下列函数中哪个是幂函数( ) A .3 1-??? ??=x y B .2 2-?? ? ??=x y C .3 2-=x y D .()3 2--=x y 7.)43lg(12x x y -++=的定义域为( ) A. )43 ,21(- B. )43 ,21[- C. ),0()0,2 1(+∞?- D. ),43 []21 ,(+∞?-∞ 8.如果对数函数(2)log a y x +=在()0,x ∈+∞上是减函数,则a 的取值范围是 A.2a >- B.1a <- C.21a -<<- D.1a >- 9.曲线3 ()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( )

高中数学函数与导数综合复习

高二数学函数与导数综合复习 一、知识梳理: 1.基本初等函数的导数公式和导数的四则运算法则: 常用函数导数公式:='x ; =')(2 x ;=')(3 x ;=')1 (x ; 初等函数导数公式:='c ; =')(n x ;=')(sin x ;=')(cos x ; =')(x a ; =')(x e ;=')(log x a ;=')(ln x ; 导数运算法则:(1)/ [()()]f x g x ±= ;(2))]'()([x g x f ?= ; (3)/ ()[ ]() f x g x = [()0].g x ≠ 2.导数的几何意义:______________________________________________________________________; 曲线)(x f y =在点()(,00x f x )处的切线方程为________________________________________. 3.用导数求函数单调区间的一般步骤: (1)__________________________________; (2)________的解集与定义域的交集的对应区间为增区间;_______的解集与定义域的交集的对应区间为减区间 4. 利用导数求函数的最值步骤: ⑴求)(x f 在(,)a b 内的极值; ⑵将)(x f 的各极值与)(a f 、)(b f 比较得出函数)(x f 在[]b a ,上的最值. 二.巩固练习: 1.一个物体的运动方程为21s t t =-+ 其中S 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时 速度是 ( ) A 、 7米/秒 B 、6米/秒 C 、 5米/秒 D 、 8米/秒 2. 在0000()() ()lim x f x x f x f x x ?→+?-'=?中,x ?不可能 ( ) A .大于0 B .小于0 C .等于0 D .大于0或小于0 3. 已知曲线3 2x y =上一点)2,1(A ,则A 处的切线斜率等于 ( ) A .2 B .4 C .6+6x ?+2(x ?)2 D .6 4. 设)(x f y =存在导函数,且满足12) 21()1(lim 0 -=??--→?x x f f x ,则曲线)(x f y =上点))1(,1(f 处的切线 斜率为( ) A .2 B .-1 C .1 D .-2

高中数学第四章导数应用2.2最大值最小值问题二学案北师大版选修

2.2最大值、最小值问题(二) 学习目标1.了解导数在解决实际问题中的作用.2.会利用导数解决简单的实际生活中的优化问题. 知识点生活中的优化问题 1.生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为____________. 2.利用导数解决优化问题的实质是求函数最值. 3.解决优化问题的基本思路: 上述解决优化问题的过程是一个典型的______________过程. 类型一几何中的最值问题 命题角度1平面几何中的最值问题 例1如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18 000 cm2,四周空白的宽度为10 cm,两栏之间的中缝空白的宽度为5 cm.怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小?

反思与感悟平面图形中的最值问题一般涉及线段、三角形、四边形等图形,主要研究与面积相关的最值问题,一般将面积用变量表示出来后求导数,求极值,从而求最值. 跟踪训练1如图所示,在二次函数f(x)=4x-x2的图像与x轴所围成图形中有一个内接矩形ABCD,求这个矩形面积的最大值. 命题角度2立体几何中的最值问题 例2请你设计一个包装盒如图所示,ABCD是边长为60 cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E,F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x cm. (1)若广告商要求包装盒侧面积S最大,则x应取何值? (2)若广告商要求包装盒容积V最大,则x应取何值?并求出此时包装盒的高与底面边长的比值.

《函数的最大(小)值与导数》教案

《函数的最大(小)值与导数》教案 【教学目标】 1.使学生理解函数的最大值和最小值的概念,掌握可导函数)(x f 在闭区间[]b a ,上所有点(包括端点b a ,)处的函数中的最大(或最小)值必有的充分条件; 2.使学生掌握用导数求函数的极值及最值的方法和步骤. 【教学重点】利用导数求函数的最大值和最小值的方法. 【教学难点】函数的最大值、最小值与函数的极大值和极小值的区别与联系. 【教学过程】 一、复习回顾: 1.极值的概念: 极大值: 一般地,设函数f (x )在点x 0附近有定义,如果对x 0附近的所有的点,都有f (x )<f (x 0),就说f (x 0)是函数f (x )的一个极大值,记作y 极大值=f (x 0),x 0是极大值点. 极小值:一般地,设函数f (x )在x 0附近有定义,如果对x 0附近的所有的点,都有f (x )>f (x 0).就说f (x 0)是函数f (x )的一个极小值,记作y 极小值=f (x 0),x 0是极小值点. 2. 判断函数)(x f y =的极值的方法: 解方程0)(='x f .当0)(0='x f 时: (1)如果在0x 附近的左侧0)(>'x f ,右侧0)(<'x f ,那么)(0x f 是极大值; (2)如果在0x 附近的左侧0)(<'x f ,右侧0)(>'x f ,那么)(0x f 是极小值. 3. 求可导函数f (x )的极值的步骤: (1)确定函数的定义区间,求导数f ′(x ); (2)求方程f ′(x )=0的根; (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f ′(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不

高中数学导数与积分知识点

高中数学教案—导数、定积分 一.课标要求: 1.导数及其应用 (1)导数概念及其几何意义 ① 通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵; ②通过函数图像直观地理解导数的几何意义。 (2)导数的运算 ① 能根据导数定义求函数y=c ,y=x ,y=x 2,y=x 3 ,y=1/x ,y=x 的导数; ② 能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax+b ))的导数; ③ 会使用导数公式表。 (3)导数在研究函数中的应用 ① 结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间; ② 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。 (4)生活中的优化问题举例 例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。 (5)定积分与微积分基本定理 ① 通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念; ② 通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。 (6)数学文化 收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中"数学文化"的要求。 二.命题走向 导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常以解答题形式和其它数学知识结合起来,综合考察利用导数研究函数的单调性、极值、最值. 三.要点精讲 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值 x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。 如果当0→?x 时, x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

2017_2018学年高中数学第三章导数应用2_2最大值最小值问题教学案北师大版选修2_2

2.2 最大值、最小值问题 [对应学生用书P33] 1.问题:如何确定你班哪位同学最高? 提示:方法很多,可首先确定每个学习小组中最高的同学,再比较每组的最高的同学,便可确定班中最高的同学. 2.如图为y=f(x),x∈[a,b]的图像. 问题1:试说明y=f(x)的极值. 提示:f(x1),f(x3)为函数的极大值,f(x2),f(x4)为函数的极小值. 问题2:你能说出y=f(x),x∈[a,b]的最值吗? 提示:函数的最小值是f(a),f(x2),f(x4)中最小的,函数的最大值是f(b),f(x1),f(x3)中最大的. 问题3:根据问题2回答函数y=f(x),x∈[a,b]的最值可能在哪些点取得. 提示:在极值点或端点中. 1.最值点 (1)最大值点:函数y=f(x)在区间[a,b]上的最大值点x0指的是:函数在这个区间上所有点的函数值都不超过f(x0). (2)最小值点:函数y=f(x)在区间[a,b]上的最小值点x0指的是:函数在这个区间上所有点的函数值都不小于f(x0). 2.最值 函数的最大值与最小值统称为最值. (1)一般地,连续函数f(x)在[a,b]上有最大值与最小值. (2)函数的最大值和最小值是一个整体性概念,最大、最小值必须是整个区间上所有函

数值中的最大、最小值. (3)函数的极值可以有多个,但最大(小)值最多只能有一个. [对应学生用书P34] 求函数的最值 [例1] (1)求函数f (x )=x 3 -2x 2-2x +5在区间[-2,2]上的最大值与最小值; (2)求函数f (x )=1 2x +sin x 在区间[0,2π]上的最大值与最小值. [思路点拨] 先利用导数求极值,然后与端点处的函数值比较得最值. [精解详析] (1)因为f (x )=x 3 -12x 2-2x +5, 所以f ′(x )=3x 2 -x -2. 令f ′(x )=0,解得x 1=-2 3 ,x 2=1. 因为f ? ????-23=157 27,f (1)=72,f (-2)=-1,f (2)=7, 所以函数f (x )在[-2,2]上的最大值是7,最小值是-1. (2)因为f (x )=1 2x +sin x , 所以f ′(x )=1 2 +cos x , 令f ′(x )=0,解得x 1=2π3,x 2=4π 3. 因为f (0)=0,f ? ????2π3=π3+32,f ? ?? ??4π3=2π3 -32,f (2π)=π, 所以函数f (x )在[0,2π]上的最大值是π,最小值是0. [一点通] 求函数f (x )在[a ,b ]上的最大值和最小值的步骤: (1)求函数的导数f ′(x ); (2)求方程f ′(x )=0的全部实根x 0; (3)将f (x 0)的各个值与f (a ),f (b )进行比较,确定f (x )的最大值与最小值.

函数导数及其应用

函数、导数及其应用 第一节 函数及其表示 考纲要求:1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用. [基础真题体验] 考查角度[求函数的定义域] 1.(2014·山东高考)函数f (x )=1 log 2x -1的定义域为( ) A .(0,2) B .(0,2] C .(2,+∞) D .[2,+∞) 【解析】 要使函数有意义,则?? ? x >0, log 2x -1>0, 解得x >2. 【答案】 C 2.(2012·广东高考)函数y =x +1 x 的定义域为______. 【解析】 要使函数有意义,需????? x +1≥0,x ≠0.解得????? x ≥-1, x ≠0. ∴原函数的定义域为{x |x ≥-1且x ≠0}. 【答案】 {x |x ≥-1且x ≠0} 考查角度[函数的表示方法] 3.(2013·安徽高考)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________. 【解析】 设-1≤x ≤0,则0≤x +1≤1,所以f (x +1)=(x +1)[1-(x +1)]=-x (x +1).又因为f (x

+1)=2f (x ),所以f (x )=f (x +1)2=-x (x +1) 2. 【答案】 -x (x +1) 2 考查角度[分段函数] 4.(2013·福建高考)已知函数f (x )=??? 2x 3,x <0,-tan x ,0≤x <π2 ,则f ? ???? f ? ????π4=________. 【解析】 ∵π4∈??????0,π2,∴f ? ?? ??π4=-tan π 4=-1, ∴f ? ?? ?? f ? ????π4=f (-1)=2×(-1)3=-2. 【答案】 -2 [命题规律预测]

导数与函数的极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大. 【方法点评】 类型一 利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步 求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18

D .17或18 【答案】C 【解析】 试题分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当? ??-==114b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞U 【答案】B 【解析】 考点:函数的极值.

高中数学(函数和导数)综合练习含解析

高中数学(函数和导数)综合练习含解析 学校:___________姓名:___________班级:___________考号:___________ 一、选择题(题型注释) 1.已知函数2()ln ()f x x ax a x a R =--∈.3253()422 g x x x x =-+-+ (1)当1a =时,求证:()12,1,x x ?∈+∞,均有12()()f x g x ≥ (2)当[)1,x ∈+∞时,()0f x ≥恒成立,求a 的取值范围. 2.已知定义域为R 的奇函数)(x f y =的导函数为)(x f y '=,当0≠x 时,0)()(>+'x x f x f ,若)1(f a =,)2(2--=f b , )21(ln )21(ln f c =,则c b a ,,的大小关系正确的是( ) A .b c a << B .a c b << C .c b a << D .b a c << 3.函数3()3f x x ax a =-+在()0,2内有最小值,则实数a 的取值范围是( ) A .[)0,4 B .()0,1 C .()0,4 D .()4,4- 4.在函数()y f x =的图象上有点列(),n n x y ,若数列{}n x 是等差数列,数列{}n y 是等比数列,则函数()y f x =的解析式可能为( ) A .()21f x x =+ B .()2 4f x x = C .()3log f x x = D .()34x f x ??= ??? 5.设:x p y c =是R 上的单调递减函数;q :函数()() 2lg 221g x cx x =++的值域为R .如果“p 且q ”为假命题,“p 或q ”为真命题,则正实数c 的取值范围是( ) A .1,12?? ??? B .1,2??+∞ ??? C .[)10,1,2??+∞ ??? D .10,2?? ??? 6.如果函数y ||2x =-的图像与曲线22:C x y λ+=恰好有两个不同的公共点,则实数λ的取值范围 是( ) A .{2}∪(4,)+∞ B .(2,)+∞ C .{2,4} D .(4,)+∞

导数运用最大值与最小值(含答案)

最大值与最小值 一、基础过关 1.函数f (x )=-x 2+4x +7,在x ∈[3,5]上的最大值和最小值分别是________,________. 2.f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是________. 3.函数y =ln x x 的最大值为________. 4.函数f (x )=x e x 的最小值为________. 5.已知函数y =-x 2-2x +3在区间[a ,2]上的最大值为15 4 ,则a 等于________. 6.已知f (x )=-x 2+mx +1在区间[-2,-1]上最大值就是函数f (x )的极大值,则m 的取值范围是________. 7.求函数f (x )=1 3x 3-4x +4在[0,3]上的最大值与最小值. 二、能力提升 8.函数y =4x x 2+1 的值域为________. 9.设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当MN 达到最小时t 的值为________. 10.已知函数f (x )=e x -2x +a 有零点,则a 的取值范围是________. 11.已知函数f (x )=2x 3-6x 2+a 在[-2,2]上有最小值-37,求a 的值及f (x )在[-2,2]上的最大值. 12.已知函数f (x )=x 3-ax 2+bx +c (a ,b ,c ∈R ). (1)若函数f (x )在x =-1和x =3处取得极值,试求a ,b 的值; (2)在(1)的条件下,当x ∈[-2,6]时,f (x )<2|c |恒成立,求c 的取值范围. 三、探究与拓展 13.已知函数f (x )=(x -k )e x . (1)求f (x )的单调区间; (2)求f (x )在区间[0,1]上的最小值.

导数及其应用教材分析

第三章导数教材分析 一、内容安排 本章大体上分为导数的初步知识、导数的应用、微积分建立的时代背景和历史意义部分. 导数的初步知识.关键是导数概念的建立.这部分首先以光滑曲线的斜率与非匀速直线运动的瞬时速度为背景,引出导数的概念,给出按定义求导数的方法,说明导数的几何意义.然后讲述初等函数的求导方法,先根据导数的定义求出几种常见函数的导数、导数的四则运算法则,再进一步给出指数函数和对数函数的导数. 这部分的末尾安排了两篇阅读材料,一篇是结合导数概念的“变化率举例”,另一篇是介绍导数应用的“近似计算”. 导数的应用,这部分首先在高一学过的函数单调性的基础上,给出判定可导函数增减性的方法.然后讨论函数的极值,由极值的意义,结合图象,得到利用导数判别可导函数极值的方法*最后在可以确定函数极值的前提下,给出求可导函数的最大值与最小值的方法. 微积分是数学的重要分支,导数是微积分的一个重要的组成部分.一方面,不但数学的许多分支以及物理、化学、计算机、机械、建筑等领域将微积分视为基本数学工具,而且,在社会、经济等领域中也得到越来越广泛的应用.另一方面,微积分所反映的数学思想也是日常生活与工作中认识问题、研究问题所难以或缺的. 本章共9小节,教学课时约需18节(仅供参考) 3. 1导数的概念 ............. 约3课时 3. 2几种常见函数的导数........... 约1课时 3. 3函数的和、差、积、商的导数...... 约2课时 3. 4复合函数的导数............. 约2课时 3. 5对数函数与指数函数的导数....... 约2课时 3. 6函数的单调性............. 约1课时 3. 7函数的极值 ............. 约2课时 3. 8函数的最大值与最小值......... 约2课时 3. 9微积分建立的时代背景和历史意义....约1课时 小结与复习.............. 约2课时 二、教学目标 1?了解导数概念的某些实际背景(例如瞬时速度,加速度,光滑曲线的切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念. 2.熟记基本导数公式:

导数在函数求最大值和最小值中的应用解读

导数在函数求最大值和最小值中的应用 例1.求函数f (x )=5x + . 解析:由3040x x +??-? ≥≥得f (x )的定义域为-3≤x ≤4,原问题转化为求f (x )在区间[-3, 4]上的最值问题。 ∵ y ’=f ’(x ) =5 在[-3,4]上f ’(x )>0恒成立, ∴ f (x )在[-3,4]上单调递增. ∴ 当x =-3时y min =-15-7, 当x =4时y max =20+27, ∴ 函数的值域为[-15-7,20+27]. 例2.设32f (a ),f (-1)0,∴ f (x )的最大值为f (0)=b -1, 又f (-1)-f (a )=21(a 3-3a -2)=21(a +1)2(a -)<0, ∴ f (x )|min =f (-1),∴ -23a -1+b =-23a = ∴ a b =1. 例3.若函数f (x )在[0,a ]上单调递增且可导,f (x )<0,f (x )是严格单调递增的,求 ()f x x 在(0,a ]上的最大值。 解析:2()'()()[]'f x f x x f x x x ?-=,∵ f (x )是严格单调递增的, ∴ f ’(x )>0,∵ f (x )<0,x >0,∴f ’(x )·x -f (x )>0, ∴ 2()'()()[ ]'f x f x x f x x x ?-=>0,∴ ()f x x 在(0,a ]上是增函数。 ∴ ()f x x 在(0,a ]上最大值为()f a a . 例4.设g (y )=1-x 2+4 xy 3-y 4在y ∈[-1,0]上最大值为f (x ),x ∈R , ① 求f (x )表达式;② 求f (x )最大值。 解析:g ’(y )=-4y 2(y -3x ), y ∈[-1, 0], 当x ≥0时,g ’(y )≥0,∴ g (y )在[-1, 0]上递增, ∴ f (x )=g (0)=1-x 2. 当-3 10,在[-1,3x ]上恒成立,在(3x ,0)上恒成立, ∴ f (x )=g (3x )=1-x 2+27x 4 .

高中数学函数与导数常考题型归纳

高中数学函数与导数常考题型整理归纳 题型一:利用导数研究函数的性质 利用导数研究函数的单调性、极值、最值是高考的热点问题之一,每年必考,一般考查两类题型:(1)讨论函数的单调性、极值、最值,(2)利用单调性、极值、最值求参数的取值范围. 【例1】已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性; (2)当f (x )有最大值,且最大值大于2a -2时,求实数a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1 x -a . 若a≤0,则f′(x )>0,所以f (x )在(0,+∞)上单调递增. 若a >0,则当x ∈? ???? 0,1a 时,f ′(x )>0; 当x ∈? ?? ?? 1a ,+∞时,f ′(x )<0, 所以f (x )在? ???? 0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. 综上,知当a≤0时,f (x )在(0,+∞)上单调递增; 当a >0时,f (x )在? ???? 0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值; 当a >0时,f (x )在x =1a 处取得最大值,最大值为f ? ?? ??1a =ln 1 a +a ? ?? ??1-1a =-ln a +a -1. 因此f ? ?? ?? 1a >2a -2等价于ln a +a -1<0. 令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增, g (1)=0. 于是,当0<a <1时,g (a )<0; 当a >1时,g (a )>0. 因此,实数a 的取值范围是(0,1). 【类题通法】(1)研究函数的性质通常转化为对函数单调性的讨论,讨论单调性要先求函数定义域,再讨论导数在定义域内的符号来判断函数的单调性.

高中数学导数及其应用.doc

高中数学导数及其应用一、知识网络 二、高考考点 1、导数定义的认知与应用; 2、求导公式与运算法则的运用; 3、导数的几何意义; 4、导数在研究函数单调性上的应用; 5、导数在寻求函数的极值或最值的应用; 6、导数在解决实际问题中的应用。 三、知识要点 (一)导数 1、导数的概念 ( 1)导数的定义

(Ⅰ)设函数在点及其附近有定义,当自变量x 在处有增量△x (△ x 可正可负),则函数y 相应地有增量,这两个增量的比 ,叫做函数在点到这间的平均变化率。如果时,有极限,则说函数在点处可导,并把这个极限叫做在点处的导数(或变化率),记作,即 。 (Ⅱ)如果函数在开区间()内每一点都可导,则说在开区间()内可导,此时,对于开区间()内每一个确定的值,都对应着一个确定的导数,这样在开区间()内构成一个新的函数,我们把这个新函数叫做在开区间()内的导函数(简称导数),记作或,即 。 认知: (Ⅰ)函数的导数是以x为自变量的函数,而函数在点处的导数是一个数值;在点处的导数是的导函数当时的函数值。 (Ⅱ)求函数在点处的导数的三部曲: ①求函数的增量; ②求平均变化率;

③求极限 上述三部曲可简记为一差、二比、三极限。 ( 2)导数的几何意义: 函数在点处的导数,是曲线在点处的切线的斜率。 (3)函数的可导与连续的关系 函数的可导与连续既有联系又有区别: (Ⅰ)若函数在点处可导,则在点处连续; 若函数在开区间()内可导,则在开区间()内连续(可导一定连续)。 事实上,若函数在点处可导,则有此时, 记, 则有即在点处连续。 (Ⅱ)若函数在点处连续,但在点处不一定可导(连续不一定可导)。 反例:在点处连续,但在点处无导数。 事实上,在点处的增量

导数与函数的极值、最值练习含答案

第2课时 导数与函数的极值、最值 一、选择题 1.下列函数中,既是奇函数又存在极值的是 ( ) A .y =x 3 B .y =ln(-x ) C .y =x e -x D .y =x +2 x 解析 由题可知,B ,C 选项中的函数不是奇函数,A 选项中,函数y =x 3单调递增(无极值),D 选项中的函数既为奇函数又存在极值. 答案 D 2.(2017·石家庄质检)若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,若t =ab ,则t 的最大值为 ( ) A .2 B .3 C .6 D .9 解析 f ′(x )=12x 2-2ax -2b ,则f ′(1)=12-2a -2b =0,则a +b =6, 又a >0,b >0,则t =ab ≤? ????a +b 22 =9,当且仅当a =b =3时取等号. 答案 D 3.已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax ? ???? a >12,当x ∈(-2,0)时, f (x )的最小值为1,则a 的值等于 ( ) A.14 B.13 C.1 2 D .1 解析 由题意知,当x ∈(0,2)时,f (x )的最大值为-1. 令f ′(x )=1x -a =0,得x =1 a , 当00;当x >1 a 时,f ′(x )<0.

∴f (x )max =f ? ???? 1a =-ln a -1=-1,解得a =1. 答案 D 4.已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的取值范围是 ( ) A .(-1,2) B .(-∞,-3)∪(6,+∞) C .(-3,6) D .(-∞,-1)∪(2,+∞) 解析 ∵f ′(x )=3x 2+2ax +(a +6), 由已知可得f ′(x )=0有两个不相等的实根, ∴Δ=4a 2-4×3×(a +6)>0,即a 2-3a -18>0, ∴a >6或a <-3. 答案 B 5.设函数f (x )=ax 2+bx +c (a ,b ,c ∈R ),若x =-1为函数f (x )e x 的一个极值点,则下列图像不可能为y =f (x )图像的是 ( ) 解析 因为[f (x )e x ]′=f ′(x )e x +f (x )(e x )′=[f (x )+f ′(x )]e x ,且x =-1为函数f (x )e x 的一个极值点,所以f (-1)+f ′(-1)=0;选项D 中,f (-1)>0,f ′(-1)>0,不满足f ′(-1)+f (-1)=0. 答案 D 二、填空题 6.(2017·咸阳模拟)已知函数f (x )=x 3+ax 2+3x -9,若x =-3是函数f (x )的一个极值点,则实数a =________.

高中数学题型归纳大全函数与导数题专题练习二

高中数学题型归纳大全函数与导数题专题练习二 9.已知函数f(x)=x(e2x﹣a). (1)若y=2x是曲线y=f(x)的切线,求a的值; (2)若f(x)≥1+x+lnx,求a的取值范围. 10.已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2. (Ⅰ)求a,b,c,d的值; (Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围. 11.已知函数f(x)=alnx x+1 +b x,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y﹣3 =0. (Ⅰ)求a、b的值; (Ⅱ)证明:当x>0,且x≠1时,f(x)>lnx x?1.

12.已知函数f(x)=(a ?1 x )lnx (a ∈R ). (1)若曲线y =f (x )在点(1,f (1))处的切线方程为x +y ﹣1=0,求a 的值; (2)若f (x )的导函数f '(x )存在两个不相等的零点,求实数a 的取值范围; (3)当a =2时,是否存在整数λ,使得关于x 的不等式f (x )≥λ恒成立?若存在,求出λ的最大值;若不存在,说明理由. 13.已知函数f (x )=4lnx ﹣ax +a+3 x (a ≥0) (Ⅰ)讨论f (x )的单调性; (Ⅱ)当a ≥1时,设g (x )=2e x ﹣4x +2a ,若存在x 1,x 2∈[1 2,2],使f (x 1)>g (x 2), 求实数a 的取值范围.(e 为自然对数的底数,e =2.71828…) 14.已知函数f (x )=a x +x 2﹣xlna (a >0且a ≠1) (1)求函数f (x )在点(0,f (0))处的切线方程;

《导数及其应用》知识点总结

《导数及其应用》知识点总结 一、导数的概念和几何意义 1. 函数的平均变化率:函数()f x 在区间12[,]x x 上的平均变化率为: 2121 ()() f x f x x x --。 2. 导数的定义:设函数()y f x =在区间(,)a b 上有定义,0(,)x a b ∈,若x ?无限趋近于0时,比值 00()() f x x f x y x x +?-?= ??无限趋近于一个常数A ,则称函数()f x 在0x x =处可导,并称该常数A 为函数()f x 在0x x =处的导数,记作0()f x '。函数()f x 在0x x =处的导数的实质是在该点的瞬时变化率。 3. 求函数导数的基本步骤:(1)求函数的增量00()()y f x x f x ?=+?-;(2)求平均变化率: 00()()f x x f x x +?-?;(3)取极限,当x ?无限趋近与0时,00()() f x x f x x +?-?无限趋 近与一个常数A ,则0()f x A '=. 4. 导数的几何意义: 函数()f x 在0x x =处的导数就是曲线()y f x =在点00(,())x f x 处的切线的斜率。由此,可以利用导数求曲线的切线方程,具体求法分两步: (1)求出()y f x =在x 0处的导数,即为曲线()y f x =在点00(,())x f x 处的切线的斜率; (2)在已知切点坐标和切线斜率的条件下,求得切线方程为000()()y y f x x x '-=-。 当点00(,)P x y 不在()y f x =上时,求经过点P 的()y f x =的切线方程,可设切点坐标,由切点坐标得到切线方程,再将P 点的坐标代入确定切点。特别地,如果曲线()y f x =在点00(,())x f x 处的切线平行与y 轴,这时导数不存在,根据切线定义,可得切线方程为0x x =。 5. 导数的物理意义: 质点做直线运动的位移S 是时间t 的函数()S t ,则()V S t '=表示瞬时速度,()a v t '=表示瞬时加速度。 二、导数的运算 1. 常见函数的导数: (1)()kx b k '+=(k , b 为常数); (2)0C '=(C 为常数); (3)()1x '=; (4)2()2x x '=; (5)32()3x x '=; (6)211()x x '=-;

相关文档
相关文档 最新文档