文档库 最新最全的文档下载
当前位置:文档库 › 体内基因转染—我与小动物的相爱相杀

体内基因转染—我与小动物的相爱相杀

体内基因转染—我与小动物的相爱相杀
体内基因转染—我与小动物的相爱相杀

体内基因转染—我与小动物的相爱相杀

说起生物医药科研界的让人撕心裂肺的实验,动物实验肯定是其中一大块。裸鼠成瘤,各种疾病造(zuo)模(nie),让我们饱尝与鼠小弟的相爱相杀。

既然有牺牲,还得有价值。如何让鼠小弟们的牺牲换来高逼格的实验数据?自然少不了时下最火爆的动物体内基因转染技术。

所谓基因转染,通俗一点说,主要指基因上调或下调(即Gain of function OR loss of function)。动物体内基因的上下调,其实现方法主要包括:基因工程小鼠及病毒载体介导动物体内基因转染。

基因工程小鼠

最经典传统的动物体内基因干预,当属基因工程小鼠了。基因工程小鼠包括转基因小鼠,(TG mouse,transgenetic mouse),敲除小鼠(KO mouse,Konckout mouse),敲入小鼠(KI mouse,Knockin mouse)。在引入Cre-loxP系统后,又发展了组织特异性TG和KO小鼠。

基因工程小鼠对生物医药研究与研发发挥了巨大的作用,但也存在不少的限制因素:

1)从受精卵开始的基因干预,经过发育的长时间复杂代偿,所表现出来的功能表型和实际的基因功能表型可能存在巨大的偏差。(2015年nature杂志发表了Didier Stainier研究小组发现受精卵敲除egfl7基因和成年后用RNA干扰阻断egf17的表达,模式生物所得到的表型完全不一样。)

2)基因工程小鼠周期长,成本相对高。是否还记得,在动物房里伺候老鼠的那些日子,一把屎一把尿拉扯它长大,给它找对象,还得帮它养孩子……

病毒载体介导的动物体内基因转染

目前最主流的病毒载体工具有三种:腺病毒(adenovirus),慢病毒(lentivirus),腺相关病毒(AAV,adenovirus associated virus)。相比较基因工程小鼠的局限性,病毒载体工具有如下优势:

1)对成年的动物直接进行急性的基因干预,避免了发育代偿的问题;

2)病毒载体相对与基因工程小鼠来说,周期、成本要小得多;

3)病毒载体介导的基因干预可以在动物造模后进行,作为一个基因治疗干预手段,与临床更加接近,而不仅仅是完成基因功能研究。

动物活体基因转导工具比较:

在体感染小鼠海马组织对比:

所以,AAV是最优秀最安全的动物体内基因转染工具,并且AAV有多种血清型,每种血清型的靶器官亲和性各不相同,这一点决定了AAV与其他病毒载体相比,是更有器官选择性的载体,并且注射方式多样,详见下表:

多脏器AAV注射及基因转染策略

基因转移技术

基因转移技术 什么是基因转移技术? 基因转移技术是将特定的外源基因信息转入到受体细胞或生物并使其表达的一种基因工程技术。基因转移技术已广泛用于基因的结构和功能分析、基因表达与调控、基因治疗与转基因动物模型建立等研究方向。 基因转移方法有哪几类? 一、化学转染 1.磷酸钙法 该技术通过将磷酸盐溶液和含有DNA的氯化钙溶液进行缓慢混合,形成DNA-磷酸钙共沉淀复合物。复合物能粘附于细胞膜上,通过细胞内吞作用进入细胞浆中。 优点:实验室中转染哺乳动物细胞最广泛使用的方法。试剂易获得,成本低,可用于瞬时转染和稳定转染。 缺点:重复性差,转染效率低。对基因和细胞的选择要求较高。 2.DEAE-葡聚糖法 DEAE-葡聚糖是最早开发的转染试剂之一。它是一种可溶的聚阳离子碳水化合物,通过与带负电的DNA结合形成聚集物。携带正电荷的复合物与带负电荷的细胞膜结合,通过细胞内吞作用进入细胞中。与磷酸钙转染过程中形成的复合物颗粒相比,其粒径更小。 优点:该试剂价格便宜,并且过程简便、效率较高。一般常用于瞬时转染,DNA使用量较少。 缺点:不适用于稳定转染。 3.脂质体法 脂质体分为单层脂质体和多层脂质体。常用的阳离子脂质体与带负电的DNA结合,形成DNA-阳离子脂质体复合物,从而吸附到带负电的细胞膜表面,通过细胞内吞作用进入细胞。脂质体介导的基因转移的效率可以通过整合病毒蛋白来提高,从而促进病毒包膜和细胞膜之间的主动融合。这种融合粒子被称为病毒体。 优点:能够在活体内应用,毒性低、重复性好。适用性广,在很多细胞中能得到有效的瞬时转染和稳定转染效果。 缺点:试剂难以自制,商品较为昂贵,转染效果在不同细胞类型中差异较大。

转基因技术的基本概念

转基因技术的基本概念:(来源:生命经纬) (一)转基因技术的定义 将人工分离和修饰过的基因导入到生物体基因组中,由于导入基因的表达,引起生物体的性状的可遗传的修饰,这一技术称之为转基因技术。人们常说的“遗传工程”、“基因工程”、“遗传转化”均为转基因的同义词。经转基因技术修饰的生物体在媒体上常被称为“遗传修饰过的生物体”(Genetically modified organism,简称GMO)。 (二)几种常用的植物转基因方法 遗传转化的方法按其是否需要通过组织培养、再生植株可分成两大类,第一类需要通过组织培养再生植株,常用的方法有农杆菌介导转化法、基因枪法;另一类方法不需要通过组织培养,目前比较成熟的主要有花粉管通道法。 1.农杆菌介导转化法 农杆菌是普遍存在于土壤中的一种革兰氏阴性细菌,它能在自然条件下趋化性地感染大多数双子叶植物的受伤部位,并诱导产生冠瘿瘤或发状根。根癌农杆菌和发根农杆菌中细胞中分别含有Ti质粒和Ri质粒,其上有一段T-DNA,农杆菌通过侵染植物伤口进入细胞后,可将T-DNA插入到植物基因组中。因此,农杆菌是一种天然的植物遗传转化体系。人们将目的基因插入到经过改造的T-DNA区,借助农杆菌的感染实现外源基因向植物细胞的转移与整合,然后通过细胞和组织培养技术,再生出转基因植株。 农杆菌介导法起初只被用于双子叶植物中,近年来,农杆菌介导转化在一些单子叶植物(尤其是水稻)中也得到了广泛应用。 2.基因枪介导转化法 利用火药爆炸或高压气体加速(这一加速设备被称为基因枪),将包裹了带目的基因的DNA溶液的高速微弹直接送入完整的植物组织和细胞中,然后通过细胞和组织培养技术,再生出植株,选出其中转基因阳性植株即为转基因植株。与农杆菌转化相比,基因枪法转化的一个主要优点是不受受体植物范围的限制。而且其载体质粒的构建也相对简单,因此也是目前转基因研究中应用较为广泛的一种方法。 3.花粉管通道法 在授粉后向子房注射合目的基因的DNA溶液,利用植物在开花、受精过程中形成的花粉管通道,将外源DNA导入受精卵细胞,并进一步地被整合到受体细胞的基因组中,随着受精卵的发育而成为带转基因的新个体。该方法于80年代初期由我国学者周光宇提出,我国目前推广面积最大的转基因抗虫棉就是用花粉管通道法培育出来的。该法的最大优点是不依赖组织培养人工再生植株,技术简单,不需要装备精良的实验室,常规育种工作者易于掌握。(三)常用的动物转基因技术 1.显微注射法 在显微镜下,用一根极细的玻璃针(直径1-2微米)直接将DNA注射到胚胎的细胞核内,再把注射过DNA的胚胎移植到动物体内,使之发育成正常的幼仔。用这种方法生产的动物约有十分之一是整合外源基因的转基因动物。 2.体细胞核移植方法 先在体外培养的体细胞中进行基因导入,筛选获得带转基因的细胞。然后,将带转基因体细胞移植到去掉细胞核的卵细胞中,生产重构胚胎。重构胚胎经移植到母体中,产生的仔畜百分之百是转基因动物。 (四)转基因技术与传统技术的关系 自从人类耕种作物以来,我们的祖先就从未停止过作物的遗传改良。过去的几千年里农作物改良的方式主要是对自然突变产生的优良基因和重组体的选择和利用,通过随机和自然的方式来积累优良基因。遗传学创立后近百年的动植物育种则是采用人工杂交的方法,进行

(三)转基因技术 - 国家科技重大专项

附件1 转基因重大专项2018年度课题支持范围 根据转基因重大专项总体实施方案和“十三五”实施计划,针对我国动植物转基因研发和产业化发展中急需解决的关键问题,协调推进技术研发与产品熟化,拓展转基因研究领域,进一步遴选新型重大产品、重要基因和关键技术,2018年拟启动实施11个重大课题和一批重点课题,提升我国转基因动植物研发水平和能力。 一、重大课题 (一)早熟抗病转基因棉花新品种培育 1. 研究目标:根据我国棉区结构调整,通过聚合早熟、抗黄萎病、抗虫、抗除草剂和株型等主要性状,培育适宜油后、麦后直播, 以及西北内陆无膜种植的早熟多抗转基因棉花新品系(种),改良棉花品种早熟、抗病和抗除草剂等特性,并示范推广。 2. 研究内容:利用转vgb等基因的早熟材料、转iap和p35等基因的抗黄萎病材料以及抗草甘膦等除草剂的转基因棉花

材料,围绕早熟、抗病虫、抗除草剂等重要性状,采用分子聚合育种等技术,创制早熟、抗病虫、抗除草剂等综合性状优良的转基因棉花新材料和新品系,培育早熟抗黄萎病转基因棉花新品种。 3. 考核指标:创制早熟、抗黄萎病、抗虫、抗除草剂等转基因棉花新材料30份,筛选转基因棉花新品系30个,转基因抗黄萎病新品系的黄萎病相对病情指数20以下;培育早熟转基因棉花新品种10—12个,累计推广面积1500万亩;申报发明专利10—15项,获得发明专利8—10项,申报品种权10—12项,获得品种权5—6项。 4. 实施期限:2018—2020年。 5. 组织实施方式:采取“择优委托、专家论证”的方式确定课题承担单位。 (二)高品质转基因奶牛新品种培育 1.研究目标:以功能型乳铁蛋白转基因奶牛为重点,完成食用安全评价和功能性产品开发研究,完成安全证书和产品生产许可证书申报,制定转基因奶牛的品种、饲养管理、繁殖

转染技术原理与应用

常规转染技术分为两大类,一类是瞬时转染,一类是稳定转染(永久转染)。前者外源DNA/RNA不整合到宿主染色体中,因此一个宿主细胞中可存在多个拷贝数,产生高水平的表达,但通常只持续几天,多用于启动子和其它调控元件的分析。一般来说,超螺旋质粒DNA转染效率较高,在转染后24-72小时内(依赖于各种不同的构建)分析结果,常常用到一些报告系统如荧光蛋白,β半乳糖苷酶等来帮助检测。后者也称稳定转染,外源DNA既可以整合到宿主染色体中,也可能作为一种游离体(episome)存在。尽管线性DNA比超螺旋DNA转入量低但整合率高。外源DNA整合到染色体中概率很小,大约1/104转染细胞能整合,通常需要通过一些选择性标记,如来氨丙基转移酶(APH;新霉素抗性基因),潮霉素B磷酸转移酶(HPH),胸苷激酶(TK)等反复筛选,得到稳定转染的同源细胞系。 转染技术的选择对转染结果影响也很大,许多转染方法需要优化DNA与转染试剂比例,细胞数量,培养及检测时间等。一些传统的转染技术,如DEAE右旋糖苷法,磷酸钙法,电穿孔法,脂质体法各有利弊,其主要原理及应用特点见下表:转染方法原理应用特点 磷酸钙法 磷酸钙DNA复合物吸 附细胞膜被细胞内吞 稳定转染 瞬时性转染 不适用于原代细胞 操作简便但重复性差 有些细胞不适用 DEAE-右旋糖 苷法带正电的DEAE-右旋 糖苷与核酸带负电的磷 酸骨架相互作用形成的 复合物被细胞内吞 瞬时性转染 相对简便、结果可重复 但对细胞有一定的毒副作用 转染时需除血清

电穿孔法高脉冲电压破坏细胞膜 电位,DNA通过膜上形 成的小孔导入 稳定转染 瞬时性转染 所有细胞 适用性广但细胞致死率高,DNA 和细胞用量大,需根据不同细胞 类型优化电穿孔实验条件 病毒介导法 通过侵染宿主细胞将外 源基因整合到染色体中稳定转染 可用于难转染的细胞、原代细胞, 体内细胞等 逆转录病毒 特定宿主细 胞但携带基因不能太大细胞需处分裂期 需考虑安全因素 腺病毒 通过侵染宿主细胞将外 源基因整合到染色体中 瞬时转染 特定宿主细 胞 可用于难转染的细胞 需考虑安全因素 阳离子脂质体 法带正电的脂质体与核酸 带负电的磷酸基团形成 复合物被细胞内吞 稳定转染 瞬时性转染 所有细胞 适用性广,转染效率高,重复性好, 但转染时需除血清。转染效果随细 胞类型变化大 Biolistic颗粒 传递法将DNA用显微重金属 颗粒沉淀,再将包被好 的颗粒用弹道装置投射 入细胞,DNA在胞内逐 步释放,表达 瞬时性转染 可用于:人的表皮细胞,纤维原细 胞,淋巴细胞系以及原代细胞 显微注射法 用显微操作将DNA直 接注入靶细胞核 稳定转染 瞬时性转染 转染细胞数有限,多用于工程改造 或转基因动物的胚胎细胞 (各种转染方法的比较)

简述转基因技术原理

转基因技术的理论基础来源于进化论衍生来的分子生物学。基因片段的来源可以是提取特定生物体基因组中所需要的目的基因,也可以是人工合成指定序列的DNA片段。DNA片段被转入特定生物中,与其本身的基因组进行重组,再从重组体中进行数代的人工选育,从而获得具有稳定表现特定的遗传性状的个体。该技术可以使重组生物增加人们所期望的新性状,培育出新品种。 1992年荷兰培育出植入了人促红细胞生成素基因的转基因牛,人促红细胞生成素能刺激红细胞生成,是治疗贫血的良药。转基因技术标志着不同种类生物的基因都能通过基因工程技术进行重组,人类可以根据自己的意愿定向地改造生物的遗传特性,创造新的生命类型。同时转基因技术在药物生产中有着重要的利用价值。转基因技术,包括外源基因的克隆、表达载体、受体细胞,以及转基因途径等,外源基因的人工合成技术、基因调控网络的人工设计发展,导致了21世纪的转基因技术将走向转基因系统生物技术2000年国际上重新提出合成生物学概念,并定义为基于系统生物学原理的基因工程与转基因技术。 1.转基因的细胞学原理: (1)细胞周期及MPF:细胞周期可人工分成4个时期,分别为G1期、S期、G2期和M期。细胞在正常情况下,沿着G1-S-G2-M路线运转。S期为DNA合成期,M期为有丝分裂期,M期结束到S期开始之前为G1期,S期末到有丝分裂期(M期)为G2期。有丝分裂的启动由成熟促进因子也叫M期促进因子(maturation/mitosism/meiosis promoting factor,MPF)调控,MPF 在细胞分裂中呈周期性变化即分裂后逐渐积累,到G2晚期达到高峰,由中期向后期转换时骤然消失。因此推测MPF是真核细胞M期的一个基本调节物质,能引导细胞由间期向M期转变。MPF由蛋白激酶激活,存在于所有的真核细胞中(包括减数分裂的性细胞)。但并非所有的细胞都是周期中细胞,某些细胞在一定的条件下可以脱离细胞周期进入G0期或分化为不分裂的细胞,而且G0期细胞可通过诱导重新进入周期。 (2)通过MⅡ期的卵母细胞转基因:MⅡ期的卵母细胞的MPF含量很高,可以诱导细胞核发生一系列变化包括核膜破裂(NEBD)和早熟染色体凝集(premature chromosome condensation,PCC),处于减数分裂MⅡ期的卵母细胞无核膜的时间远远长于有丝分裂M期的细胞。所以此时期的卵母细胞可作为基因导入的受体。据此1998年Anthonv等对逆转录病毒载体感染发育早期的动物胚胎方法加以改进,用逆转录病毒载体注射MⅡ期的卵母细胞,注射完毕的卵母细胞同获能后的精子共同孵育后,体外发育至囊胚,再移植到母牛体内得到了转基因小牛。1999年Anthonv等又将精子与外源基因共孵育,然后将精子头部显微注射入MⅡ期的卵母细胞,这两种方法共同之处都是利用MⅡ期的卵母细胞无核膜,外源基因易导入的 特点。 2.转基因的胚胎学原理: (1)哺乳动物转基因的胚胎学原理:精子和卵子只有发育成熟后,精卵相遇时才能完成受精过程。精子进入卵子后头尾分离,胞核出现核仁,形成核膜,头部膨大形成雄原核;同时卵子排出第二极体形成雌原核。一般来说雄原核比雌原核大。接着雌雄原核的核膜消失,雌雄原核融合。随后细胞周期性卵裂,分裂球增加到32个时形成桑葚胚,进入子宫再发育至囊胚,此前的胚胎细胞具有很强的分化能力。从哺乳动物受精卵分裂发育的规律来看,转基因操作时较合适的部位是受精卵的雄原核,精子进入卵细胞后的1小时,雄原核和雌原核还未融合,在显微镜下容易看到雄原核。多数研究者在此时期把外源基因显微注射到雄原核,通

转基因技术介绍

转基因技术 编辑 转基因即转基因技术。 转基因技术(Genetically Modified,简称GM),是指运用科学手段,从某种生物体基因组中提取所需要的目的基因,或者人工合成指定序列的基因片段,将其转入另一种生物中,使与另一种生物的基因组进行重组,再从重组体中进行数代的人工选育,从而获得具有特定的遗传性状个体的技术。该技术可以使重组生物增加人们所期望的新性状,培育出新品种。转基因技术的理论基础来源于分子生物学。人们常说的"遗传工程"、"基因工程"、"遗传转化"均为转基因的同义词(但如今人们对改变原有动植物性状的技术称为转基因技术(狭义),将对微生物的操作称为遗传工程技术(狭义)。经转基因技术修饰的生物体在媒体上常被称为"遗传修饰过的生物体"(Genetically modified organism,简称GMO)。 目录 1发展历史 2基本技术过程 3分类 人工转基因 植物转基因 动物转基因 微生物基因重组 自然转基因 4转基因技术产物 转基因生物 转基因食品 5技术特点 组合原理 植物 动物 6与杂交的区别 种基根杂交技术 植物杂交 杂交畜牧 7转基因技术现状 转基因食品 技术应用 商业化 8媒体报道 9转基因植物转化方法 农杆菌介导转化 花粉管通道法 核显微注射法 基因枪法 精子介导法 核移植转基因法 体细胞核移植法

10影响 减少温室气体排量 疑问 对环境系统 对生态物种 动物试验 11社会 学者批评 转基因标识法案 12相关事件 动物异常事件 转基因水稻争议 巴西坚果事件 普斯泰事件 转基因玉米事件 俄转基因食品事件 广西迪卡玉米事件 转基因大米试验 实验鼠致癌事件 猕猴喂养实验 律师申请公开遭拒 13批准作物一览 1发展历史 1974年,波兰遗传学家斯吉巴尔斯基(Waclaw Szybalski)称基因重组技术为合成生物学概念,1978年,诺贝尔医生奖颁给发现DNA限制酶的纳森斯(Daniel Nathans)、亚伯(Werner Arber)与史密斯(Hamilton Smith)时,斯吉巴尔斯基在《基因》期刊中写道:限制酶将带领我们进入合成生物学的新时代。转基因技术,包括外源基因的克隆、表达载体、受体细胞,以及转基因途径等,外源基因的人工合成技术、基因调控网络的人工设计发展,导致了21世纪的转基因技术将走向转基因系统生物技术2000年国际上重新提出合成生物学概念,并定义为基于系统生物学原理的基因工程与转基因技术。 2基本技术过程 (1)从生物有机体复杂的基因组中,分离出带有目的基因的DNA片段;或者人工合成目的基因。 (2)在体外, 将带有目的基因的DNA 片段连接到能够自我复制并具有选择标记的载体分子上, 形成重组DNA分子。 (3)将重组DNA分子引入到受体细胞(亦称宿主细胞或寄主细胞) 。 (4)带有重组体的细胞扩增,获得大量的细胞繁殖体。 (5) 从大量的细胞繁殖群体中,筛选出具有重组DNA分子的细胞克隆。 (6)将选出的细胞克隆的目的基因进一步研究分析,并设法使之实现功能蛋白的表达。 3分类 转基因过程按照途径可分为人工转基因和自然转基因,按照对象可分为植物转基因技术,动物转基因技术和微生物基因重组技术。 人工转基因 将人工分离和修饰过的基因导入到生物体基因组中,由于导入基因的表达,引起生物体的性状的可遗传的修饰,这一技术称之为转基因技术(Transgene technology)。人们常说的“遗传工

细胞转染技术原理及应用

细胞转染技术原理及应用 常规转染技术可分为两大类,一类是瞬时转染,一类是稳定转染(永久转染)。前者外源DNA/RNA不整合到宿主染色体中,因此一个宿主细胞中可存在多个拷贝数,产生高水平的表达,但通常只持续几天,多用于启动子和其它调控元件的分析。一般来说,超螺旋质粒DNA转染效率较高,在转染后24-72小时内(依赖于各种不同的构建)分析结果,常常用到一些报告系统如荧光蛋白,β半乳糖苷酶等来帮助检测。后者也称稳定转染,外源DNA 既可以整合到宿主染色体中,也可能作为一种游离体(episome)存在。尽管线性DNA比超螺旋DNA转入量低但整合率高。外源DNA整合到染色体中概率很小,大约1/104转染细胞能整合,通常需要通过一些选择性标记,如来氨丙基转移酶(APH;新霉素抗性基因),潮霉素B磷酸转移酶(HPH),胸苷激酶(TK)等反复筛选,得到稳定转染的同源细胞系。 转染技术的选择对转染结果影响也很大,许多转染方法需要优化DNA与转染试剂比例,细胞数量,培养及检测时间等。一些传统的转染技术,如DEAE右旋糖苷法,磷酸钙法,电穿 孔法,脂质体法各有利弊 近年来国际上推出了一些阳离子聚合物基因转染技术,以其适用宿主范围广,操作简便,对细胞毒性小,转染效率高受到研究者们的青睐。其中树枝状聚合物(Dendrimers)和聚乙烯亚胺(Polyethylenimine,PEI)的转染性能最佳,但树枝状聚合物的结构不易于进一步改性,且其合成工艺复杂。聚乙烯亚胺是一种具有较高的阳离子电荷密度的有机大分子,每相隔二个碳个原子,即每“第三个原子都是质子化的氨基氮原子,使得聚合物网络在任何pH 下都能充当有效的“质子海绵”(proton sponge)体。这种聚阳离子能将各种报告基因转入各种种属细胞,其效果好于脂质聚酰胺,经进一步的改性后,其转染性能好于树枝状聚合物,而且它的细胞毒性低。大量实验证明,PEI是非常有希望的基因治疗载体。目前在设计更复杂 的基因载体时,PEI经常做为核心组成成分。 线型PEI(Line PEI,LPEI)与其衍生物用作基因转染载体的研究比分枝状PEI(Branched PEI,BPEI)要早一些,过去的研究认为在不考虑具体条件,LPEI/DNA转染复合物的细胞毒性较低,有利于细胞定位,因此与BPEI相比应该转染效率高一些。但最近研究表明BPEI 的分枝度高有利于形成小的转染复合物,从而提高转染效率,但同时细胞毒性也增大。超高分枝的、较柔性的PEI衍生物含有额外的仲胺基和叔胺基,在染实验中发现这种PEI的毒性 低,但转染效率却较高。 GenEscort是采用各种分枝状和超高分枝状的小分子PEI与各种含有生理条件下可降解键的交联剂交联,合成出的一系列高分枝的可降解的PEI衍生物。聚合物的分枝结构使得其具有较高的正电性,因此易于高效地包裹各种DNA、RNA分子及质粒形成小的纳米颗粒,从而提高转染效率,当所形成复合物进入细胞以后,其中所含的生理条件下可降解的化学键在细胞内水解,使交联聚合物分解为无细胞毒性的小分子PEI,这样结构的转染试剂在体外应用可以获得高的转染效率和低的细胞毒性,其可降解性对体内应用也具有重要的意义。

转基因技术

转基因技术 转基因产品(GMOs)是通过基因重组技术获得的基因改良生物及其加工产品。对转基因产品,用转基因产品定性检测方法(qualitative detection)对样品中转基因成分进行检测,以判定该样品是否为转基因产品。 实时荧光PCR法 是目前最有发展前途的定量检测方法,也是目前最适合出入境检验检疫的检测技术之一。所谓实时荧光定量PCR技术,是指在PCR反应体系中加入荧光集团,利用荧光信号积累,实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析的方法。该方法可以有效提高检测的准确性和灵敏度。它既能做定性检测,加入标准品也能做定量检测。 酶联检测方法, 应称作酶联免疫吸附测定,是把抗原及抗体的免疫反应和酶的高效催化反应有机地结合而发展起来的,用酶作为标记物或指示剂进行抗原或抗体定性和定量测定的综合技术。试纸条检测方法也是转基因产品抗血清检测方法。这两种方法是中国与美国谷物化学家协会(AACC)联合研究的。中方主要承担转基因玉米和大豆两个品种的抗血清特异性、灵敏度以及定量检测的研究内容。目前,这两种方法已上升为ISO标准,即将发布。其技术创新点为: 研究制定了《基因检验实验室技术要求》,建立了我国口岸系统转基因产品检测实验室体系。建立了转基因产品的亲和诱捕技术,较好解决了DNA提取的技术难点,该方法特别适用于食品和饲料等多组分样品。 建立了精炼植物油和深加工食品中核酸的提取方法。针对食用油脂中DNA含量极低、破坏严重的特点,建立了食用油脂中DNA提取方法。 建立了边界序列的测定方法和转基因作物品系鉴定方法,首次测定出番茄棉花边界序列。对转基因的检测不仅能检测种类,而且还能检测品系,如对基因玉米、马铃薯、大豆等都能进行鉴定。 行设计了实时荧光PCR定量(性)检测引物32对和相对应的探针,建立了转基因产品实时荧光PCR定量(性)检测方法,该方法能检测目前国内外已报道的主要商品化转基因品种。建立了转基因产品的基因芯片检测方法。自行研究设计了基因芯片检测的引物和探针,优化基因芯片杂交条件和多重PCR反应条件,首次建立了高通量的转基因产品基因芯片检测方法。 研究制定了12项行业标准,7项国家标准。

基因转染和实验设计原则

基因转染和实验设计原则 麟酸钙-DNA共沉淀法 核酸以磷酸钙-DNA共沉淀物的形式出现时,可使DNA附在细胞表面,利于细胞吞入摄取,或通过细胞膜脂相收缩时裂开的空隙进入细胞内,进入细胞的DNA仅有1%~5%可以进入细胞核中,其中仅有不到1%的DNA可以与细胞DNA整合,在细胞中进行稳定表达,基因转导的频率大约为10-4,这项技术能用于任何DNA导入哺乳类动物进行暂时性表达或长期转化的研究。此方法对于贴壁细胞转染是最常用并首选的方法。 1、配液 (1)2×HBS 1.63g NaCl 1.19g Hepes 0.023g Na2PO4、2H2O 加水至100ml pH7.1过滤,4℃保存 (2)2mmol/L CaCl2 过滤除菌 (3)TE:0.1mmol/L EDTA 1mmol/L Tris-HCL PH8.0 (4)G418(新霉素G418)液:1g G418溶于1mmol/L Hepes液中,加H2O至10mL过滤除菌4℃保存。 (5)G418选择培养基:用含10%胎牛血清的DMEM培养液配制G418,G418浓度为200~800mg/L 注意:对受体细胞先做预试验,选用浓度为在10~14天内能杀死细胞50%以上的最低浓度。 2、操作步骤[方法一]: (1)供体DNA制备:方法按前介绍的DNA提取法提取,溶于TE中,40mg/L。 (2)受体细胞的培养:研究癌基因转移应选择不含人类Alu序列的动物细胞系作为受体细胞。如小鼠NIH3T3胚成纤维细胞系等,该细胞有一定自发转化倾向,一般在转染前一天接种细胞,接种密度为2×104/cm2,用含10%胎牛血清的DMEM液,37℃、5%CO2培养,待细胞占50~70%瓶底面积时,用于转染试验。

浅谈对转基因的看法

浅谈对转基因看法 转基因技术是现代生物技术的核心,运用转基因技术培育高产、优质、多抗、高效的新品种,能够降低农药、肥料投入,对缓解资源约束、保护生态环境、改善产品品质、拓展农业功能等具有重要作用.目前,世界许多国家把转基因生物技术作为支撑发展、引领未来的战略选择,转基因技术已成为各国抢占科技制高点和增强农业国际竞争力的战略重点. 我国是一个人口大国,解决十三亿人口的吃饭问题始终是头等大事.在工业化、城镇化快速发展的过程中,突破耕地、水等资源约束,保障国家粮食安全和农产品长期有效供给,归根结底要靠科技创新和应用.推进转基因技术研究与应用,是着眼于未来国际竞争和产业分工的重大发展战略,是确保国家粮食安全的必然要求和重要途径.经过多年努力,我国在重要基因发掘、转基因新品种培育及产业化应用等方面都取得了重大成果.当前我们必须认真实施好国家转基因生物新品种培育重大专项,努力抢占未来经济科技竞争制高点,加速转基因生物技术研究与应用健康发展,为我国农业可持续发展提供强有力的科技支撑. 同样是为了防治病虫害,同样是为了满足人类对食物的需求,化学农药和转基因作物却遇到了公众截然相反的态度.化学农药问世后,人们欢呼人类在同病虫害的斗争中取得胜利.转基因作物问世后,争议声却一直不绝于耳,公众始终充满疑虑. 公众最关心的是转基因食品的安全性,焦点集中在两个方面:转基因食品是否对人和哺乳动物有毒性?是否会引起过敏?事实是,在有关国际机构以及各国政府高度重视和严格监管下,转基因作物在全球大面积商业化种植13年来,从未发生安全性事故. 转基因食品尽管是个新鲜词,但“基因”一词已有100年历史,它由丹麦遗传学家约翰逊于1909年提出.基因能控制生物的性状,转基因就是把一种生物的基因转入到另外一种生物中,使被转入基因的生物产生人类需要的新性状.人类在文明进程中所做的作物品种选育,实质也属于“转基因”,目的是获得产量更高、品质更好的农作物,使其更符合人类的需求. 有人担心转基因食品的外源基因会跑进人体,进而改变人的基因.科学常识告诉我们,所有生物的所有基因都是由核酸组成的,进入胃肠后都要被消化、降解成小分子,不再是完整的基因,不会以基因的形态进入人体组织.我们每天食用的米饭、馒头、蔬菜、肉类等含有亿万个基因,有谁担心过这些基因对自己有害而不去吃饭? 转基因在争论中前行.转基因农作物自1996年在全球开始大规模种植以来,带来了巨大的经济效益和显着的社会与生态效益,其推广速度之快为近代农业科技史上所罕见.目前,美国市场上70%的食品中都含有转基因成分.据估计,全球有半数以上人口食用过转基因食品. 诚然,同任何新生事物一样,转基因不可能十全十美,10多年时间虽然没有出什么问题,但也不能说今后百分之百的没风险,这就注定转基因还要在争论中前行.公众对转基因食品的了解认识还需要一个过程,争论在时刻提醒科学家和政府,把转基因的安全性始终放在重要位置,趋利避害,防范风险,确保转基因技术造福人类

体内基因转染—我与小动物的相爱相杀

体内基因转染—我与小动物的相爱相杀 说起生物医药科研界的让人撕心裂肺的实验,动物实验肯定是其中一大块。裸鼠成瘤,各种疾病造(zuo)模(nie),让我们饱尝与鼠小弟的相爱相杀。 既然有牺牲,还得有价值。如何让鼠小弟们的牺牲换来高逼格的实验数据?自然少不了时下最火爆的动物体内基因转染技术。 所谓基因转染,通俗一点说,主要指基因上调或下调(即Gain of function OR loss of function)。动物体内基因的上下调,其实现方法主要包括:基因工程小鼠及病毒载体介导动物体内基因转染。 基因工程小鼠 最经典传统的动物体内基因干预,当属基因工程小鼠了。基因工程小鼠包括转基因小鼠,(TG mouse,transgenetic mouse),敲除小鼠(KO mouse,Konckout mouse),敲入小鼠(KI mouse,Knockin mouse)。在引入Cre-loxP系统后,又发展了组织特异性TG和KO小鼠。 基因工程小鼠对生物医药研究与研发发挥了巨大的作用,但也存在不少的限制因素: 1)从受精卵开始的基因干预,经过发育的长时间复杂代偿,所表现出来的功能表型和实际的基因功能表型可能存在巨大的偏差。(2015年nature杂志发表了Didier Stainier研究小组发现受精卵敲除egfl7基因和成年后用RNA干扰阻断egf17的表达,模式生物所得到的表型完全不一样。) 2)基因工程小鼠周期长,成本相对高。是否还记得,在动物房里伺候老鼠的那些日子,一把屎一把尿拉扯它长大,给它找对象,还得帮它养孩子……

病毒载体介导的动物体内基因转染 目前最主流的病毒载体工具有三种:腺病毒(adenovirus),慢病毒(lentivirus),腺相关病毒(AAV,adenovirus associated virus)。相比较基因工程小鼠的局限性,病毒载体工具有如下优势: 1)对成年的动物直接进行急性的基因干预,避免了发育代偿的问题; 2)病毒载体相对与基因工程小鼠来说,周期、成本要小得多; 3)病毒载体介导的基因干预可以在动物造模后进行,作为一个基因治疗干预手段,与临床更加接近,而不仅仅是完成基因功能研究。 动物活体基因转导工具比较: 在体感染小鼠海马组织对比:

转基因技术

转基因技术 摘要:转基因技术就是将人工分离和修饰过的基因导入到目的生物体的基因组中,从而达到改造生物的目的。转基因技术就是把一个生物体的基因转移到另一个生物体DNA中的生物技术。 1.转基因技术的进步历程 1945年首次使用分子生物学这一术语,主要指针对生物大分子的化学和物理结构的研究。1871年,Miescher从死的白细胞核中分离出DNA。1928年,Griffith发现肺炎链球菌的无毒菌株与其被杀死的有毒菌株混合,即变成致病菌株。1944年Avery等发现从强致病力的S 型肺炎链球菌中提取的DNA能使致病力弱的R型转化成S型。如果加入少量DNA酶,这种转化立即消失,但加入各种蛋白水解酶则不能改变这种变化。这一著名的实验证明了引起细菌遗传改变的物质为DNA 1949年发现了了Chargaff规律:G=C,A=T;以及DNA具有典型的螺旋结构 1953年,Watson和Crick提出了DNA双螺旋模型 于1970年从大肠杆菌中分离出第一个能切割DNA的酶,它可以在DNA核苷酸序列的专一性位点上切割DNA分子,这种酶被称为限制性内切酶,以后很多种限制性酶陆续被分离出来,目前已有数百种。 在此以前,科学家已经发现了细菌中存在的DNA连接酶。1972年Berg首次将不同的DNA片段连接起来,并且将这个重组的DNA分子有效地插入到细菌细胞之中,重组的DNA进行繁殖,产生了重组DNA的克隆。Berg是重组DNA或基因工程技术的创始人,并于1980年获得了诺贝尔奖。 重组DNA技术的出现奠定了现代转基因技术的基础。转基因技术的基本原理就是在生物体中插入新的遗传物质。1973年,科学家在大肠杆菌中表达了一个来自沙门氏菌的基因,从而首次在科学界引发了关于转基因安全性的深入思考 1978年重组DNA技术公司-Genetech利用重组DNA技术创建了一个新的大肠杆菌菌系,用于生产人胰岛素。 相关研究进行监管。 1978年重组DNA技术公司-Genetech利用重组DNA技术创建了一个新的大肠杆菌菌系,用于生产人胰岛素。 之后不久,Herbert Boyer创建全球第一个重组DNA技术公司-Genetech,并于1978年宣布利用重组DNA技术创建了一个新的大肠杆菌菌系,用于生产人胰岛素。1986年,美国加利福尼亚州奥克兰市一个叫做领先遗传科学(Advanced Genetic Sciences)的小型生物技术公司准备对一种保护植物免受冻害的基因工程防霜负型细菌进行田间试验,但该试验由于反生物技术人士的阻扰而一再延期。同年,孟山都公司取消了一项表达杀虫蛋白的基因工程微生物的田间试验。 20世纪80年代后期到90年代初期,包括粮农组织(FAO)、世界卫生组织(WHO)在内的一些国际组织开始制定关于转基因植物及其产品的安全评价规范。 80年代后期,在加拿大、美国开始出现小规模的转基因植物田间试验。90年代中期,美国首次批准转基因植物大面积种植,从而揭开了转基因植物商业化应用飞速发展的序幕。 2.转基因植物及其技术 转基因植物是指利用重组DNA技术将克隆的优良目的基因整合到植物的基因组中,并使其得以表达,从而获得的具有新的遗传性状的植物。自1983年世界第一例转基因植物——烟草

应用GFP基因转染技术示踪体内构建组织工程化骨

应用GFP基因转染技术裸鼠体内示踪组织工程化骨 袁捷,刘德莉,周广东,苗春雷,崔磊,刘伟,曹谊林 (上海第二医科大学附属第九人民医院整形外科,上海市组织工程实验室,上海 200011 上海市组织工程研发中心,上海 200235) 【摘要】目的应用绿色荧光蛋白(GFP)标记技术,观察组织工程化骨体内形成过程中种子细胞的变化与转归。方法用GFP重组逆转录病毒载体(GFP-RV),转染犬骨髓间质干细胞(bone marrow stromal cells, BMSCs),将其接种于β-磷酸三钙(β-TCP),形成细胞-材料复合物,移植于裸鼠皮下。术后8周,HE染色观察组织结构,碱性磷酸酶(AKP)染色和骨钙素(OCN)免疫组化检测功能蛋白,激光共聚焦显微镜下对GFP进行示踪观察。结果8周后,大体可见组织工程化新骨形成,组织学示新生骨小梁围绕材料孔隙生成,AKP染色和OCN免疫组化结果阳性,并可见新生组织内有呈绿色的GFP标记细胞,β-TCP部分降解。结论组织工程化骨组织学结构与松质骨小梁类似。新生组织表达GFP,证实组织工程化骨组织的形成来源于供体细胞。 【关键词】重组逆转录病毒载体组织工程化骨绿色荧光蛋白β-磷酸三钙 Use of GFP labelling to monitor tissue engineered bone formation in nude mice YUAN Jie, LIU De-li, ZHOU Guang-dong, et al Department of Plastic and Reconstructive Surgery, 9th People’s Hospital,Shanghai Tissue Engineering Center, SSMU, Shanghai 200011, China;Shanghai Tissue Engineering Research and Development Center, Shanghai 200235, China 【Abstract】Objective To reconstruct tissue engineered bone with cultured bone marrow stromal cells(BMSCs) and trace it by green fluorescent protein(GFP) gene transfer. Methods Recombinant RV-GFP expression vector was used to infect canine BMSCs directly. GPF-labeled BMSCs were seeded onto beta-tricalciumphosphate(β-TCP) to form a cell-scaffold construct, then implanted into nude mice subcutaneously. Formed tissues were harvested at 8 weeks and evaluated by HE staining, AKP staining, immunohistochemistry of osteocalcin and confocal microscope. Results The tissue engineered bone had been formed over a 8-week period. There are newly formed trabeculae around the pore of β-TCP, AKP staining and immunohistochemistry of osteocalcin are positive.Confocal microscope revealed that GFP-labeled cells existed in many newborn tissue,β-TCP is partly degraded. Conclusion The results show that engineered bone are similar to spongy bone and the composed cells originated from cultured BMSC. 【Keywords】recombinant retrovirus vector; tissue engineered bone ; green fluorescent protein; beta-tricalciumphosphate 近年来骨组织工程研究中,骨髓基质干细胞(bone marrow stromal cells, BMSC)因获取时对机体损伤小、培养扩增后数量充足、且自体细胞避免了免疫排斥反应等特点,已经成为种子细胞的重要来源[1,2]。BMSC在体外诱导培养下,能明显表现出一些成骨细胞的表型特征,如钙结节形成,碱性磷酸酶及成骨特异蛋白的表达,复合生物材料植入骨缺损部位一定时间后能成骨[3,4,5]。但其植入体内后情况如何,是在各种因子的刺激下继续向成骨方向转化,最终形成新骨;还是自身逐步衰退凋亡,由周围组织中的成骨细胞或干细胞沿材料爬行替代成骨;或是两者兼而有之?这个问题—即种子细胞在体内成骨中究竟起何作用,还无直接的证据来证实。 本研究建立了一套完整的绿色荧光蛋白(GFP)基因标记BMSC的技术平台,该法可直接追踪植入的BMSC在体内的分化与转归,为阐明BMSC在裸鼠体内异位成骨的作用提供了直接证据,也为组织工程种子细胞的标记提供了一种简便、灵敏、可靠而又直观的方法。 材料和方法 材料GFP逆转录病毒由本实验室自行构建[6], PT67包装细胞,购自美国Clotech公司。地塞米松、β-磷酸甘油钠和2-磷酸抗坏血酸、Polybrene购自Sigma公司。G418购自上海华舜生物工程有限公司。碱性磷酸酶(AKP)染剂BM-Purple购自宝灵曼公司。骨钙素(OCN)免疫组化鼠抗一抗购自Chemicon公司,羊抗鼠二抗购自Dako公司,DAB显色液购自华美生物工程公司。其它转染试剂及细胞培养试剂购自Gibco公司。犬购自上海农学院,裸鼠购自上海肿瘤研究所。β-磷酸三钙(β-TCP)购自上海贝奥路生物材料有限公司。 重组GFP逆转录病毒(GFP-RV)包装及扩增重组GFP-RV构建过程见文献[6]报导。取生长状态良好的PT67 【作者简介】袁捷(1976-),男,上海人,博士研究生 【通讯作者】曹谊林,Tel:63138341-5192 【基金项目】国家“973”组织工程基本科学问题项目(G1999054308) 国家“863”组织工程化骨构建技术研究与产品开发(2002AA205011) 上海市教委“重中之重”重点学科资助

转基因技术对人类社会发展的影响

转基因技术对人类社会 发展的影响 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

转基因技术对人类社会发展的影响 一、提要: 转基因技术是生命科学前沿的重要领域之一,已经逐渐走入了人们的生活。转基因技术可以认为是在一定程度上通过科学技术手段让其他生物、植物朝着对人类有力的方向发展的技术。但转基因食品的安全问题一直深受广大人群的关注,人类对自然的改造是否能够真正造福于人民而没有任何潜在危害呢 二、关键词转基因技术、转基因食品、发展、影响 三、正文 引言:转基因技术灌输在人们的日常生活中,但也处处的危害着人们的生活。通过对转基因技术的研究,了解该技术的利弊关系,通过正确的引导和规范管理,才能很好地利用该技术,使它为人类服务。因此对转基因技术进行初步研究,探究出转基因技术对人类科学社会的影响。 1、转基因技术的简介 转基因技术是指运用科学手段,将基因片段转入特定生物中,并最终获取具有特定遗传性状个体的技术。转基因技术的理论基础来源于分子生物学。基因片段的来源可以是提取特定生物体基因组中所需要的目的基因,也可以是人工合成指定序列的基因片段。基因片段被转入特定生物中,与其本身的基因组进行重组,再从重组体中进行数代的人工选育,从而获得具有特定的遗传性状个体。该技术可以使重组生物增加人们所期望的新性状,培育出新品种。 2、转基因技术的发展历史 1974年,波兰遗传学家斯吉巴尔斯基(Waclaw Szybalski)称基因重组技术为合成生物学概念,1978年,诺贝尔医生奖颁给发现DNA限制酶的纳森斯(Daniel Nathans)、

亚伯(Werner Arber)与史密斯(Hamilton Smith)时,斯吉巴尔斯基在《基因》期刊中写道:限制酶将带领我们进入合成生物学的新时代。转基因技术,包括外源基因的克隆、表达载体、受体细胞,以及转基因途径等,外源基因的人工合成技术、基因调控网络的人工设计发展,导致了21世纪的转基因技术将走向转基因系统生物技术 2000年国际上重新提出合成生物学概念,并定义为基于系统生物学原理的基因工程与转基因技术。 3、转基因技术的成果—转基因食品 所谓转基因食品,就是通过基因工程技术将一种或几种外源性基因转移到某种特定的生物体中,并使其有效地表达出相应的产物(多肽或蛋白质),此过程叫转基因。以转基因生物为原料加工生产的食品就是转基因食品。 转基因过程按照途径可分为人工转基因和自然转基因,按照对象可分为植物转基因技术、动物转基因技术和微生物基因重组技术。其技术的成果分为植物性转基因食品,动物性转基因食品和微生物性转基因食品。植物性转基因食品是指以含有转基因的植物为原料的转基因食品。动物性转基因食品是指以含有转基因的动物为原料的转基因食品,主要是利用胚胎移植技术培养生长速率快、抗病能力强、肉质好的动物或动物制品。微生物转基因食品是指以含有转基因的微生物为原料的转基因食品,主要是利用微生物的相互作用,培养一系列对人类有利的新物种。 4、转基因技术实例 世界上最早的转基因作物(烟草)于1983年诞生,到美国孟山都公司转基因食品研制的延熟保鲜转基因西红柿1994年在美国批准上市,其特别之处是能在含盐量较高的土壤中生长。他们从一种与卷心菜有亲缘关系的植物中提取出抗盐基因,然后将该基因注入番茄中。用这种办法培育出的转基因番茄能够在含盐量为正常情况50倍的土壤中

细胞转染技术简介

细胞转染技术简介 转染,是将外源性基因导入细胞内的一种专门技术。随着基因与蛋白功能研究的深入,转染目前已成为实验室工作中经常涉及的基本方法。转染大致可分为物理介导、化学介导和生物介导三类途径。电穿孔法、显微注射和基因枪属于通过物理方法将基因导入细胞的范例;化学介导方法很多,如经典的磷酸钙共沉淀法、脂质体转染方法、和多种阳离子物质介导的技术;生物介导方法,有较为原始的原生质体转染,和现在比较多见的各种病毒介导的转染技术。 理想细胞转染方法,应该具有转染效率高、细胞毒性小等优点。病毒介导的转染技术,是目前转染效率最高的方法,同时具有细胞毒性很低的优势。但是,病毒转染方法的准备程序复杂,常常对细胞类型有很强的选择性,在一般实验室中很难普及。其它物理和化学介导的转染方法,则各有其特点。 本公司生产的高效转染试剂VigoFect,是一种以阳离子非脂性物质为主的配方组分,该类物质介导的细胞转染,是目前非病毒转染方法中转染效率最高的方法。VigoFect使用方便,转染效率高,对细胞毒性小,并有广谱的转染特性。在许多实验室长期使用,获得了优异的效果。一些实验室用VigoFect进行SiRNA的转染,也获得满意的结果。 需要指出的一点,无论采用哪种转染技术,要获得最优的转染结果,可能都需要对转染条件进行优化。影响转染效率的因素很多,从细胞类型、细胞培养条件和细胞生长状态,到转染方法的操作细节,都需要考虑。 细胞传代 (1) 试验准备:200ul/1mlTip头各一盒(以上物品均需高压灭菌),酒精棉球,废液缸,试管架,微量移液器,记号笔,培养皿,离心管。 (2) 弃掉培养皿中的培养基,用1ml的PBS溶液洗涤两次。 (3) 用Tip头加入1ml Trypsin液,消化1分钟(37。C,5%CO2 )。用手轻拍培养瓶壁,观察到细胞完全从壁上脱落下来为止。 (4) 加入1ml的含血清培养基终止反应。 (5) 用Tip头多次吹吸,使细胞完全分散开。 (6) 将培养液装入离心管中,1000rpm离心5min。 (7) 用培养液重悬细胞,细胞计数后选择0.8X106个细胞加入一个35mm培养皿。 (8) 将合适体积完全培养液加入离心管中,混匀细胞后轻轻加入培养皿中,使其均匀分布。 (9) 将培养皿转入CO2培养箱中培养,第二天转染。 细胞转染 1)转染试剂的准备 A. 将400ul去核酸酶水加入管中,震荡10秒钟,溶解脂状物。 B.震荡后将试剂放在-20摄氏度保存,使用前还需震荡,。 2) 选择合适的混合比例(1:1-1:2/脂质体体积:DNA质量)来转染细胞。在一个转染管中加入合适体积的无血清培养基。加入合适质量的MyoD或者EGFP的DNA,震荡后在加入合

相关文档