文档库 最新最全的文档下载
当前位置:文档库 › ARM嵌入式系统的存储器初始化介绍

ARM嵌入式系统的存储器初始化介绍

ARM嵌入式系统的存储器初始化介绍

ARM 嵌入式系统的存储器初始化介绍

在ARM 嵌入式系统中,由于硬件模块的高度可配置性,软件设置就需要进行初始化来应对硬件配置的改变。所以在正式运行开发者设计好的程序前,需要运行初始化代码来进行初始化,本文就将针对存储器系统的初始化进行介绍。

初始化存储器系统

主要是对系统存储器控制器(MMU)的初始化。由于存储器控制器并不是ARM 架构的一部分,不同芯片的实现方式各不相同。由于运算能力和寻址能力的强大,基于ARM 内核的微处理器系统,一般都需要外扩展各种类型的存储器。对于存储器系统的初始化一般包括如下几个方面:

--存储器类型、时序和总线宽度的配置

--存储器地址的配置

(1)存储器类型

基于ARM 微处理系统的存储器一般有如下几类:SARM、DRAM、Flah。同时,即使同类存储器也有访问速度上的不同。其中,SRAM 和Flah 属于静态存储器,可以共用存储器端口,而DRAM 有动态刷新和地址复用等特征,需要专门的存储器端口。

(2)时序

存储器端口的接口时序优化对系统性能影响非常大,因为系统运行的速度瓶颈一般都存在于存储器的访问,因此希望存储器的访问尽可能快,但又要考虑由此带来的系统稳定性问题。

(3)总线宽度

ARM 微处理器架构支持8/16/32 位的数据总线宽度访问存储器和外设,对

嵌入式系统原理及应用第三章习题

第三章软件作业习题 3、将存储器中0x400000开始的200字节的数据,传送到0x400800开始的区域。 解: AREA procedure3,CODE,READONLY ENTRY CODE32 START MOV R0,#0x400000 LDR R1,=0x400800 MOV R7,#200 LOOP LDRB R2,[R0],#1 STRB R2,[R1],#1 SUBS R7,R7,#1 BNE LOOP CEASE B CEASE END 4、编写程序,比较存储器中0x400000与0x400004两无符号字数据的大小,并且将比较结果存于0x400008的字中,若两数相等其结果记为0,若前者大于后者其结果记为1,若前者小于后者其结果记为-1。解: AREA procedure4,CODE,READONLY ENTRY CODE32 START MOV R0,#0x400000 LDR R1,[R0],#4 ;取第1个数 LDR R2,[R0],#4 ;取第2个数 CMP R1,R2 ;将两个数相比较 MOVHI R1,#1 ;R1比R2大 MOVLO R1,#-1 ;R1比R2小 MOVEQ R1,#0 ;两个数相等 STR R1,[R0] CEASE

B CEASE END 5、存储器从0x400000开始的100个单元中存放着ASCII码,编写程序,将其所有的小写字母转换成大写字母,对其它的ASCII码不做变换。 解: AREA procedure5,CODE,READONLY ENTRY CODE32 START MOV R0,#0x400000 MOV R1,#0 LOOP LDRB R2,[R0,R1] CMP R2,#0x61 ;与‘a’比较 BLO NEXT ;小于转到NEXT CMP R2,#0x7B ;0x7A为‘z’ SUBLO R2, R2,#0x20 ;小于转换 STRBLO R2,[R0,R1] ;小于保存 NEXT ADD R1,R1,#1 CMP R1,#100 BNE LOOP CEASE B CEASE END 6、编写一程序,查找存储器从0x400000开始的100个字中为0的数目,将其结果存到0x400190中。 解: AREA procedure6,CODE,READONLY ENTRY CODE32 START MOV R0,#0x400000 MOV R7,#100 ;控制循环变量 MOV R1,#0 ;保存0的数目 LOOP LDR R2,[R0],#4 ;取数 CMP R2,#0 ;比较为0

嵌入式系统数据共享存储器的实现

嵌入式系统数据共享存储器的实现 Luo Hao (罗昊),Wang Zhihua (王志华) 清华大学电子工程系北京 100084 摘要:使用静态存储器(SRAM)和可编程逻辑器件(PLD)可以模拟共享存储器的行为,实现低成本、高速、大容量共享存储。在实际应用中模拟共享存储器会遇到操作冲突的问题,这需要使用仲裁的办法加以解决。正确选择SRAM和PLD能提高模拟共享存储器的速度。 关键字:共享存储器可编程逻辑嵌入式系统 Implementation of Shared Memories in Embedded Systems Abstract: Use SRAM and PLD can simulate DPRAM to satisfy the need for high volume, high speed data switching. Collisions will arise when operate shared memory, some arbitration will be used to solve the problem. Select the right SRAM and PLD can improve the speed of the shared memory. Key word: DPRAM PLD EMBEDDED 引言:有的嵌入式系统中需要使用共享存储器进行数据交换,常用的共享存储器有DPRAM (双口内存)、PRAM(多口内存)、FIFO等。传统的DPRAM虽然简单易用,但是容量小,成本高。使用SRAM和PLD可以方便地构成共享存储器。 1. 常见的双口内存 在商用芯片中,常用的双口内存如IDT7133/4[1],容量为2K*16,异步操作,操作延迟时间20~90ns不等。存储阵列通过左右两端的地址线独立寻址。任意一端的接口方式与普通静态存储器完全一样。每端有独立的片选、读出、写入信号,因为7133的数据宽度为16b,为了实现字节操作,还提供了字节读出使能,可以通过字节读出使能对其进行字节操作。在实际的使用过程中,如果两侧同时对同一存储单元进行操作,任一侧为写入,都会使另一侧产生BUSY信号。表示此时的操作无效,或是会出现不正常的结果。在实际应用中这种情况是需要避免的。 2. 如何构造模拟双口内存 如果在实际应用中遇到需要的双口内存容量远大于现有的双口内存的情形,可以使用多片双口内存并联的方案。使用这种方案会使费用急剧增加,并且还需要增大存储控制器的扇出能力,增加的总线缓冲器或总线驱动器还会增加线路上的延时。可以考虑使用一个替代的办法:使用一片或多片大容量静态存储器(SRAM)或动态存储器(DRAM)作为存储单元,使用一些外部逻辑生成两个端口,构成一个模拟双口内存。使用类似操作双口内存的方法来操作这个模拟双口内存。在文献[2]中有一个类似的方案,它使用SRAM实现共享存储。图1中描绘了这种方案的实现方法。存储阵列由SRAM构成,与SRAM操作相关的信号为数据总线,地址总线,读写控制和片选。仲裁器由可编程逻辑实现,仲裁器的输入为两边端口送

ARM嵌入式系统开发综述.

视听研究所 主页:论坛: 所有资料均收集于各网站。 若您认为有关资料不适合公开,请联系newvideo@https://www.wendangku.net/doc/312668745.html, 我们会第一时间删除。 感谢各位网友的无私奉献和支持! 加密时间:2008-2-1 获取更多权威电子书请登录 ARM 嵌入式系统开发综述 ARM 开发工程师入门宝典 获取更多权威电子书请登录 前言 嵌入式系统通常是以具体应用为中心,以处理器为核心且面向实际应用的软硬件系统,其硬件是整个嵌入式系统运行的基础和平台,提供了软件运行所需的物理平台和通信接口;而嵌入式系统的软件一般包括操作系统和应用软件,它们是整个

系统的控制核心,提供人机交互的信息等。所以,嵌入式系统的开发通常包括硬件和软件两部分的开发,硬件部分主要包括选择合适的MCU 或者SOC 器件、存储器类型、通讯接口及I/O、电源及其他的辅助设备等;软件部分主要涉及OS porting和应用程序的开发等,与此同时,软件中断调试和实时调试、代码的优化、可移植性/可重用以及软件固化等也是嵌入式软件开发的关键。 嵌入式系统开发的每一个环节都可以独立地展开进行详细的阐述,而本文的出发点主要是为嵌入式开发的初学者者提供一个流程参考。因为对于初学者在面对一个嵌入式开发项目的时候,往往面临着诸多困难,如选择什么样的开发平台?什么样的器件类型?在进行编译时怎样实现代码优化?开发工具该如何选择和使用?在进行程序调试时应该注意那些问题以及选择什么样的嵌入式OS 等等。希望通过本文,能帮助初学者了解有关ARM 嵌入式系统开发流程。 获取更多权威电子书请登录 目录 前言 (2) 1 嵌入式开发平台 (4) 1.1 ARM的开发平台: (4) 1.2 器件选型 (7) 2 工具选择 (11) 3 编译和连接 (13) 3.1 RVCT的优化级别与优化方向 (16) 3.2 Multifile compilation (21) 3.3调试 (22)

arm外部存储器控制器

外部存储器控制器 EMC:外部管理控制器. 在LPC2300系列ARM里,外部存储器控制器(EMC)为AHB总线和外部存储器件提供了接口,使得CPU得以扩展外部存储器. LPC2300系列中的LPC2378和LPC2388具备EMC,支持2个可单独配置的存储器组.这两个存储器组都支持SRAM,ROM,Flash,Burst ROM或一些外部I/O器件.存储器组的片选地址范围大小为64KB. 下面是EMC的控制器: 对于AHB从机寄存器接口,CPU可以通过AHB从机寄存器接口对EMC寄存器进行编程.为了避免可能发生的字顺序问题,操作EMC寄存器的过程中,所有数据的床上必须是32位宽的字. 通过数据缓冲区进行读写操作,可提供存储器带宽并减少传输等待时间.EMC含有4个16字大小的数据缓冲区.数据宽城区可用作读缓冲区,写缓冲区或读写缓冲区. 存储器控制器状态机包括一个静态存储器控制器.

CPU通过AHB从机存储器接口访问外部存储器,在访问外部存储器时,需要注意以下几点: 1.数据传输的字节顺序 2.数据产生的宽度 3.对写保护的存储器区域进行写操作. 我们再来看一下EMC的结构图: 我们再看看EMC的基本操作过程: 1.首先是使能EMC: 在使用EMC前一定要先在功率控制寄存器中将其使能:

PCONP=PCONP|0x00000800; //第11位置1 接下来,设置EMC控制寄存器EMCControl的第0位置1,使能EMC: EMCControl=0x00000001; 2.引脚连接: 将相关的引脚连接到EMC模块. PINSEL6=0x0000 5555; //选择D0~D7脚 PINSEL8=0x5555 5555; //选择A0~A15脚 tmp=PINSEL9; tmp&=&0x0FF0 FFFF; PINSEL9=tmp|0x5009 0000; //选择-OE,-WE,-CS0,-CS1脚 3.时序设置: 通常情况下,我们再操作外部存储器时分为读,写两个操作. 在读操作的过程中,我们需要配置下面的寄存器 a.静态存储器输出使能延时寄存器(EMCStaticWaitOen0-1); b.静态存储器读延时寄存器(EMCStaticWaitRd0-1); c.静态存储器页模式读延时寄存器(EMCStaticWaitPage0-1); 通过设置静态存储器输出使能延时寄存器(EMCStaticWaitOen0-1)可改变片选信号优先到输出有效的延时t; 通过静态存储器读延时寄存器(EMCStaticWaitRd0-1)可改变从片选信号有效到器件输出允许失效之间的延时t.

嵌入式存储器的全面解析

嵌入式存储器的全面解析 随着超大规模集成电路工艺的发展,人类已经进入了超深亚微米时代。先进的工艺使得人们能够把包括处理器、存储器、模拟电路、接口逻辑甚至射频电路集成到一个大规模的芯片上,形成所谓的SoC(片上系统)。作为SoC重要组成部分的嵌入式存储器,在SoC中所占的比重(面积)将逐渐增大。下面就随小编一起来了解一下相关内容吧。 近期台积电技术长孙元成在其自家技术论坛中,首次揭露台积电研发多年的eMRAM(嵌入式磁阻式随机存取存储)和eRRAM(嵌入式电阻式存储器)将分别订于明后年进行风险性试产。预计试产主要采用22nm工艺。这种次世代存储将能够为物联网、行动装置、高速运算电脑和智能汽车等四领域所提供效能更快和耗电更低的存储效能。台积电此举让嵌入式存储器再度回到人们的视线中。本文将为你阐述嵌入式存储器的前世今生。 何为嵌入式存储器嵌入式存储器现在已经不是一个新的概念了。相对于片外存储器,嵌入式存储器是指集成在片内与系统中各个逻辑、混合信号等IP共同组成单一芯片中的存储器。现已经成为SOC芯片的基本组成部分,几乎今天每个SOC芯片中嵌入式存储器都占有一定比重。 按照掉电后数据是否会丢失,可将嵌入式存储器分为两大类,一类是挥发性存储器,另一类则是非挥发性存储器。挥发性存储器是指掉电后数据会丢失,主要包括速度快、功耗低的SRAM和高密度的DRAM。而非挥发性存储器则刚好相反,其在实际应用中主要包括eFlash、EEPROM以及eMRAM、eRRAM、ePRAM等次世代存储器。 虽然都是存储器,但二者还是有些许不同。嵌入式存储器和分立式存储器最重要的不同之处在于嵌入式存储器往往跟应用IC自身的工艺特性条件有很大关系,比如用90nm和用45nm工艺做出来的芯片,其内部嵌入式存储器大小差别也是很大的。而分立式存储器件则主要围绕存储器器件工艺进行优化。 随着信息技术的发展,嵌入式存储器在SOC中的面积所占比重也在逐年增加,从图一可以看出,从1999年平均的20%上升到2007年的60-70%乃至2014年的90%的面积。可以看出,嵌入式存储器对于芯片系统性能的影响越来越大。

嵌入式系统中存储器类型的选择方法

嵌入式系统中存储器类型的选择方法 嵌入式系统中存储器类型的选择方法 存储器的类型将决定整个嵌入式系统的操作和性能,因此存储器的选择是一个非常重要的决策。无论系统是采用电池供电还是由市电供电,应用需求将决定存储器的类型(易失性或非易失性)以及使用目的(存储代码、数据或者两者兼有)。另外,在选择过程中,存储器的尺寸和成本也是需要考虑的重要因素。对于较小的系统,微控制器自带的存储器就有可能满足系统要求,而较大的系统可能要求增加外部存储器。为嵌入式系统选择存储器类型时,需要考虑一些设计参数,包括微控制器的选择、电压范围、电池寿命、读写速度、存储器尺寸、存储器的特性、擦除/写入的耐久性以及系统总成本。 图1列出了在嵌入式应用系统中最常用的存储器类型。下面讨论在选择存储器时应遵循的基本原则。 选择存储器时应遵循的基本原则 1.内部存储器与外部存储器 一般情况下,当确定了存储程序代码和数据所需要的存储空间之后,设计工程师将决定是采用内部存储器还是外部存储器。通常情况下,内部存储器的性价比最高但灵活性最低,因此设计工程师必须确定对存储的需求将来是否会增长,以及是否有某种途径可以升级到代码空间更大的微控制器。基于成本考虑,人们通常选择能满足应用要求的存储器容量最小的微控制器,因此在预测代码规模的时候要必须特别小心,因为代码规模增大可能要求更换微控制器。 目前市场上存在各种规模的外部存储器器件,我们很容易通过增加存储器来适应代码规模的增加。有时这意味着以封装尺寸相同但容量更大的存储器替代现有的存储器,或者在总线上增加存储器。即使微控制器带有内部存储器,也可以通过增加外部串行EEPROM 或闪存来满足系统对非易失性存储器的需求。 2.引导存储器

嵌入式系统开发方法综述

嵌入式系统开发方法综述 刘丹 (机械工业仪器仪表综合技术经济研究所,北京市 100055)Liu Dan (Instrumentation Technology & Economy Institute, Beijing 100055) Development Methods of Embedded System Abstract: Embedded systems have particular properties, such as real-time, concurrency, distribution, high reliability,and etc., which lead to large challenges and urgent requirements for corresponding methods and tools when developing such systems. From the view of engineering practice, the paper summarizes what problems developers will face during embedded system design, and what main methods and technologies will be used for resolving such problems. These methods and technologies are called embedded system developing methods. Key words: Embedded System HW-SW Co-Design Method Formal Modeling Method Structural Design Method Object-Oriented Design Method 【摘 要】嵌入式系统的实时性、并发性、分布性和高可靠性等特点使得系统的开发面临巨大挑战,迫切需 要相应开发方法的指导和开发工具的支持。本文从工程实践角度出发,总结在嵌入式系统设计过程中,开发人员会面临哪些主要问题,以及为解决问题而产生哪些主要方法和技术。这些方法和技术被统称为嵌入式系统的开发方法。 【关键词】嵌入式系统 软硬件协同设计方法 形式化建模方法 结构化设计方法 面向对象设计方法 收稿日期:2008-08-01作者简介:刘丹(1977-),女,博士,毕业于中科院沈阳自动化研究所,现就职于机械工业仪器仪表综合技术经济研究所,主要从事工业自动化、控制网络的技术和标准化研究,现负责PROFIBUS PA产品的认证测试工作。 引言 嵌入式系统是指以应用为中心、以计算机技术为基础、软硬件可裁剪、适应应用环境对功能、实时性、可靠性、成本、体积、功耗等严格约束的专用计算机系统。嵌入式系统的内容广泛,小到一个芯片,大到复杂的分布式系统都可以称为嵌入式系统,通常以SoC、单片机、单板机、多板式箱式结构、嵌入式PC等形式嵌入到信息家电、数字通信、工业控制、航空航天、医疗设施、军事电子等领域的设备或系统中,作为处理和控制的核心。 嵌入式系统的实时性、并发性、分布性和高可靠性等特点使得系统的开发面临巨大挑战,迫切需要相应的开发方法的指导和开发工具的支持。嵌入式系统开发方法的研究内容包括设计方法论、工程开发技术、以及相应辅助工具的开发。现代的系统开发是一个基于模型(model-based)的,从规约到实现的过程。模型是反映真实世界和系统实现两方面的抽象,帮助开发人员把握应用的最重要特性,是系统分析与验证的 基础,并为软件和硬件的实现要素提供表示视图。因此,系统模型设计在整个开发过程中最为重要。此外,任何工程开发技术都是在一定设计方法基础上提出一系列开发步骤,辅助工具则为这些设计方法和开发技术提供自动或半自动的工具支持。因此,设计方法决定了系统开发过程中的其它分析、验证、实现等方法,或者广义上说,系统的设计方法就是系统的开发方法。 本文从工程实践角度出发,总结在嵌入式系统设计过程中,开发人员会面临哪些主要问题,以及为解决问题而产生哪些主要方法和技术。这些方法和技术被统称为嵌入式系统的开发方法。 1 软硬件“分离”设计方法与软硬件协同设计方法 首先,用户或产品开发决策者要根据对产品性能、体积、开发成本以及上市时间等设计指标的评估,决定系统最终是以电路板式,还是以芯片式的形式实现。一般而言,对性能和体积要求不高,产品数量小,如1~几百个,但要求上市时间早的嵌入式系统,多采用电路板式实现;反之,系统体积小,产品数量大,但对上市时间要求比较松的嵌入式系统,多采用SoC芯片式实现。相应地,对于设计者而言,不同的实现形式一般应用不同的设计方法,包括软硬件“分离”设计和软硬件协同设计。 Review and Research

嵌入式系统存储器浅谈

嵌入式系统存储器浅谈 嵌入式系统存储器浅谈(zz)嵌入式系统与通用PC 机不同,一般没有硬盘这样的存储设备而是使用Flash闪存芯片、小型闪存卡等专为嵌入式系统设计的存储装置,本文分析了嵌入式系统中常用的存储设备及其管理机制,介绍了常用的基于FLASH的文件系统类型。1.嵌入式系统存储设备及其管理机制分析构建适用于嵌入式系统的Linux文件系统,必然会涉及到两个关键点,一是文件系统类型的选择,它关系到文件系统的读写性能、尺寸大小;另一个就是根文件系统内容的选择,它关系到根文件系统所能提供的功能及尺寸大小。 嵌入式设备中使用的存储器是像Flash闪存芯片、小型闪存卡等专为嵌入式系统设计的存储装置。Flash是目前嵌入式系统中广泛采用的主流存储器,它的 主要特点是按整体/扇区擦除和按字节编程,具有低功耗、高密度、小体积等优点。目前,Flash分为NOR, NAND两种类型。 NOR型闪存可以直接读取芯片内储存的数据,因而速度比较快,但是价格较高。NOR型芯片,地址线与数据线分开,所以NOR型芯片可以像SRAM一样连在 数据线上,对NOR芯片可以“字”为基本单位操作,因此传输

效率很高,应用程序可以直接在Flash内运行,不必再把代码读到系统RAM中运行。它与 SRAM的最大不同在于写操作需要经过擦除和写入两个过程。 NAND型闪存芯片共用地址线与数据线,内部数据以块为单位进行存储,直接将NAND芯片做启动芯片比较难。NAND 闪存是连续存储介质,适合放大文件。 擦除NOR器件时是以64-128KB的块进行的,执行一个写入/擦除操作的时间为5s;擦除NAND器件是以8-32KB的块进行的,执行相同的操作最 多只需要4ms。NAND Rash的单元尺寸几乎是NOR器件的一半,由于生产过程更为简单,NAND结构可以在给定的模具尺寸内提供更高的容量,也就相应地降低了价格。NOR flash占据了容量为1―16MB闪存市场的大部分,而NAND flash只是用在8―128MB的产品当中,这也说明NOR主要应用在代码存储介质中,NAND适合于数据存储。寿命(耐用性),在NAND闪存中每个 块的最大擦写次数是一百万次,而NOR的擦写次数是十万次。NAND存储器除了具有10比1的块擦除周期优势,典型的NAND块尺寸要比NOR器件小8 倍,每个NAND存储器块在给定的时间内的删除次数要少一

嵌入式软件开发流程

嵌入式软件开发流程 一、嵌入式软件开发流程 1.1 嵌入式系统开发概述 由嵌入式系统本身的特性所影响,嵌入式系统开发与通用系统的开发有很大的区别。嵌入式系统的开发主要分为系统总体开发、嵌入式硬件开发和嵌入式软件开发3大部分,其总体流程图如图1.1所示。 图1.1 嵌入式系统开发流程图 在系统总体开发中,由于嵌入式系统与硬件依赖非常紧密,往往某些需求只能通过特定的硬件才能实现,因此需要进行处理器选型,以更好地满足产品的需求。另外,对于有些硬件和软件都可以实现的功能,就需要在成本和性能上做出抉择。往往通过硬件实现会增加产品的成本,但能大大提高产品的性能和可靠性。 再次,开发环境的选择对于嵌入式系统的开发也有很大的影响。这里的开发环境包括嵌入式操作系统的选择以及开发工具的选择等。比如,对开发成本和进度限制较大的产品可以选择嵌入式Linux,对实时性要求非常高的产品可以选择Vxworks等。

1.2 嵌入式软件开发概述 嵌入式软件开发总体流程为图4.15中“软件设计实现”部分所示,它同通用计算机软件开发一样,分为需求分析、软件概要设计、软件详细设计、软件实现和软件测试。其中嵌入式软件需求分析与硬件的需求分析合二为一,故没有分开画出。 由于在嵌入式软件开发的工具非常多,为了更好地帮助读者选择开发工具,下面首先对嵌入式软件开发过程中所使用的工具做一简单归纳。 嵌入式软件的开发工具根据不同的开发过程而划分,比如在需求分析阶段,可以选择IBM的Rational Rose等软件,而在程序开发阶段可以采用CodeWarrior(下面要介绍的ADS 的一个工具)等,在调试阶段所用的Multi-ICE等。同时,不同的嵌入式操作系统往往会有配套的开发工具,比如Vxworks有集成开发环境Tornado,WindowsCE的集成开发环境WindowsCE Platform等。此外,不同的处理器可能还有对应的开发工具,比如ARM的常用集成开发工具ADS、IAR和RealView等。在这里,大多数软件都有比较高的使用费用,但也可以大大加快产品的开发进度,用户可以根据需求自行选择。图4.16是嵌入式开发的不同阶段的常用软件。 图1.2 嵌入式开发不同阶段的常用软件 嵌入式系统的软件开发与通常软件开发的区别主要在于软件实现部分,其中又可以分为编译和调试两部分,下面分别对这两部分进行讲解。 1.交叉编译 嵌入式软件开发所采用的编译为交叉编译。所谓交叉编译就是在一个平台上生成可以在另一个平台上执行的代码。在第3章中已经提到,编译的最主要的工作就在将程序转化成运行该程序的CPU所能识别的机器代码,由于不同的体系结构有不同的指令系统。因此,不同的CPU需要有相应的编译器,而交叉编译就如同翻译一样,把相同的程序代码翻译成不同CPU的对应可执行二进制文件。要注意的是,编译器本身也是程序,也要在与之对应的某一个CPU平台上运行。嵌入式系统交叉编译环境如图4.17所示。

ARM片外Flash存储器IAP解决办法

ARM片外Flash存储器IAP解决办法 0 引言 以ARM芯片为处理器核的嵌入式应用系统,以其小体积、低功耗、低成本、高性能、丰富的片内资源以及对操作系统的广泛支持,得到了人们越来越多的青睐。在应用编程IAP (InApplicatAiONProgram)就是这样的自修改程序。它先在RAM存储器中写人数据值,然后使PC指向该存储段,把该段作为程序段来执行。很多ARM7芯片自带IAP处理器,应用其自带的IAP处理器可以方便地对其片内集成的Flash存储器进行在应用编程,但几乎所有的ARM 核芯片均不支持片外IAP处理,因为片外Flash存储器是用户选型的,芯片生产厂家无法先知先觉,而不同Flash存储器其编程时序也不尽相同,导致芯片生产厂家无法提供通用的IAP 代码。那么,如何对嵌入式系统的片外Flash存储器进行在应用编程呢?这里分两种情况:一是普通代码存放在片外单独1片Flash中,IAP代码在另一片Flash中完成,此时只要依据Flash的操作时序执行IAP代码,完成擦除或写入操作即可。这种情况虽然简单,但应用了2片Flash;而IAP代码很小,一般完全可以集成到1片中,所以这里对这种情况不予考虑。另一种情况是1片Flash中既要存储普通代码,又要实现IAP。 针对嵌入式应用系统片外Flash存储器IAP无现成方案的问题,介绍一种基于代码重入思想的片外存储器IAP解决方案。结合LPC2210及SST39VFl60芯片,简介两款芯片特点,给出应用连接框图;分析IAP实现要点,并给出IAP的实现代码。下面以Phnips公司的LPC2210 和 Silicon storageTechnology 公司的SST39VFl60为例,详细讨论这种情况IAP的解决方案。 1 硬件结构 1.1 LPC2210介绍 Philips公司的LPC22lO是一款基于支持实时仿真和嵌入式跟踪的16/32位ARM7TDMI-SCPU的微控制器。芯片采用144脚封装,有16 KB片内静态RAM,开放外部总线;通过外部存储器接口可将外部存储器配置成4组,每组的容量高达16 Mb,数据宽度8/16/32位均可;具有多个32位定时器、8路lO位PWM输出、多个串行接口(包括2个16C550工业标准UART、高速I2C接口和2个sPI接口)以及9个外部中断、多达76个可承受5 V电压的通用I/O口,同时内嵌实时时钟和看门狗,片内外设功能丰富强大;片内晶振频率范围l~30 MHz,通过片内PLL可实现最大为60 MHz的CPU工作频率,具有2种低功耗模式——空闲和掉电,通过外部中断将处理器从掉电模式中唤醒,并可通过个别使能/禁止外部功能来优化功耗。以上特性,使其特别适用于工业控制、医疗系统、访问控制和POS 机,同时也非常适合于通信网关协议转换器,嵌入式软Modem,以及其他各种类型的应用。 1.2 SST39VFl60介绍 SILICON StoraLge Technology公司的SST39VFl60是一个lM×16b的CMOS多功能Flash器件,单电压的读和写操作,电压范围3.O~3.6 V,提供48脚TSOP和48脚TFBGA 两种封装形式。 该器件主要操作包括读、字编程、扇区/块擦除和芯片擦除操作。擦除和字编程必须遵循一定的时序,表l列出了扇区擦除和字编程过程及时序。擦除或编程操作过程中读取触发位DQ6将得到“1”和“O”的循环跳变;而操作结束后读DQ6,得到的是不变的固定值。这是器件提供的写操作状态检测软件方法。 1.3 硬件连接

嵌入式软件开发流程

嵌入式软件开发流程

————————————————————————————————作者:————————————————————————————————日期:

嵌入式软件开发流程 一、嵌入式软件开发流程 1.1 嵌入式系统开发概述 由嵌入式系统本身的特性所影响,嵌入式系统开发与通用系统的开发有很大的区别。嵌入式系统的开发主要分为系统总体开发、嵌入式硬件开发和嵌入式软件开发3大部分,其总体流程图如图1.1所示。 图1.1 嵌入式系统开发流程图 在系统总体开发中,由于嵌入式系统与硬件依赖非常紧密,往往某些需求只能通过特定的硬件才能实现,因此需要进行处理器选型,以更好地满足产品的需求。另外,对于有些硬件和软件都可以实现的功能,就需要在成本和性能上做出抉择。往往通过硬件实现会增加产品的成本,但能大大提高产品的性能和可靠性。 再次,开发环境的选择对于嵌入式系统的开发也有很大的影响。这里的开发环境包括嵌入式操作系统的选择以及开发工具的选择等。比如,对开发成本和进度限制较大的产品可以选择嵌入式Linux,对实时性要求非常高的产品可以选择Vxworks等。

1.2 嵌入式软件开发概述 嵌入式软件开发总体流程为图4.15中“软件设计实现”部分所示,它同通用计算机软件开发一样,分为需求分析、软件概要设计、软件详细设计、软件实现和软件测试。其中嵌入式软件需求分析与硬件的需求分析合二为一,故没有分开画出。 由于在嵌入式软件开发的工具非常多,为了更好地帮助读者选择开发工具,下面首先对嵌入式软件开发过程中所使用的工具做一简单归纳。 嵌入式软件的开发工具根据不同的开发过程而划分,比如在需求分析阶段,可以选择IBM的Rational Rose等软件,而在程序开发阶段可以采用CodeWarrior(下面要介绍的ADS 的一个工具)等,在调试阶段所用的Multi-ICE等。同时,不同的嵌入式操作系统往往会有配套的开发工具,比如Vxworks有集成开发环境Tornado,WindowsCE的集成开发环境WindowsCE Platform等。此外,不同的处理器可能还有对应的开发工具,比如ARM的常用集成开发工具ADS、IAR和RealView等。在这里,大多数软件都有比较高的使用费用,但也可以大大加快产品的开发进度,用户可以根据需求自行选择。图4.16是嵌入式开发的不同阶段的常用软件。 图1.2 嵌入式开发不同阶段的常用软件 嵌入式系统的软件开发与通常软件开发的区别主要在于软件实现部分,其中又可以分为编译和调试两部分,下面分别对这两部分进行讲解。 1.交叉编译 嵌入式软件开发所采用的编译为交叉编译。所谓交叉编译就是在一个平台上生成可以在另一个平台上执行的代码。在第3章中已经提到,编译的最主要的工作就在将程序转化成运行该程序的CPU所能识别的机器代码,由于不同的体系结构有不同的指令系统。因此,不同的CPU需要有相应的编译器,而交叉编译就如同翻译一样,把相同的程序代码翻译成不同CPU的对应可执行二进制文件。要注意的是,编译器本身也是程序,也要在与之对应的某一个CPU平台上运行。嵌入式系统交叉编译环境如图4.17所示。

嵌入式linux系统开发概述

嵌入式linux系统开发概述 作者:谷丰,[email=您可以通 过%3Ca%20href=]gufeng77@https://www.wendangku.net/doc/312668745.html,[/email]" target="_blank">您可以通过 gufeng77@https://www.wendangku.net/doc/312668745.html,和他联系 基于linux的嵌入式系统开发是一个很大的课题,涵盖了从硬件到软件设计的多个领域,由于linux的开源特性,导致开发中可以使用的软件和工具多不胜数,从最底层与系统硬件直接打交道的引导装载程序(bootloader),到linux操作系统的分发版(distribution),再到上层的图形用户界面(GUI)乃至应用程序(application),可供选择的软件实在是太多了,这对开发者来说是一种恩赐。但由于标准的不统一,对于刚刚步入这个领域的初学者来说,很难在短时间内全部了解和掌握它们。本文论述了嵌入式linux开发的基本模式和概念,给出了一些常用的软件和工具,旨在带领他们更快的走入这个奇妙的世界。 1 引导装载程序(bootloader) 引导装载程序通常是在任何硬件上执行的第一段代码,它的主要任务视装载设备的不同而不同。在台式机和笔记本这样的常规系统中,经常存在多个操作系统并存的情况,因此bootloader的主要作用就是选择系统使用何种操作系统来引导。常用的引导程序有LILO或GRUB,通常将它们装入硬盘的主引导记录(Master Boot Record)中,或者装入linux 驻留的磁盘的第一个扇区。 在嵌入式系统中,情况有些不同。首先,嵌入式设备通常需要经常地移 动,考虑到在移动过程中的震动,一般不会采用机械式结构设计的硬盘为存 储设备;而且从成本控制上说,硬盘的价格比较高,除非是需要大容量存储 的场合,硬盘不适合作为嵌入式设备的存储介质。目前采用得比较多的是闪 存设备,闪存设备是与存储设备功能类似的特殊芯片,而且它

嵌入式系统论文

浅谈嵌入式系统及其发展前景 (作者:赵玉雪班级:软件1112班学号:1120126238) 摘要 现今我们已进入到一个网络的时代,经历了漫长的单片机发展道路嵌入式系也逐步应用到各种网络环境中。嵌入式系统也有了独有的定义,嵌入式设备与互联网的结合才是嵌入式技术未来。本文介绍了嵌入式系统的发展历史,嵌入式系统的特点和分类,及其在国内外的应用情况,总结了该行业未来的发展趋势。 关键词嵌入式系统;嵌入式系统特点;应用;现状;前景

0引言 嵌入式系统是目前电子计算机的一种普遍应用形式,此类电子系统由于不被设备使用者在意,也被称之为埋藏式计算机,例如微控制器、微处理器以及常见的DSP等。嵌入式处理器可以使宿主设备功能得以智能化,无论是设计还是操作都比较简单方便,这些设备的功能具有一定的各异性,但都具有功能强和实时性强,结构相对比较紧凑,大大提高了可靠性等共同特点。 嵌入式系统作为某种技术过程的核心处理环节,是一种能够直接与现实环境接口或交互的信息处理系统。在这种应用环境下,信息处理系统处于嵌入式工作状态,即实时就绪与环互动,亦即实时工作方式,其典型例子如Pc在工业过程控制或实验监测中的应用。 1嵌入式系统概述 1.1嵌入式系统发展史 世界上第一个嵌入式系统是在1981年由Ready System发展的商业性嵌入式实时内核(VRTX32),距今已有30年的历史了。纵观历史,嵌入式系统历史的发展有三个明显的阶段: 阶段一,是嵌入式系统的出现阶段。这一阶段的主要特征是:操作系统处理效率低下、存储容量小、系统的结构以及功能都相对单一、几乎没有用户接口,受众群体为各类专业领域。作为嵌入式系统的早期阶段,这种系统以其专用计算机简单的功能或者以可编程控制器的单片机为核心的形式存在,具备设备指示、监测、伺服等功能,大部分的系统运用于各类工业控制与飞机、导弹等武器装备中。由于早期嵌入式系统并没有操作系统的支持,对系统的控制是通过汇编语言编程直接进行的,运行结束后对内存进行清理。 阶段二,是简单监控式的实时操作系统阶段。该阶段以嵌入式CPU和嵌入式操作系统为标志。随着计算机硬件高可靠、低功耗嵌入CPU,如Power PC等的出现,推动了各类商业嵌入式操作系统相继出现并以迅雷不及掩耳之势发展起来。该阶段鲜明的特点是系统开销小、效率高处理器种类繁多、较差的通用性、由于配备系统仿真器,因此操作系统具有一定的兼容性与扩展性。另外,由于软

基于ARM系统的基站空调节能控制器

北京师范大学成人高等教育2013届本科生毕业论文(设计) 基于ARM系统的基站空调节能控制器 学生姓名: 专业名称:电子信息科学与技术 学号: 2 指导教师: 完成时间: 2013-08-27

摘要 本设计运用STM32F101系列MCU为主控模块、Sensirion 的SHT10数字温湿度传感器、继电器、光耦开关、SIM900A GPRS通讯模块、以及RS232/485通信芯片等元器件,设计了温湿度采集电路、脉冲电表电量采集电路、开关量及模拟量采集电路,RS232/485通信驱动电路、以及GPRS 无线通信电路。解决通信基站内空调的自动启停以及与节能通风机组的联动工作,最终实现了基站节能减排的目的。同时该节能控制器还具有采集脉冲电量表电能数据以及通过GPRS无线通信上传的功能,方便对控制器以及基站能耗情况的集中统一管理。 关键词:基站、 STM32F101 MCU、SHT10数字温湿度传感器、GPRS无线通信、联动控制、节能减排

Based on ARM base station air conditioning energy-saving controller of the system Abstract This design USES STM32F101 series MCU as the master control module, the Sensirion SHT10 digital temperature and humidity sensor, relay, switch of light coupling, SIM900A GPRS communication module, and RS232/485 communication chip components, design of the temperature and humidity acquisition circuit, pulse power meter acquisition circuit, digital and analog acquisition circuit, RS232/485 communication drive circuit, and GPRS wireless communication circuit. Solve the communication base station air automatic start-stop and the joint operation with energy saving ventilation unit, finally realizes the purpose of the base station energy conservation and emissions reduction. At the same time the energy-saving controller also has a pulse electric scale electric energy data and upload through GPRS wireless communication function, convenient to the controller and the base station energy consumption situation of centralized and unified management. Keywords: Base stations; STM32F101 MCU; SHT10 digital temperature and humidity sensor; GPRS wireless communication; Linkage control; Energy Conservation and Emissions Reduction

基于ARM的嵌入式温度控制系统的设计

合肥工业大学 硕士学位论文 基于ARM的嵌入式温度控制系统的设计 姓名:陈文博 申请学位级别:硕士 专业:控制理论与控制工程 指导教师:王华强 20071201

基于ARM的嵌入式温度控制系统的设计 摘要 温度的测量和控制在工业生产中有广泛的应用,尤其在石油、化工、电力、 冶金等工业领域中,对温度的测量和监控是非常重要的一个环节,温度参数是工 业控制中的一项重要的指标。 本文主要研究了基于ARM9架构的嵌入式Linux系统在工业领域中各种炉温 控制场合中的应用。目前控制方案主要是采用传统的PLC和单片机进行控制。PLC主要是针对单项工程或者重复数极少的项目,灵活性相对不足,并且体积大,成本相对较高;而单片机主要用于小型设备的控制,具有成本低,功耗低,效率 高的特点,但可移植性较差。为了适应信息产业的发展,新技术革新以及产业的 专业化现代化的发展,本文针对PLC和单片机控制的优缺点和应用场合提出了采用ARM9嵌入式微控制器AT91RM9200和Limtx操作系统相结合的嵌入式温度控制系统,具有系统扩展性强、可靠性高、响应速度快、体积小等特点,为用 户提供了一种新型的控制方案。 本文首先论述了嵌入式操作系统的组成,接着设计了温度控制系统的硬件系统,主要包括CPU模块、模拟电路模块、存储模块和通信模块四个部分;在对温度控制系统的软件部分的设计中,主要是针对Boot-Loader的移植、Linux内 核移植、根文件系统的定制、驱动程序的编写和应用程序的编写五部分进行设计。 系统功能主要是循环采集AD通道数据,上传AD数据到服务器,接收服务器下发的控制数据包,记录日志等。通过在线运行测试,该系统稳定可靠,采集 和控制效果良好,可有效降低了生产成本和工人的劳动强度,为安全生产提供保 证。 关键词:ARM,Linux,嵌入式系统,温度控制系统

嵌入式系统开发工程师

嵌入式系统开发工程师 职业概述: 在家电、手机、各种数码产品等都在向智能化方向发展的今天,嵌入式技术越来越成为当前最热门、最具发展前景的IT应用领域。嵌入式系统开发工程师是嵌入式工程领域的专家,需要有一定的嵌入式软件开发经验和嵌入式硬件开发经验,熟悉ARM或其他微处理器架构或可编程逻辑器件的使用等,当然还要有软件项目的一般开发流程经验。 工作内容: 设计、开发嵌入式系统; 构造嵌入式系统的框架结构、内核原理; 负责编写整体系统设计方案; 分配嵌入式硬件工程师和嵌入式软件工程师工作,并对其进行技术指导; 对客户进行系统技术支持。 职业要求: 计算机、电子等专业,本科以上学历。 2年以上嵌入式软件开发经验和嵌入式硬件开发经验;熟悉ARM或其他微处理器架构或可编程逻辑器件的使用;有软件项目的一般开发流程经验;良好的沟通和团队协作能力。 薪资行情: 一般年薪范围在5万-30万元之间不等。等级不同,嵌入式系统开发工程师的年薪相差很大,初级的嵌入式系统开发工程师一般年薪范围在5万-10万之间,中级的嵌入式系统开发工程师的年薪在10万-20万之间,高级的嵌入式系统开发工程师的年薪在20万-30万之间;具有10年以上工作经验的高级嵌入式系统开发工程师年薪会更高;地域不同,嵌入式系统开发工程师的年薪差距也很大,从全国的薪酬水平来看,上海地区的嵌入式系统开发工程师年薪最高,北京、深圳次之,年薪在10万-30万之间不等,其余地区则低于这个水平。 职业发展路径: 移动通信行业是嵌入式软件最重要的应用领域之一。在3G时代,手机、数字电视、信息家电、网络电话、汽车电子、医疗电子等都是嵌入式软件的重要应用领域。市场上需要的嵌入式人才必须具备C语言编程经验、嵌入式操作系统(主要包括嵌入式Linux、WinCE或Symbian)经验、内核裁剪经验、驱动程序开发经验。高级嵌入式软件开发工程师相关职位要求是:有丰富的嵌入式多任务软件系统分析和设计能力,能独立完成项目系统方案,解决系统故障和问题、精通C 语言应用开发,有良好的编程习惯和风格、良好的文档编写能力和习惯、熟悉项目管理流程。良好的英文阅读能力及较强的学习能力是从事这一领域工作的基础。对嵌入式操作系统做到一专而多能(精通嵌入式Linux,掌握WinCE及Symbian)更会使求职者身价倍增。 嵌入式软件开发工程师 嵌入式硬件开发工程师→产品研发经理 IT项目经理

相关文档
相关文档 最新文档