文档库 最新最全的文档下载
当前位置:文档库 › 高强钢组合K型偏心支撑框架耗能梁段长度研究

高强钢组合K型偏心支撑框架耗能梁段长度研究

第46卷 第2期 西安建筑科技大学学报(自然科学版) V ol.46 No.2 2014年4月 J. Xi'an Univ. of Arch. & Tech. (Natural Science Edition) Apr. 2014 高强钢组合K 型偏心支撑框架耗能梁段长度研究

连 鸣1,苏明周1,2,郭 艳1

(1. 西安建筑科技大学土木工程学院,陕西 西安 710055;2. 西部建筑科技国家重点实验室(筹),陕西 西安 710055) 摘要:建立了多个耗能梁段长度不同的高强钢组合K 型偏心支撑框架有限元模型,对其滞回性能进行了非线性数值分析,研究了耗能梁段长度对高强钢组合K 型偏心支撑框架承载力、强度退化、刚度退化、延性和耗能能力的影响规律.结果表明:耗能梁段长度不同,相应的高强钢组合K 型偏心支撑框架抗震性能差异较大.最后,结合承载力、强度、刚度、延性及耗能能力,给出了高强钢组合K 型偏心支撑框架相关设计建议,为工程设计提供参考.

关键词:高强钢;偏心支撑;耗能梁段;有限元; 滞回性能

中图分类号:TU392.5 文献标志码:A 文章编号:1006-7930(2014)02-0217-07

近几年,钢结构随着越来越多的大跨度、大空间和超高层建筑结构和桥梁结构的出现而不断发展,钢材的生产工艺和配套焊接材料和焊接技术也日渐成熟,从而使高强度钢材得以应用于建筑结构[1].偏心支撑框架兼有中心支撑框架的刚度和纯框架的延性,其通过耗能梁段的塑性变形耗散地震能量,是一种性能优良的抗震结构体系[2-4].

高强钢组合 K 型偏心支撑框架结合了偏心支撑结构优良的抗震性能和高强钢强度高、节约材料的优点,其耗能梁段和支撑采用屈服强度较低的钢材(如Q345钢),保证结构在地震下作用下具有良好的塑性变形和耗能能力,其他构件采用高强度的钢材(如Q460、Q690钢)以节约材料从而降低造价.目前仅罗马尼亚大学的Dubina 和Stratan 等进行了4 个耗能梁段螺栓连接的单层单跨高强钢组合K 型偏心支撑框架试件的拟静力试验研究[5].

高强钢组合K 型偏心支撑框架通过耗能梁段的塑性变形耗散地震能量,因此耗能梁段的性能决定了该结构的抗震性能,而耗能梁段的长度则直接影响其受力性能.已有研究成果表明[6],耗能梁段为剪切屈服型的偏心支撑框架性能优于弯曲屈服型偏心支撑框架,因此,本文采用有限元软件ABAQUS6.10对多个不同耗能梁段长度的剪切屈服型高强钢组合K 型偏心支撑框架(耗能梁段及支撑采用Q345钢,其他构件采用Q460钢)模型的滞回性能进行非线性数值分析,研究耗能梁段长度对结构承载力、强度退化、刚度退化、延性和耗能的影响规律,并给出相关设计建议,为工程设计提供参考.

1 有限元模型及验证

设计6个耗能梁段长度不同的单层单跨足尺模型,

耗能梁段和支撑采用Q345钢,其余构件采用Q460钢,

层高均为3.6 m ,跨度均为7.2 m ,梁、柱、支撑尺寸分

别为H420 mm×300 mm×14 mm×25 mm 、H390 mm×390

mm×18 mm×30 mm 、H250 mm×250 mm×14 mm×20

mm .模型尺寸如图1所示,模型编号及耗能梁段长度

见表1.

表1 模型编号及耗能梁段长度

Tab.1 Number of FE models and link length

模型编号 K1 K2 K3 K4 K5 K6 耗能梁段长度/mm 600 800 1 000 1 200 1 400 1 600

收稿日期:2013-11-08 修改稿日期:2014-04-08

基金项目:国家自然科学基金资助项目(51178382)

作者简介:连鸣(1987-),男,博士研究生,主要从事新型钢结构体系抗震性能研究.

E-mail: lianming0821@https://www.wendangku.net/doc/341655271.html, Fig.1 Geometric sizes of FE model (单位 mm)

内力组合

九 内力组合 本章中单位统一为:弯矩kN?m ,剪力kN ,轴力kN 。 根据前面第四至八章的内力计算结果,即可进行框架各梁柱各控制截面上的内力组合,其中梁的控制截面为梁端柱边及跨中,由于对称性,每层梁取5个控制截面。柱分为边柱和中柱,每根柱有2个控制截面。内力组合使用的控制截面标于下图。 (一)梁内力组合 1.计算过程见下页表中,弯矩以下部受拉为正,剪力以沿截面顺时针为正 注:(1)地震作用效应与重力荷载代表值的组合表达式为: Eh G E 3S .12S .1S += 其中,S GE 为相应于水平地震作用下重力荷载代表值效应的标准值。而重力荷载代表值表达式为: ∑=+=n 1i ik Qi k Q G G ψ G k ——恒荷载标准值; Q ik ——第i 个可变荷载标准值; ΨQi ——第i 个可变荷载的组合之系数,屋面活荷载不计入,雪荷载和楼面活荷载均为0.5。 考虑到地震有左震和右震两种情况,而在前面第八章计算地震作用内力时计算的是左震作用时的内力,则在下表中有 1.2(①+0.5②)+1.3⑤和1.2(①+0.5②)-1.3⑤两列,分别代表左震和右震参与组合。 (2)因为风荷载效应同地震作用效应相比较小,不起控制作用,则在下列组合中风荷载内力未参与,仅考虑分别由恒荷载和活荷载控制的两种组合,即1.35①+1.4×0.7③和1.2①+1.4③两列。 A B C D 12 34 5 22 1 1

梁内力组合计算表

梁内力组合计算表(续)

梁内力组合计算表(续)

2.根据上表计算所得的弯矩值计算V b ,并同上表的结果比较得梁剪力设计值V ,计算过程见下表 计算公式为:G b n r b l b vb b V l /)M M (V ++=η 梁剪力设计值计算表 (二)柱内力组合 1.计算过程见下表,弯矩以顺时针为正,轴力以受压为正 柱内力组合计算表

PKPM软件关于混凝土柱计算长度系数的计算

PKPM软件关于混凝土柱计算长度系数的计算 软件关于混凝土柱计算长度系数的计算 错层结构的计算(一)错层结构的模型输入⑴错层高度不大于框架架高时的错层结构的处理;⑵对于错层高度大于框架梁高的单塔错层结构的输入⑶对于错层高度大于框架梁高的多塔错层结构的输入⑷错层洞口的输入(二)错层结构的计算⑴规范要求⑵错层结构设计中应注意的问题:SATWE软件在计算错层结构时,会在越层的柱和墙处施加水平力。由于在越层处水平力的存在,从而使越层构件上下端的配筋不一样,设计人员在出施工图时可以取二者的大值。(本章可能是讲课人员的提纲,没有具体内容。后面还有相类似的情况,只有标题)第七章PKPM软件关于混凝土柱计算长度系数的计算(一)规范要求⑴《混凝土结构设计规范》(GB 50010-2002)(以下简称《混凝土规范》)第7.3.11条第2款规定:一般多层房屋梁柱为刚接的框架结构,各层柱的计算长度系数可按表7.3.11-2取用。⑵第7.3.11条第3款规定:当水平荷载产生的弯矩设计值占总弯矩设计值的75%以上时,框架柱的计算长度l0可按下列两个公式计算,并取其中的较小值:l0=[l+0.15(u+l)]H (7.3.11-1)l0=(2十0.2min)H (7.3.11-2)式中:u、l 柱的上端、下端节点处交汇的各柱线刚度之和与交汇的各梁线刚度之和的比值;min比值u、l中的较小值;H柱的高度,按表7.3.11-2的注采用。(二)工程算例⑴工程概况:某工程为十层框架错层结构,首层层高2m,第二层层高4.5m。其第一、二层结构平面图、结构三维轴侧图如图1所示。(图略)(三)SATWE软件的计算结果⑴计算结果

柱钢筋计算公式

抗震框架柱计算公式 一、基本参数: 1、柱净高hn Hn:柱净高=本层层高-梁高 底层柱净高=底层层高+基础顶至嵌固部位高度-梁高 2、连接长度: 机械连接: 短筋:0 长筋:35d 焊接 短筋:0 长筋:Max(35d,500) 柱纵筋中长筋和短筋各50%。 3、非链接区长度: 底部非连接区 嵌固部位高度=Hn/3 (注:首层必为嵌固部位,看标注。) 非嵌固部位高度=max(Hn/6,Hc,500) (二层及以上柱根部位) 顶部非连接区 高度=梁高+max(Hn/6,Hc,500) Hc=柱长边尺寸 非连接区箍筋加密,箍筋起步:50mm 二、基础插筋 长度=弯折长度+纵筋插入长度+底部非连接区长度+连接长度 弯折长度取值: 1、Hj>laE(la) 弯折长度=Max(150,6d) 2、Hj<=laE(la) 弯折长度=15d Hj为基础高度,LaE=38d 纵筋插入长度=基础高度Hj-基础保护层 基础内箍筋(简单的2肢箍,矩形封闭箍筋,非复合箍筋) 基础内箍筋的作用仅起一个稳固作用,也可以说是防止钢筋在浇注时受到挠动。一般是按2 根进行计算(软件中是按三根)。箍筋基础顶面下起步:100mm 三、首层柱纵筋 纵筋长度=首层层高-首层非连接区Hn/3+max(Hn/6,hc,500)+连接长度 四、中间层柱纵筋 纵筋长度=中间层层高-当前层非连接区+(当前层+1)非连接区+连接长度 非连接区=max(1/6Hn、500、Hc) Hc=柱长边尺寸 五、顶层柱纵筋 顶层KZ 因其所处位置不同,分为角柱、边柱和中柱,各种柱纵筋的顶层锚固各不相同。 1、中柱 中柱顶层纵筋的锚固长度为 弯锚(≦Lae):梁高-保护层+12d 直锚(≧Lae):梁高-保护层 中柱纵筋长度=层高-梁高-非搭接区长度+锚固长度-连接长度 2、边柱、角柱

第六章 框架内力组合

第六部分 框架内力组合 一. 框架梁内力组合见横向框架KJ-2内力组合表 对于框架梁,在水平荷载和竖向荷载的共同作用下,其剪力沿梁轴线呈线性变化,因此,除取梁的两端为控制截面外,还应在跨间取最大正弯矩的截面为控制截面。 对于框架梁的最不利内力组合有: 对梁端截面:max M +、max M -、m ax V 对梁跨间截面:max M +、max M - 荷载规范3.2.5基本组合的荷载分项系数,应按下列规定采用: 1.永久荷载的分项系数: (1) 当其效应对结构不利时, 对由可变荷载效应控制的组合,应取1.2; 对由永久荷载效应控制的组合,应取1.35. (2) 当其效应对结构有利时, 一般情况下应取1.0; 对结构倾覆、滑移和漂浮验算,应取0.9 2.可变荷载的分项系数 一般情况下应取1.4 对标准值大于4KN/m 2 的工业房屋楼面结构的活荷载应取1.3 荷载规范5.4.1结构构件的地震作用效应和其它荷载效应的基本组合,应按下式计算:S=WK W W EVK EV EhK EH GE G S S S S γψγ γ γ+++ 式中S ——结构构件内力组合的设计值,包括组合的弯矩、轴向力和剪力设计值; G γ——重力荷载分项系数,一般情况应采用1.2,当重力荷载效应对构件 承载能力有利是,不应大于1.0; Eh γ、Ev γ——分别为水平、竖向地震作用分项系数,应按表6―1采用; w γ——风荷载分项系数,应采用1.4; GE S ——重力荷载代表值的效应, 有吊车时,尚应包括悬吊物重力标准值的效应; EhK S ——水平地震作用标准值的效应,尚应乘以相应的增大系数或调整系数; EvK S ——竖向地震作用标准值的效应,尚应乘以相应的增大系数或调整系数; wK S ——风荷载标准值的效应; w ψ——风荷载组合值系数,一般结构取0.0,风荷载起控制作用的高层建筑应采用0.2

钢结构框架柱计算长度系数说明

钢结构框架柱计算长度系数说明 很多用户对于STS框架柱的计算长度系数计算都存有疑问,尤其是在框架柱存在跃层柱的时候,有的时候会觉得得软件得出的计算长度系数偏大,或者不准确。下面我通过一个用户的模型,来详细的讲解一下计算长度系数的问题。 1 跃层柱计算长度系数显示的问题 首先我们需要了解一下软件对于跃层柱计算长度系数显示结果的问题 用户模型如下: 选取其中一根柱子,看一下软件(satwe)对于计算长度系数输出:

绕构件X轴的计算长度系数两层分别是和,因为分了标准层,所以输出了两个计算长度系数,但如果我么手算的话,肯定是按照一个柱子来求计算长度系数,那么现在软件输出的计算长度系数,和我们手算的到底有什么区别呢 我们可以利用二维门式钢架计算验证一下,抽取这个立面,形成PK文件,二维门刚计算的计算长度系数如下:

二维门刚是按照一整根柱子求出了一个计算长度系数 计算长度系数主要涉及到构件长细比的计算,截面是确定的,那我们来看计算长度:Satwe计算结果: 下段柱计算长度=*米(层高)=米 上段柱计算长度=*米(层高)=米 二维门刚计算结果: *(+)=米 结论:从上面的计算可以得知,satwe对于跃层柱的计算长度系数,是按照一整根柱来得到的,但是输出的时候是分层输出的,所以对于求得的计算长度系数按照层高做了处理,但是结果是一样的,这个我么在后面可以手算验证。 2 如何核对计算长度系数 Satwe对于构件的的计算长度系数的计算是按照《钢规》附录D来计算的,很多用户对软件的计算长度系数存在疑问,但是通过我们的核对,绝大多数的情况,软件还是严格按照规范来计算的,但是对于一些连接情况特别复杂的情况,规范也没有特别说明的的情况,软件也会出现一定的问题,那么我们该怎样核对构件的计算长度系数呢 第一个方法,就是我们上面用到的,抽一榀,用我们的二维门刚来验证。这样的计算结果比较简洁,直观,分别看两个方向的计算长度系数,然后和satwe的计算结果对比。

第六章框架内力组合

框架内力组合 一. 框架梁内力组合见横向框架KJ-2内力组合表 对于框架梁,在水平荷载和竖向荷载的共同作用下,其剪力沿梁轴线呈线性变化,因此,除取梁的两端为控制截面外,还应在跨间取最大正弯矩的截面为控制截面。 对于框架梁的最不利内力组合有: 对梁端截面:m ax M +、 m ax M -、 m ax V 对梁跨间截面:m ax M +、 m ax M - 荷载规范3.2.5基本组合的荷载分项系数,应按下列规定采用: 1.永久荷载的分项系数: (1) 当其效应对结构不利时, 对由可变荷载效应控制的组合,应取1.2; 对由永久荷载效应控制的组合,应取1.35. (2) 当其效应对结构有利时, 一般情况下应取1.0; 对结构倾覆、滑移和漂浮验算,应取0.9 2.可变荷载的分项系数 一般情况下应取1.4 对标准值大于4KN/m 2 的工业房屋楼面结构的活荷载应取1.3 抗震规范5.4.1结构构件的地震作用效应和其它荷载效应的基本组合,应按下式计算:S=W K W W EVK EV EhK EH GE G S S S S γ ψ γ γ γ +++ 式中S ——结构构件内力组合的设计值,包括组合的弯矩、轴向力和剪力设计值; G γ——重力荷载分项系数,一般情况应采用1.2,当重力荷载效应对构件 承载能力有利是,不应大于1.0; Eh γ 、Ev γ——分别为水平、竖向地震作用分项系数,应按表1采用; w γ——风荷载分项系数,应采用1.4; GE S ——重力荷载代表值的效应,有吊车时,尚应包括悬吊物重力标准值的效应; EhK S ——水平地震作用标准值的效应,尚应乘以相应的增大系数或调整系数; EvK S ——竖向地震作用标准值的效应,尚应乘以相应的增大系数或调整系数; wK S ——风荷载标准值的效应; w ψ——风荷载组合值系数,一般结构取0.0,风荷载起控制作用的高层建筑 应采用0.2

下柱的计算长度,规范

竭诚为您提供优质文档/双击可除下柱的计算长度,规范 篇一:柱的计算长度系数 柱的计算长度:程序中增加了一个选项“柱长度系数按混凝土土规范的7.3.11-3计算。以前老程序是按表7.3.11-1和表7.3.11-2采用的。7.3.11-3条是新规范新增的。“当水平荷载产生的弯矩设计值占总弯矩设计值的75%以上时,框架柱的计算长度lo可按公式7.3.11-1和公式7.3.11-2计算结果的较小者取值。 这是因为近年来对框架结构二阶效应的研究表明,竖向荷载在有侧移的框架中引起的p-△效应只增大有水平荷载 在柱端截面中引起的弯矩mh,而原则上不增大由竖向荷载引起的弯矩mv。因此,框架柱柱端考虑二阶效应后的总弯矩应是: m=mh+ηs*mv(1-1) 式中ηs为反映二阶效应增大mh幅度的弯矩增大系数。但在传统的η——lo法中,是用η同时增大mv和mh的,即:m=η(mh+mv)(1-2) 因此,如果要使所求的总弯矩相等,那么必然有:

ηs>η 与ηs相应的lo也就必然比与η相应的lo取得大一点。 对于一般工程中的多层框架结构,(在mv/mh为常见比例,即>1/3,框架节点的柱梁线刚度的比例也为常见值时)按规范表7.3.11-2的lo计算出的η再按1-2公式计算出的弯矩和按规范7.2.11-3条计算出的lo在按公式1-1算出的弯矩,两者差异不大。所以在一般多层框架,没有特殊的水平荷载和特殊的框架节点情况下,采用7.2.11-2和7.2.11-3计算的lo对计算结果没有大的影响。 但是,对于mv/mh 本来规范采用η——lo法就是不尽和理的,因此规范就在7.3.12条要求采用刚度折减法,这种方法也是国外通行的考虑二阶效应的计算方法,且也是准确的较为合理的计算方法,但遗憾的是这种方法在pkpm 程序中还没有得到实现。 篇二:柱计算长度系数 (一)规范要求 ⑴《混凝土结构设计规范》(gb50010-20xx)(以下简称《混凝土规范》)第7.3.11条 第2款规定:一般多层房屋梁柱为刚接的框架结构,各层柱的计算长度系数可按表7.3.11-2取用。 ⑵第7.3.11条第3款规定:当水平荷载产生的弯矩设计值占总弯矩设计值的75%以上时,框架柱的计算长度l0

内力组合表

表4.1横向框架A柱弯矩和轴力组合表横向框架A柱弯矩和轴力组合表 层次截面位置内力SGk SQk Swk 1.2SGk+1.4(SQk+Swk) 1.35SGk +SQk 1.2SGk +1.4SQk ∣Mmax∣ 与相应N Nmin与 相应的M Nmax与 相应的M →← 5 柱顶 M 133.9435.60 2.04 2.04208.15203.01216.42210.57216.42203.01216.42 N 261.3855.450.420.42384.05382.99408.31391.29408.31382.99408.31柱底 M 74.2424.300.590.59120.45118.96124.52123.11124.52118.96124.52 N 293.7855.450.420.42422.93421.87452.05430.17452.05421.87452.05 4 柱顶 M 38.7918.10 3.73 3.7374.0564.6570.4771.8974.0564.6570.47 N 478.27111.60 1.86 1.86716.88712.20757.26730.16716.88712.20757.26柱底 M 53.2620.63 1.79 1.7992.1687.6592.5392.7992.7987.6592.53 N 510.67111.60 1.86 1.86755.76751.08801.00769.04769.04751.08801.00 3 柱顶 M 53.2620.63 5.04 5.0496.2683.5692.5392.7996.2683.5692.53 N 694.70167.64 4.06 4.061049.981039.751105.491068.341049.981039.751105.49柱底 M 49.9319.34 3.36 3.3688.5280.0586.7586.9988.5280.0586.75 N 727.10167.64 4.06 4.061087.811078.631149.231107.221087.811078.631149.23 2 柱顶 M 58.0922.51 5.36 5.36104.8291.32100.93101.22104.8291.3291.32 N 911.28223.74 6.96 6.961384.221366.681453.971406.771384.221366.681366.68

框架梁内力调整例题

框架梁内力组合例题 某跨AB ,q 1=1.2恒=19.89kN/m ,q 2=1.2(恒+0.5活)=18.576 kN/m A B q 2 1、活载的内力是在屋面取雪载的情况下计算出来的。 2、为便于施工(钢筋不要太密)及考虑框架梁端塑性变形内力重分布,通常对竖向荷载作用下的梁端负弯矩进行调幅,调幅系数可取0.8~0.9。上表中恒载和活载两列中的弯矩为经过调幅的弯矩,即内力图中的弯矩乘0.85。 3、弯矩以梁上侧受拉为负。 一、支座A 用来配筋的弯矩的选取和弯矩值调整: ①A 支座负弯矩最大值为-390.12,将这个支座中心处的弯矩换算为支座边缘控制截面的弯矩: 54.305425.003.19912.390-=?+-=A M 其中199.03为上表中的剪力值,0.425=2 55.07.0-为边支座中心与支座边的距离 ②将弯矩值乘承载力抗震调整系数RE γ,梁取0.75(抗规5.4.2) 54.30575.0?=A RE M γ=229.16(229.16为配筋所使用的弯矩值) 关于RE γ的说明:在进行抗震验算时,采用的材料承载力设计值并不是材料在地

震作用下的承载力设计值,而是各规范规定的材料承载力,材料抗震承载力要比各规范规定的材料承载力高,故需要以承载力抗震调整系数来考虑,考虑抗震承载力调整系数还有经济性方面的考虑。 二、支座B 用来配筋的弯矩的选取和弯矩值调整: ①B 支座负弯矩最大值为-350.337,将这个支座中心处的弯矩换算为支座边缘控制截面的弯矩 18.28027.045.200337.350-=?+-=B M ,其中2 7.0为中柱边长的一半 ②B RE M γ 三、求跨间最大正弯矩 将下面的图用求解器计算,求跨间最大正弯矩。 ①1.2(恒载+0.5活载)+1.3左震 350.337 260.74 q 2 q 1=1.2恒=19.89kN/m ,q 2=1.2(恒+0.5活)=18.576 kN/m ②1.2(恒载+0.5活载)+1.3右震 ③1.0(恒载+0.5活载)+1.3左震 q 1=1.0恒,q 2 =1.0(恒+0.5活) ④1.0(恒载+0.5活载)+1.3右震 q 2 226.07 上面四种情况中求出的跨间最大正弯矩中的最大值乘承载力抗震调整系数RE γ即用来配筋的弯矩。 也有可能跨间最大正弯矩出现在第二种组合的支座弯矩中。比如左震时为271.519,右震时为226.07,取左震的271.519。 四、剪力计算:

问题讨论6:柱的计算长度问题

问题讨论6 柱的计算长度问题 柱的计算长度问题,需要分两个方面讨论。一是钢筋混凝土结构柱的计算长度,二是钢结构柱的计算长度。 1.钢筋混凝土结构柱的计算长度 1.1.单层排架结构柱的计算长度 1.1.1.无吊车房屋柱 这种情况相对简单,计算长度按照《混凝土结构设计规范》(GB 50010—2002)表7.3.11—1直接取用即可。但应注意,在SATWE程序中的隐含值是以多高层框架的规定为准,与单层房屋的规定不同。应用时应根据实际要求对柱计算长度系数进行修改。 1.1. 2.有桥式吊车的房屋柱 1.1. 2.1.考虑吊车作用计算 计算长度应按照《混凝土结构设计规范》(GB 50010—2002)表7.3.11—1取用。使用SATWE程序时,应根据有吊车的要求对柱计算长度系数进行修改。1.1.2.2.不考虑吊车作用计算 在有桥式吊车的房屋中,吊车在房屋中的位置并不固定。因此,内力计算应该包括没有吊车作用时的计算。在一般程序的内力分析中,有吊车作用时的内力可以完全涵盖无吊车作用时的内力。但是,无吊车时柱的计算长度一般要大于有吊车时的计算长度。如果吊车吨位不大,柱配筋很可能是无吊车时起控制作用。 不考虑吊车作用时,柱计算长度系数的修改原则: 在SATWE程序中,柱的计算长度实际上隐含的是现浇楼盖多层框架柱的计算规则:底层柱 1.0H,其余各层柱 1.25H。在吊车梁处如果主跨方向有横梁联系,则该方向的计算长度就是隐含值,否则应按越层柱考虑确定柱的计算长度。越层柱计算长度的计算规则见第1.3节。需注意,对于单跨的无吊车房屋柱,规范规定的计算长度是1.5H,不要误认为是1.25H。 1.1. 2. 3.有桥式吊车的房屋柱使用SATWE程序时的解决方案:宜分两次计算。先考虑有吊车的作用,注意应按有吊车的要求对柱计算长度系数进行修改后计算。再考虑无吊车的作用,注意应按无吊车的要求对柱计算长度系数进行修改后计算。两次计算中,以配筋大者作为设计的依据。 1.2.多层框架柱的计算长度 1.2.1.多层框架柱的计算长度应按照《混凝土结构设计规范》(GB 50010—2002)表7.3.11—2取用。 1.2.2.《混凝土结构设计规范》(GB 50010—2002)中7.3.11条第二项中规定,“当水平荷载产生的弯矩设计值占总弯矩设计值的75%以上时”,框架柱的计算长度另有计算公式。规范的条文说明对此已有解释,按照框架结构二阶效应规律的分析,此时直接采用表7.3.11—2中的计算长度是偏于不安全的。因此,采用SATWE程序计算时,可在设计信息中选取“混凝土柱的计算长度系数计算执行混凝土规范7.3.11—3条”选项,这样做偏于安全。当然,如果在非地震区,风荷载产生的柱弯矩不大时,没有必要用此选项。在框架剪力墙结构中,即使在地震区,由于剪力墙的作用使框架的侧向位移相对较小,此时框架柱的二阶效应介

构件的计算长度和容许长细比

5.3 构件的计算长度和容许长细比 5.3.1 确定桁架弦杆和单系腹杆(用节点板与弦杆连接)的长细比时,其计算长度应按表5.3.1 采用 表5.3.1 ※注: 1 为构件的几何长度(节点中心间距离);为桁架弦杆侧向支承点之间的距离。 2 斜平面系指与桁架平面斜交的平面,适用于构件截面两主轴均不在桁架平面内单角钢腹杆和双角钢十字形截面腹 杆。 3 无节点板的腹杆计算长度在任意平面内均取其等于几何长度(钢管结构除外) 当桁架弦杆侧向支承点之间的距离为节间长度的 2 倍(图5.3.1 )且两节间的弦杆轴心压力不相同时,则该弦杆在桁架平面外的计算长度,应按下式确定(但不应小于0.5 ): (5.3.1) 式中:较大的压力,计算时取正值;

:较小的压力或拉力,计算时压力取正值,拉力取负值。 桁架再分式腹杆体系的受压主斜杆及 K 形腹杆体系的竖杆等,在桁架平面外的计算长度也应按公式 ( 5.3.1 )确定(受拉主斜杆仍取 );在桁架平面内的计算长度则取节点中心间距离。 5.3.2 确定在交叉点相互连接的桁架交叉腹杆的长细比时, 在桁架平面内的计算长度应取节点中心到交叉点 间的距离;在桁架平面外的计算长度,当两交叉杆长度相等时,应按下列规定采用: 1 压杆 相交另一杆受拉,此拉杆在交叉点中断但以节点板搭接,则: 当此拉杆连续而压杆在交叉点中断但以节点板搭接, 度 时,取 式中 1) 相交另一杆受压, 两杆截面相同并在交叉点均不中断,则: 2) 相交另一杆受压, 此另一杆在交叉点中断但以节点板搭接,则: 3) 相交另一杆受拉, 两杆截面相同并在交叉点均不中断,则: 4) 若 或拉杆在桁架平面外的抗弯刚

2.9框架梁柱内力组合

广州大学土木工程学院(毕业设计)学士学位论文 2.9框架梁柱内力组合 (1)(永久荷载和可变荷载均相同) 考虑竖向荷载作用下梁端出现塑性铰,产生塑性内力重分布。因此对梁端支座负弯矩乘以调辐系数予以降低,本结构为全现浇框架结构,调幅系数取0.85。而为了将调低的弯矩加到跨中中去,跨中弯矩乘以1.2增大系数。梁端弯矩计算及内力调整结果见表 表1竖向永久荷载作用下的AB跨梁内力调整 表2竖向永久荷载作用下的BC跨梁内力调整

2 上部结构设计 表3竖向永久荷载作用下的CD跨梁内力调整 表4竖向可变荷载作用下的AB跨梁内力调整 表5竖向可变荷载作用下的BC跨梁内力调整

广州大学土木工程学院(毕业设计)学士学位论文 表6竖向可变荷载作用下的CD 跨梁内力调整 (2)组合类型: 根据《高层建筑混凝土结构技术规程》(JGJ3-2002)式(5.6.1)及式(5.6.3) 规定,当无地震作用效应组合时,荷载效应组合的设计值应按下式确定: wk w w Q k Q Q G k G S S S S γψγψγ++=; 当有地震效应组合时,荷载效应和地震作用效应组合的设计值应按下式确定: wk w w Evk Ev Ehk Eh G E G S S S S S γψγγγ+++=。根据(JGJ3-2002)所规定的系数取值,最后确定内力组合类型为以下四类: 1.1.35永久+1.4×0. 7可变 2.1.2×永久+1.4×可变 3.1.2×永久+1.4×0.9(可变+风) 4.1.2(永久+可变)+1.3地震 (3)框架梁的内力组合: ① 框架梁的内力组合具体见表7。 ②框架柱的内力组合具体见表7~12。

钢筋混凝土框架柱计算长度设计方法研究

第28卷第1期2002年2月湖南农业大学学报(自然科学版) Journal of Hunan Agricultural University (Natural Sciences )Vol.28No.1Feb.2002 收稿日期:2001210229 作者简介:仇一颗,女,汉族,湖南汨罗人,硕士,湖南大学讲师. 文章编号:100721032(2002)0120067204钢筋混凝土框架柱计算长度设计方法研究 仇一颗,易伟建,袁贤讯 (湖南大学土木工程学院,湖南长沙 410082) 摘 要:首先采用直接由材料本构关系形成单元M 2N 2 Φ本构矩阵的方法推导出钢筋混凝土构件的单元刚度矩阵,编制了可以同时考虑材料和几何双重非线性影响的有限元程序,与独立柱和框架柱的试验结果相比,计算结果吻合较好;然后,采用该分析程序对一榀二跨七层的规则框架算例进行分析,计算了各柱单元控制截面的二阶弯矩,并分析了二阶弯矩随各影响因素的变化规律;最后,以现行设计规范中标准柱偏心距增大系数的原型公式在本研究程序条件下的修正公式为基点,分析了所选算例各柱单元的计算长度随各影响因素的变化规律.关 键 词:钢筋混凝土;框架柱;计算长度;二阶效应;几何非线性;材料非线性中图分类号:S511.048 文献标识码:A Study on Effective Length Design Methods of RC Frame Columns QI U Y i 2ke ,Y I Wei 2jian ,Y UAN X ian 2xun (College of Civil Engineering ,Hunan Univ ,Changsha 410128,PRC ) Abstract :In this paper ,the element stiffness matrixes of RC members were firstly derived ,utilizing the M 2N 2 Φrelations of elements formed directly from physical properties of material.Thus a computer program was developed ,in which the influence of material non 2linearity and geometric non 2linearity were comprehensively taken into account.The results calculated by this program were found to be in good agreement with the experimental results of columns and frames.Thereafter ,the nonlinear ana 2lytical computer program was used to analyze the varying laws of second order moment with respect to different influential factors in critical sections of columns in the example of seven 2story two 2bay RC frame.Based on the amendatory formula of the magnification coefficient for the eccentricity of stan 2dard column (hinged end column with equal end eccentricities )specified in the design code (G BJ 10—89),appropriate formula and varying laws of the effective length of column members in the analyzed example frames with the influential factors have been investigated. Key words :reinforced concrete ;frame column ;effective length ;second 2order effects ;material non 2lin 2earity ;geometric non 2linearity 《混凝土结构设计规范标准(G BJ10—89)》对柱子计算长度取值的规定可追溯到弹性稳定理论[1],对这个取值,很多学者持有异议[2~4]:框架柱计算长度不仅概念模糊,而且取值也不合理.概念上,计算长度l 0最初来源于弹性轴心受压柱的第一类稳定问题;数值上,它表示一根具有某种端约束条件且长度为l 的压 杆,其临界荷载与长度为l 0的两端铰支轴心压杆的临界荷载相同.而钢筋混凝土框架柱属于压弯构件,它在实际工作过程中表现出明显的非弹性特征和二阶效应.现行规范在计算框架柱二阶弯矩(实际上是 计算偏心距增大系数η )时,仍然沿用轴压柱的计算长度,这种做法概念上是否合理,据此设计的结构是 否安全经济,值得进一步的探讨.针对上述问题,现建立能较好地预测钢筋混凝土框架静力性能的非线性分析方法,编制相应的计算机程序,并用编制的非线性程序计算标准柱的偏心距增大系数,与规范公式计

内力组合,配筋

一、一般规定 1、两端负弯矩调幅 当考虑结构塑性内力重分布的有利影响,应在内力组合之前对竖向荷载作用下的内力进行调幅(本设计梁端负弯矩调幅系数取),水平 荷载作用下的弯矩不能调幅。 2、控制截面 框架梁的控制截面通常是梁端支座截面和跨中截面。在竖向荷载作用下,支座截面可能长生最大负弯矩和最大剪力;在水平荷载作用 下,支座截面还会出现正弯矩。跨中截面一般产生最大正弯矩,有时 也可能出现负弯矩。框架梁的控制截面最不利内力组合有一下几种:梁跨中截面:+Mmax及相应的V(正截面设计),有时需组合-M。 梁支座截面:-Mmax及相应的V(正截面设计),Vmax及相应的M (斜截面设计),有时需组合+Mmax。 框架柱的控制截面通常是柱上、下梁端截面。柱的剪力和轴力在同一层柱内变化很小,甚至没有变化,而柱的梁端弯矩最大。同一端 柱截面在不同内力组合时,有可能出现正弯矩或负弯矩,考虑到框架 柱一般采用对称配筋,组合时只需选择绝对值最大的弯矩。框架柱的 控制截面最不利内力组合有以下几种: 柱截面:|Mmax|及相应的N、V; Nmax及相应的M、V; Nmin及相应的M、V; Vmax及相应的M、N; |M|比较大(不是绝对最大),但N比较小或N比较大(不是绝对最小或绝对最大)。 3、内力换算 梁支座边缘处的内力值:=M-V =V-q 4、荷载效应组合的种类 (1)非抗震设计时的基本组合 以永久荷载效应控制的组合:×恒载+××活载=×恒载+×活载; 以可变荷载效应控制的组合:×恒载+×活载; 考虑恒载、活载和风载组合时,采用简化规则:×恒载+××(活载+风载)。 (2)地震作用效应和其他荷载效应的基本组合。 考虑重力荷载代表值、风载和水平地震组合(对一般结构,风载组 合系数为0):×重力荷载+×水平地震。 (3)荷载效应的标准组合 荷载效应的标准组合:×恒载+×活载。 二、框架梁内力组合 选择第四层BF框架梁为例进行内力组合,考虑恒载、活载、重力荷载代表值、风荷载和水平地震作用五种荷载。 1、内力换算和梁端负弯矩调幅根据式:

10框架柱的配筋计算10教程

框架柱的配筋计算 选取第一层柱进行计算和配筋: 1.柱的正截面承载力计算 柱的配筋采用对称式(以利于不同方向的地震作用),为便于施工,柱子纵向钢筋绑扎接头,应避开箍筋加密区。搭接、锚固及截断见混凝土结构施工整体平面整体表示方法制图规则和构造详图,03G101—1。 柱截面尺寸为550550mm mm ?,'35s s a a mm ==,055035515h mm =-=。 (1)确定钢筋和混凝土的材料强度及几何参数 采用30C 混凝土,2300/y f N mm =,214.3/c f N mm =,采用335HRB 级钢筋, '2300/y y f f N mm ==,21.43/t f N mm =,1 1.0α=,0.55b ξ=。 a. A 轴线外柱 查柱组合表可以知道A 轴线外柱 max 129.72M KN m =?,max 1322.85N KN =。 (2)判断大小偏心受压 0.50.514.35505502162.88b c N f A KN ==???= 0.52162.88 1.64 1.01322.851322.85 b c N f A N ===>,截面破坏时为大偏心受压破坏。 原始偏心距 3 0129.7210981322.85 M e mm N ?=== 附加偏心距 550 18.32030 30 a h e mm ===<,取20a e mm = 初始偏心距 i 09820118a e e e mm =+=+= 1max max 0.52162.88 1.64 1.0132 2.85 b c N f A N N ξ= ===>,取1 1.0ξ= 0 2 1.150.01 1.150.01 6.0 1.09 1.0l h ξ=-=-?=>,取2 1.0ξ= 底层框架柱的计算长度为 00 1.03300 33006.05550 l H l h == ==>所以需要考虑偏心距增大系数220120 1 11()1 6.0 1.0 1.0 1.11118 14001400515i l e h h ηξξ=+ =+???=?? /2 1.11118550/235370.98i s e e h a mm η=+-=?+-= (3)求s A 和's A

框架内力组合

第六章 横向框架内力组合 6.1 横向框架内力组合 组合时应取弯矩调幅后的值,按规范要求,组合应分为无地震作用和有地震作用的组合。 6.1.1 无地震作用组合(不考虑风荷载) 由可变荷载控制的组合: QK Q GK G S S S γγ+= (6-1) 由永久荷载控制的组合: ∑=+=n i QiK ci Qi GK G S S S 1 ?γγ (6-2) 式中:S —荷载效应组合的设计值 G γ—永久荷载分项系数,由可变荷载效应控制的组合应取1.2;由永久荷载效应控制的组合应取1.35 Qi γ—可变荷载分项系数,非工业房屋楼面结构取1.4 GK S —永久荷载效应标准值 QiK S —楼面活荷载效应标准值 ci ?—可变荷载的组合值系数;一般情况取0.7 由上可得:由可变荷载控制的组合: QK GK S S 4.12.1+ 由永久荷载控制的组合: QK GK QK GK S S S S 0.135.17.04.135.1+=?+ 6.1.2 有地震作用组合 有地震作用效应组合时,荷载效应和地震作用效应组合的设计值按下式进行:(不考虑竖向地震作用) EhK Eh GE G S S S γγ+= (6-3) 式中:S —荷载效应组合和地震效应组合的设计值 G γ—重力荷载分项系数,取1.2 Eh γ—地震作用分项系数,取1.3

GE S —重力荷载代表值,应为(恒载+0.5×活载)作用下的荷载效应值 EhK S —水平地震作用标准值,尚应乘以相应的增大系数或调整系数 结构构件承载力设计值: S R RE ?=γ (6-4) 式中:RE γ—承载力抗震调整系数 表6.1 RE γ取值表 柱左侧受拉为正,右侧受拉为负。 6.2 横向框架梁、柱内力组合表

内力组合

框架梁内力组合 考虑了三种内力组合,wk Gk 4S .12S .1 这种内力组合与考虑地震作用的组合相比一般较小,对结构设计不起控制作用,故不予考虑。对于活荷载作用下的跨中弯矩M 还乘以弯矩调幅系数1.1,再进行内力组合。各层梁的内力组合结果见表。表中Gk S ,Qk S 两列中的梁端弯矩M 为经过调幅后的弯矩(调幅系数取0.9)。 框架柱内力组合 框架柱在恒荷载、活荷载作用下的轴力应包括纵向框架梁、横向框架梁传来的剪力和框架传来的剪力和框架柱自重。 框架梁内力组合表 梁 截面 内力 恒荷载 活荷载 风荷载 1.35恒 +1.4x0.7 活 1.2恒 +1.4活 +1.4x0.6风 1.2恒 +1.4x0.7 活 +1.4风 E2B2 E2B2 M -43.21 -4.45 -1.47 -62.69 -59.32 -58.27 V 37.93 13.32 0.13 64.26 64.27 58.75 跨中 M 92.46 31.59 0.23 155.78 155.37 142.23 B2E2 M -94.17 -15.27 -1.01 -142.09 -135.23 -129.38 V 69.39 15.98 0.19 109.34 105.80 99.19 B2A2 B2A2 M -74.03 -14.60 -0.46 -114.25 -109.66 -103.79 V 51.78 12.34 0.25 82.00 79.62 74.58 跨中 M 16.15 6.74 0.51 28.41 29.24 26.70 A2B2 M -23.99 -5.73 -1.47 -38.00 -38.04 -36.46 V 35.10 9.38 0.08 56.58 55.32 51.42 E1B1 E1B1 M -71.53 -5.41 -6.10 -101.87 -98.53 -99.68 V 90.99 13.39 0.46 135.96 128.32 122.95 跨中 M 137.18 30.88 1.17 215.46 208.83 196.52 B1E1 M -166.57 -15.61 -3.76 -240.17 -224.90 -220.45 V 114.45 15.91 0.75 170.10 160.24 153.98 B1A1 B1A1 M -139.07 -15.08 -2.34 -202.52 -189.96 -184.94 V 96.88 11.03 1.02 141.60 132.55 128.49 跨中 M 63.43 16.10 1.88 101.41 100.24 94.53 A1B1 M -46.24 -6.94 -4.63 -69.23 -69.09 -68.77 V 65.93 8.32 0.39 97.16 91.09 87.82

框架梁内力调整例题

框架梁内力调整例题

框架梁内力组合例题 某跨AB ,q 1=1.2恒=19.89kN/m ,q 2=1.2(恒+0.5活)=18.576 kN/m A B q 2q 11.8m 1.8m 1.8m 恒 活 风 震 A M -48.55 -10.72 35.63± 33.250± V 65.63 12.80 88.21 61.86 B M -50.78 -11.41 79.54 35.217 V 66.65 13.12 88.21± 61.86± 1、活载的内力是在屋面取雪载的情况下计算出来的。 2、为便于施工(钢筋不要太密)及考虑框架梁端塑性变形内力重分布,通常对竖向荷载作用下的梁端负弯矩进行调幅,调幅系数可取0.8~0.9。上表中恒载和活载两列中的弯矩为经过调幅的弯矩,即内力图中的弯矩乘0.85。 3、弯矩以梁上侧受拉为负。 1.2(恒载+0.5活载)+1.3左震 1.2(恒载+0.5活载)+1.3右震 1.0(恒载+0.5活载)+1.3左震 1.0(恒载+0.5活载)+1.3右震 260.74 -390.12 271.519 -379.339 -26.16 199.03 -40.56 184.62 -350.337 214.773 -339.04 226.07 200.45 -24.74 一、 支座A 用来配筋的弯矩的选取和弯矩值调整: ①A 支座负弯矩最大值为-390.12,将这个支座中心处的弯矩换算为支座边缘控制截面的弯矩: 54.305425.003.19912.390-=?+-=A M 其中199.03为上表中的剪力值,0.425=2 55.07.0-为边支座中心与支座边的距离 ②将弯矩值乘承载力抗震调整系数RE γ,梁取0.75(抗规5.4.2) 54.30575.0?=A RE M γ=229.16(229.16为配筋所使用的弯矩值) 关于RE γ的说明:在进行抗震验算时,采用的材料承载力设计值并不是材料在地

对多层框架结构底层柱的计算高度问题的一种讨论

问题讨论3 多层框架结构底层柱的计算高度问题 多层框架结构底层柱的计算高度指的就是,在作结构分析时框架结构计算简图中底层柱的计算高度,它与柱的计算长度l 0不就是一个概念。柱的计算长度l 0在《混凝土结构设计规范》(GB 50010—2002)中,对轴心受压构件指的就是稳定计算的长度,对偏心受压构件指的就是近似考虑二阶效应时的等效标准柱长度;在《钢结构设计规范》(GB 50017—2003)中,指的就是稳定计算的长度。应该指出,影响结构内力分析结果的就是框架结构计算简图中柱的计算高度,但柱计算长度l 0的任何改变均不影响结构内力分析的结果,它只影响最后的柱配筋计算结果。 多层框架结构柱的计算高度,对于除去底层以外的上面几层从力学概念来说本来就是很清楚的,它应该就是上下两层梁的形心轴之间的距离。但就是,梁的截面高度经常高低不等,按此规则确定柱的计算高度会使计算简图变得相当复杂。为了简化,在计算简图习惯上取上下层楼面之间的距离作为计算高度。除去底层柱以外,这样简化的结果误差不大。 底层柱计算高度的历史变迁: 在上个世纪50年代,我国实行“一边倒”政策期间,在建筑结构行业基本上就是以前苏联的规范规定为蓝本进行设计。那时规范中并不存在对多层房屋底层柱计算高度的规定。 在全国范围内,当时的工业厂房主要就是单层厂房,正规的多层工业厂房框架结构主要用于电子系统的厂房,当时基本上由我院设计。向我们提供关键设计经验的主要就是前苏联列宁格勒的设计院(第六或第五设计院,现在记不太准),她们的习惯做法就是底层柱的计算高度为底层层高加1m。主要有两方面的考虑:一就是在多层厂房中底层混凝土地坪从侧向对混凝土柱有较强的约束,再加上土层对基础的约束,由于这种约束,可以近似认为到达一定深度就能将柱瞧成已就是固定端;二就是多层工业厂房与单层工业厂房不同,当时单层工业厂房的柱顶多为铰接,柱的高度就是实际高度,多层工业厂房的框架结构就是刚性节点,底层柱的计算高度应该就是楼层层高扣除梁高的一半。按上述前苏联的计算规则,当梁高为700mm时,实际的底层柱计算高度比从地面算至梁高中点的高度增加了1、35m。应该说,还就是比较合理的数据。 我国的规范对计算简图中底层柱的计算高度从一开始就没有明确的规定,只就是《钢筋混凝土结构设计规范》(TJ 10—74)中,有个提法,在对柱计算长度l 0的规定中采用了柱高度H乘以一个计算长度系数来表达。关于柱高度H,在规范中对于单层工业厂房与多层房屋有两种定义:单层工业厂房中的定义就是,“H——从基础顶面算起的柱子全高”;多层房屋中的定义就是,“H——楼层高度”。可以瞧出,这里的柱高度H只就是一个几何参数,并没有代表计算简图中柱计算高度的含义。因为,对于没有地下室的多层房屋来说在计算简图中底层柱的计算高度,显然应该大于底层的楼层高度而不就是等于底层的楼层高度。 应该历史地指出,那时量大面广的各类单层工业厂房,其基础顶面到室内地坪的距离一般不超过1m,在规范中用“从基础顶面算起的柱子全高”作为计算参数的规定,实际上就是在当时的技术经济条件下用以减少单层工业厂房柱计算长度l 0的规定。 多层厂房底层柱的计算高度采用底层层高加1m,单层厂房柱的计算高度采用基础顶面算起的柱子全高,就这样并行了几十年。我院在80年代初期编制的若

相关文档
相关文档 最新文档