文档库 最新最全的文档下载
当前位置:文档库 › 化工原理实验流程图干燥萃取精馏

化工原理实验流程图干燥萃取精馏

化工原理实验流程图干燥萃取精馏
化工原理实验流程图干燥萃取精馏

干燥

精馏

化工原理实验报告

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 ∑+++=+++f h p u gz We p u gz ρ ρ2222121122 式中: 1Z 、2Z ——各截面间距基准面的距离 (m ) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截面 积求得) (m/s) 1P 、2p ——各截面中心点处的静压力(可由U 型压差计的液位 差可知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 2 22121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图

化工原理试验试题集

化工原理实验试题3 1、干燥实验进行到试样重量不再变化时,此时试样中所含的水分是什么水分?实验过程中除去的又是什么水分?二者与哪些因素有关。 答:当干燥实验进行到试样重量不再变化时,此时试样中所含的水分为该干燥条件下的平衡水分,实验过程中除去的是自由水分。二者与干燥介质的温度,湿度及物料的种类有关。 2、在一实际精馏塔内,已知理论板数为5块,F=1kmol/h,xf=0.5,泡点进料,在某一回流比下得到D =0.2kmol/h,xD=0.9,xW=0.4,现下达生产指标,要求在料液不变及xD 不小于0.9的条件下,增加馏出液产量,有人认为,由于本塔的冷凝器和塔釜能力均较富裕,因此,完全可以采取操作措施,提高馏出物的产量,并有可能达到D =0.56kmol/h ,你认为: (1) 此种说法有无根据?可采取的操作措施是什么? (2) 提高馏出液量在实际上受到的限制因素有哪些? 答:在一定的范围内,提高回流比,相当于提高了提馏段蒸汽回流量,可以降低xW ,从而提高了馏出液的产量;由于xD 不变,故进料位置上移,也可提高馏出液的产量,这两种措施均能增加提馏段的分离能力。 D 的极限值由 DxD

化工原理实验资料

实验一 干燥实验 一、实验目的 1. 了解洞道式循环干燥器的基本流程、工作原理和操作技术。 2. 掌握恒定条件下物料干燥速率曲线的测定方法。 3. 测定湿物料的临界含水量X C ,加深对其概念及影响因素的理解。 4. 熟悉恒速阶段传质系数K H 、物料与空气之间的对流传热系数α的测定方法。 二、实验内容 1. 在空气流量、温度不变的情况下,测定物料的干燥速率曲线和临界含水量,并了解其 影响因素。 2. 测定恒速阶段物料与空气之间的对流传热系数α和传质系数K H 。 三、基本原理 干燥操作是采用某种方式将热量传给湿物料,使湿物料中水分蒸发分离的操作。干燥操作同时伴有传热和传质,而且涉及到湿分以气态或液态的形式自物料内部向表面传质的机理。由于物料含水性质和物料形状上的差异,水分传递速率的大小差别很大。概括起来说,影响传递速率的因素主要有:固体物料的种类、含水量、含水性质;固体物料层的厚度或颗粒的大小;热空气的温度、湿度和流速;热空气与固体物料间的相对运动方式。目前尚无法利用理论方法来计算干燥速率(除了绝对不吸水物质外),因此研究干燥速率大多采用实验的方法。 干燥实验的目的是用来测定干燥曲线和干燥速率曲线。为简化实验的影响因素,干燥实验是在恒定的干燥条件下进行的,即实验为间歇操作,采用大量空气干燥少量的物料,且空气进出干燥器时的状态如温度、湿度、气速以及空气与物料之间的流动方式均恒定不变。 本实验以热空气为加热介质,甘蔗渣滤饼为被干燥物。测定单位时间内湿物料的质量变化,实验进行到物料质量基本恒定为止。物料的含水量常用相对与物料总量的水分含量,即以湿物料为基准的水分含量,用ω来表示。但因干燥时物料总量在变化,所以采用以干基料为基准的含水量X 表示更为方便。ω与X 的关系为: X = -ω ω 1 (8—1) 式中: X —干基含水量 kg 水/kg 绝干料; ω—湿基含水量 kg 水/kg 湿物料。 物料的绝干质量G C 是指在指定温度下物料放在恒温干燥箱中干燥到恒重时的质量。干燥曲线即物料的干基含水量X 与干燥时间τ的关系曲线,它说明物料在干燥过程中,干基含水量随干燥时间变化的关系。物料的干燥曲线的具体形状因物料性质及干燥条件而变,但是曲线的一般形状,如图(8—1)所示,开始的一小段为持续时间很短、斜率较小的直线段AB 段;随后为持续时间长、斜率较大的直线BC ;段以后的一段为曲线

2017化工课程设计心得体会范文

2017化工课程设计心得体会范文 2017化工课程设计心得体会范文一 化工原理课程设计是综合运用化工原理及相关基础知识的实践性教学环节。设计过程中指导教师指引学生在设计过程中既要考虑理论上的可行性,还要考虑生产上的安全性和经济合理性。通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法。 本次化工原理课程设计历时两周,是上大学以来第一次独立的工业化设计。从老师以及学长那里了解到化工原理课程设计是培养我们化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形;在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性和经济合理性。由于第一次接触课程设计,起初心里充满了新鲜感和期待,因为自我认为在大学里学到的东西终于可以加以实践了。可是当老师把任务书发到手里是却是一头雾水,完全不知所措。可是在这短短的三周里,从开始的一无所知,到同学讨论,再进行整个流程的计算,再到对工业材料上的选取论证和后期的程序的编写以及流程图的绘制等过程的培养,我真切感受到了理论与实践相结合中的种种困难,也体会到了利用所学的有限的理论知识去解决实际中各种问题的不易。我的课程设计题目是苯――氯苯筛板式精馏塔设计图。在开始时,我们不知道如何下手,虽然有课程设计书作为参

考,但其书上的计算步骤与我们自己的计算步骤有少许差异,在这些差异面前,我们显得有些不知所措,通过查阅《化工原理》,《化工工艺设计手册》,《物理化学》,《化工原理课程设计》等书籍,以及在网上搜索到的理论和经验数据。我们慢慢地找到了符合自己的实验数据。并逐渐建立了自己的模版和计算过程。在这三周中给我印象最深的是我们这些“非泡点一族”在计算进料热状况参数q时,没有任何参考模板,完全靠自己捉摸思考。起初大家都是不知所措,待冷静下来,我们仔细结合上课老师讲的内容,一步一步的讨论演算,经大家一下午的不懈努力,终于把q算出来了。还有就是我们在设计换热器部分,在试差的过程中,我们大部分人都是经历了几乎一天多的时间才选出了合适的换热器型号,现在还清楚的记得我试差成功后那激动的心情,因为我尝到了自己在付出很多后那种成功的喜悦,因为这些都是我们的“血泪史”的见证哈。 在此感谢我们的杜治平老师.,老师严谨细致、一丝不苟的作风一直是我工作、学习中的榜样;老师循循善诱的教导和不拘一格的思路给予我无尽的启迪;这次课程设计的细节和每个数据,都离不开老师您的细心指导。而您开朗的个性和宽容的态度,帮助我能够很顺利的完成了这次课程设计。同时感谢同组的同学们,谢谢你们对我的帮助和支持,让我感受到同学的友谊。由于本人的设计能力有限,在设计过程中难免出现错误,恳请老师们多多指教,我十分乐意接受你们的批评与指正,本人将万分感谢。 2017化工课程设计心得体会范文二

化工原理实验数据处理关于

离心泵特性曲线原始数据 序号 水流量Q/m3/h 水温°C 出口压力/m 入口压力 /m 电机功率 /KW 1 0.00 27.70 21.50 0.00 0.49 2 1040.00 27.70 20.40 0.00 0.53 3 2170.00 27.70 19.20 0.00 0.58 4 3110.00 27.60 18.10 -0.30 0.64 5 3890.00 27.60 17.10 -0.40 0.69 6 4960.00 27.50 15.20 -0.70 0.75 7 5670.00 27.50 14.30 -1.00 0.80 8 6620.00 27.30 13.10 -1.20 0.85 9 7380.00 27.40 11.50 -1.50 0.88 10 8120.00 27.00 8.90 -1.70 0.90 11 8950.00 26.60 5.80 -2.10 0.93 已知 ΔZ=0.2m η电=0.9 η转=1.0 此温度下水的密度约为ρ=997.45kg/m3 以第 组数据为例计算 根据扬程Z g p g p H ?+-= ρρ12e 转电电轴ηη??=N N 102Q e e ρ??= H N 轴 N N e =η He= N 轴= e N = η=

离心泵特性曲线 序号 水流量 Q/m3/s He/m N 轴/KW Ne/KW η 1 0.00 21.70 0.44 0.00 0.00 2 0.29 20.60 0.48 0.06 0.12 3 0.60 19.40 0.52 0.11 0.22 4 0.86 18.60 0.58 0.16 0.27 5 1.08 17.70 0.62 0.19 0.30 6 1.38 16.10 0.68 0.22 0.32 7 1.58 15.50 0.72 0.24 0.33 8 1.84 14.50 0.77 0.26 0.34 9 2.05 13.20 0.79 0.26 0.33 10 2.26 10.80 0.81 0.24 0.29 11 2.49 8.10 0.84 0.20 0.24 2 0.00 0.050.100.150.200.250.300.350.400.450.500.550.600.650.700.750.800.85Q (m3/s ) 离心泵 特 性曲线 η N E (K W ) 8 1012141618 2022 He-Q η-Q N 轴-Q He (m )

化工原理课件干燥实验

干燥实验 一、实验目的 1.掌握物料干燥速率曲线的测定方法 2.了解操作条件对干燥速率曲线的影响 二、实验任务 测定纸板在恒定干燥条件下的干燥曲线和干燥速率曲线 确定其平衡含水量X* 及其临界含水量X c 三、实验原理 干燥曲线X-T 将湿物料试样置于恒定空气流中进行干燥实验,随着干燥时间的延长,水分不断汽化,湿物料质量减少。记录物料不同时间下质量,直到物料质量不变为止,也就是物料在该条件下达到干燥极限为止,此时留在物料中的水分就是平衡水分。再将物料烘干后称重得到绝干物料重,则物料中瞬间含水率为:

干燥速率曲线为U -X 的关系 干燥速率,单位时间单位面积上汽化水份量。 τ ττ?-= ??==+S G G S W Sd dW U i i 1 所测定的U 为物料的含水量有X i 下降至X i+1的干燥速率,为一个平均值。 Gc G G X c i i -=, 是一个瞬时值,在U -X 图中X 应为平均值 S -被干燥物料的汽化面积 τ-干燥时间 △W -一定间隔干燥时间汽化的水份量,本实验中为3g △τ-每汽化△Wg 时水分所需要的干燥时间。 Xi -湿物料在I 时刻的干基含水量,kg 水/kg 绝干料 Gi ,G i +1――分别为△τ时间间隔内开始和终了时湿物料重量 Gc ――绝干物料的质量

四、实验设备流程 空气由风机输送,经孔板流量计,电加热器后进入干燥室,对试样进行干燥,干燥后的废气再经风机循环使用。电加热器由晶体管继电器控制,使空气的温度恒定。 干燥室前方装有干球及湿球温度计,干燥室后也装有干球温度计,用以测量干燥室内空气的热状况。风机出口端的温度计用以测量流经孔板流量计的空气温度,空气流量用蝶阀调节,任何时候该阀都不能全关,否则电加热器会因空气不流动过热而损坏。风机进口端的片式阀用于控制系统所吸入的新鲜空气,而出口端的片式阀门则由空气进口端的片式阀则用于调节系统向外排出的废气量。 五、实验步骤: 1.称量支架的重量,向湿球温度计中加水 2.打开面板右侧面上的总电源开关,这时风机启动,仪表自检后显示初始值。 3.打开加热I、加热II、加热III,预热 4.将电子天平复位调零 5.干燥室前干球温度计接近75℃时,断开加热III

化工原理实验报告

化工原理实验报告

————————————————————————————————作者:————————————————————————————————日期: ?

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 ∑+++=+++f h p u gz We p u gz ρ ρ2222121122 式中: 1Z 、2Z ——各截面间距基准面的距离 (m) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截 面积求得) (m/s) 1P 、2p ——各截面中心点处的静压力(可由U型压差计的液位 差可知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 2 22121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图

化工原理实验实验报告

篇一:化工原理实验报告吸收实验 姓名 专业月实验内容吸收实验指导教师 一、实验名称: 吸收实验 二、实验目的: 1.学习填料塔的操作; 2. 测定填料塔体积吸收系数kya. 三、实验原理: 对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。 (一)、空塔气速与填料层压降关系 气体通过填料层压降△p与填料特性及气、液流量大小等有关,常通过实验测定。 若以空塔气速uo[m/s]为横坐标,单位填料层压降?p[mmh20/m]为纵坐标,在z ?p~uo关系z双对数坐标纸上标绘如图2-2-7-1所示。当液体喷淋量l0=0时,可知 为一直线,其斜率约1.0—2,当喷淋量为l1时,?p~uo为一折线,若喷淋量越大,z ?p值较小时为恒持z折线位置越向左移动,图中l2>l1。每条折线分为三个区段, 液区,?p?p?p~uo关系曲线斜率与干塔的相同。值为中间时叫截液区,~uo曲zzz ?p值较大时叫液泛区,z线斜率大于2,持液区与截液区之间的转折点叫截点a。 姓名 专业月实验内容指导教师?p~uo曲线斜率大于10,截液区与液泛区之间的转折点叫泛点b。在液泛区塔已z 无法操作。塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。 图2-2-7-1 填料塔层的?p~uo关系图 z 图2-2-7-2 吸收塔物料衡算 (二)、吸收系数与吸收效率 本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收姓名 专业月实验内容指导教师平均推动力可用对数平均浓度差法进行计算。其吸收速率方程可用下式表示: na?kya???h??ym(1)式中:na——被吸收的氨量[kmolnh3/h];?——塔的截面积[m2] h——填料层高度[m] ?ym——气相对数平均推动力 kya——气相体积吸收系数[kmolnh3/m3·h] 被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2): na?v(y1?y2)?l(x1?x2) (2)式中:v——空气的流量[kmol空气/h] l——吸收剂(水)的流量[kmolh20/h] y1——塔底气相浓度[kmolnh3/kmol空气] y2——塔顶气相浓度[kmolnh3/kmol空气] x1,x2——分别为塔底、塔顶液相浓度[kmolnh3/kmolh20] 由式(1)和式(2)联解得: kya?v(y1?y2)(3) ??h??ym 为求得kya必须先求出y1、y2和?ym之值。 1、y1值的计算:

化工原理精馏实验报告

北京化工大学 实验报告 精馏实验 一、摘要 精馏是实现液相混合物液液分离的重要方法,而精馏塔是化工生产中进行分离过程的主要单元,板式精馏塔为其主要形式。本实验用工程模拟的方法模拟精馏塔在全回流的状态下及部分回流状态下的操作情况,从而计算单板效率和总板效率,并分析影响单板效率的主要因素,最终得以提高塔板效率。 关键词:精馏、板式塔、理论板数、总板效率、单板效率 二、实验目的 1、熟悉精馏的工艺流程,掌握精馏实验的操作方法。 2、了解板式塔的结构,观察塔板上气- 液接触状况。 3、测测定全回流时的全塔效率及单板效率。 4、测定部分回流时的全塔效率。 5、测定全塔的浓度或温度分布。 6、测定塔釜再沸器的沸腾给热系数。 三、实验原理 在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔 板上实现多次接触,进行传热和传质,使混合液达到一定程度的分离。 回流是精馏操作得以实现的基础。塔顶的回流量和采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则

需要有无穷多块塔板的精馏塔。当然,这不符合工业实际,所以最小回流比只是 一个操作限度。若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中无实验意义。但是,由于此时所需理论板数最少,又易于达到稳定,故常在工业装置开停车、排除故障及科学研究时采用。 实际回流比常取用最小回流比的倍。在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。 板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。 (1)总板效率E N e 式中E —总板效率;N—理论板数(不包括塔釜);Ne —实际板数。 2)单板效率E ml E x n 1 x n E ml * x n 1 x n* 式中E ml—以液相浓度表示的单板效率; x n,x n-1—第n 块板的和第(n-1 )块板得液相浓度; x n*—与第n 块板气相浓度相平衡的液相浓度。 总板效率与单板效率的数值通常由实验测定。单板效率是评价塔板性能优劣的重要数据。物系性质、板型及操作负荷是影响单板效率的重要因素。当物系与板型确定后,可通过改变气液负荷达到最高的板效率;对于不同的板型,可以在保持相同的物系及操作条件下,测定其单板效率,已评价其性能的优劣。总板效率反映全塔各塔板的平均分离效果,常用于板式塔设计中。 若改变塔釜再沸器中电加热器的电压,塔板上升蒸汽量将会改变,同时,塔釜再沸器电加热器表面的温度将发生变化,其沸腾给热系数也将发生变化,从而可以得到沸腾给热系数也加热量的关系。由牛顿冷却定律,可知 Q A t m

化工原理实验思考题答案

化工原理实验思考题 实验一:柏努利方程实验 1. 关闭出口阀,旋转测压管小孔使其处于不同方向(垂直或正对流向),观测并记录各测 压管中的液柱高度H 并回答以下问题: (1) 各测压管旋转时,液柱高度H 有无变化这一现象说明了什么这一高度的物理意义是 什么 答:在关闭出口阀情况下,各测压管无论如何旋转液柱高度H 无任何变化。这一现象可通过柏努利方程得到解释:当管内流速u =0时动压头02 2 ==u H 动 ,流体没有运动就不存在阻力,即Σh f =0,由于流体保持静止状态也就无外功加入,既W e =0,此时该式反映流体静止状态 见(P31)。这一液位高度的物理意义是总能量(总压头)。 (2) A 、B 、C 、D 、E 测压管内的液位是否同一高度为什么 答:A 、B 、C 、D 、E 测压管内的液位在同一高度(排除测量基准和人为误差)。这一现象说明各测压管总能量相等。 2. 当流量计阀门半开时,将测压管小孔转到垂直或正对流向,观察其的液位高度H /并回 答以下问题: (1) 各H /值的物理意义是什么 答:当测压管小孔转到正对流向时H /值指该测压点的冲压头H /冲;当测压管小孔转到垂直流向时H /值指该测压点的静压头H /静;两者之间的差值为动压头H /动=H /冲-H /静。

(2) 对同一测压点比较H 与H /各值之差,并分析其原因。 答:对同一测压点H >H /值,而上游的测压点H /值均大于下游相邻测压点H /值,原因显然是各点总能量相等的前提下减去上、下游相邻测压点之间的流体阻力损失Σh f 所致。 (3) 为什么离水槽越远H 与H /差值越大 (4) 答:离水槽越远流体阻力损失Σh f 就越大,就直管阻力公式可以看出2 2 u d l H f ??=λ与 管长l 呈正比。 3. 当流量计阀门全开时,将测压管小孔转到垂直或正对流向,观察其的液位高度 H 2222d c u u =22 ab u ρcd p ρab p 2 2 u d l H f ??=λ计算流量计阀门半开和全开A 点以及C 点所处截面流速大小。 答:注:A 点处的管径d=(m) ;C 点处的管径d=(m) A 点半开时的流速: 135.00145.036004 08.0360042 2=???=???= ππd Vs u A 半 (m/s ) A 点全开时的流速: 269.00145 .036004 16.0360042 2=???=???=ππd Vs u A 全 (m/s ) C 点半开时的流速: 1965.0012 .036004 08.0360042 2=???=???= ππd Vs u c 半 (m/s )

化工原理实验一 干燥实验

实验八 干燥实验 一、实验目的 1. 了解洞道式循环干燥器的基本流程、工作原理和操作技术。 2. 掌握恒定条件下物料干燥速率曲线的测定方法。 3. 测定湿物料的临界含水量X C ,加深对其概念及影响因素的理解。 4. 熟悉恒速阶段传质系数K H 、物料与空气之间的对流传热系数α的测定方法。 二、实验内容 1. 在空气流量、温度不变的情况下,测定物料的干燥速率曲线和临界含水量,并了解其影响因素。 2. 测定恒速阶段物料与空气之间的对流传热系数α和传质系数K H 。 三、基本原理 干燥操作是采用某种方式将热量传给湿物料,使湿物料中水分蒸发分离的操作。干燥 操作同时伴有传热和传质,而且涉及到湿分以气态或液态的形式自物料内部向表面传质的机理。由于物料含水性质和物料形状上的差异,水分传递速率的大小差别很大。概括起来说,影响传递速率的因素主要有:固体物料的种类、含水量、含水性质;固体物料层的厚度或颗粒的大小;热空气的温度、湿度和流速;热空气与固体物料间的相对运动方式。目前尚无法利用理论方法来计算干燥速率(除了绝对不吸水物质外),因此研究干燥速率大多采用实验的方法。 干燥实验的目的是用来测定干燥曲线和干燥速率曲线。为简化实验的影响因素,干燥 实验是在恒定的干燥条件下进行的,即实验为间歇操作,采用大量空气干燥少量的物料,且空气进出干燥器时的状态如温度、湿度、气速以及空气与物料之间的流动方式均恒定不变。 本实验以热空气为加热介质,甘蔗渣滤饼为被干燥物。测定单位时间内湿物料的质量 变化,实验进行到物料质量基本恒定为止。物料的含水量常用相对与物料总量的水分含量,即以湿物料为基准的水分含量,用ω来表示。但因干燥时物料总量在变化,所以采用以干基料为基准的含水量X 表示更为方便。ω与X 的关系为: X =-ωω 1 (8—1) 式中: X —干基含水量 kg 水/kg 绝干料; ω—湿基含水量 kg 水/kg 湿物料。 物料的绝干质量G C 是指在指定温度下物料放在恒温干燥箱中干燥到恒重时的质量。 干燥曲线即物料的干基含水量X 与干燥时间τ的关系曲线,它说明物料在干燥过程中,干基含水量随干燥时间变化的关系。物料的干燥曲线的具体形状因物料性质及干燥条件而变,但是曲线的一般形状,如图(8—1)所示,开始的一小段为持续时间很短、斜率较小的直线段AB 段;随后为持续时间长、斜率较大的直线BC ;段以后的一段为曲线

化工原理实验心得体会

化工原理实验心得体会 这个学期我们学习了《化工原理》这门课,在学习了部分理论知识后,我们进入了实验室,开始学习《化工原理实验》并分组进行了实验。和前几个学期类似,大家先要进行实验的预习,在了解和熟悉实验的要求和操作的基础上,然后在老师提问检查每一组各位组员对实验过程的预习程度后,对各位组员的预习情况进行点评,并指出其中的不足和缺漏。然后在指导老师的悉心讲解后,对实验有一个新的、更全面的认识后进行实验。通过动手实验,我更加深刻的理解了化工原理课上老师讲解的知识,增强了动手能力,对理论知识有了形象化的认识。 本学期我们共学习了五个实验,分别是: 实验一、离心泵的特性曲线实验; 实验二、流体流动阻力的测定; 实验三、空气—蒸汽对流传热系数的测定; 实验四、恒压过滤常数的测定; 实验五、填料塔的精馏实验, 通过对实验的学习并亲手操作,我掌握了许多知识。 这几个实验中我印象最深刻的是恒压过滤常数的测定,实验以生活中常见的碳酸钙的水浆液位测定原料。这个实验和空气—蒸汽对流传热系数的测定实验一起分组进行。老师讲解完实验原

理并强调了注意事项后,我们开始实验。我们小组先进行了恒压 过滤常数测定实验,首先我们对两个小组的成员进行了各项职责 的分配分别是:两位同学负责碳酸钙水浆液的搅拌和回收,由一 位同学负责数据的采集和记录的工作。每个三分钟记录床层温度 一次,取样一次,并由同组同学进行含水量的测定,由两位同学 负责装好板框,最后分别由其他两位同学负责压力阀的控制和滤 液进口阀、滤液出口阀的控制。这样一来整个实验的分工工作就 已经完成了。实验过程中,我们互相配合,进行的很顺利。但是 在第一次实验时由于我们的粗心大意,我们将四块滤板中的一块 方向装反了,使得我们第一次采集的数据无效了,因此指导老师 还对我们实验时的粗心大意进行了严厉的批评教育,这些批评教 育使我们牢记在这是一个教训,实验中细心认真完成每一步,我 们的动手能力才会在这个过程中得到提升。 在这一个学期短暂的实验学习过程中,使我们重新认识了在 大学学习生活中,在实验过程中一个实验者的认真预习和摈弃粗 心大意,认真、谨慎的进行好每一步的操作、合理的分工协同工 作对于一个实验的成败与否是至关重要的。或许在将来生活工作 中也一样,俗话说得好,所谓“细节决定成败”。一个做事粗心 大意,做事前从不做准备的人不管他将来从事什么样的工作都无 法取得好的成绩,因为在他的心理或许压根就没有重视过自己所 从事的事情或者是行业。俗话说“机遇永远是给有准备的人的”。 化工原理实验的任务主要是了解一些典型化工设备的原理和

化工原理实验模拟试题

流体流动阻力实验 一、在本实验中必须保证高位水槽中始终有溢流,其原因是: A、只有这样才能保证有充足的供水量。 B、只有这样才能保证位压头的恒定。 C、只要如此,就可以保证流体流动的连续性。 二、本实验中首先排除管路系统中的空气,是因为: A、空气的存在,使管路中的水成为不连续的水。 B、测压管中存有空气,使空气数据不准确。 C、管路中存有空气,则其中水的流动不在是单相的流动。 三、在不同条件下测定的直管摩擦阻力系数…雷诺数的数据能否关联在同一条曲线上 A、一定能。 B、一定不能。 C、只要温度相同就能。 D、只有管壁的相对粗糙度相等就能。 E、必须温度与管壁的相对粗糙度都相等才能。 四、以水作工作流体所测得的直管阻力系数与雷诺数的关系能否适用于其它流体 A、无论什么流体都能直接应用。 B、除水外什么流体都不能适用。 C、适用于牛顿型流体。 五、当管子放置角度或水流方向改变而流速不变时,其能量的损失是否相同。 A、相同。 B、只有放置角度相同,才相同。 C、放置角度虽然相同,流动方向不同,能量损失也不同。 D、放置角度不同,能量损失就不同。 六、本实验中测直管摩擦阻力系数时,倒U型压差计所测出的是: A、两测压点之间静压头的差。 B、两测压点之间位压头的差。 C、两测压点之间静压头与位压头之和的差。 D、两测压点之间总压头的差。 E、两测压点之间速度头的差。 七、什么是光滑管 A、光滑管是绝对粗糙度为零的管子。 B、光滑管是摩擦阻力系数为零的管子。 C、光滑管是水力学光滑的管子(即如果进一步减小粗糙度,则摩擦阻力不再减小的管 子)。 八、本实验中当水流过测突然扩大管时,其各项能量的变化情况是: A、水流过突然扩大处后静压头增大了。 B、水流过突然扩大处后静压头与位压头的和增大了。 C、水流过突然扩大处后总压头增大了。 D、水流过突然扩大处后速度头增大了。 E、水流过突然扩大处后位压头增大了 BCECAAAA

化工原理实验思考题及答案

化工原理实验思考题(填空与简答) 一、填空题: 1.孔板流量计的C~Re关系曲线应在单对数坐标纸上标绘。 2.孔板流量计的V S ~ R关系曲线在双对数坐标上应为_直线—。 3.直管摩擦阻力测定实验是测定入与Re的关系,在双对数坐标纸上标绘。 4.单相流动阻力测定实验是测定直管阻力和局部阻力。 5.启动离心泵时应关闭出口阀和功率开关。 6.流量增大时离心泵入口真空度增大出口压强将减小。 7 .在精馏塔实验中,开始升温操作时的第一项工作应该是开循环冷却水。 8.在精馏实验中,判断精馏塔的操作是否稳定的方法是塔顶温度稳定 9.在传热实验中随着空气流量增加其进出口温度差的变化趋势:_进出口温差随空气流量增加而减小。 10.在传热实验中将热电偶冷端放在冰水中的理由是减小测量误差。 11.萃取实验中_水_为连续相,煤油为分散相。 12.萃取实验中水的出口浓度的计算公式为C E1=V R(C R1-C R2)/V E。 13.干燥过程可分为等速干燥和降速干燥。 14.干燥实验的主要目的之一是 掌握干燥曲线和干燥速率曲线的测定方法 。 15.过滤实验采用悬浮液的浓度为5% ,其过滤介质为帆布。 16.过滤实验的主要内容测定某一压强下的过滤常数。

17.在双对数坐标系上求取斜率的方法为:需用对数值来求算,或者直接用 尺子在坐标纸上量取线段长度求取。 18.在实验结束后,关闭手动电气调节仪表的顺序一般为:先将手动旋钮旋 至零位,再关闭电源 19.实验结束后应清扫现场卫生,合格后方可离开。 20.在做实验报告时,对于实验数据处理有一个特别要求就是:要有一组数据处理的计 算示例。 21.在阻力实验中,两截面上静压强的差采用倒U形压差计测定。 22.实验数据中各变量的关系可表示为表格,图形和公式. 23.影响流体流动型态的因素有流体的流速、粘度、温度、尺寸、形状等. 24.用饱和水蒸汽加热冷空气的传热实验,试提出三个强化传热的方案(1)增加 空气流速(2)在空气一侧加装翅片(3)定期排放不凝气体。 25.在精馏实验数据处理中需要确定进料的热状况参数q值,实验中需要测定 进料量、进料温度、进料浓度等。 26.干燥实验操作过程中要先开鼓风机送风后再开电热器,以防烧坏加热丝。 27.在本实验室中的精馏实验中应密切注意釜压,正常操作维持在0.005mPa 如果达到0.008?0.01mPa可能出现液泛,应减少加热电流(或停止加热),将进料、回流和产品阀关闭,并作放空处理,重新开始实验。 28.流体在流动时具有三种机械能:即①位能,②动能,③压力能。这三种能量可以互

化工原理实验试卷

1 化工原理实验试卷 注意事项:1.考前请将密封线内填写清楚; 2. 所有答案请直接答在试卷上; 3 ?考试形式:闭卷; 4. 本试卷共四大题,满分100分,考试时间90分钟。 一、填空题 1. 在阻力实验中,两截面上静压强的差采用倒U形压差计测定。 2. 实验数据中各变量的关系可表示为表格,图形和公式. 3. 影响流体流动型态的因素有流体的流速、粘度、温度、尺寸、形状等 4. 用饱和水蒸汽加热冷空气的传热实验,试提出三个强化传热的方案(1)增加空 气流速(2)在空气一侧加装翅片(3)定期排放不 凝气体。 5. 用皮托管放在管中心处测量时,其U形管压差计的读数R反映管中心处的静压头。 6. 吸收实验中尾气浓度采用尾气分析装置测定,吸收剂为稀硫酸,指示剂为甲基红。 7. 在精馏实验数据处理中需要确定进料的热状况参数q值,实验中需要测定进料量、进料温度、进料浓度等。 8. 干燥实验操作过程中要先开鼓风机送风后再开电热器,以防烧坏加热丝。

9. 在本实验室中的精馏实验中应密切注意釜压,正常操作维持在,如果达到?, 可能出现液泛,应减 少加热电流(或停止加热),将进料、回流和产品阀关闭,并作放空处理,重新开始实验。 10. 吸收实验中尾气浓度采用尾气分析装置测定,它主要由取样管、吸收盒和湿式体积流量计组成的,吸收剂为稀硫酸,指示 剂为甲基红。 11. 流体在流动时具有三种机械能:即①位能,②动能,③压力能。这三种能量可以互相转换。 12. 在柏努利方程实验中,当测压管上的小孔(即测压孔的中心线)与水流方向垂直时,测压管内液柱高度(从测压孔算起) 为静压头,它反映测压点处液体的压强大小;当测压孔由上述方位转为正对水流方向时,测压管内液位将因此上升,所增加的液 位高度,即为测压孔处液体的动压头,它反映出该点水流动能的大小。 13. 测量流体体积流量的流量计有转子流量计、孔板流量计和涡轮流量计。 14. 在精馏实验中,确定进料状态参数q需要测定进料温度,进料浓度参数。 15. 在本实验室的传热实验中,采用套管式换热器加热冷空气,加热介质为饱和水蒸汽,可通过增加空气流量达到提高传热系 数的目的。 16. 在干燥实验中,要先开风机,而后再打开加热以免烧坏加热丝。 17. 在流体流动形态的观察实验中,改变雷诺数最简单的方法是改变流量。 18. (1)离心泵最常用的调节方法是出口阀门调节;(2)容积式泵常用的调节方法是旁路调节。 19. 在填料塔流体力学特性测试中,压强降与空塔气速之间的函数关系应绘在双对

华工化工原理实验考试复习

化工原理实验复习 1.填空题 1.在精馏塔实验中,开始升温操作时的第一项工作应该是开循环冷却水。 2.在精馏实验中,判断精馏塔的操作是否稳定的方法是塔顶温度稳定 3.干燥过程可分为等速干燥和降速干燥。 4.干燥实验的主要目的之一是掌握干燥曲线和干燥速率曲线的测定方法。 5.实验结束后应清扫现场卫生,合格后方可离开。 6.在做实验报告时,对于实验数据处理有一个特别要求就是: 要有一组数据处理的计算示例。 7.在精馏实验数据处理中需要确定进料的热状况参数q 值,实验中需要测定进料量、进料温度、进料浓度等。 8.干燥实验操作过程中要先开鼓风机送风后再开电热器,以防烧坏加热丝。

9.在本实验室中的精馏实验中应密切注意釜压,正常操作维持在0.005mPa,如果达到0.008~0.01mPa,可能出现液泛,应该减少加热电流(或停止加热),将进料、回流和产品阀关闭,并作放空处理,重新开始实验。 10.在精馏实验中,确定进料状态参数q 需要测定进料温度,进料浓度参数。 11.某填料塔用水吸收空气中的氨气,当液体流量和进塔气体的浓度不变时,增大混合气体的流量,此时仍能进行正常操作,则尾气中氨气的浓度增大 12.在干燥实验中,提高空气的进口温度则干燥速率提高;若提高进口空气的湿度则干燥速率降低。 13.常见的精馏设备有填料塔和板式塔。 14.理论塔板数的测定可用逐板计算法和图解法。 15.理论塔板是指离开该塔板的气液两相互成平衡的塔板。 16.填料塔和板式塔分别用等板高度和全塔效率来分析、评价它们的分离性能。 2.简答题 一.精馏实验 1.其它条件都不变,只改变回流比,对塔性能会产生什么影响?答:精馏中的回流比R,在塔的设计中是影响设备费用(塔板数、再沸器、及冷凝器传热面积)和操作费用(加热蒸汽及冷却水消耗量)的一个重要因素,所以

化工原理实习心得

化工原理实习心得 化工原理实习是对化工原理知识的一个实践过程, 下面化工原理实习心得是想跟大家分享的,欢迎大家浏览。 第一篇:化工原理实习心得 在实习的过程中,自己学到了许多原先在课本上学 不到的东西,而且可以使自己更进一步接近社会,体会 到市场跳动的脉搏,如果说在象牙塔是看市场,还是比 较感性的话,那么当你身临企业,直接接触到企业的生 产与销售的话,就理性得多。因为,在市场的竞争受市 场竞争规则的约束,从采购、生产到销售都与市场有着 千丝万缕的联系,如何规避风险,如何开拓市场,如何 保证企业的生存发展,这一切的一切都是那么的现实。 于是理性的判断就显得重要了。在企业的实习过程中, 我发现了自己看问题的角度,思考问题的方式也逐渐开拓,这与实践密不可分,在实践过程中,我又一次感受 充实,感受成长。 通过安排到xxx车间进行实习,了解产品生产工艺 流程、职能部门的设置及其职能,了解企业的内部控制,在这一个多月的时间里,下到生产车间后,先了解整个 xxx生产的流程,从采购入库,到领料生产,到最后的

成品入罐,对整个车间的生产活动有了基本认识,这对 我们熟悉企业,进行实务操作打下良好基础。 其中,先前我们对xxx的生产几乎一无所知,但下 到车间之后,我们不仅了解了生产流程,还进一步了解 了xxx的生产工艺流程和用途,由于脂肪酸生产完后是直接用于公司后面的扬子石化生产,所以每个月的生产有一定的额度.而且由于季节和温度等条件的限制,机器开工的时间长度及强度也有相关的规定,另外,对一些流水 线的参观,也激发了我对如何通过新流水线的建设,对 降低生产成本的思考,于是,感受颇深的一点,要做一 名合格的会计人员,对基本、基础的作业环节是要了解的,否则,很容易让理论脱离实践. 在熟悉了车间的生产流程后,工作人员拿了以前的 交接班记录和中间产品申请单和报表等资料给我们看, 在翻看这些资料的过程中,有不懂或弄不清楚的资料, 积极向同事请教,在他们的耐心指导下,我们对车间的 整个产品检验的程序方法有了一定上的认识。 由于化工生产是不间断的,所以车间生产必须时刻有人,车间的工作人员采取四班两倒(一天白班12小时一天晚班休两天)和常白班制度.我们车间有四个人(主任,工 艺员,等)上长白班,其他人分成甲乙丙丁四个班四班两倒. 虽然我们没有正式分配,但我们都严格遵守车间的生

化工原理实验报告

化工原理实验报告文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 式中: 1Z 、2Z ——各截面间距基准面的距离 (m ) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截面积求得) (m/s)

1P 、2p ——各截面中心点处的静压力(可由U 型压差计的液位差可 知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 222121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图 泵额定流量为10L/min,扬程为8m,输入功率为80W. 实验管:内径15mm 。 四、实验操作步骤与注意事项 1、熟悉实验设备,分清各测压管与各测压点,毕托管测点的对应关系。 2、打开开关供水,使水箱充水,待水箱溢流后,检查泄水阀关闭时所有测压管水面是否齐平,若不平则进行排气调平(开关几次)。 3、打开阀5,观察测压管水头和总水头的变化趋势及位置水头、压强水头之间的相互关系,观察当流量增加或减少时测压管水头的变化情况。 4、将流量控制阀开到一定大小,观察并记录各测压点平行与垂直流体流动方向的液位差△h 1…△h 4。要注意其变化情况。继续开大流量调节阀,测压孔正对水流方向,观察并记录各测压管中液位差△h 1…△h 4。 5、实验完毕停泵,将原始数据整理。 实验二 离心泵性能曲线测定 一、实验目的 1. 了解离心泵的构造和操作方法 2. 学习和掌握离心泵特性曲线的测定方法

相关文档
相关文档 最新文档