文档库 最新最全的文档下载
当前位置:文档库 › 用拉普拉斯变换方法解微分方程

用拉普拉斯变换方法解微分方程

用拉普拉斯变换方法解微分方程
用拉普拉斯变换方法解微分方程

拉普拉斯变换是解常系数线性微分方程中经常采用的一种较简便的方法.其基本思想是,先通过拉普拉斯变换将已知方程化成代数方程,求出代数方程的解,再通过逆拉普拉斯变换,得到所求数值问题的解.

一拉普拉斯变换的概念

定义设函数f(t)的定义域为[0,+∞),若广义积分∫0+∞f(t)e-pt dt对于p在某一范围内的值收敛,则此积分就确定了一个参数为p的函数,记作F(p),即F(p)=∫0+∞f(t)e-pt dt函数F(p)称为f(t)的拉普拉斯变换(或称为f(t)的象函数),表示为F(p)=L[f(t)].

若F(p)是f(t)的拉氏变换,则称f(t)为F(p)的拉氏逆变换(或F(p)的象原函数),记作L-1[F(p)].

例1 求指数函数f(t)=e at(t≥0,a是常数)的拉氏变换.

解根据定义,有L[e at]=∫0+∞e at e-pt dt=∫0+∞e-(p-a)t dt

这个积分在p>a时收敛,所以有

L[e at]=∫0+∞e-(p-a)t dt=1/(p-a) (p>a) (1)

例2 求一次函数f(t)=at(t≥0,a是常数)的拉氏变换.

解L[at]=∫0+∞ate-pt dt=-a/p∫0+∞td(e-pt)

=-[at/p e-pt]0+∞+a/p∫0+∞e-pt dt

根据罗必达法则,有

lim t0+∞(-at/p e-pt)=-lim t0+∞at/pe pt=-lim t0+∞a/p2 e pt

上述极限当p>0时收敛于0,所以有lim t0+∞(-at/pe-pt)=0

因此L[at]=a/p∫0+∞e-pt dt

=-[a/p2e-pt]0+∞=a/p2(p>0) (2)

例3 求正弦函数f(t)=sinωt(t≥0)的拉氏变换.

解L[sinωt]=∫0+∞sinωte-pt dt

=[-1/(p2+ω2) e-pt(psinωt+ωcosωt]0+∞

=ω/(p2+ω2) (p>0) (3)

用同样的方法可求得

L[cosωt]=p/(p2+ω2) (p>0) (4)

二拉普拉斯变换的基本性质

三拉普拉斯变换的逆变换

四拉普拉斯变换的应用

2–5 用拉普拉斯变换方法解微分方程

拉普拉斯变换方法是解线性微分方程的一种简便方法,利用拉普拉斯变换法可以把微分方程变换成为代数方程,在利用现成的拉普拉斯变换表(参见附录一的附表1),即可方便地查得相应的微分方程解。这样就使方程求解问题大为简化。

拉普拉斯变换法的另一个优点是在求解微分方程时,可同时获得的瞬态分量和稳态分量两部分。

有关拉普拉斯变换(简称拉氏变换)的公式见附录一。

应用拉氏变换法得到的解是线性微分方程的全解。用古典方法求解微分方程全解时需要利用初始条件来确定积分常数的值,这一过程比较麻烦。而应用拉氏变换就可省去这一步。因为初始条件已自动地包含在微分方程的拉氏变换式之中了。而且,如果所有初始条件都为零,那么求

取微分方程的拉氏变换式就更为方便,只要简单地用复变量s 来代替微分方程中的dt d ,2s 代替2

2

dt d ,…就可得到。 应用拉氏变换法解微分方程的步骤如下:

(1)对线性微分方程中每一项进行拉氏变换,使微分方程变为复变量s 的代数方程(称为变换方程)

(2)求解变换方程,得出系统输出变量的象函数表达式。

(3)将输出的象函数表达式展开成部分分式(部分分式展开法参见附录二)。

(4)对部分分式进行拉氏反变换(可查拉氏变换表),即得微分方程的全解。

举例说明

【例2-7】 设RC 网络如图2-24所示,在开关K 闭合之前,电容C 上有初始电压)0(c u 。试求将开关瞬时闭合后,电容的端电压c u (网络输出)。

解 开关K 瞬时闭合,相当于网络有阶跃电压0)(u t u c =·)(1t 输入。故网络微分方程为

??

???=+=?idt C u u Ri u c c r 1 消去中间变量i ,得网络微分方程为

)(t u u dt du RC

r c c =+ (2-44)

对上式进行拉氏变换,得变换方程 )()()0()(s U s U RCu s RCsU r c c c =+- 将输入阶跃电压的拉氏变换式s

u s U r 0)(=代入上式,并整理得电容端电压的拉氏变换式 )0()

1()1()(0c c u RCs RC RCs s u s U +++= 可见等式右边由两部分组成,一部分由输入所决定,另一部分由初始值决定。

将输出的象函数)(s U c 展成部分分式:

)0(1

11)(00c c u RCs RC u RCs RC u s s U +++-= 或 )0(11111)(00c c u RC s u RC s u s s U +++-= (2-45)

等式两边进行拉氏反变换,得

t RC c t RC c e u e u u t u 1100)0()(--+-= (2-46)

此式表示了RC 网络在开关闭合后输出电压)(t u c 的变化过程。

比较方程(2-45)和(2-46)可见,方程右端第一项

取决于外加的输入作用0u ·1)(t ,表示了网络输出响应)(t u c 的稳态分量,也称强迫解;第二项表示)(t u c 的瞬态分量,该分量随时间变化的规律取决于系统结构参量R 、C 所决定的特征方程式(即01=+RCs )的根RC

1-。显然,由于其特征根为负实数,则瞬态分量将随着时间的增长而衰减至零。第三项为与初始值有关的瞬态分量,其随时间变化的规律同样取决于特征根,当初始值0)0(=c u 时,则第三项为零,于是就有

t RC c e u u t u 100)(--= (2-47)

RC 网络的阶跃响应)(t u c 及其各组成部分的曲线如图2-25所示。

拉普拉斯方程数值解

二维有限差分析是求解两个变量的拉普拉斯方程的一种近似方法,这种方法的要点如下: 在平面场中,将平面划分成若干正方形格子,每个格子的边长都等于h ,图13-10表示其中的一部分,设0点的电位为V 0,0点周围方格顶点的电位分别为V 1、V 2、V 3和V 4。现在来推导一个用V 1、V 2、V 3和V 4表示V 0的公式: 图13-10 已知平面场的电位满足两个变量的拉普拉斯方程: 0222 2=??+??y V x V 其中 h x V x V x V x x V c a ??- ??≈??? ??????= ??0 22 但是 h V V x V h V V x V c a 30 01 ,-≈??-≈ ?? 所以 2 30013 0010 2 2h V V V V h h V V h V V x V +--≈-- -≈?? 同理 2 4 0020 2 2h V V V V y V +--≈ ?? 将上面两个方程相加一起得: 042 43212222=-+++≈??+??h V V V V V y V x V 由上面方程推出:)(4 1 43210V V V V V +++≈ (13.47) 该式说明0点的电位近似等于相互垂直的方向上和0点等距离的四个点上的电位平均值,距离h 愈小则结果愈精确,方程(13.47)是用近似法求解两个变量拉普拉斯方程的依据。 然而,V 0和V 1、V 2、V 3、V 4都是未知值,这种情况下需要按照方程(13.47)写出每一点的电位方程,然后求这些方程的联立解。 求解时较简便的方法是选代法,这种方法可求出平面场中各点电位的近似值。 图13-11表示一个截面为正方形的导体槽,槽的顶面与侧面相互绝缘,顶面的电位为

各种类型的微分方程及其相应解法教程文件

各种类型的微分方程及其相应解法 专业班级:交土01班 姓名:高云 学号:1201110102 微分方程的类型有很多种,解题时先判断微分方程是哪种类型,可以帮助我们更快解题,所以我们有必要归纳整理一下各类型(主要是一阶和二阶)的微分方程及其相应解法。 一、一阶微分方程的解法 1.可分离变量的方程 dx x f dy y g )()(=,或)()(y g x f dx dy = 其特点是可以把变量x 和y 只分别在等式的两边,解法关键是把变量分离后两边积分。 例1.求微分方程ydy dx y xydy dx +=+2的通解. 解 先合并dx 及dy 的各项,得dx y dy x y )1()1(2-=- 设,01,012≠-≠-x y 分离变量得 dx x dy y y 1112-=- 两端积分??-=-dx x dy y y 1112得 ||ln |1|ln |1|ln 2 112C x y +-=- 于是 2212)1(1-±=-x C y 记,21C C ±=则得到题设方程的通解 .)1(122-=-x C y 2.齐次方程 (1))(x y f dx dy = (2) )(c by ax f dx dy ++=(a ,b 均不等于0) 例2求解微分方程.2222xy y dy y xy x dx -=+- 解 原方程变形为=+--=2222y xy x xy y dx dy ,1222?? ? ??+--??? ??x y x y x y x y 令,x y u =则,dx du x u dx dy +=方程化为,1222u u u u dx du x u +--=+ 分离变量得?? ????-+--??? ??--112212121u u u u ,x dx du = 两边积分得 ,ln ln ln 2 1)2ln(23)1ln(C x u u u +=----

变换法解微分方程

题目: 变换法在求解常微分方程中的应用姓名: 学院: 数学与统计学院 专业: 数学与应用数学 年级班级: 2011级1班 指导教师: 刘伟 2015年 5 月 31 日

毕业论文(设计)作者声明 本人郑重声明:所呈交的毕业论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。 本人完全了解有关保障、使用毕业论文的规定,同意学校保留并向有关毕业论文管理机构送交论文的复印件和电子版。同意省级优秀毕业论文评选机构将本毕业论文通过影印、缩印、扫描等方式进行保存、摘编或汇编;同意本论文被编入有关数据库进行检索和查阅。 本毕业论文内容不涉及国家机密。 论文题目:变换法在求解常微分方程中的应用 作者单位:数学与统计学院 作者签名: 2015 年5 月31 日

目录 摘要 (1) 引言 (2) 1.在一阶方程中的应用 (3) 1.1变量分离方程 (3) 1.2齐次与可以经过变量代换化为齐次的常微分方程: (3) 1.3一阶线性方程 (7) 1.4几种特殊类型的一阶常微分方程 (8) 1.5伯努利方程 (9) 1.6黎卡提方程 (10) 2.在n阶微分方程中的应用 (10) 2.1 在n阶非齐次线性微分方程 (10) 2.2 非齐次线性微分方程 (12) 3.变系数齐次方程 (13) 3.1尤拉方程 (13) 3.2二阶变系数线性方程 (13) 3.3三阶变系数微分方程 (14) 结束语 (14) 参考文献 (16) 致谢 (17)

变换法在求解常微分方程中的应用 摘要:变换法是常微分方程中的一种计算方法. 它可以起到简化问题的作用,变量变换思想也是一种常微分方程中的重要思想. 应用原始变量的变换与新的变量代换, 使原始方程的类型相对简单的解决方案,从而达到解决的目的. 在常微分方程中, 变换法在许多类型的常微分方程的求解中起到及其重要的作用. 本文就应用变换法在求解几类微分方程进行探究, 通过陈述理论与联系实例结合阐述变量变换法以及变量变换思想在求解常微分方程的应用. 关键词:常微分方程;变量分离;变换法; Application of transform method in solving the differential equation Abstract: Transform method is a calculation method of ordinary differential equation. It can play a role to simplify the problem, the idea of variable transformation is an important thought in ordinary differential equation. The application of the original variable transform and the new type of variable substitution, the original equation solution is relatively simple, so as to achieve the purpose of solving. In the differential equation, variable substitution plays its important role in the ordinary solution differential equations in many types of. This paper explores the solutions for several classes of differential equations on the application of variable substitution, through the statement of theory and examples combined with variable transformation method and the application of variable transformation thought in the solution of ordinary differential equations. Key Words: Ordinary differential equation;Separable variable;Transform method

拉斯变换解微分方程

§2-3拉普拉斯变换及其应用 时域的函数可以通过线性变换的方法在变换域中表示,变换域的表示有时更为简捷、方便。例如控制理论中常用的拉普拉斯变换,简称拉氏变换,就是其中的一种. 一、拉氏变换的定义 已知时域函数,如果满足相应的收敛条件,可以定义其拉氏变换 为 (2-45)式中,称为原函数,称为象函数,变量为复变量,表示 为 (2-46)因为是复自变量的函数,所以是复变函数。 有时,拉氏变换还经常写为 (2-47) 拉氏变换有其逆运算,称为拉氏反变换,表示为 (2-48)上式为复变函数积 分,积分围线为由到的闭曲线。 二、常用信号的拉氏变换 系统分析中常用的时域信号有脉冲信号、阶跃信号、正弦信号等。现复习一些基本时域信号拉氏变换的求取。 (1)单位脉冲信号 理想单位脉冲信号的数学表达式为

(2-49) 且 (2-50) 所以 (2-51) 说明:单位脉冲函数可以通过极限方法得到。设单个方波脉冲如图2-13所示,脉冲的宽度为, 脉冲的高度为,面积为1。当保持面积不变,方波脉冲的宽度趋于无穷小时,高度趋于无穷大,单个方波脉冲演变成理想的单位脉冲函数。在坐标图上经常将单位脉冲函数表示成单位高度的带有箭头的线段。 由单位脉冲函数的定义可知,其面积积分的上下限是从到的。因 此在求它的拉氏变换时,拉氏变换的积分下限也必须是。由此,特别指明拉氏变换定义式中的积分下限是,是有实际意义的。所以,关于拉氏变换的积分 下限根据应用的实际情况有,,三种情况。为不丢掉信号中位于处可能存在的脉冲函数,积分下限应该为。

(2)单位阶跃信号 单位阶跃信号的数学表示为 (2-52) 又经常写为 (2-53) 由拉氏变换的定义式,求得拉氏变换为 (2-54) 因为 阶跃信号的导数在处有脉冲函数存在,所以单位阶跃信号的拉氏变换,其 积分下限规定为。 (3)单位斜坡信号 单位斜坡信号的数学表示为 (2-55) 图2-15单位斜坡信号

用拉普拉斯变换方法解微分方程

2–5 用拉普拉斯变换方法解微分方程 拉普拉斯变换方法是解线性微分方程的一种简便方法,利用拉普拉斯变换法可以把微分方程变换成为代数方程,在利用现成的拉普拉斯变换表(参见附录一的附表1),即可方便地查得相应的微分方程解。这样就使方程求解问题大为简化。 拉普拉斯变换法的另一个优点是在求解微分方程时,可同时获得的瞬态分量和稳态分量两部分。 有关拉普拉斯变换(简称拉氏变换)的公式见附录一。 应用拉氏变换法得到的解是线性微分方程的全解。用古典方法求解微分方程全解时需要利用初始条件来确定积分常数的值,这一过程比较麻烦。而应用拉氏变换就可省去这一步。因为初始条件已自动地包含在微分方程的拉氏变换式之中了。而且,如果所有初始条件都为零,那么求取微分方程的拉氏变换式就更为方便,只要简单地用复变量s 来代替微分方程中的 dt d ,2 s 代替 2 2dt d ,…就可得到。 应用拉氏变换法解微分方程的步骤如下: (1)对线性微分方程中每一项进行拉氏变换,使微分方程变为复变量s 的代数方程(称为变换方程) (2)求解变换方程,得出系统输出变量的象函数表达式。 (3)将输出的象函数表达式展开成部分分式(部分分式展开法参见附录二)。 (4)对部分分式进行拉氏反变换(可查拉氏变换表),即得微分方程的全解。 举例说明 【例2-7】 设RC 网络如图2-24所示,在开关K 闭合之前,电容C 上有初始电压 )0(c u 。试求将开关瞬时闭合后,电容的端电压c u (网络输出)。 解 开关K 瞬时闭合,相当于网络有阶跃电压0)(u t u c =·)(1t 输入。故网络微分方程为 ?? ? ??=+=?idt C u u Ri u c c r 1 消去中间变量i ,得网络微分方程为 )(t u u dt du RC r c c =+ (2-44) 对上式进行拉氏变换,得变换方程 )()()0()(s U s U RCu s RCsU r c c c =+- 将输入阶跃电压的拉氏变换式s u s U r 0)(= 代入上式,并整理得电容端电压的拉氏变换式

各类微分方程的解法大全

各类微分方程的解法 1.可分离变量的微分方程解法 一般形式:g(y)dy=f(x)dx 直接解得∫g(y)dy=∫f(x)dx 设g(y)及f(x)的原函数依次为G(y)及F(x),则G(y)=F(x)+C为微分方程的隐式通解 2.齐次方程解法 一般形式:dy/dx=φ(y/x) 令u=y/x则y=xu,dy/dx=u+xdu/dx,所以u+xdu/dx=φ(u),即du/[φ(u)-u]=dx/x 两端积分,得∫du/[φ(u)-u]=∫dx/x 最后用y/x代替u,便得所给齐次方程的通解 3.一阶线性微分方程解法 一般形式:dy/dx+P(x)y=Q(x) 先令Q(x)=0则dy/dx+P(x)y=0解得y=Ce- ∫P(x)dx,再令y=u e-∫P(x)dx代入原方程解得u=∫Q(x) e∫P(x)dx dx+C,所以y=e-∫P(x)dx[∫Q(x)e∫P(x)dx dx+C] 即y=Ce-∫P(x)dx +e- ∫P(x)dx∫Q(x)e∫P(x)dx dx为一阶线性微分方程的通解 4.可降阶的高阶微分方程解法 ①y(n)=f(x)型的微分方程 y(n)=f(x) y(n-1)= ∫f(x)dx+C1 y(n-2)= ∫[∫f(x)dx+C1]dx+C2 依次类推,接连积分n次,便得方程y(n)=f(x)的含有n个任意常数的通解②y”=f(x,y’) 型的微分方程 令y’=p则y”=p’,所以p’=f(x,p),再求解得p=φ(x,C1) 即dy/dx=φ(x,C1),所以y=∫φ(x,C1)dx+C2 ③y”=f(y,y’) 型的微分方程

令y’=p则y”=pdp/dy,所以pdp/dy=f(y,p),再求解得p=φ(y,C1) 即dy/dx=φ(y,C1),即dy/φ(y,C1)=dx,所以∫dy/φ(y,C1)=x+C2 5.二阶常系数齐次线性微分方程解法 一般形式:y”+py’+qy=0,特征方程r2+pr+q=0 6.二阶常系数非齐次线性微分方程解法 一般形式: y”+py’+qy=f(x) 先求y”+py’+qy=0的通解y0(x),再求y”+py’+qy=f(x)的一个特解y*(x) 则y(x)=y0(x)+y*(x)即为微分方程y”+py’+qy=f(x)的通解 求y”+py’+qy=f(x)特解的方法: ①f(x)=P m(x)eλx型 令y*=x k Q m(x)eλx[k按λ不是特征方程的根,是特征方程的单根或特征方程的重根依次取0,1或2]再代入原方程,确定Q m(x)的m+1个系数 ②f(x)=eλx[Pl(x)cosωx+P n(x)sinωx]型 令y*=x k eλx[Q m(x)cosωx+R m(x)sinωx][m=max﹛l,n﹜,k按λ+iω不是特征方程的根或是特征方程的单根依次取0或1]再代入原方程,分别确定Q m(x)和R m(x)的m+1个系数

微分方程几种求解方法

第五章 控制系统仿真 §5.2 微分方程求解方法 以一个自由振动系统实例为例进行讨论。 如下图1所示弹簧-阻尼系统,参数如下: M=5 kg, b=1 N.s/m, k=2 N/m, F=1N F 图1 弹簧-阻尼系统 假设初始条件为:00=t 时,将m 拉向右方,忽略小车的摩擦阻力,m x 0)0(= s m x /0)0(=? 求系统的响应。 )用常微分方程的数值求解函数求解包括ode45、 ode23、ode113、ode15s 、ode23s 等。 wffc1.m myfun1.m 一、常微分方程的数值求解函数ode45求解 解:系统方程为 F kx x b x m =++??? 这是一个单变量二阶常微分方程。

将上式写成一个一阶方程组的形式,这是函数ode45调用规定的格式。 令: x x =)1( (位移) )1()2(? ?==x x x (速度) 上式可表示成: ??????--=??????=??? ???????)1(*4.0)2(*2.02.0)2()2()2()1(x x x x x x x && 下面就可以进行程序的编制。 %写出函数文件myfun1.m function xdot=myfun1(t,x) xdot=[x(2);0.2-0.2*x(2)-0.4*x(1)]; % 主程序wffc1.m t=[0 30]; x0=[0;0]; [tt,yy]=ode45(@myfun1,t,x0); plot(tt,yy(:,1),':b',tt,yy(:,2),'-r') hold on plot(tt,0.2-0.2*yy(:,2)-0.4*yy(:,1),'-k') legend('位移','速度',’加速度’)

拉普拉斯方程

拉普拉斯方程 一、概念:一个弯曲的表面称为曲面,通常用相应的两个曲率半径来描述曲面,即在曲面上某点作垂直于表面的直线,再通过此线作一平面,此平面与曲面的截线为曲线,在该点与曲线相切的圆半径称为该曲线的曲率半径R1。通过表面垂线并垂直于第一个平面再作第二个平面并与曲面相交,可得到第二条截线和它的曲率半径R2,用R1与R2可表示出液体表面的弯曲情况。若液面是弯曲的,液体内部的压强p1与液体外的压强p2就会不同,在液面两边就会产生压强差△P= P1- P2,称附加压强,其数值与液面曲率大小有关,可表示为:,式中γ是液体表面张力系数,该公式称为拉普拉斯方程。 二、在数理方程中 拉普拉斯方程为:,其中?2为拉普拉斯算子,此处的拉普拉斯方程为二阶偏微分方程。三维情况下,拉普拉斯方程可由下面的形式描述,问题归结为求解对实自变量x、y、z二阶可微的实函数φ: 其中?2称为拉普拉斯算子。 拉普拉斯方程的解称为调和函数。 如果等号右边是一个给定的函数f(x,y,z),即: 则该方程称为泊松方程。拉普拉斯方程和泊松方程是最简单的椭圆型偏微分方程。偏微分算子(可以在任意维空间中定义这样的算子)称为拉普拉斯算子,英文是Laplace operator或简称作Laplacian。

三、方程的解 称为调和函数,此函数在方程成立的区域内是解析的。任意两个函数,如果它们都满足拉普拉斯方程(或任意线性微分方程),这两个函数之和(或任意形式的线性组合)同样满足前述方程。这种非常有用的性质称为叠加原理。可以根据该原理将复杂问题的已知简单特解组合起来,构造适用面更广的通解。 四、二维方程 两个自变量的拉普拉斯方程具有以下形式: Δu =δ2u/δu2+δ2u/δy2=0 解析函数的实部和虚部均满足拉普拉斯方程

用拉普拉斯变换方法解微分方程

拉普拉斯变换是解常系数线性微分方程中经常采用的一种较简便的方法.其基本思想是,先通过拉普拉斯变换将已知方程化成代数方程,求出代数方程的解,再通过逆拉普拉斯变换,得到所求数值问题的解. 一拉普拉斯变换的概念 定义设函数f(t)的定义域为[0,+∞),若广义积分∫0+∞f(t)e-pt dt对于p在某一范围内的值收敛,则此积分就确定了一个参数为p的函数,记作F(p),即F(p)=∫0+∞f(t)e-pt dt函数F(p)称为f(t)的拉普拉斯变换(或称为f(t)的象函数),表示为F(p)=L[f(t)]. 若F(p)是f(t)的拉氏变换,则称f(t)为F(p)的拉氏逆变换(或F(p)的象原函数),记作L-1[F(p)]. 例1 求指数函数f(t)=e at(t≥0,a是常数)的拉氏变换. 解根据定义,有L[e at]=∫0+∞e at e-pt dt=∫0+∞e-(p-a)t dt 这个积分在p>a时收敛,所以有 L[e at]=∫0+∞e-(p-a)t dt=1/(p-a) (p>a) (1) 例2 求一次函数f(t)=at(t≥0,a是常数)的拉氏变换. 解L[at]=∫0+∞ate-pt dt=-a/p∫0+∞td(e-pt) =-[at/p e-pt]0+∞+a/p∫0+∞e-pt dt 根据罗必达法则,有 lim t0+∞(-at/p e-pt)=-lim t0+∞at/pe pt=-lim t0+∞a/p2 e pt 上述极限当p>0时收敛于0,所以有lim t0+∞(-at/pe-pt)=0 因此L[at]=a/p∫0+∞e-pt dt

=-[a/p2e-pt]0+∞=a/p2(p>0) (2) 例3 求正弦函数f(t)=sinωt(t≥0)的拉氏变换. 解L[sinωt]=∫0+∞sinωte-pt dt =[-1/(p2+ω2) e-pt(psinωt+ωcosωt]0+∞ =ω/(p2+ω2) (p>0) (3) 用同样的方法可求得 L[cosωt]=p/(p2+ω2) (p>0) (4) 二拉普拉斯变换的基本性质 三拉普拉斯变换的逆变换 四拉普拉斯变换的应用 2–5 用拉普拉斯变换方法解微分方程 拉普拉斯变换方法是解线性微分方程的一种简便方法,利用拉普拉斯变换法可以把微分方程变换成为代数方程,在利用现成的拉普拉斯变换表(参见附录一的附表1),即可方便地查得相应的微分方程解。这样就使方程求解问题大为简化。 拉普拉斯变换法的另一个优点是在求解微分方程时,可同时获得的瞬态分量和稳态分量两部分。 有关拉普拉斯变换(简称拉氏变换)的公式见附录一。 应用拉氏变换法得到的解是线性微分方程的全解。用古典方法求解微分方程全解时需要利用初始条件来确定积分常数的值,这一过程比较麻烦。而应用拉氏变换就可省去这一步。因为初始条件已自动地包含在微分方程的拉氏变换式之中了。而且,如果所有初始条件都为零,那么求

各类微分方程的解法大全

创作编号:BG7531400019813488897SX 创作者:别如克* 各类微分方程的解法 1.可分离变量的微分方程解法 一般形式:g(y)dy=f(x)dx 直接解得∫g(y)dy=∫f(x)dx 设g(y)及f(x)的原函数依次为G(y)及F(x),则G(y)=F(x)+C为微分方程的隐 式通解 2.齐次方程解法 一般形式:dy/dx=φ(y/x) 令u=y/x则y=xu,dy/dx=u+xdu/dx,所以u+xdu/dx=φ(u),即du/[φ(u)-u] =dx/x两端积分,得∫du/[φ(u)-u]=∫dx/x 最后用y/x代替u,便得所给齐次方程的通解 3.一阶线性微分方程解法 一般形式:dy/dx+P(x)y=Q(x) 先令Q(x)=0则dy/dx+P(x)y=0解得y=Ce- ∫P(x)dx,再令y=u e-∫P(x)dx代入原方程 解得u=∫Q(x) e∫P(x)dx dx+C,所以y=e-∫P(x)dx[∫Q(x)e∫P(x)dx dx+C] 即y=Ce-∫P(x)dx +e- ∫P(x)dx∫Q(x)e∫P(x)dx dx为一阶线性微分方程的通解 4.可降阶的高阶微分方程解法 ①y(n)=f(x)型的微分方程 y(n)=f(x) y(n-1)= ∫f(x)dx+C1

y(n-2)= ∫[∫f(x)dx+C1]dx+C2 依次类推,接连积分n次,便得方程y(n)=f(x)的含有n个任意常数的通解②y”=f(x,y’) 型的微分方程 令y’=p则y”=p’,所以p’=f(x,p),再求解得p=φ(x,C1) 即dy/dx=φ(x,C1),所以y=∫φ(x,C1)dx+C2 ③y”=f(y,y’) 型的微分方程 令y’=p则y”=pdp/dy,所以pdp/dy=f(y,p),再求解得p=φ(y,C1) 即dy/dx=φ(y,C1),即dy/φ(y,C1)=dx,所以∫dy/φ(y,C1)=x+C2 5.二阶常系数齐次线性微分方程解法 一般形式:y”+py’+qy=0,特征方程r2+pr+q=0 6.二阶常系数非齐次线性微分方程解法 一般形式: y”+py’+qy=f(x) 先求y”+py’+qy=0的通解y0(x),再求y”+py’+qy=f(x)的一个特解y*(x) 则y(x)=y0(x)+y*(x)即为微分方程y”+py’+qy=f(x)的通解 求y”+py’+qy=f(x)特解的方法: ①f(x)=P m(x)eλx型 令y*=x k Q m(x)eλx[k按λ不是特征方程的根,是特征方程的单根或特征方程的重根依次取0,1或2]再代入原方程,确定Q m(x)的m+1个系数 ②f(x)=eλx[Pl(x)cosωx+P n(x)sinωx]型

各种类型的微分方程及其相应解法

各种类型的微分方程及其相应解法 专业班级:交土01班 姓名:高云 学号:1201110102 微分方程的类型有很多种,解题时先判断微分方程是哪种类型,可以帮助我们更快解题,所以我们有必要归纳整理一下各类型(主要是一阶和二阶)的微分方程及其相应解法。 一、一阶微分方程的解法 1.可分离变量的方程 dx x f dy y g )()(=,或)()(y g x f dx dy = 其特点是可以把变量x 和y 只分别在等式的两边,解法关键是把变量分离后两边积分。 例1.求微分方程ydy dx y xydy dx +=+2的通解. 解 先合并dx 及dy 的各项,得dx y dy x y )1()1(2-=- 设,01,012≠-≠-x y 分离变量得 dx x dy y y 1112-=- 两端积分??-=-dx x dy y y 1112得 ||ln |1|ln |1|ln 2 112C x y +-=- 于是 2212)1(1-±=-x C y 记,21C C ±=则得到题设方程的通解 .)1(122-=-x C y 2.齐次方程 (1))(x y f dx dy = (2) )(c by ax f dx dy ++=(a ,b 均不等于0) 例2求解微分方程.2222xy y dy y xy x dx -=+- 解 原方程变形为=+--=2222y xy x xy y dx dy ,1222?? ? ??+--??? ??x y x y x y x y 令,x y u =则,dx du x u dx dy +=方程化为,1222u u u u dx du x u +--=+ 分离变量得?? ????-+--??? ??--112212121u u u u ,x dx du = 两边积分得 ,ln ln ln 2 1)2ln(23)1ln(C x u u u +=----

4-3拉普拉斯变换解微分方程

變換解微分方程 題過程: 分方程 題 02///=--y y y …..(*) 0)0(,1)0(/==y y 式等號兩邊做拉普拉斯變換 L {=--}2///y y y L }0{ 性性質,得 L {}//y - L {}/y -2 L {0}=y 2L {)}(t y -s y sy --)0()0(/L 2)0()}({-+f t y L 0)}({=t y 始條件,得L )}({t y 之代數方程 2s L )}({t y s -L 2)}({-t y L 1)}({-=s t y --------- (a) 數方程(a),得 簡 單 L 1-L ODE L {})()(s t y 之代數方程或低階ODE )(t y L {})()(s t y

L )}({t y 21 2---=s s s 上式兩邊做反拉普拉斯變換,得 =) L -1 {L {)(t y }}= L -1 ??????---212s s s ??? ??++??? ??-11322131s s 及L {} at e = a s -1 , 解為 =)t 31 L -1 ??????-21s + 32 L -1 ??????+11s 31= +t e 2 32 t e - 題t y y 2sin //=+ , …..(**) 1)0(,2)0(/==y y *)式等號兩邊做拉普拉斯變換 L {} =+y y // L {}t 2sin 換的微分性質以及L 22}{sin a s a at += ,得 L {}y +--)0()0(/y sy L 42 }{2+=s y 入初始條件,得L )}({t y 之代數方程 )1+L {}y 42122+=--s s --------- (b) 代數方程(b),得 {}y ??? ??+-??? ??+++=+++++=4132113512)4)(1(6822222223s s s s s s s s s 在上式兩邊做反拉普拉斯變換,得初始值問題的解為 t t t 2sin 31sin 35cos 2-+ (由 L 22}{sin a s a at += ,L 22}{cos a s s at += )

常微分方程解题方法总结.doc

常微分方程解题方法总结 来源:文都教育 复习过半, 课本上的知识点相信大部分考生已经学习过一遍 . 接下来, 如何将零散的知 识点有机地结合起来, 而不容易遗忘是大多数考生面临的问题 . 为了加强记忆, 使知识自成 体系,建议将知识点进行分类系统总结 . 著名数学家华罗庚的读书方法值得借鉴, 他强调读 书要“由薄到厚、由厚到薄”,对同学们的复习尤为重要 . 以常微分方程为例, 本部分内容涉及可分离变量、 一阶齐次、 一阶非齐次、 全微分方程、 高阶线性微分方程等内容, 在看完这部分内容会发现要掌握的解题方法太多, 遇到具体的题 目不知该如何下手, 这种情况往往是因为没有很好地总结和归纳解题方法 . 下面以表格的形 式将常微分方程中的解题方法加以总结,一目了然,便于记忆和查询 . 常微分方程 通解公式或解法 ( 名称、形式 ) 当 g( y) 0 时,得到 dy f (x)dx , g( y) 可分离变量的方程 dy f ( x) g( y) 两边积分即可得到结果; dx 当 g( 0 ) 0 时,则 y( x) 0 也是方程的 解 . 解法:令 u y xdu udx ,代入 ,则 dy 齐次微分方程 dy g( y ) x dx x u g (u) 化为可分离变量方程 得到 x du dx 一 阶 线 性 微 分 方 程 P ( x)dx P ( x) dx dy Q(x) y ( e Q( x)dx C )e P( x) y dx

伯努利方程 解法:令 u y1 n,有 du (1 n) y n dy , dy P( x) y Q( x) y n(n≠0,1)代入得到du (1 n) P(x)u (1 n)Q(x) dx dx 求解特征方程:2 pq 三种情况: 二阶常系数齐次线性微分方程 y p x y q x y0 二阶常系数非齐次线性微分方程 y p x y q x y f ( x) (1)两个不等实根:1, 2 通解: y c1 e 1x c2 e 2x (2) 两个相等实根:1 2 通解: y c1 c2 x e x (3) 一对共轭复根:i , 通解: y e x c1 cos x c2 sin x 通解为 y p x y q x y 0 的通解与 y p x y q x y f ( x) 的特解之和. 常见的 f (x) 有两种情况: x ( 1)f ( x)e P m ( x) 若不是特征方程的根,令特解 y Q m ( x)e x;若是特征方程的单根,令特 解 y xQ m ( x)e x;若是特征方程的重根, 令特解 y*x2Q m (x)e x; (2)f (x) e x[ P m ( x) cos x p n ( x)sin x]

正方形环域Laplace方程的简明数值解法

收稿日期:2005212210 基金项目:辽宁省教育厅科研基金资助项目(05L415)? 作者简介:刘大卫(1964-),男,贵州贵阳人,贵州工业大学副教授? 第24卷 第2期 2006年4月 沈阳师范大学学报(自然科学版) Journal of S henyang Norm al U niversity (N atural Science ) V ol 124,N o.2Apr.2006 文章编号:1673-5862(2006)02-0166-04 正方形环域Laplace 方程的简明数值解法 刘大卫1,高 明2,3 (1.贵州工业大学基础部,贵州贵阳 550003; 2.沈阳师范大学物理科学与技术学院,辽宁沈阳 110034; 3.沈阳师范大学实验中心,辽宁沈阳 110034) 摘 要:通过正方形环域的Laplace 方程的数值求解过程,详细介绍了使用MA TLAB 求解微 分方程的方法?用MA TLAB 的M 文件,生成正方形环域,用函数numgrid 作网格划分,用函数delsq 建立五点差分格式建立并求解拉普拉斯方程第一边值问题?关 键 词:Laplace 方程;差分法;MA TLAB 中图分类号:O 175 文献标识码:A 0 引 言 Laplace 方程是解决电磁场问题中最常见的方程,在一些具有较复杂边界形状的区域中求出方程的 解析解是非常困难的[122]?因此寻求一种有效的、简明的数值解法对于解决实际问题中复杂边界区域中 的电磁场分布问题具有非常重要的实际价值?通过一个特殊的方形区域的电场分布问题介绍一种应用MA TLAB 数值求解Laplace 方程的方法? 考虑图1所示正方形环域,设区域内满足Laplace 方程Δu =0,内边界处电势u =100,外边界处电势u =0,求区域内的电势分布,易见,这是一个Laplace 方程的第一边值问题? 现用差分法求解这个问题,首先把研究区域划分为图2所示的网格,在这个划分中,除去边界点,区域被分为240个网格节点 ? 图1  正方形环域 图2 网格的划分 差分法求解的基本思想是,在网格节点上用差商代替微商,结合边界条件,把定解问题转化为以未知函数u (x ,y )在节点上的数值为未知量的线性方程组: Ax =b 其中,x 为解向量,代表函数u (x ,y )在节点上的数值?A 为系数矩阵,与网格节点的划分和编号方式有关,通常是一个大型的稀疏矩阵?b 为常数向量,由边界条件确定?对上述问题,A 为240×240阶稀疏矩阵,b 为240×1阶稀疏常数向量?下面用MA TLAB 提供的网格划分函数numgrid 和差分格式建立函数delsq 来构造系数矩阵A ?

用拉普拉斯变换方法解微分方程

例1求指数函数f(t)=e at(t > 0,a是常数)的拉氏变换. 解根据定义,有L[e at]= j o+ e at e-pt dt= e-(p-a)t dt 这个积分在p> a时收敛,所以有 L[e at]= / T e(p-a)t dt=1/(p-a) (p > a) (1) 例2求一次函数f(t)=at(t > 0,a是常数)的拉氏变换. 解L[at]= / o+ra ate-pt dt=- a/p / o+"td(e -pt) =-[at/p e -pt ] o+ra+a/p / T e-pt dt 根据罗必达法则, 有 lim to+ °°(-at/p e )=-lim to+ °° at/pe =-lim to+ a/p e 上述极限当p> 0时收敛于0,所以有lim to+ - (-at/pe -pt )=0 因此L[at]=a/p / o+ra e-pt dt 2 -pt +m 2 =-[a/p e p ]o =a/p (p > (2) 0) 例3求正弦函数f(t)=sin 3 t(t > 0)的拉氏变换解L[sin 31]= / 0+ra sin 3 te -pt dt 2 2 -pt +m =[-1/(p +3 ) e (psin 3 t+ 3 cos3 t] 0

2 2 2 =3 /(P +3 ) (p > 0) ⑶ 用同样的方法可求得 2 2 L[cos 3t]=p/(p +3 ) (p > 0) 二拉普拉斯变换的基本性质 三拉普拉斯变换的逆变换 四 拉普拉斯变换的应用 2-5 用拉普拉斯变换方法解微分方程 拉普拉斯变换方法是解线性微分方程的一种简便方法,利用拉普拉斯变换法可以把微分方 程变换成为代数方程,在利用现成的拉普拉斯变换表(参见附录一的附表1),即可方便地查 得相应的微分方程解。这样就使方程求解问题大为简化。 拉普拉斯变换法的另一个优点是在求解微分方程时,可同时获得的瞬态分量和稳态分量两 部分。 有关拉普拉斯变换(简称拉氏变换)的公式见附录一。 应用拉氏变换法得到的解是线性微分方程的全解。用古典方法求解微分方程全解时需要利 用初始条件来确定积分常数的值,这一过程比较麻烦。而应用拉氏变换就可省去这一步。因为初 始条件已自动地包含在微分方程的拉氏变换式之中了。 而且,如果所有初始条件都为零,那么求 取微分方程的拉氏变换式就更为方便, 只要简单地用复变量s 来代替微分方程中的 —,s 2 代替 dt dt 应用拉氏变换法解微分方程的步骤如下: d 2 …就可得到。

各种类型的微分方程及其相应解法教学文案

各种类型的微分方程及其相应解法

各种类型的微分方程及其相应解法 专业班级:交土01班 姓名:高云 学号:1201110102 微分方程的类型有很多种,解题时先判断微分方程是哪种类型,可以帮助我们更快解题,所以我们有必要归纳整理一下各类型(主要是一阶和二阶)的微分方程及其相应解法。 一、一阶微分方程的解法 1.可分离变量的方程 dx x f dy y g )()(=,或)()(y g x f dx dy = 其特点是可以把变量x 和y 只分别在等式的两边,解法关键是把变量分离后两边积分。 例1.求微分方程ydy dx y xydy dx +=+2的通解. 解 先合并dx 及dy 的各项,得dx y dy x y )1()1(2-=- 设,01,012≠-≠-x y 分离变量得 dx x dy y y 1112-=- 两端积分??-=-dx x dy y y 1112得 ||ln |1|ln |1|ln 2 112C x y +-=- 于是 2212)1(1-±=-x C y 记,21C C ±=则得到题设方程的通解 .)1(122-=-x C y 2.齐次方程 (1) )(x y f dx dy = (2) )(c by ax f dx dy ++=(a ,b 均不等于0) 例2求解微分方程.2222xy y dy y xy x dx -=+- 解 原方程变形为=+--=2222y xy x xy y dx dy ,1222?? ? ??+--??? ??x y x y x y x y

令,x y u =则,dx du x u dx dy +=方程化为,1222u u u u dx du x u +--=+ 分离变量得??? ???-+--??? ??--1122 121 21 u u u u ,x dx du = 两边积分得 ,ln ln ln 21 )2ln(23 )1ln(C x u u u +=---- 整理得 .)2(1 2/3Cx u u u =-- 所求微分方程的解为 .)2()(32x y Cy x y -=- 3.一阶线性微分方程 ?+??==+-])([),()()()(C dx e x Q e y x Q y x p dx dy dx x p dx x p 其通解为 例3. x y dx dy x sin 2=+, ππ1 )(=y ; 解 将方程改写为 x x y x dx dy sin 2=+, 这里x x p 2)(=,x x x q sin )(=,故由求解公式得 )sin (1 sin 22 2 ??+=??? ????+?=-xdx x C x dx e x x C e y dx x dx x 22sin cos x x x x x C +-=. 由初值条件ππ1 )(=y ,得0=C . 所以初值问题的解为 2cos sin x x x x y -= 例4.设非负函数()f x 具有一阶导数,且满足1 200()()()x f x f t dt t f t dt =+??,求 函数()f x . 解:设120()A t f t dt =?,则0()()x f x f t dt A =+?,两边对x 求导,得 ()()()x f x f x f x Ce '=?=,由已知(0)()x f A C A f x Ae =?=?= 又 11222004 ()()1t A t f t dt t Ae dt A e ==?=+??,则 24 ()1x f x e e =+

解微分方程方法

MATLAB解微分方程(2011-07-15 17:35:25) 转载▼ 分类:matlab学习标签: 教育

先说明一下最常用的ode45调用方式,和相应的函数文件定义格式。 [t,x]=ode45(odefun,tspan,x0); 其中,Fun就是导函数,tspan为求解的时间区间(或时间序列,如果采用时间序列,则必须单调),x0为初值。 这时,函数文件可以采用如下方式定义 function dx=odefun(t,x) 对于上面的小例子,可以用如下的程序求解。

2.终值问题 tspan可以是递增序列,也可以为递减序列,若为递减则可求解终值问题。 [t,x]=ode45(@zhongzhiode,[3,0],[1;0;2]);plot(t,x) function dx=zhongzhiode(t,x) dx=[2*x(2)^2-2; -x(1)+2*x(2)*x(3)-1; -2*x(2)+2*x(3)^2-4]; 结果如下 3.odeset options = odeset('name1',value1,'name2',value2,...) [t,x]=solver(@fun,tspan,x0,options) 通过odeset设置options 第一,通过求解选项的设置可以改善求解精度,使得原本可能不收敛的问题收敛。options=odeset('RelTol',1e-10);

第二,求解形如M(t,x)x'=f(t,x)的方程。 例如,方程 x'=-0.2x+yz+0.3xy y'=2xy-5yz-2y^2 x+y+z-2=0 可以变形为 [1 0 0][x'] [-0.2x+yz+0.3xy] [0 1 0][y']=[2xy-5yz-2y^2 ] [0 0 1][z'] [x+y+z-2 ] 这样就可以用如下的代码求解该方程 function mydae M=[1 0 0;0 1 0;0 0 0]; options=odeset('Mass',M); x0=[1.6,0.3,0.1]; [t,x]=ode15s(@daedot,[0,1.5],x0,options);plot(t,x) function dx=daedot(t,x) dx=[ -0.2*x(1)+x(2)*x(3)+0.3*x(1)*x(2); 2*x(1)*x(2)-5*x(2)*x(3)-2*x(2)*x(2); x(1)+x(2)+x(3)-2]; 4.带附加参数的ode45

相关文档
相关文档 最新文档