文档库 最新最全的文档下载
当前位置:文档库 › 信号隔离电路

信号隔离电路

信号隔离电路
信号隔离电路

信号隔离电路

分类:硬件设计2013-12-28 22:24 184人阅读评论(0) 收藏举报1.信号隔离的目的在于从电路上把干扰源和易受干扰的部分隔离开来,使测控装置与现场仅保持信号联系,而不直接发生电的联系。隔离的实质是把引进的干扰通道切断,从而达到隔离现场干扰的目的。测控装置与现场信号之间、弱电和强电之间,常用的隔离方式有光电隔离、继电器隔离、变压器隔离、隔离放大器等。另外,在布线上也应该注意隔离。

2.光电耦合器件将发光元件和受光元件组合在一起,通过电-光-电这种转换,利用“光”这一环节完成隔离功能,使输入和输出在电气上是完全隔离的。根据受光元件的不同可分为晶体管输出型和晶闸管输出型两类。

光电耦合器具有三个特点:①信号传递采取电-光-电的形式,能够避免输出端对输入端可能产生的反馈和干扰,②抑制噪声干扰能力强;③具有耐用、可靠性高和速度快等优点。

这部分内容是本章的重点和难点所在,要求掌握常用隔离器件的电路工作原理,例如:

(1)对于图1所示的4N25光电耦合器的接口电路图,要求掌握其输入端ui与输出端uo之间的关系,即当输入端ui分别为高、低电平时,输出端的电平如何。再有就是电阻的作用是什么,如何选择。

(2)图2所示的是用4N40控制220V电灯的电路图,要求掌握图中单片机8031的引脚P1.0的状态与电灯亮灭状态的关系,以及4N40输入端电阻的作用和计算方法。

3.

继电器隔离也是一种常用的输出方式,常用于驱动大型设备。在设计继电器电路时,要考虑(1)继电器的驱动线圈有一定的电感,在关断瞬间可能会产生较大的电压,因此在对继电器的驱动电路上常常反接一个保护二极管用于反向放电,(2)不同的继电器,允许的驱动电流也不一样,在电路设计时可适当加一限流电阻R,而在某些需较大驱动电流的场合,则可在光隔与继电器之间再接一级三极管以增加驱动电流,如图3所示。

4.固态继电器(SOLIDESTATE RELAYS),简称SSR,利用电子元件(如开关三极管、双向可控硅等半导体器件)的开关特性,可实现无触点无火花地接通和断开电路。固态继电器按使用场合可以分为交流型(AC-SSR) 和直流型(DC-SSR)两类,它们分别在交流或直流电源上做负载的开关,不能混用。

5.隔离放大器。为完成地线隔离,将放大器加上静电和电磁屏蔽浮置起来,这种放大器叫隔离放大器,或叫隔离器,其输入和输出电路与电源没有直接的电路耦合关系。常用的隔离放大器有Analog Devices公司的AD277J、AD202、AD204、AD289、AD290、AD210、AD281等。

6.线性光电隔离放大器利用发光二极管的光反向送回输入端,正向送至输出端,从而提高了放大器的精度和线性度。放大器的输入端和输出端是用光隔离的,所以不存在电气连接。常见的线性光电隔离放大器有Burr-Brown公司的ISO100、3650和3652。

电器隔离技术

对电子电气电路的各种隔离进行了详尽的分析讨论,提出了抑制干扰而采取的电气隔离的技术措施,从而保证电气设备的正常工作。 关键词:电子;电路;电气隔离;干扰;电磁兼容 Technologies of Circuit Isolation in Electronic and Electrical Equipments HUANG Yao-feng, WANG Chuan-liang, ZHANG Chao-qun Abstract:The many isolation technologies of the electronic and electrical circuit are put forward and analyzed,discussed in detail. So the normal operation of the electronic and electrical equipments are guaranted. Keywords:Electron; Circuit; Electrical isolation; Interference; Electromagnatic compatibility 电路隔离的主要目的是通过隔离元器件把噪声干扰的路径切断,从而达到抑制噪声干扰的效果。在采用了电路隔离的措施以后,绝大多数电路都能够取得良好的抑制噪声的效果,使设备符合电磁兼容性的要求。电路隔离主要有:模拟电路的隔离、数字电路的隔离、数字电路与模拟电路之间的隔离。所使用的隔离方法有:变压器隔离法、脉冲变压器隔离法、继电器隔离法、光电耦合器隔离法、直流电压隔离法、线性隔离放大器隔离法、光纤隔离法、A/D转换器隔离法等。 数字电路的隔离主要有:脉冲变压器隔离、继电器隔离、光电耦合器隔离、光纤隔离等。其中数字量输入隔离方式主要采用脉冲变压器隔离、光电耦合器隔离;而数字量输出隔离方式主要采用光电耦合器隔离、继电器隔离、高频变压器隔离(个别情况下采用)。 模拟电路的隔离比较复杂,主要取决于对传输通道的精度要求,对精度要求越高,其通道的成本也就越高;然而,当性能的要求上升为主要矛盾时,应当以性能为主选择隔离元器件,把成本放在第二位;反之,应当从价格的角度出发选择隔离元器件。模拟电路的隔离主要采用变压器隔离、互感器隔离、直流电压隔离器隔离、线性隔离放大器隔离。 模拟电路与数字电路之间的隔离主要采用模/数转换装置;对于要求较高的电路,除采用模/数转换装置外,还应在模/数转换装置的两端分别加入模拟隔离元器件和数字隔离元器件。

光电隔离电子电路图大全

光电隔离电子电路图全集 一.MSD1型湿敏原件空气翁度测量仪电路图 二.光电隔离器应用电路图 光电隔离器可以组成多种多样的应用电路。如组成光电隔离电路,长传输线隔离器,TTL电路驱动器,CMOS 电路驱动器,脉冲放大器等。目前,在A/D模拟转换开关,光斩波器,交流、直流固态继电器等方面也有广泛应用。光电隔离器的输入部分为红外发光二极管,可以采用TTL或CMOS数字电路驱动。 在图a,输出电压Vo受TTL电路反相器的控制,当反相器的控制输入信号为低电平时,信号反相使输出为高电平,红外发光二极管截止,光敏三极管不导通,Vo输出为高电平。反之Vo输出为低电平。从而实现TTL电路控制信号的隔离、传输和驱动作用。 图2为CMOS门电路通过光电隔离器为中间传输媒介,驱动电磁继电器的应用实例。当CMOS反相器的输出控制信号为高电平时.其输出信号为低电平,Q晶体管截止,红外发光二极管不导通,光电隔离器中的输出达林顿管截止,继电器控制绕组J处于释放状态。反之继电器的控制绕组J吸合,继电器的触点可完成规定的控制动作,从而实现CMOS门电路对电磁继电器控制电路的隔离和驱动。

选用输出部分为达林顿晶体管的光电隔离器,可以显著提高晶体管的电流放大系数,从而提高光电耦合部分的电流传输比CTR。这样,输入部分的红外发光二极管只需较小的正向导通电流If,就可以输出较大的负载电流,以驱动继电器、电机、灯泡等负载形式。 达林顿晶体管输出形式的光电隔离器,其电流传输比CTR可达5000%,即Ic=5000×If ,适用于负载较大的应用场合。在采用光电隔离器驱动电磁继电器的控制绕组时,应在控制绕组两侧反向并联二极管D,以抑制吸动时瞬恋反电动势的作用,从而保护继电器产品。 · [图文] 多敏固态控制器光电输入的电路应用原理 · [图文] 线性光藕隔离放大器电路 · [图文] 采用光隔离器的电码实验操作振荡器 · [图文] AD7414/AD7415 数字输出温度传感器 · [图文] 加外部缓冲器的远程测温电路 · [图文] 具有整形作用的光耦隔离电路 · [图文] 带PNP三极管电流放大的光耦隔离电路 · [图文] 普通光耦隔离电路 · [图文] PARCOR方式语音合成电路图 · [图文] ADM方式语音合成电路图 · [图文] 用CMOS逻辑门控制AD590电路图 · [图文] 灵敏度可调节的光电继电路图 · [图文] 光敏吸合式继电路图 · [图文] 光敏晶体管施密特电路图 · [图文] 光敏晶体管及光照吸合式继电器电路图 · [图文] 光敏晶体管光敏电桥电路图 · [图文] 光敏晶体管电感桥电路图 · [图文] 光敏吸合式继电路图 · [图文] 光控玩具汽车向前停车电路图 · [图文] 光控施密特触发电路图 · [图文] 光控升压电路图 · [图文] 光控升压电路图 · [图文] 光控换向电路图 · [图文] 光控发光二极管电路图 · [图文] 光控多功能触发器电路图 · [图文] 光控串联晶闸关开关电路图 · [图文] 光控触发脉冲形成电路图 · [图文] 光控常开式交流接触器电路图 · [图文] 光控常闭式交流接触器电路图 · [图文] 光控插座电路图 · [图文] 光控 闪光管电路图 · [图文] 光控555维电器电路图 · [图文] 光可控电路图 · [图文] 光继电路图

(整理)EMC中的隔离技术.

EMC中的隔离技术 嘉兆科技 1 引言 电力电子设备包括两部分,即变换部分与控制部分。前者属于功率流强电范畴,后者属于信息流弱电范畴。一般情况下前者是主电磁干扰源,后者是被干扰对象。为了使电力电子设备可靠地运行,除了解决变换部分与控制部分之间的电气隔离外,还要解决控制部分的抗电磁干扰的问题,特别是当变换部分处于高电压、强电流、高频变换情况下尤其重要。抗干扰问题实质上是解决电力电子设备的电磁兼容问题。 隔离技术是电磁兼容性中的重要技术之一。下面将电磁兼容中的隔离技术分为磁电、光电、机电、声电和浮地等几种隔离方式加以叙述。 2 磁电隔离技术 2.1 利用变压器实现磁电隔离的基本原理 变压器主要由绕在共同铁心上的两个或多个绕组组成。当在一个绕组上加上交变电压时,由于电磁感应而在其它绕组上感生交变电压。因此变压器的几个绕组之间是通过交变磁场互相联系的,在电路上是互相隔离的。其隔离的介电强度取决于几个绕组之间以及它们对地的绝缘强度。 2.2 理想变压器的特性 理想变压器是假定变压器绕组的电阻为零;变压器的漏磁为零;铁心的损耗为零以及铁心的导磁率为无穷大。 2.2.1 电压关系 E1=4.44fN1Φm (1) E1/E2=U1/U2=N1/N2=n (2)

式中:E1——变压器原边的感应电势;E2——变压器副边的感应电势; U1——变压器原边的电压; U2——变压器副边的电压; N1——变压器原边绕组的匝数; N2——变压器副边绕组的匝数;f——变压器原边电压的频率; Φm——变压器铁心中磁通的峰值;n——变压器原副边绕组的匝数比。2.2.2 电流关系 I1/I2=N2/N1=1/n (3) 式中:I1——变压器原边的电流; I2——变压器副边的电流。 2.2.3 功率关系 P1=P2=U1I1=U2I2 (4) 式中:P1——变压器原边的输入功率;P2——变压器副边的输出功率。 2.2.4 阻抗关系

谈电子电气设备的电路隔离技术

谈电子电气设备的电路隔离技术 电路隔离的主要目的是通过隔离元器件把噪声干扰的路径切断,从而达到抑制噪声干扰的效果,使电子电气设备符合电磁兼容性的要求。电路隔离主要有:模拟电路的隔离、数字电路的隔离、数字电路与模拟电路之间的隔离。所使用的隔离方法有:变压器隔离法、脉冲变压器隔离法、继电器隔离法、光电耦合器隔离法、直流电压隔离法、线性隔离放大器隔离法、光纤隔离法、A/D转换器隔离法等等。下文就模拟电路的隔离和数字电路隔离技术的相关内容进行简要分析。 标签:电子电气;设备;电路隔离技术 1、电子电气设备隔离技术概述 电子电气设备隔离技术主要分为两种,一种是模拟电路隔离技术,另一种是数字电路隔离技术。这些技术可以有效提高其运行成效,并帮助达到预期的隔离目的。两者的使用,能够有效增强噪音干扰隔离效果,并减少对于电子电气设备的影响。 1.1数字电路隔离技术的概念 数字电路隔离技术主要就是利用广电耦合、继电器、光纤等隔离方式,发挥其相应的作用,技术人员要利用数字量输入隔离的方式,对广电耦合器进行全面的隔离,从而提升继电器隔离的工作质量。 1.2模拟电路隔离技术概念 应用该类隔离技术,需要对传输通道进行分析,逐渐提升传输通道的精确度,在其性能与发展存在矛盾的时候,就要进行分析,并且科学选择隔离元器件,同时还要全面考虑传输通道的运行成效。 传统的隔离元器件难以满足其低造价的使用需求,因此,企业需要科学应用模拟电路的隔离方式,利用互感器隔离技术、直流电压隔离技术、线性隔离技术等,对其进行全面处理。企业在应用模拟电路与数字电路隔离技术的过程中,需要重视模拟与数字转换装置的设置,对于运行质量要求较高的电路而言,需要重视装置两端隔离元器件的质量,逐渐提升其运行可靠性,以达到预期的隔离目的。 2、模拟电路的隔离 一套控制装置或者一台电子电气设备,通常包括供电系统、、模拟信号控制系统模拟信号测量系统。而供电系统又可分为交流供电系统和直流供电系统,交流供电系统主要采用变压器隔离,直流供電系统主要采用的是直流电压隔离器隔离。模拟信号测量系统相对比较复杂,既需要考虑其精度以及频带宽度的因素,又要考虑其价格因素。对于高电压、大电流信号,一般采用互感器(电压互感器、

隔离非隔离三种常用LED驱动电源详解

三种常用LED驱动电源详解 时间:2014-5-30 LED电源有很多种类,各类电源的质量、价格差异非常大,这也是影响产品质量及价格的重要因素之一。LED驱动电源通常可以分为三大类,一是开关恒流源,二是线性IC电源,三是阻容降压电源。 1、开关恒流源 采用变压器将高压变为低压,并进行整流滤波,以便输出稳定的低压直流电。开关恒流源又分隔离式电源和非隔离式电源,隔离是指输出高低电压隔离,安全性非常高,所以对外壳绝缘性要求不高。非隔离安全性稍差,但成本也相对低,传统节能灯就是采用非隔离电源,采用绝缘塑料外壳防护。开关电源的安全性相对较高(一般是输出低压),性能稳定,缺点是电路复杂、价格较高。开关电源技术成熟,性能稳定,是目前LED照明的主流电源。 图1:开关恒流隔离式日光灯管电源

图2:开关恒流隔离式电源原理图 图3:开关恒流非隔离式球泡灯电源 图4:开关恒流非隔离式电源原理图 2、线性IC电源 采用一个IC或多个IC来分配电压,电子元器件种类少,功率因数、电源效率非常高,不需要电解电容,寿命长,成本低。缺点是输出高压非隔离,有频闪,要求外壳做好防触电隔离保护。市面上宣称无(去)电解电容,超长寿命的,均是采用线性IC电源。IC驱电源具有高可靠性,高效率低成本优势,是未来理想的LED驱动电源。

图5:线性IC电源 图6:线性IC电源原理图 3、阻容降压电源 采用一个电容通过其充放电来提供驱动电流,电路简单,成本低,但性能差,稳定性差,在电网电压波动时及容易烧坏LED,同时输出高压非隔离,要求绝缘防护外壳。功率因数低,寿命短,一般只适于经济型小功率产品(5W以内)。功率高的产品,输出电流大,电容不能提供大电流,否则容易烧坏,另外国家对高功率灯具的功率因数有要求,即7W以上的功率因数要求大于0.7,但是阻容降压电源远远达不到(一般在0.2-0.3之间),所以高功率产品不宜采用阻容降压电源。市场上,要求不高的低端型的产品,几乎全部是采用阻容降压电源,另外,一些高功率的便宜的低端产品,也是采用阻容降压电源。 图7:阻容降压电源

线性光耦原理与电路设计,4-20mA模拟量隔离模块,PLC采集应用

1. 线形光耦介绍 光隔离是一种很常用的信号隔离形式。常用光耦器件及其外围电路组成。由于光耦电路简单,在数字隔离电路或数据传输电路中常常用到,如UART协议的20mA电流环。对于模拟信号,光耦因为输入输出的线形较差,并且随温度变化较大,限制了其在模拟信号隔离的应用。 对于高频交流模拟信号,变压器隔离是最常见的选择,但对于支流信号却不适用。一些厂家提供隔离放大器作为模拟信号隔离的解决方案,如ADI的AD202,能够提供从直流到几K的频率内提供0.025%的线性度,但这种隔离器件内部先进行电压-频率转换,对产生的交流信号进行变压器隔离,然后进行频率-电压转换得到隔离效果。集成的隔离放大器内部电路复杂,体积大,成本高,不适合大规模应用。 模拟信号隔离的一个比较好的选择是使用线形光耦。线性光耦的隔离原理与普通光耦没有差别,只是将普通光耦的单发单收模式稍加改变,增加一个用于反馈的光接受电路用于反馈。这样,虽然两个光接受电路都是非线性的,但两个光接受电路的非线性特性都是一样的,这样,就可以通过反馈通路的非线性来抵消直通通路的非线性,从而达到实现线性隔离的目的。 市场上的线性光耦有几中可选择的芯片,如Agilent公司的HCNR200/201,TI子公司TOAS的TIL300,CLARE的LOC111等。这里以HCNR200/201为例介绍2. 芯片介绍与原理说明 HCNR200/201的内部框图如下所示 其中1、2引作为隔离信号的输入,3、4引脚用于反馈,5、6引脚用于输出。 1、2引脚之间的电流记作IF,3、4引脚之间和5、6引脚之间的电流分别记作IPD1和IPD2。输入信号经过电压-电流转化,电压的变化体现在电流IF上,IPD1和IPD2基本与IF成线性关系,线性系数分别记为K1和 K2,即 K1与K2一般很小(HCNR200是0.50%),并且随温度变化较大(HCNR200的变化范围在0.25%到0.75%之间),但芯片的设计使得 K1和K2相等。在后面可以看到,在合理的外围电路设计中,真正影响输出/输入比值的是二者的比值K3,线性光耦正利用这种特性才能达到满意的线性度的。

隔离CAN接口的电源地、信号地、屏蔽地、外壳地的区别

隔离CAN 接口的电源地、信号地、屏蔽地、外壳地的区别 工业现场CAN 环境复杂多变,工程师面对信号的杂、乱、差却是束手无策,追根溯源对于信号的各种地你接对了吗? CAN 总线以其高可靠性、实时性、灵活性以及严谨的数据处理机制等特点,在工业现场和汽车行业得到广泛应用,但随着环境干扰以及节点数目的增加等对CAN 总线的稳定性提出更高的要求,而面对电源地、信号地、屏蔽地、外壳地不同的接地方式又该如何处理呢? 如图1分别是电源地、信号地、屏蔽地以及大地四种不同地的常见符号。 图1 四种接地符号 电源地概念: 电源地也为供电地,是为保证供电电源形成完整的电流回路设置的供电地,即GND 。 电源地处理: 与单电源供电的负极相连。 图2 CAN 收发器电源地(GND )接线 信号地概念: 信号地也称为隔离地,为使电子设备工作时有一个统一的参考电位,避免有害电磁场的干扰,使设备稳定可靠的工作,设备中的信号电路统一参考地,即CAN-GND ; 信号地处理: 许多实际应用中,设计者常直接将每个节点的参考地接于本地的大地,作为信号的返回地,看似正常可靠的做法,却存在极大的隐患!

信号地(CAN-GND)正确的接法主要分为两种: 单屏蔽层线缆:如果线缆是单屏蔽层,信号地理想接法是使用专门的信号线将所有节点信号地连接,起到参考地的作用。但如果缺少信号地线,亦可将所有节点信号地都连接到屏蔽层,但这样屏蔽效果亦差强人意。 图 3 带有屏蔽层双绞线 图 4 含信号地线双绞线连接方式 图 5 信号地与屏蔽层连接方式 双屏蔽层线缆:当使用双层屏蔽电缆时,需要将所有节点信号地连接到内屏蔽层,若使用非屏蔽线进行数据传输时,请保持信号地管脚悬空处理。

光耦隔离电路(参考提供)

光耦电路设计 目录 简介: (2) 输入电路(原边) (2) 输出电路(副边) (6) 电流传输比: (7) 延时: (9)

简介: 外部信号可能是电压、电流或开关触点,直接接入电路可能会引起瞬时高压、过压、接触点抖动等。因此在外部信号输入之前,须经过转换、保护、滤波、隔离等措施。对小功率信号处理时: 通常简单采用RC 积分滤波或再添加门电路;而在对大功率信号处理时:输入与内部电路电压或电源电压的压差较大,常常采用光电耦合器来隔离。 使用光耦设计隔离电路时,特别要注意电流传输比的降额,驱动电流关断和开通的大小,与延迟相关的负载大小及开关速率。在进行光耦输入电路设计时,是以光耦为中心的输入电路与输出电路(即原边与副边的电路),光耦的工作原理就是输入端输入信号V in ,光耦原边二极管发光使得光耦副边的光敏三极管导通,三极管导通形成回路产生相应信号(电压或者电流),这样就实现传递信号的目的。在进行光耦输出电路设计时,计算公式与输入部分相同,同时需关注电平匹配、阻抗匹配、驱动功率、负载类型和大小。以下针对光耦输入电路设计为例。 输入电路(原边): 针对于光耦原边的电路设计,如图1 , 就是设计发光二级管的驱动电路。因此须 首先要了解光耦的原边电流I F 和二极管的导通压降V F 等相关信息。根据必要的 信息来设计LED 驱动电路,和通常的数字输入电路一样,输入端需要添加限流电阻对二极管起保护作用。而这个电阻的阻值则是此处的关键,对于图1的限流电阻R 的阻值可以根据下面的公式计算: ……………………… ① 波。并且RC 电路的延迟特性也可以达到测试边沿,产生硬件死区、消除抖动等 图1 LED 驱动电路

隔离技术的研究与应用

隔离技术的研究与应用 系电子信息工程系(宋体三号)专业姓名 班级学号_______________ 指导教师职称 指导教师职称 设计时间2012.9.15-2013.1.4

摘要 随着半导体集成电路技术的不断发展,要求在有限的晶圆表面做尽可能多的器件,晶圆表面的面积变得越来越紧张,器件之间的空间也越来越小,因此对器件的隔离工艺要求越来越高。 本课程设计主要介绍了半导体制造工艺中隔离技术的作用和发展,简单描述了结隔离、介电质隔离、局部氧化隔离工艺和浅沟槽隔离等常用隔离技术。由于集成电路的发展,其他的隔离技术已不适应现在的半导体工艺,本文以浅槽隔离技术工艺为重点详细介绍了隔离技术在半导体中的应用浅沟道隔离是目前大规模集成电路制造中用于器件隔离的主要方法。 关键词:结隔离,介电质隔离,局部氧化隔离工艺,STI

目录 摘要 (2) 目录 (3) 第1章绪论 (4) 1.1集成电路工艺技术概述 (4) 1.2隔离技术简介 (4) 第2章隔离技术的原理 (6) 2.1隔离技术的原理 (6) 2.2隔离技术的新发展 (6) 第3章隔离技术的工艺及发展 (7) 3.1结隔离 (7) 3.2介电质隔离 (8) 3.3局部氧化隔离(LOCOS)工艺 (9) 3.4浅沟槽隔离(STI)工艺简介 (11) 第4章浅沟槽隔离技术 (14) 4.1浅沟槽隔离技术(ST工)在半导体器件中的作用 (14) 4.2浅沟槽隔离刻蚀步骤 (15) 4.2.1隔离氧化层成长 (15) 4.2.2氮化物淀积 (15) 4.2.3光刻掩膜 (15) 4.2.4浅沟槽刻蚀 (16) 4.3隔离技术的关键工艺 (16) 4.3.1氧化和氮化硅生长 (16) 4.3.2沟壑(Trench)光刻与刻蚀 (16) 4.3.3二氧化硅CMP (17) 总结与展望 (19) 参考文献 (20) 致谢 (21)

光电隔离RS485典型电路

光电隔离RS485典型电路 一、RS485总线介绍 RS485总线是一种常见的串行总线标准,采用平衡发送与差分接收的方式,因此具有抑制共模干扰的能力。在一些要求通信距离为几十米到上千米的时候,RS485总线是一种应用最为广泛的总线。而且在多节点的工作系统中也有着广泛的应用。 二、RS485总线典型电路介绍 RS485电路总体上可以分为隔离型与非隔离型。隔离型比非隔离型在抗干扰、系统稳定性等方面都有更出色的表现,但有一些场合也可以用非隔离型。 我们就先讲一下非隔离型的典型电路,非隔离型的电路非常简单,只需一个RS485芯片直接与MCU的串行通讯口和一个I/O控制口连接就可以。如图1所示: 图1、典型485通信电路图(非隔离型) 当然,上图并不是完整的485通信电路图,我们还需要在A线上加一个的上拉偏置电阻;在B线上加一个的下拉偏置电阻。中间的R16是匹配电阻,一般是120Ω,当然这个具体要看你传输用的线缆。(匹配电阻:485整个通讯系统中,为了系统的传输稳定性,我们一般会在第一个节点和最后一个节点加匹配电阻。所以我们一般在设计的时候,会在每个节点都设置一个可跳线的120Ω电阻,至于用还是不用,由现场人员来设定。当然,具体怎么区分

第一个节点还是最后一个节点,还得有待现场的专家们来解答呵。)TVS我们一般选用的,这个我们会在后面进一步的讲解。 RS-485标准定义信号阈值的上下限为±200mV。即当A-B>200mV时,总线状态应表示为“1”;当A-B<-200mV时,总线状态应表示为“0”。但当A-B在±200mV之间时,则总线状态为不确定,所以我们会在A、B线上面设上、下拉电阻,以尽量避免这种不确定状态。 三、隔离型RS485总线典型电路介绍 在某些工业控制领域,由于现场情况十分复杂,各个节点之间存在很高的共模电压。虽然RS-485接口采用的是差分传输方式,具有一定的抗共模干扰的能力,但当共模电压超过RS-485接收器的极限接收电压,即大于+12V或小于-7V时,接收器就再也无**常工作了,严重时甚至会烧毁芯片和仪器设备。 解决此类问题的方法是通过DC-DC将系统电源和RS-485收发器的电源隔离;通过隔离器件将信号隔离,彻底消除共模电压的影响。实现此方案的途径可分为: (1)传统方式:用光耦、带隔离的DC-DC、RS-485芯片构筑电路; (2)使用二次集成芯片,如ADM2483、ADM2587E等。 传统光电隔离的典型电路:(如图2所示) 图2、光电隔离RS485典型电路

模拟电路和数字电路的隔离技术

模拟电路和数字电路的隔离技术 一.电路隔离的目的: 电路隔离的主要目的是通过隔离元件把噪声干扰的路径切断,从而达到抑制噪声干扰的效果,使设备符合电磁兼容性的要求。 二.电路隔离的分类: 三.典型隔离电路介绍: 1.模拟电路的隔离: 根据系统功能不同模拟电路可分为供电子系统,模拟信号测量子系统和模拟信号控制等子系统。为了使各个子系统免受电网上各种噪声的干扰,以及各个系统间的相互干扰,因此就存在供电系统的隔离,模拟信号测量系统的隔离和模拟信号控制系统的隔离等电路。 1.1供电系统的隔离:

根据供电系统的电源不同,供电系统又分为交流供电和直流供电系统两种,下面分别介绍常用的隔离电路。 ? 交流供电系统的隔离 隔离目的:隔离电网中的谐波,雷击浪涌,高频干扰等噪声。 隔离方法:采用电源隔离变压器,这种变压器不同于普通变压器之处在于绕组间是否加屏蔽层。是常用的隔离方法。 简要分析:原理电路如图1所示: 1c (a)无屏蔽层 (b) 有屏蔽层 图1隔离变压器 在图1(a)中,隔离变压器不加屏蔽层,C12是一次和二次绕组之间的分布电容,在共模电压U1C 的作用下,二次绕组所耦合的共模噪声电压为U2C,C2E 是二次侧的对地电容,则从图可知二次侧的共模噪声电压U2C 为: 2E 12121C 2C C C U U += ? 在图1(b)中,隔离变压器加屏蔽层,其中C10、C20分别代表一侧和二次绕组对屏蔽层的丰补电容,ZE 使屏蔽层的对低阻抗,C2E 是二次绕组侧对地电容,则从图可知二次侧的巩膜再生电压U2C 为: 2E 202E E E 1C C 2C C C C10 j 1 Z Z U U +? +?ω= 当ZE<

MC34063组成的DC电源或隔离电路

MC34063组成的DC电源或隔离电路 MC34063A(MC33063)芯片器件简介 该器件本身包含了DC/DC变换器所需要的主要功能的单片控制电路且价格便宜。它由具有温度自动补偿功能的基准电压发生器、比较器、占空比可控的振荡器,R—S触发器和大电流输出开关电路等组成。该器件可用于升压变换器、降压变 换器、反向器的控制核心,由它构成的DC/DC变换器仅用少量的外部元器件。主要应用于以微处理器(MPU)或单片机(MCU)为基础的系统里。 MC34063集成电路主要特性: 输入电压范围:2、5~40V 输出电压可调范围:1.25~40V 输出电流可达:1.5A 工作频率:最高可达100kHz 低静态电流 短路电流限制 可实现升压或降压电源变换器 主要参数:

MC34063的工作原理 MC34063组成的降压电路 MC34063组成的降压电路原理如图7。工作过程: 1.比较器的反相输入端(脚5)通过外接分压电阻R1、R2监视输出电压。其中,输出电压U。=1.25(1+ R2/R1)由公式可知输出电压。仅与R1、R2数值有关,

因1.25V为基准电压,恒定不变。若R1、R2阻值稳定,U。亦稳定。 2.脚5电压与内部基准电压1.25V同时送人内部比较器进行电压比较。当脚5的电压值低于内部基准电压(1.25V)时,比较器输出为跳变电压,开启R—S触发器的S脚控制门,R—S触发器在内部振荡器的驱动下,Q端为“1”状态(高电平),驱动管T2导通,开关管T1亦导通,使输入电压Ui向输出滤波器电容Co 充电以提高U。,达到自动控制U。稳定的作用。 3.当脚5的电压值高于内部基准电压(1.25V)时,R—S触发器的S脚控制门被封锁,Q端为“0”状态(低电平),T2截止,T1亦截止。 4. 振荡器的Ipk 输入(脚7)用于监视开关管T1的峰值电流,以控制振荡器的脉冲输出到R—S触发器的Q端。 5. 脚3外接振荡器所需要的定时电容Co电容值的大小决定振荡器频率的高低,亦决定开关管T1的通断时间。 MC34063 升压电路 MC34063组成的降压电路原理如图8,当芯片内开关管(T1)导通时,电源经取样电阻Rsc、电感L1、MC34063的1脚和2脚接地,此时电感L1开始存储能量,而由C0对负载提供能量。当T1断开时,电源和电感同时给负载和电容Co提供能量。电感在释放能量期间,由于其两端的电动势极性与电源极性相同,相当于两个电源串联,因而负载上得到的电压高于电源电压。开关管导通与关断的频率称为芯片的工作频率。只要此频率相对负载的时间常数足够高,负载上便可获得连续的直流电压。

电子电气设备的PCB电路隔离技术概述

电子电气设备的PCB电路隔离技术概述 电子电气设备的PCB电路隔离技术概述 核心摘要:本文对电子电气电路的各种隔离进行了详尽的分析讨论,提出了抑制干扰而采取的电气隔离的技术措施,从而保证电气设备的正常工作。 中心议题: 电气隔离的分类和方法 模拟电路的隔离、数字电路的隔离 模拟电路与数字电路之间的隔离 解决方案: 对相应的模拟电路分别进行变压器隔离等方法 对相应的数字电路分别进行脉冲变压器隔离,光电耦合器隔离等方法 对数字电路和模拟电路采用转换装置等方法 1 PCB电路隔离 PCB电路隔离的主要目的是通过隔离元器件把噪声干扰的路径切断,从而达到抑制噪声干扰的效果。在采用了PCB电路隔离的措施以后,绝大多数电路都能够取得良好的抑制噪声的效果,使设备符合电磁兼容性的要求。PCB电路隔离主要有:模拟电路的隔离、数字电路的隔离、数字电路与模拟电路之间的隔离。所使用的隔离方法有:变压器隔离法、脉冲变压器隔离法、继电器隔离法、光电耦合器隔离法、直流电压隔离法、线性隔离放大器隔离法、光纤隔离法、A/D转换器隔离法等。 数字电路的隔离主要有:脉冲变压器隔离、继电器隔离、光电耦合器隔离、光纤隔离等。其中数字量输入隔离方式主要采用脉冲变压器隔离、光电耦合器隔离;而数字量输出隔离方式主要采用光电耦合器隔离、继电器隔离、高频变压器隔离(个别情况下采用)。 模拟电路的隔离比较复杂,主要取决于对传输通道的精度要求,对精度要求越高,其通道的成本也就越高;然而,当性能的要求上升为主要矛盾时,应当以性能为主选择隔离元器件,把成本放在第二位;反之,应当从价格的角度出发选择隔离元器件。模拟电路的隔离主要采用变压器隔离、互感器隔离、直流电压隔离器隔离、线性隔离放大器隔离。 模拟电路与数字电路之间的隔离主要采用模/数转换装置;对于要求较高的电路,除采用模/数转换装置外,还应在模/数转换装置的两端分别加入模拟隔离元器件和数字隔离元器件。 2 模拟电路的隔离 一套控制装置或者一台电子电气设备,通常包含供电系统,模拟信号测量系统,模拟信号控制系统。而供电系统又可分为交流供电系统和直流供电系统,交流供电系统主要采用变压器隔离,直流供电系统主要采用直流电压隔离器隔离。模拟信号测量系统相对来说比较复杂,既要考虑其精度,频带宽度的因素,又要

隔离电源模块的5个作用

隔离电源模块的5个作用 在工业控制设备中,有时候要求两个系统之间的电源地线隔离,如隔离地线噪声、隔离高共模电压等,采用带变压器的直流变换器,将两个电源之间隔开,使他们相互独立,从而实现以上目的!每个隔离电源模块单独供电,防止一个模块因受高压放电或其他原因导致损坏后殃及其他模块。这样做的目的可以保证每个模块独立工作,不受干扰。 隔离电源模块的5个作用 一、隔离 ●安全隔离:强电弱电隔离IGBT隔离驱动\浪涌隔离保护\雷电隔离保护(如人体接触的 医疗电子设备的隔离保护); ●噪声隔离:(模拟电路与数字电路隔离、强弱信号隔离); ●接地环路消除:远程信号传输\分布式电源供电系统。 二、保护 短路保护、过压保护、欠压保护、过流保护、其它保护。 三、电压变换 四、稳压交流 ●市电供电\远程直流供电\分布式电源供电系统\电池供电。 五、降噪 ●有源滤波。 ●而隔离器是一种采用线性光耦隔离原理,将输入信号进行转换输出。输入,输出和工作 电源三者相互隔离,特别适合与需要电隔离的设备仪表配用。隔离器又名信号隔离器,是工业控制系统中重要组成部分。主要是用来减弱冲击和振动传输的。 隔离电源模块使用环境

●净化电源 原来的配电系统中装置有一些机械设备、高频设备、火花机等一类的负载,这些负载往往对电源进行一些调制干扰。一些对电源质量要求比较高的设备(如精密仪器等)就要求使用隔离电源的办法。 ●安全电源 发电厂送出来的三相电源中的中性点是接在地上的,低压侧的零线实际上也是接地的,这样,如果人体接触火线和地面,就等于和配电系统成了回路很危险,为了安全在一些特定场合就用到隔离电源。 ●RS232、RS485/422、CAN-bus等隔离通讯接口 医学、手持、便携仪表、运算放大器电源 ●大功率IGBT驱动 ●纯数字电路、模拟前端隔离电路 一般低频模拟电路 自控装置

大功率电子电气设备的电路隔离技术

大功率电子电气设备的电路隔离技术 1 引言 电路隔离的主要目的是通过隔离元器件把噪声干扰的路径切断,从而达到抑制噪声干扰的效果。在采用了电路隔离的措施以后,绝大多数电路都能够取得良好的抑制噪声的效果,使设备符合电磁兼容性的要求。电路隔离主要有:模拟电路的隔离、数字电路的隔离、数字电路与模拟电路之间的隔离。所使用的隔离方法有:变压器隔离法、脉冲变压器隔离法、继电器隔离法、光电耦合器隔离法、直流电压隔离法、线性隔离放大器隔离法、光纤隔离法、A/D转换器隔离法等。 数字电路的隔离主要有:脉冲变压器隔离、继电器隔离、光电耦合器隔离、光纤隔离等。其中数字量输入隔离方式主要采用脉冲变压器隔离、光电耦合器隔离;而数字量输出隔离方式主要采用光电耦合器隔离、继电器隔离、高频变压器隔离(个别情况下采用)。 模拟电路的隔离比较复杂,主要取决于对传输通道的精度要求,对精度要求越高,其通道的成本也就越高;然而,当性能的要求上升为主要矛盾时,应当以性能为主选择隔离元器件,把成本放在第二位;反之,应当从价格的角度出发选择隔离元器件。模拟电路的隔离主要采用变压器隔离、互感器隔离、直流电压隔离器隔离、线性隔离放大器隔离。 模拟电路与数字电路之间的隔离主要采用模/数转换装置;对于要求较高的电路,除采用模/数转换装置外,还应在模/数转换装置的两端分别加入模拟隔离元器件和数字隔离元器件。 2 模拟电路的隔离 一套控制装置或者一台电子电气设备,通常包含供电系统,模拟信号测量系统,模拟信号控制系统。而供电系统又可分为交流供电系统和直流供电系统,交流供电系统主要采用变压器隔离,直流供电系统主要采用直流电压隔离器隔离。模拟信号测量系统相对来说比较复杂,既要考虑其精度,频带宽度的因素,又要考虑其价格因素;对于高电压、大电流信号,一般采用互感器(电压互感器、电流互感器)隔离法,近年来,又出现了霍尔变送器,这些元器件都是高电压、大电流信号测量常规使用的元器件;对于微电压、微电流信号,一般采用线性隔离放大器。模拟信号控制系统与模拟信号测量系统的隔离类似,一般采用变压器、直流电压隔离器。 2.1 供电系统的隔离 2.1.1 交流供电系统的隔离 由于交流电网中存在着大量的谐波,雷击浪涌,高频干扰等噪声,所以对由交流电源供电的控制装置和电子电气设备,都应采取抑制来自交流电源干扰的措施。采用电源隔离变压器,可以有效地抑制窜入交流电源中的噪声干扰。但是,普通变压器却不能完全起到抗干扰的作用,这是因为,虽然一次绕组和二次绕组之间是绝缘的,能够阻止一次侧的噪声电压、电流直接传输到二次侧,有隔离作用。然而,由于分布电容(绕组与铁心之间,绕组之间,层匝之间和引线之间)的存在,交流电网中的噪声会通过分布电容耦合到二次侧。为了抑制噪声,必须在绕组间加屏蔽层,这样就能有效地抑制噪声,消除干扰,提高设备的电磁兼容性。图1(a)、(b)所示为不加屏蔽层和加屏蔽层的隔离变压器分布电容的情况。 图1 变压器隔离 在图1(a)中,隔离变压器不加屏蔽层,C12是一次绕组和二次绕组之间的分布电容,

几种隔离LED驱动电源方案[附电路图]

几种隔离LED驱动电源方案[附电路图] 在全球能源短缺、环保要求不断提高的背景下,世界各国均大力发展绿色节能照明。LED照明作为一种革命性的节能照明技术,正在飞速发展。然而,LED驱动电源的要求也在不断提高。高效率、高功率因数、安全隔离、符合EMI标准、高电流控制精度、高可靠性、体积小、成本低等正成为LED驱动电源的关键评价指标。 LED驱动电源的具体要求 LED是低压发光器件,具有长寿命、高光效、安全环保、方便使用等优点。对于市电交流输入电源驱动,隔离输出是基于安全规范的要求。LED驱动电源的效率越高,则越能发挥LED高光效,节能的优势。同时高开关工作频率,高效率使得整个LED驱动电源容易安装在设计紧凑的LED灯具中。高恒流精度保证了大批量使用LED照明时的亮度和光色一致性。 10W以下功率LED灯杯应用方案 目前10W以下功率LED应用广泛,众多一体式产品面世,即LED驱动电源与LED灯整合在一个灯具中,方便了用户直接使用。典型的灯具规格有GU10、E27、PAR30等。针对这一应用,我们设计了如下方案(见图1) 图1:基于AP3766的LED驱动电路原理图 该方案特点如下: 1. 基于最新的LED专用驱动芯片AP3766,采用原边控制方式,无须光耦和副边电流控制电路,实现隔离恒流输出,电路结构简单。通过电阻R5检测原边电流,控制原边电流峰值恒定,同时控制开关占空比,保持输出二极管D1的导通时间和整个开关周期时间比例恒定,实现了输出电流的恒定。 2. AP3766采用专有的“亚微安启动电流”技术,仅需0.6μA的启动电流,因此降低了启动电阻R1和R2上的功耗,提高了系统效率。典型5W应用效率大于80%,空载功耗小于30mW。 3. AP3766采用恒流收紧技术实现垂直的恒流特性,恒流精度高。 4. 电路元件数量少,AP3766采用SOT-23-5封装,体积小,整个电路可以安装在常用规格灯杯中。 5. 安全可靠,隔离输出,具有输出开路保护、过压保护及短路保护功能。 6. 功率开关管采用三极管,省去了高压场效应管,系统成本低。 图2为该方案的5W应用电路样机实物照片。图3是基于AP3766的5W LED驱动装置实物照片。图4为基于AP3766的5W LED驱动电路满载效率随交流输入电压变化曲线。图5为基于AP3766的5W LED驱动电路满载输出IV特性曲线。 10~60W功率LED路灯、LED直管灯应用方案 IEC国际电工委员会对照明灯具提出明确的谐波要求,即IEC61000-3-2标准。因此对于较大功率LED照明应用,采用功率因数校正(PFC)控制技术成为必需。对于60W以下应用,有高性价比单级PFC控制方案,该方案电路原理图。 图6:基于AP166+AP4313的LED驱动电路原理图 该方案特点有: 1.单级PFC方案,只用一级反激式电路拓扑,同时实现功率因数校正和隔离恒流输出。元件数量少、体积小、性价比高。 2.高功率因数,采用有源功率因数校正控制芯片AP1661,功率因数PF>0.9,满足IEC61000-3-2谐波标准。

电子电气设备的电路隔离技术

电子电气设备的电路隔离技术 1 引言 电路隔离的主要目的是通过隔离元器件把噪声干扰的路径切断,从而达到抑制噪声干扰 的效果。在采用了电路隔离的措施以后,绝大多数电路都能够取得良好的抑制噪声的效果,使设备符合电磁兼容性的要求。电路隔离主要有:模拟电路的隔离、数字电路的隔离、数字 电路与模拟电路之间的隔离。所使用的隔离方法有:变压器隔离法、脉冲变压器隔离法、继 电器隔离法、光电耦合器隔离法、直流电压隔离法、线性隔离放大器隔离法、光纤隔离法、 A/D 转换器隔离法等。 数字电路的隔离主要有:脉冲变压器隔离、继电器隔离、光电耦合器隔离、光纤隔离等。 其中数字量输入隔离方式主要采用脉冲变压器隔离、光电耦合器隔离;而数字量输出隔离方 式主要采用光电耦合器隔离、继电器隔离、高频变压器隔离(个别情况下采用)。 模拟电路的隔离比较复杂,主要取决于对传输通道的精度要求,对精度要求越高,其通 道的成本也就越高;然而,当性能的要求上升为主要矛盾时,应当以性能为主选择隔离元器件,把成本放在第二位;反之,应当从价格的角度出发选择隔离元器件。模拟电路的隔离主 要采用变压器隔离、互感器隔离、直流电压隔离器隔离、线性隔离放大器隔离。 模拟电路与数字电路之间的隔离主要采用模/数转换装置;对于要求较高的电路,除采 用模/数转换装置外,还应在模/数转换装置的两端分别加入模拟隔离元器件和数字隔离元器件。 2 模拟电路的隔离一套控制装置或者一台电子电气设备,通常包含供电系统,模拟信号测量 系统,模拟信 号控制系统。而供电系统又可分为交流供电系统和直流供电系统,交流供电系统主要采用变 压器隔离,直流供电系统主要采用直流电压隔离器隔离。模拟信号测量系统相对来说比较复杂,既要考虑其精度,频带宽度的因素,又要考虑其价格因素;对于高电压、大电流信号,一般采用互感器(电压互感器、电流互感器)隔离法,近年来,又出现了霍尔变送器,这些 元器件都是高电压、大电流信号测量常规使用的元器件;对于微电压、微电流信号,一般采 用线性隔离放大器。模拟信号控制系统与模拟信号测量系统的隔离类似,一般采用变压器、直流电压隔离器。 2.1 供电系统的隔离 2.1.1 交流供电系统的隔离由于交流电网中存在着大量的谐波,雷击浪涌,高频干扰等噪声, 所以对由交流电源供 电的控制装置和电子电气设备,都应采取抑制来自交流电源干扰的措施。采用电源隔离变压器,可以有效地抑制窜入交流电源中的噪声干扰。但是,普通变压器却不能完全起到抗干扰 的作用,这是因为,虽然一次绕组和二次绕组之间是绝缘的,能够阻止一次侧的噪声电压、电流直接传输到二次侧,有隔离作用。然而,由于分布电容(绕组与铁心之间,绕组之间,层匝之间和引线之间)的存在,交流电网中的噪声会通过分布电容耦合到二次侧。为了抑制 噪声,必须在绕组间加屏蔽层,这样就能有效地抑制噪声,消除干扰,提高设备的电磁兼容性。图1(a)、(b)所示为不加屏蔽层和加屏蔽层的隔离变压器分布电容的情况。

DC-DC隔离电源设计电路原理图

紧凑型全桥DC-DC隔离电源设计电路原理图 新型电力电子器件IGBT作为功率变换器的核心器件,其驱动和保护电路对变换器的可靠运行至关重要。集成驱动是一个具有完整功能的独立驱动板,具有安装方便、驱动高效、保护可靠等优点,是目前大、中功率IGBT驱动和保护的最佳方式。集成驱动一般包括板上DC-DC隔离电源、PWM信号隔离、功率放大、故障保护等4个功能电路,各功能电路之间互相配合,完成IGBT的驱动及保护。输入电源为板上原边各功能电路提供电源,两路DC-DC隔离电源输出分别驱动上、下半桥开关管,同时为IGBT侧故障检测和保护电路提供电源,因此集成驱动板上电源是所有电路工作的前提和基础。 文中的半桥IGBT集成驱动板需要两组隔离的正负电压输出,作为IGBT的驱动及保护电路电源。由IGBT的驱动特点可知,其负载特性类似于容性负载,要达到可靠、快速的开通或关断,就要求电源具有很好拉/灌电流能力,即良好的动态特性。半桥IGBT由上、下两路开关管组成,型号相同,导通、关断的驱动电压、电流特性一致,作为双路隔离DC-DC电源的负载,其负载特性是稳定的。因此可以设计两路隔离电源,按照所要驱动的最大负载设计,不需要进行反馈控制。实际设计时必须依据选用的IGBT开关管参数和工作频率,核算驱动板电源功率是否满足,若不满足,则需重新选用开关管。 1IGBT半桥集成驱动板电源设计 1.1IGBT半桥集成驱动板电源特点 电力电子变换拓扑中,以半桥IGBT为基本单元进行的拓扑设计最为广泛,相应地对其有效驱动和可靠保护由半桥IGBT集成驱动板实现。半桥IGBT集成驱动板自身必须具备两路DC-DC隔离电源,该电源要求占用PCB面积小、体积紧凑、可靠性高,并且两组电源副边完全隔离。在大功率半桥IGBT集成驱动单元的项目中,针对驱动单元需要高效、可靠的隔离电源,设计了一种电源变压器原边控制拓扑,即两组隔离电源变压器原边共用一组全桥控制的思路,提高了电源功率密度和效率,节省了功率开关数量。全桥开关管巧妙搭配,无需隔离驱动,减少了占用集成驱动板上的PCB面积。 由于上下半桥的两个单元IGBT性能参数一致、同体封装,对半桥IGBT集成驱动板上两路驱动表现出的负载特性完全一致,因此在IGBT半桥集成驱动板的电源设计中,两组隔离的DC-DC电源原边完全可以共用一组控制电路。IGBT半桥集成驱动板一般镶嵌在IGBT功率模块上,它对驱动板要求有两个:第一是半桥集成驱动板对PCB面积、体积要求很高,要求尽可能小的PCB面积和体积;第二因为驱动IGBT需要的功率较大,对板上电源的功率密度、效率要求也较高。 1.2原边共用全桥控制的DC-DC电源设计 设计采用全桥电路控制DC-DC电源变压器,两个变压器原边共用一个全桥开关。正常模式下两个全桥变换拓扑需要两组全桥开关,同时全桥开关的脉冲驱动电路也为两组共8路PWM脉冲。采用共用全桥拓扑节省了控制电路和全桥开关,简化了DC-DC隔离电源电路。由于该电源是给半桥IGBT驱动电路供电,负载稳定且可计算,因此全桥DC-DC电源采用开环控制,满足最大功率需求即可。电路原理如图1所示,该电源由4部分组成:4路PWM 脉冲产生电路、全桥驱动开关、电源变压器及其副边整流滤波电路。DC-DC电源输入为单+15V电源,输出为两组隔离的+15V和-10V双电源,采用负电源是为可靠地关断IGBT。

相关文档