文档库 最新最全的文档下载
当前位置:文档库 › 全国高考数学复习微专题:立体几何中的建系设点问题

全国高考数学复习微专题:立体几何中的建系设点问题

全国高考数学复习微专题:立体几何中的建系设点问题
全国高考数学复习微专题:立体几何中的建系设点问题

立体几何解答题的建系设点问题

在如今的立体几何解答题中,有些题目可以使用空间向量解决问题,与其说是向量运算,不如说是点的坐标运算,所以第一个阶段:建系设点就显得更为重要,建立合适的直角坐标系的原则有哪些?如何正确快速写出点的坐标?这是本文要介绍的内容。 一、基础知识:

(一)建立直角坐标系的原则:如何选取坐标轴

1、z 轴的选取往往是比较容易的,依据的是线面垂直,即z 轴要与坐标平面xOy 垂直,在几何体中也是很直观的,垂直底面高高向上的即是,而坐标原点即为z 轴与底面的交点

2、,x y 轴的选取:此为坐标是否易于写出的关键,有这么几个原则值得参考:

(1)尽可能的让底面上更多的点位于,x y 轴上

(2)找角:,x y 轴要相互垂直,所以要利用好底面中的垂直条件 (3)找对称关系:寻找底面上的点能否存在轴对称特点 3、常用的空间直角坐标系满足,,x y z 轴成右手系,所以在标

,x y 轴时要注意。

4、同一个几何体可以有不同的建系方法,其坐标也会对应不同。但是通过坐标所得到的结论(位置关系,角)是一致的。

5、解答题中,在建立空间直角坐标系之前,要先证明所用坐标轴为两两垂直(即一个线面垂直 底面两条线垂直),这个过程不能省略。

6、与垂直相关的定理与结论: (1)线面垂直:

① 如果一条直线与一个平面上的两条相交直线垂直,则这条直线与该平面垂直 ② 两条平行线,如果其中一条与平面垂直,那么另外一条也与这个平面垂直 ③ 两个平面垂直,则其中一个平面上垂直交线的直线与另一个平面垂直 ④ 直棱柱:侧棱与底面垂直 (2)线线垂直(相交垂直):

① 正方形,矩形,直角梯形

② 等腰三角形底边上的中线与底边垂直(三线合一) ③ 菱形的对角线相互垂直

④ 勾股定理逆定理:若2

2

2

AB AC BC +=,则AB AC ⊥

(二)坐标的书写:建系之后要能够快速准确的写出点的坐标,按照特点可以分为3类 1、能够直接写出坐标的点

(1) 坐标轴上的点,例如在正方体(长度为1)中的,,'A C D 点,坐标特点如下:

x 轴:(),0,0x y 轴:()0,,0y z 轴:()0,0,z

规律:在哪个轴上,那个位置就有坐标,其余均为0

(2)底面上的点:坐标均为(),,0x y ,即竖坐标0z =,由于底面在作立体图时往往失真,所以要快速正确写出坐标,强烈建议在旁边作出底面的平面图进行参考:以上图为例: 则可快速写出,H I 点的坐标,位置关系清晰明了

111,,0,,1,022H I ???? ? ?????

2、空间中在底面投影为特殊位置的点:

如果()'

11,,A x y z 在底面的投影为()22,,0A x y ,那么

1212,x x y y ==(即点与投影点的横纵坐标相同)

由这条规律出发,在写空间中的点时,可看下在底面的投影点,坐标是否好写。如果可以则直接确定了横纵坐标,而竖坐标为该点到底面的距离。例如:正方体中的'

B 点,其投影为B ,而()1,1,0B 所以()'

1,1,B z ,而其到底面的距离为1,故坐标为()'

1,1,1B

以上两个类型已经可以囊括大多数几何体中的点,但总还有一些特殊点,那么就要用到第三个方法: 3、需要计算的点

① 中点坐标公式:()()111222,,,,,A x y z B x y z ,则AB 中点121212,,222x x y y z z M +++??

???

,图中的,,,H I E F 等中点坐标均可计算

② 利用向量关系进行计算(先设再求):向量坐标化后,向量的关系也可转化为坐标的关系,

进而可以求出一些位置不好的点的坐标,方法通常是先设出所求点的坐标,再选取向量,利用向量关系解出变量的值,例如:求'A 点的坐标,如果使用向量计算,则设()',,A x y z ,

可直接写出()()()'

1,0,0,1,1,0,1,1,1A B B ,观察向量''

AB A B =u u u u r u u u r ,而()0,1,0AB =u u u r ,

()''1,1,1A B x y z =---u u u u r 101110101x x y y z z -==????

∴-=?=????-==??

()'1,0,1A ∴

二、典型例题:

例1:在三棱锥P ABC -中,PA ⊥平面ABC ,90BAC ∠=o

,,,D E F 分别是棱

,,AB BC CD 的中点,1,2AB AC PA ===,试建立适当的空间直角坐标系并确定各点坐

解:PA ⊥Q 平面ABC ,PA AB PA AC ∴⊥⊥

90BAC ∠=o Q ,,PA AB AC ∴两两垂直

以,,AP AB AC 为轴建立直角坐标系

坐标轴上的点:()()()()0,0,0,1,0,0,0,1,0,0,0,2A B C P 中点::D AB 中点1,0,02??

???

:E BC 中点11,,022??

???

:F PC 中点10,,12

?? ???

综上所述:()()()11111,0,0,0,1,0,0,0,2,,0,0,,,0,0,,12

22

2B C P D E F ?????? ? ? ???

???

?

小炼有话说:本讲中为了体现某些点坐标的来历,在例题的过程中进行详细书写。这些过程在解答题中可以省略。

例2:在长方体1111ABCD A B C D -中,,E F 分别是棱1,BC CC 上的点,2CF AB CE ==,

1::1:2:4AB AD AA =,建立适当的直角坐标系并写出点的坐标

思路:建系方式显而易见,长方体1,,AA AB AD 两两垂直,本题所给的是线段的比例,如果设

1,2,4AB a AD a AA a ===等,则点的坐标都含有a ,不

便于计算。对待此类问题可以通过设单位长度,从而使得坐标都为具体的数。

解:因为长方体1111ABCD A B C D -

1,,AB AD AA ∴两两垂直

∴以1,,AB AD AA 为轴如图建系,设AB 为单位长度

112,4,1,2

AD AA CF CE ∴====

()()()()()()()11111,0,0,1,2,0,0,2,0,1,0,4,0,0,4,1,2,4,0,2,4B C D B A C D

()31,,0,1,2,12E F ??

???

例3:如图,在等腰梯形ABCD 中,AB CD ∥,1,60AD DC CB ABC ===∠=o

,CF ⊥ 平面ABCD ,且1CF =,建立适当的直角坐标系并确定各点坐标。

思路:本题直接有一个线面垂直,所以只需在平面ABCD 找过C 的相互垂直的直线即可。由题意,BCD ∠不是直角。所以可以以其中一条边为轴,在底面上作垂线即可构造出两两垂直的条件,进而可以建立坐标系 方案一:(选择BC 为轴),连结AC 可知120ADC ∠=o

∴在ADC V 中

222

2cos 3AC AD DC AD DC ADC =+-=

AC ∴=

由1,60AC BC ABC ==∠=o

可解得2,90AB ACB =∠=o

AC BC ∴⊥ CF ⊥Q 平面ABCD ,CF AC CF BC ∴⊥⊥

D

D

以,,AC CF BC 为坐标轴如图建系:

(

)

)

()10,1,0,,,0,0,0,12

2B A

D F ??

- ???

方案二(以CD 为轴)

过C 作CD 的垂线CM CF ⊥Q 平面ABCD

,CF CD CF CM ∴⊥⊥

∴以,,CD CF CM 为坐标轴如图建系:

(同方案一)计算可得:2CM AB =

=

()()31,0,,0,0,1,0,0,0,12

222A B D F ????∴-- ? ?????

小炼有话说:建立坐标系的最重要的条件就是线面垂直(即z 轴),对于,x y 轴的选取,如果没有已知线段,可以以垂足所在的某一条直线为坐标轴,然后作这条轴的垂线来确定另一条轴,本题中的两个方案就是选过垂足C 的直线为轴建立的坐标系。 例4:已知四边形ABCD 满足1

,2

AD BC BA AD DC BC a ===

=∥,E 是BC 中点,将BAE V 翻折成1B AE V ,使得平面1B AE ⊥平面AECD ,F 为1B D 中点

思路:在处理翻折问题时,首先要确定在翻折的过程中哪些量与位置关系不变,这些都是作为已知条件使用的。本题在翻折时,BAE V 是等边三角形,四边形AECD 为60o

的菱形是不变的,寻找线面垂直时,根据平面'

B AE ⊥平面AECD ,结合'

B AE V 是等边三角形,可取AE 中点M ,则可证'

B M ⊥平面AECD ,再在四边形AECD 找一组过M 的垂线即可建系

解:取AE 中点M ,连结'B M

B

A

'B AE QV 是等边三角形 'B M AE ∴⊥

平面'B AE ⊥平面AECD

'B M ∴⊥平面AECD ,连结DM '',B M ME B M MD ∴⊥⊥

Q 四边形AECD 为60o

的菱形 ADE ∴V 为等边三角形

DM AE ∴⊥

'

,,B M MD ME ∴两两垂直

如图建系,设AB 为单位长度

'11333,0,0,,0,0,0,,0,1,,0,0,0,22222A E D C B ??????????- ? ? ? ? ???????????

F 为'

B D 中点 330,,44F ??∴ ???

例5:如图,已知四棱锥P ABCD -的底面是菱形,对角线,AC BD 交于点,4,3,4O OA OB OP ===,且OP ⊥平面ABCD ,点M 为PC 的三等分点(靠近P ),建立适当的直角坐标系并求各点坐标

思路:由OP ⊥平面ABCD ,可得OP 作为z 轴,在底面上可利用菱形对角线相互垂直的性质,选取,OB OC 作为,x y 轴。在所有点中只有M 的坐标相对麻烦,对于三等分点可得

1

3

PM PC =,从而转化为向量关系即可求出M 坐标

解:OP ⊥Q 平面ABCD

,OP OB OP OC ∴⊥⊥

Q 菱形ABCD OB OC ∴⊥

,,OP OB OC ∴两两垂直

以,,OP OB OC 为坐标轴如图建系

可得:()()()()()0,0,4,3,0,0,0,4,0,0,4,0,3,0,0P B C A D --

设(),,M x y z 由1

3PM PC =可得:13

PM PC =u u u u r u u u r

()(),,4,0,4,4PM x y z PC =-=-u u u u r u u u r

M

F

A B'

E

D

C

M

A E D

C

00443348433x x y y z z ????==??

??∴=?=????

??

-=-=????

480,,33M ??

∴ ???

小炼有话说:(1)底面是菱形时要注意对角线相互垂直的性质

(2)对于一条线段上的某点分线段成比例,可以利用向量关系将该点坐标计算出来 例6:如图所示的多面体中,已知正方形ABCD 与直角梯形BDEF 所在的平面互相垂直,

EF BD ∥,

,ED BD

⊥1AD EF ED ===,试建立适当的空间直角坐标系并确定各点坐标

思路:题目已知面面垂直,从而可以找到DE 与底面垂直,再由底面是正方形,可选,AD DC 为,x y 轴,图中F 点坐标相对麻烦,可以用投影法和向量法计算得到 解:Q 平面EFBD ⊥平面ABCD 又因为直角梯形BDEF ED DB ∴⊥

ED ∴⊥平面ABCD

Q 正方形ABCD AD BD ∴⊥

,,ED DA DC ∴两两垂直

以,,DE DA DC 为轴建立直角坐标系

坐标轴上的点:

)(

)

(

,,A C E 底面上的点:)B

F 点两种确定方式:

① 可看其投影,落在BD 中点处????,且高度为1,所以F ?

???

② 设(),,F x y z ())

,,1,EF x y z DB ∴=-=u u u r u u u r

12EF DB =u u u r u u u r Q 2,22210x y F z ?=?

?

???∴=?? ????

-=???

综上所述:

)()(

)

)

,,0,0,1,,22A

C E B

F ??

???

例7:如图,在三棱柱111ABC A B C -中,H 是正方形11AA B B

的中心,11AA C H =⊥平面11AA B B

,1C H =,建立适当的坐标系并确定各点坐标

思路:1C H ⊥平面11AA B B ,从而1C H 可作z 轴,只需在平面11AA B B 找到过H 的两条垂线即可建系(两

种方案),对于坐标只有C 坐标相对麻烦,但由11C C A A =u u u r u u u r 可以利用向量进行计算。

解:方案一:(利用正方形相邻边垂直关系建系) 如图建系:则

)

)()1

1,,A A

B

(

)(1,B C

设(),,C x y z

,则(1

,,C C x y z =u u u r

()

1

0,A A =-u u u r

由11C C A A =u u u r u u u r

可得:00

0x x y y z z ==????

=-?=-????-==??

(0,C ∴-

综上所述:

)

)(

)()

1

1

,,,,A A B B

(

(1

,0,C C -

方案二:(利用正方形对角线相互垂直建系)

如图建系:由1AA =计算可得1

12A H B H == ()()()112,0,0,0,2,0,0,2,0A A B -

(

)(12,0,0,B C -

设(),,C x y z

,则(1,,C C x y z =u u u r ()12,2,0A A =--u u u r

1

1

由11C C A A =u u u r u u u r 可得:22

22505

x x y y z z ??=-=-??=-?=-????

-==?? ()

2,2,5C ∴--

综上所述:

()()()()112,0,0,0,2,0,0,2,0,2,0,0,A A B B --()()

10,0,5,2,2,5C C --

小炼有话说:本题虽然两种建系方法均可以,但从坐标上可以发现,用方案二写出的坐标相对简单,尤其是底面上的坐标不仅在轴上,而且数比较整齐。(相信所给的122AA =目的也倾向使用方案二建系)因为在解决立体几何解答题时,建系写坐标是基础,坐标是否整齐会决定计算过程是否更为简便。所以若题目中建系有多种选择时,不妨观察所给线段长度的特点,选择合适的方法建系,为后面的计算打好基础

例8:如图,在四棱柱1111ABCD A B C D -中,侧棱1A A ABCD ⊥底面,AB AC ⊥,1AB =,

12,5AC AA AD CD ====,且点M 和N 分别为11C D B D 和的中点。建立合适的空间

直角坐标系并写出各点坐标

思路:由1A A ABCD ⊥底面,AB AC ⊥可得1,,AA AB AC 两两垂直,进而以它们为轴建立坐标系,本题中1111,,,A B C D 均可通过投影到底面得到横纵坐标,图中D 点坐标相对麻烦,可作出底面的平面图再根据平面几何知识进行计算。 解:Q 侧棱1A A ABCD ⊥底面

∴ 11,A A AB A A AC ⊥⊥

AB AC ⊥Q 1,,AB AC AA ∴两两垂直

以1,,AB AC AA 为轴建立直角坐标系 底面上的点:()()0,1,0,2,0,0B C

由5AD CD ==可得ADC V 为等腰三角形,若P 为

AC 中点,则DP AC ⊥

222DP AD AP =

-=

()1,2,0D ∴-

P

A

D

可投影到底面上的点:()()()()11110,0,2,0,1,2,2,0,2,1,2,2A B C D - 因为M 和N 分别为11C D B D 和的中点

()11,,1,1,2,12M N ??

∴- ???

综上所述:()()()()()()()11110,1,0,2,0,0,1,2,0,0,0,2,0,1,2,2,0,2,1,2,2B C D A B C D -- ()11,,1,1,2,12M N ??

- ???

例9:如图:已知PO ⊥平面ABCD ,点O 在AB 上,且EA PO ∥,四边形ABCD 为直角梯形,1

,,2,2

AD BC BC AB BC CD BO PO EA AO CD ⊥======∥,建立适当的坐标系并求出各点坐标

思路:由条件可得AB AD ⊥,而PO ⊥平面

ABCD ,EA PO ∥可得到EA ⊥平面ABCD ,从而

以,,EA AB AD 为轴建系。难点在于求底面梯形中,AB OD 的长度。可作出平面图利用平面几何知识处理。

解:PO ⊥Q 平面ABCD ,EA PO ∥

∴ EA ⊥平面ABCD

,EA AB EA AD ∴⊥⊥

,AD BC BC AB ⊥Q ∥ AD AB ∴⊥

,,AE AD AB ∴两两垂直,如图建系: 1

12

EA CD == ()0,0,1E ∴

Rt AOB V

中:AB == 1

cos 602

AO AOB AOB BO =

=?∠=o AD BC Q ∥ 60BOC AOB ∴∠=∠=o BC BO =Q BOC ∴V 为等边三角形

OC BC CD ∴== 60OCB ∠=o

O

60DOC ∴∠=o COD ∴V 为等边三角形

2OD CD ∴==

)()(

))

,0,1,0,0,3,0,B

O D C

P 在底面ABCD 投影为O 且2PO = ()0,1,2P ∴

综上所述:)()(

))

()(),0,1,0,0,3,0,,0,1,2,0,0,1B

O D C

P E

例10:已知斜三棱柱1111,90,2,ABC A B C BCA AC BC A -∠===o

在底面ABC 上的射影

恰为AC 的中点D ,又知11BA AC ⊥,建立适当的空间直角坐标系并确定各点坐标 思路:本题建系方案比较简单,1A D ⊥平面ABC ,进而1A D 作z 轴,再过D 引AC 垂线即可。难点有二:一是三棱柱的高未知,进而无法写出上底面点的竖坐标;二是1B 的投影不易在图中作出(需要扩展平面ABC )

11BA AC ⊥求解;第二个问题可以考虑利用向量计算得到。

解:过D 作AC 的垂线DM

,1A D ⊥Q 平面ABC

11,A D DC A D DM ∴⊥⊥,而DM DC ⊥ ∴以1,,A D DC DM 为轴建立直角坐标系

()()()0,1,0,0,1,0,2,1,0A C B -,设高为h

则()10,0,A h ,设()1,,C x y z

则()()110,2,0,,,AC AC x y z h ==-u u u r u u u u r

由11

AC AC =u u u r u u u u r 可得:00220x x y y z h z h ==????

=?=????-==??

()10,2,C h ∴

()()112,1,,0,3,BA h AC h =--=u u u r u u u u r

21111030BA AC BA AC h ∴⊥??=?-+=u u u r u u u u r

,解得h =1

A

((

11,A C ∴

设(1

,B x y ()11

,,0A B x y ∴=u u u u r

而()2,2,0AB =u u u r 且11

A B AB =u u u u r u u u r 22x y =?∴?=?

(

1B ∴

综上所述:()()()(((1110,1,0,0,1,0,2,1,0,,,A C B A C B -

高中数学立体几何测试题及答案一)

高中数学必修2立体几何测试题及答案(一)一,选择(共80分,每小题4分) 1,三个平面可将空间分成n个部分,n的取值为() A,4;B,4,6;C,4,6,7 ;D,4,6,7,8。 2,两条不相交的空间直线a、b,必存在平面α,使得() A,a?α、b?α;B,a?α、b∥α;C,a⊥α、b⊥α;D,a?α、b⊥α。 3,若p是两条异面直线a、b外的任意一点,则() A,过点p有且只有一条直线与a、b都平行;B,过点p有且只有一条直线与a、b都垂直;C,过点p有且只有一条直线与a、b都相交;D,过点p有且只有一条直线与a、b都异面。 4,与空间不共面四点距离相等的平面有()个 A,3 ;B,5 ;C,7;D,4。 5,有空间四点共面但不共线,那么这四点中() A,必有三点共线;B,至少有三点共线;C,必有三点不共线;D,不可能有三点共线。 6,过直线外两点,作与该直线平行的平面,这样的平面可有()个 A,0;B,1;C,无数;D,涵盖上三种情况。 7,用一个平面去截一个立方体得到的截面为n边形,则() A,3≤n≤6 ;B,2≤n≤5 ;C,n=4;D,上三种情况都不对。 8,a、b为异面直线,那么() A,必然存在唯一的一个平面同时平行于a、b;B,过直线b 存在唯一的一个平面与a平行;C,必然存在唯一的一个平面同时垂直于a、b;D,过直线b 存在唯一的一个平面与a垂直。 9,a、b为异面直线,p为空间不在a、b上的一点,下列命题正确的个数是() ①过点p总可以作一条直线与a、b都垂直;②过点p总可以作一条直线与a、b都相交;③

过点p 总可以作一条直线与a 、b 都平行;④过点p 总可以作一条直线与一条平行与另一条垂直;⑤过点p 总可以作一个平面与一条平行与另一条垂直。 A ,1; B ,2; C ,3; D ,4。 10,异面直线a 、b 所成的角为80°,p 为空间中的一定点,过点p 作与a 、b 所成角为40° 的直线有( )条 A ,2; B ,3; C ,4; D ,6。 11,P 是△ABC 外的一点,PA 、PB 、PC 两两互相垂直,PA=1、PB=2、PC=3,则△ABC 的 面积为( )平方单位 A ,25; B ,611; C ,27; D ,2 9。 12,空间四个排名两两相交,以其交线的个数为元素构成的集合是( ) A ,{2,3,4}; B ,{1,2,3,}; C ,{1,3,5}; D ,{1,4,6}。 13,空间四边形ABCD 的各边与对角线的长都是1,点P 在AB 上移动 ,点Q 在CD 上移 动,点P 到点Q 的最短距离是( ) A ,21; B ,22; C ,23; D ,4 3。 14,在△ABC 中,AB=AC=5,BC=6,PA ⊥平面ABC ,PA=8,则P 到BC 的距离是( ) A ,45; B ,43; C ,25; D ,23。 15,已知m ,n 是两条直线,α,β是两个平面,下列命题正确的是( ) ①若m 垂直于α内的无数条直线,则m ⊥α;②若m 垂直于梯形的两腰,则m 垂直于梯形所 在的平面;③若n ∥α,m ?α,则n ∥m ;④若α∥β,m ?α,n ⊥β,则n ⊥m 。 A ,①②③; B ,②③④; C ,②④; D ,①③。 16,有一棱长为1的立方体,按任意方向正投影,其投影最大面积为( )

近五年高考数学(理科)立体几何题目汇总

高考真题集锦(立体几何部分) 1.(2016.理1)如图是由圆柱和圆锥组合而成的几何体的三视图,则该几何体的表面积是( ) A 20π B24π C28π D.32π 2. βα,是两个平面,m,n 是两条直线,有下列四个命题: (1)如果m ⊥n,m ⊥α,n ∥β,那么βα⊥; (2)如果m ⊥α,n ∥α,那么m ⊥n. (3)如果αβα?m ,∥那么m ∥β。 (4)如果m ∥n,βα∥,那么m 与α所成的角和n 与β所成的角相等。 其中正确的命题有___________ 3.(2016年理1)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是π328,则它的表面积是 A 17π B.18π C.20π D.28π 4.平面α过正方体1111D C B A ABCD -的顶点A ,α//平面11D CB ,?α平面ABCD =m , ?α平面11A ABB =n,则m,n 所成角的正弦值为( ) A.23 B.22 C.33 D.3 1 5.(2016年理1)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD ,∠AFD=90°,且二面角D-AF-E 与二面角C-BE-F 都是60° .(12分) (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值.

6. (2015年理1)圆柱被一个平面截取一部分后与半球(半径为r )组成一个几何体,该几何体三视图的正视图和俯视图如图所示,若该几何体的表面积是16+20π,则r=( ) A.1 B.2 C.7 D.8 7.如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的亮点,BE ⊥平面ABCD,DF ⊥平面ABCD,BE=2DF,AE ⊥EC. (1) 证明:平面AEC ⊥平面AFC; (2) 求直线AE 与直线CF 所成角的余弦值。 8.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截取部分体积和剩余 部分体积的比值为() 9.如图,长方体1111D C B A ABCD -中,AB = 16,BC = 10,AA1 = 8,点E ,F 分别在1111C D B A , 上,411==F D E A ,过点E,F 的平面α与此长方体的面相交,交线围成一个正方形。 (1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成的角的正弦值 10.如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB=5,AC=6,点E,F 分别在AD,CD 上,AE=CF=45 ,EF 交BD 于点H.将△DEF 沿EF 折到△DEF 的位置,OD ’=10 (1)证明:D ’H ⊥平面ABCD (2)求二面角B-D ’A-C 的正弦值

2020高考数学立体几何练习题23题

2020高考数学之立体几何解答題23題 一.解答题(共23小题) 1.在如图所示的几何体中,四边形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,∠DAB=60°,AD=2,AM=1,E为AB的中点. (Ⅰ)求证:AN∥平面MEC; (Ⅱ)在线段AM上是否存在点P,使二面角P﹣EC﹣D的大小为?若存在,求出AP的长h;若不存在,请说明理由. 2.如图,三棱柱中ABC﹣A1B1C1中,点A1在平面ABC内的射影D为棱AC的中点,侧面A1ACC1为边长为2 的菱形,AC⊥CB,BC=1. (Ⅰ)证明:AC1⊥平面A1BC; (Ⅱ)求二面角B﹣A1C﹣B1的大小.

3.如图,已知四棱锥P﹣ABCD,PB⊥AD侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°. (I)求点P到平面ABCD的距离, (II)求面APB与面CPB所成二面角的大小. 4.在正三棱锥P﹣ABC中,底面正△ABC的中心为O,D是PA的中点,PO=AB=2,求PB与平面BDC所成角的正弦值.

5.如图,正三棱锥O﹣ABC的三条侧棱OA、OB、OC两两垂直,且长度均为2.E、F分别是AB、AC的中点,H是EF的中点,过EF作平面与侧棱OA、OB、OC或其延长线分别相交于A1、B1、C1,已知. (1)求证:B1C1⊥平面OAH; (2)求二面角O﹣A1B1﹣C1的大小. 6.如图,在三棱锥A﹣BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=,BD=CD=1,另一个侧面是正三角形. (1)求证:AD⊥BC. (2)求二面角B﹣AC﹣D的大小. (3)在直线AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定E的位置;若不存在,说明理由.

2018届高考数学(理)热点题型:立体几何(含答案解析)

4 42 立体几何 热点一空间点、线、面的位置关系及空间角的计算 空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解. π 【例1】如图,在△ABC中,∠ABC=,O为AB边上一点,且3OB=3OC=2AB,已知PO⊥平面ABC,2DA=2AO=PO,且DA∥PO. (1)求证:平面PBD⊥平面COD; (2)求直线PD与平面BDC所成角的正弦值. (1)证明∵OB=OC,又∵∠ABC= π 4 , ππ ∴∠OCB=,∴∠BOC=. ∴CO⊥AB. 又PO⊥平面ABC, OC?平面ABC,∴PO⊥OC. 又∵PO,AB?平面PAB,PO∩AB=O, ∴CO⊥平面PAB,即CO⊥平面PDB. 又CO?平面COD, ∴平面PDB⊥平面COD. (2)解以OC,OB,OP所在射线分别为x,y,z轴,建立空间直角坐标系,如图所示.

? →·n ? 则 sin θ=? ?|PD||n|? PD BC BD BC BD =? ?= 02+(-1)2+(-1)2× 12+12+32 ? 11 1×0+1×(-1)+3×(-1) 设 OA =1,则 PO =OB =OC =2,DA =1. 则 C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1), ∴→=(0,-1,-1),→=(2,-2,0),→=(0,-3,1). 设平面 BDC 的一个法向量为 n =(x ,y ,z), ??n·→=0, ?2x -2y =0, ∴? ∴? ??n·→=0, ?-3y +z =0, 令 y =1,则 x =1,z =3,∴n=(1,1,3). 设 PD 与平面 BDC 所成的角为 θ, ? PD ? → ? ? ? ? 2 22 . 即直线 PD 与平面 BDC 所成角的正弦值为 2 22 11 . 【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标. 第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角. 第六步:反思回顾.查看关键点、易错点和答题规范. 【对点训练】 如图所示,在多面体 A B D DCBA 中,四边形 AA B B ,ADD A ,ABCD 均为正方 1 1 1 1 1 1 1 形,E 为 B D 的中点,过 A ,D ,E 的平面交 CD 于 F. 1 1 1 1 (1)证明:EF∥B C. 1 (2)求二面角 EA D B 的余弦值. 1 1 (1)证明 由正方形的性质可知 A B ∥AB∥DC,且 A B =AB =DC ,所以四边形 A B CD 为平行 1 1 1 1 1 1

高考数学专题复习立体几何(理科)练习题

A B C D P 《立体几何》专题 练习题 1.如图正方体1111D C B A ABCD -中,E 、F 分别为D 1C 1和B 1C 1的中点, P 、Q 分别为A 1C 1与EF 、AC 与BD 的交点, (1)求证:D 、B 、F 、E 四点共面; (2)若A 1C 与面DBFE 交于点R ,求证:P 、Q 、R 三点共线 2.已知直线a 、b 异面,平面α过a 且平行于b ,平面β过b 且平行于a ,求证:α∥β. 3. 如图所示的多面体是由底面为ABCD 的长方体被截面AEFG 4=AB 1=BC 3=BE ,4=CF ,若如图所示建立空间直角坐标系. ①求EF 和点G 的坐标; ②求异面直线EF 与AD 所成的角; ③求点C 到截面AEFG 的距离. 4. 如图,三棱锥P —ABC 中, PC ⊥平面ABC ,PC=AC=2,AB=BC ,D 是PB 上一点,且CD 平面PAB . (I) 求证:AB ⊥平面PCB ; (II) 求异面直线AP 与BC 所成角的大小; (III )求二面角C-PA-B 的余弦值. 5. 如图,直二面角D —AB —E 中,四边形ABCD 是边长为2的正方形,AE=EB ,F 为CE 上的点,且BF ⊥平面ACE. (1)求证AE ⊥平面BCE ; (2)求二面角B —AC —E 的余弦值. 6. 已知正三棱柱111ABC A B C -的底面边长为2,点M 在侧棱1BB 上. P Q F E D 1C 1B 1A 1D C B A F E C B y Z x G D A

(Ⅰ)若P 为AC 的中点,M 为BB 1的中点,求证BP//平面AMC 1; (Ⅱ)若AM 与平面11AA CC 所成角为30ο,试求BM 的长. 7. 如图,在底面是矩形的四棱锥P —ABCD 中,PA ⊥底面ABCD ,PA =AB =1,BC =2. (1)求证:平面PDC ⊥平面PAD ; (2)若E 是PD 的中点,求异面直线AE 与PC 所成角的余弦值; 8. 已知:在正三棱柱ABC —A 1B 1C 1中,AB = a ,AA 1 = 2a . D 是侧棱BB 1的中点.求证: (Ⅰ)求证:平面ADC 1⊥平面ACC 1A 1; (Ⅱ)求平面ADC 1与平面ABC 所成二面角的余弦值. 9. 已知直四棱柱1111ABCD A B C D -的底面是菱形,且60DAB ∠=,1AD AA =F 为 棱1BB 的中点,M 为线段1AC 的中点. (Ⅰ)求证:直线MF //平面ABCD ; (Ⅱ)求证:直线MF ⊥平面11ACC A ; (Ⅲ)求平面1AFC 与平面ABCD 所成二面角的大小 10. 棱长是1的正方体,P 、Q 分别是棱AB 、CC 1上的内分点,满足 21==QC CQ PB AP . P A B C D E

2019-2020年高考数学大题专题练习——立体几何

2019-2020年高考数学大题专题练习——立体几何(一) 1.如图所示,四棱锥P ABCD -中,底面ABCD 为正方形,⊥PD 平面ABCD , 2PD AB ==,点,,E F G 分别为,,PC PD BC 的中点. (1)求证:EF PA ⊥; (2)求二面角D FG E --的余弦值. 2.如图所示,该几何体是由一个直角三棱柱ADE BCF -和一个正四棱锥P ABCD -组合而成,AF AD ⊥,2AE AD ==. (1)证明:平面⊥PAD 平面ABFE ; (2)求正四棱锥P ABCD -的高h ,使得二面角C AF P --的余弦值是 22 .

3.四棱锥P ABCD -中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是 面积为ADC ∠为锐角,M为PB的中点. (Ⅰ)求证:PD∥面ACM. (Ⅱ)求证:PA⊥CD. (Ⅲ)求三棱锥P ABCD -的体积. 4.如图,四棱锥S ABCD -满足SA⊥面ABCD,90 DAB ABC ∠=∠=?.SA AB BC a ===,2 AD a =. (Ⅰ)求证:面SAB⊥面SAD. (Ⅱ)求证:CD⊥面SAC. S B A D M C B A P D

5.在四棱锥P ABCD -中,底面ABCD 为矩形,测棱PD ⊥底面ABCD ,PD DC =,点E 是 BC 的中点,作EF PB ⊥交PB 于F . (Ⅰ)求证:平面PCD ⊥平面PBC . (Ⅱ)求证:PB ⊥平面EFD . 6.在直棱柱111ABC A B C -中,已知AB AC ⊥,设1AB 中点为D ,1A C 中点为E . (Ⅰ)求证:DE ∥平面11BCC B . (Ⅱ)求证:平面11ABB A ⊥平面11ACC A . E D A B C C 1 B 1 A 1 D A B C E F P

高考数学压轴专题(易错题)备战高考《空间向量与立体几何》经典测试题及答案解析

【高中数学】单元《空间向量与立体几何》知识点归纳 一、选择题 1.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的体积为( ) A . 643 π B .8316π π+ C .28π D .8216π π+ 【答案】B 【解析】 【分析】 结合三视图,还原直观图,得到一个圆锥和一个圆柱,计算体积,即可. 【详解】 结合三视图,还原直观图,得到 故体积22221183242231633V r h r l πππππ=?+?=?+??=+,故选B . 【点睛】 本道题考查了三视图还原直观图,考查了组合体体积计算方法,难度中等. 2.如图,在长方体1111ABCD A B C D -中,13,1AB AD AA ===,而对角线1A B 上存 在一点P ,使得1AP D P +取得最小值,则此最小值为( )

A .7 B .3 C .1+3 D .2 【答案】A 【解析】 【分析】 把面1AA B 绕1A B 旋转至面1BA M 使其与对角面11A BCD 在同一平面上,连接1MD 并求出,就 是最小值. 【详解】 把面1AA B 绕1A B 旋转至面1BA M 使其与对角面11A BCD 在同一平面上,连接1MD .1MD 就是1||||AP D P +的最小值, Q ||||3AB AD ==,1||1AA =,∴0113tan 3,60AA B AA B ∠==∴∠=. 所以11=90+60=150MA D ∠o o o 221111111113 2cos 13223()72 MD A D A M A D A M MA D ∴=+-∠=+-??- ??= 故选A . 【点睛】 本题考查棱柱的结构特征,考查计算能力,空间想象能力,解决此类问题常通过转化,转化为在同一平面内两点之间的距离问题,是中档题. 3.已知圆锥SC 的高是底面半径的3倍,且圆锥SC 的底面直径、体积分别与圆柱OM 的底面半径、体积相等,则圆锥SC 与圆柱OM 的侧面积之比为( ). A 10 B .3:1 C .2:1 D 102 【答案】A

年高考数学试题知识分类大全立体几何

年高考数学试题知识分类大全立体几何 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

2007年高考数学试题汇编 立体几何 一、选择题 1.(全国Ⅰ?理7题)如图,正四棱柱1111D C B A ABCD -中, AB AA 21=,则异面直线11AD B A 与所成角的余弦值为( D ) A .51 B .52 C .53 D .5 4 2.(全国Ⅱ?理7题)已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则AB 1与侧面ACC 1A 1所成角的正弦等于( A ) A . 6 B . 10 C . 2 2 D . 3 3.(北京理3题)平面α∥平面β的一个充分条件是( D ) A .存在一条直线a a ααβ,∥,∥ B .存在一条直线a a a αβ?,,∥ C .存在两条平行直线a b a b a b αββα??,,,,∥,∥ D .存在两条异面直线a b a a b αβα?,,,∥,∥ 4.(安徽理2题)设l ,m ,n 均为直线,其中m ,n 在平面α内,“l α⊥”是l m ⊥且“l n ⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也 不必要条件 5.(安徽理8题)半径为1的球面上的四点D C B A ,,,是正四面体的顶点,则A 与B 两点间的球面距离为( ) A .)33arccos(- B .)36arccos(- C .)31arccos(- D .)4 1arccos(- 6.(福建理8题)已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是( D ) A .,,//,////m n m n ααββαβ??? B . //,,//m n m n αβαβ??? C .,//m m n n αα⊥⊥? D . //,m n n m αα⊥?⊥

全国高考理科数学:立体几何

2013年国理科数学试题分类汇编7立体几何 一、选择题 1 .(2013年新课标1(理))如图有一个水平放置的透明无盖的正方体容器容器8cm 将一个 球放在容器口再向容器内注水当球面恰好接触水面时测得水深为6cm 如果不计容器的 厚度则球的体积为 ) A 2 .(2013年普通等学校招生统一试广东省数学(理)卷(纯WORD 版))设,m n 是两条不同的 直线,αβ是两个不同的平面下列命题正确的是( )[] A .若αβ⊥m α?n β?则m n ⊥ B .若//αβm α?n β?则//m n C .若m n ⊥m α?n β?则αβ⊥ D .若m α⊥//m n //n β则αβ⊥ 3 .(2013年上海市春季数学试卷(含答案))若两个球的表面积之比为1:4则这两个球的体积 之比为( ) A .1:2 B .1:4 C .1:8 D .1:16 4 .(2013年普通等学校招生统一试大纲版数学(理)WORD 版含答案(已校对))已知正四棱柱 1111ABCD A B C D -12AA AB =则CD 与平面1BDC 所成角的正弦值等于( ) A 5 .(2013年新课标1(理))某几何体的三视图如图所示则该几何体的体积为

( ) A .168π+ B .88π+ C .1616π+ D .816π+ 6 .(2013年湖北卷(理))一个几何体的三视图如图所示该几何体从上到下由四个简单几何 体组成其体积分别记为1V 2V 3V 4V 上面两个简单几何体均为旋转体下面两个简单几何体均为多面体则有( ) A .1243V V V V <<< B .1324V V V V <<< C .2134V V V V <<< D .2314V V V V <<< 7 .(2013年湖南卷(理))已知棱长为1的正方体的俯视图是一个面积为1的正方形则该正 方体的正视图的面积不可能...等于( ) A .1 B 8 .(2013年普通等学校招生统一试广东省数学(理)卷(纯WORD 版))某四棱台的三视图如 图所示则该四棱台的体积是

历年全国理科数学高考试题立体几何部分精选(含答案)

1.在一个几何体的三视图中,正视图和俯视图如 右图所示,则相应的俯视图可以为 2.已知矩形ABCD的顶点都在半径为4的球O的球面上,且6,23 ==,则棱锥 AB BC -的体积为。 O ABCD 3.如图,四棱锥P—ABCD中,底面ABCD为平行四 边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD. (Ⅰ)证明:PA⊥BD; (Ⅱ)若PD=AD,求二面角A-PB-C的余弦值。

2.83 3. 解:(Ⅰ)因为60,2DAB AB AD ∠=?=, 由余弦定理得3BD AD = 从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD (Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D-xyz ,则 ()1,0,0A ,()03,0B ,,() 1,3,0C -,()0,0,1P 。 (1,3,0),(0,3,1),(1,0,0)AB PB BC =-=-=- 设平面PAB 的法向量为n=(x ,y ,z ),则0, 0,{ n AB n PB ?=?= 即 3030 x y y z -+=-= 因此可取n=(3,1,3) 设平面PBC 的法向量为m ,则 m 0, m 0, { PB BC ?=?= 可取m=(0,-1,3-) 27 cos ,727 m n = =- 故二面角A-PB-C 的余弦值为 27 7 -

1. 正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A 23 B 33 C 2 3 D 63 2. 已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ?的最小值为 (A) 42-+ (B)32-+ (C) 422-+ (D)322-+ 3. 已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 (A) 23 (B)43 (C) 23 (D) 83 4. 如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB ⊥⊥(Ⅰ)证明:SE=2EB ; (Ⅱ)求二面角A-DE-C 的大小 .

2019高考数学试题汇编之立体几何(原卷版)

专题04 立体几何 1.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是 A.α内有无数条直线与β平行 B.α内有两条相交直线与β平行 C.α,β平行于同一条直线 D.α,β垂直于同一平面 2.【2019年高考全国Ⅲ卷文数】如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则 A.BM=EN,且直线BM,EN是相交直线 B.BM≠EN,且直线BM,EN是相交直线 C.BM=EN,且直线BM,EN是异面直线 D.BM≠EN,且直线BM,EN是异面直线 3.【2019年高考浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是 A.158 B.162 C.182 D.324

4.【2019年高考浙江卷】设三棱锥V –ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P –AC –B 的平面角为γ,则 A .β<γ,α<γ B .β<α,β<γ C .β<α,γ<α D .α<β,γ<β 5.【2019年高考全国Ⅰ卷文数】已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC , BC P 到平面ABC 的距离为___________. 6.【2019年高考全国Ⅱ卷文数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长 方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.) 7.【2019年高考全国Ⅲ卷文数】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方 体1111ABCD A B C D 挖去四棱锥O ?EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =AA =,,3D 打印所用原料密度为0.9 g/cm 3 ,不考虑打印损耗,制作该模型所需原料的质量为___________g. 8.【2019年高考北京卷文数】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网 格纸上小正方形的边长为1,那么该几何体的体积为__________.

2018届高考数学立体几何(理科)专题02-二面角

2018届高考数学立体几何(理科)专题02 二面角 1.如图,在三棱柱111ABC A B C -中, 1,90A A AB ABC =∠=?侧面11A ABB ⊥底面ABC . (1)求证: 1AB ⊥平面1A BC ; (2)若15360AC BC A AB ==∠=?,,,求二面角11B A C C --的余弦值.

2.如图所示的多面体中,下底面平行四边形与上底面平行,且,,,,平面 平面,点为的中点. (1)过点作一个平面与平面平行,并说明理由; (2)求平面与平面所成锐二面角的余弦值.

3.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形, 2AB AD =, BD =,且PD ⊥底面ABCD . (1)证明:平面PBD ⊥平面PBC ; (2)若Q 为PC 的中点,且1AP BQ ?=u u u v u u u v ,求二面角Q BD C --的大小.

4.如图所示的几何体是由棱台和棱锥拼接而成的组合体,其底面四边形是边长为2的菱形,,平面. (1)求证:; (2)求平面与平面所成锐角二面角的余弦值.

5.在四棱锥P ABCD -中,四边形ABCD 是矩形,平面PAB ⊥平面ABCD ,点E 、F 分别为BC 、AP 中点. (1)求证: //EF 平面PCD ; (2)若0 ,120,AD AP PB APB ==∠=,求平面DEF 与平面PAB 所成锐二面角的余弦值.

6.如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形, ,90AD BC ADC ∠=o P ,平面PAD ⊥底面ABCD , Q 为AD 中点, M 是棱PC 上的点, 1 2,1,2 PA PD BC AD CD === ==(Ⅰ)若点M 是棱PC 的中点,求证: PA P 平面BMQ ; (Ⅱ)求证:平面PQB ⊥平面PAD ; (Ⅲ)若二面角M BQ C --为30o ,设PM tMC =,试确定t 的值.

2007年高考理科数学“立体几何”题

2007年高考“立体几何”题 1.(全国Ⅰ) 如图,正四棱柱1111ABCD A B C D -中,12AA AB =, 则异面直线1A B 与1AD 所成角的余弦值为( ) A . 15 B . 25 C . 3 5 D . 45 解:如图,连接BC 1,A 1C 1,∠A 1BC 1是异面直线1A B 与1AD 所成的角,设AB=a ,AA 1=2a ,∴ A 1B=C 1B=5a , A 1C 1=2a ,∠A 1BC 1的余弦值为4 5 ,选D 。 一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知 正三棱柱的底面边长为2,则该三角形的斜边长为 . 解:一个等腰直角三角形DEF 的三个顶点分别在 正三棱柱的三条侧棱上,∠EDF=90°,已知 正三棱柱的底面边长为AB=2,则该三角形 的斜边EF 上的中线DG=3. ∴ 斜边EF 的长为23。 四棱锥S ABCD -中,底面ABCD 为平行四边形, 侧面SBC ⊥底面ABCD .已知45ABC =∠, 2AB = ,BC = SA SB == (Ⅰ)证明SA BC ⊥; (Ⅱ)求直线SD 与平面SAB 所成角的大小. 解法一: (Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD , 得SO ⊥底面ABCD . 因为SA SB =,所以AO BO =, 又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥, 由三垂线定理,得SA BC ⊥. (Ⅱ)由(Ⅰ)知SA BC ⊥,依题设AD BC ∥, 1 A A B 1B 1A 1D 1C C D C 1A C F A D B C A S

2021-2022年高考数学专题复习导练测 第八章 立体几何阶段测试(十)理 新人教A版

2021年高考数学专题复习导练测 第八章 立体几何阶段测试(十)理 新人教A 版 一、选择题 1.空间中四点可确定的平面有( ) A .1个 B .3个 C .4个 D .1个或4个或无数个 答案 D 解析 当这四点共线时,可确定无数个平面;当这四点不共线且共面时,可确定一个平面;当这四点不共面时,其中任三点可确定一个平面,此时可确定4个平面. 2.一个长方体被一个平面所截,得到的几何体的三视图,如图所示,则这个几何体的体积为( ) A .8 B .4 C .2 D .1 答案 C 解析 根据该几何体的三视图知,该几何体是一个平放的三棱柱;它的底面三角形的面积为S 底面=1 2×2×1=1,棱柱高为h =2,∴棱柱的体积为S 棱柱=S 底面·h =1×2=2. 3.下列命题中,错误的是( ) A .三角形的两条边平行于一个平面,则第三边也平行于这个平面 B .平面α∥平面β,a ?α,过β内的一点B 有唯一的一条直线b ,使b ∥a C .α∥β,γ∥δ,α、β、γ、δ所成的交线为a 、b 、c 、d ,则a ∥b ∥c ∥d D .一条直线与两个平面成等角,则这两个平面平行

答案D 解析A正确,三角形可以确定一个平面,若三角形两边平行于一个平面,而它所在的平面与这个平面平行,故第三边平行于这个平面;B正确,两平面平行,一面中的线必平行于另一个平面,平面内的一点与这条线可以确定一个平面,这个平面与已知平面交于一条直线,过该点在这个平面内只有这条直线与a平行;C正确,利用同一平面内不相交的两直线一定平行判断即可确定C是正确的;D错误,一条直线与两个平面成等角,这两个平面可能是相交平面,故应选D. 4.在空间四边形ABCD中,平面ABD⊥平面BCD,且DA⊥平面ABC,则△ABC的形状是( ) A.锐角三角形B.直角三角形 C.钝角三角形D.不能确定 答案B 解析作AE⊥BD,交BD于E, ∵平面ABD⊥平面BCD, ∴AE⊥平面BCD,BC?平面BCD,∴AE⊥BC, 而DA⊥平面ABC,BC?平面ABC,∴DA⊥BC, 又∵AE∩AD=A,∴BC⊥平面ABD, 而AB?平面ABD,∴BC⊥AB, 即△ABC为直角三角形.故选B. 5.在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上的一点,它的正视图和侧视图如图所示,则下列命题正确的是( )

立体几何-2019年高考理科数学解读考纲

05 立体几何 (三)立体几何初步 1.空间几何体 (1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. (2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图. (3)会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式. (4)会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求). (5)了解球、棱柱、棱锥、台的表面积和体积的计算公式. 2.点、直线、平面之间的位置关系 (1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理. ? 公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内. 公理2:过不在同一条直线上的三点,有且只有一个平面. 格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A.90πB.63π C.42πD.36π 【答案】B 【名师点睛】在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规

则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑.求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解. 考向二 球的组合体 样题4 (2017新课标全国Ⅲ理科)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .π B . 3π4 C . π2 D . π4 【答案】B 【解析】绘制圆柱的轴截面如图所示: 由题意可得:, 结合勾股定理,底面半径, 由圆柱的体积公式,可得圆柱的体积是,故选B. 【名师点睛】(1)求解空间几何体体积的关键是确定几何体的元素以及线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解. 样题5 (2017江苏)如图,在圆柱12O O 内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱12 O O 的体积为1V ,球O 的体积为2V ,则 1 2 V V 的值是 .

2019届高考理科数学专题 高考中的立体几何问题

2019届高考理科数学专题 高考中的立体几何问题 一、选择题(每小题5分,共30分) 1.一个多面体的三视图如图4-1所示,则此多面体的表面积是() 图4-1 A.22 B.24- C.22+ D.20+ 2.如图4-2,网格纸上小正方形的边长为1,粗线画的是某组合体的三视图,则该组合体的体积 是() 图4-2 A.+π B.+π C.4+π D.+π 3.已知正方体ABCD-A1B1C1D1的所有顶点均在球O的表面上,E,F,G分别为AB,AD,AA1的中点,若平面EFG截球O所得圆的半径为,则该正方体的棱长为() A. B. C.3 D.2 4. [数学文化题]如图4-3为中国传统智力玩具鲁班锁,它起源于中国古代建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分啮合,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称,六根完全相同的正四棱柱分成三组,经90°榫卯起来.现有一鲁班锁的正四棱柱 的底面正方形的边长为2,欲将其放入球形容器内(容器壁的厚度忽略不计),若球形容器的表 面积的最小值为56π,则正四棱柱的高为()

A. B.2 C.6 D.2 5. [数学文化题]中国古代计时器的发明时间不晚于战国时代(公元前476年~前222年),其中沙漏就是古代利用机械原理设计的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道流到下部容器.如图4-4所示,某沙漏由上、下两个圆锥形容器组成,圆锥形容器的底面圆的直径和高均为8 cm,细沙全部在上部时,其高度为圆锥形容器高度的(细管长度忽略不计).若细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆,则此圆锥形沙堆的高为() 图4-4 A.2 cm B.cm C.cm D.cm 6.如图4-5,在正三棱柱ABC-A1B1C1中,AA1=AB,E,F分别为BC,BB1的中点,M,N分别为 AA1,A1C1的中点,则直线MN与EF所成角的余弦值为() 图4-5 A. B. C. D. 二、填空题(每小题5分,共10分) 7.若侧面积为8π的圆柱有一外接球O,则当球O的体积取得最小值时,圆柱的表面积 为. 8.如图4-6,在棱长为1的正方体ABCD-A1B1C1D1中,作以A为顶点,分别以AB,AD,AA1为轴,底面圆半径为r(0

【新课标】备战高考数学专题复习测试题_立体几何(文科)

高考第一轮复习专题素质测试题 立体几何(文科) 班别______学号______姓名_______评价______ (考试时间120分钟,满分150分,试题设计:隆光诚) 一、选择题(每小题5分,共60分. 以下给出的四个备选答案中,只有一个正确) 1.(10全国Ⅱ)与正方体1111ABCD A BC D -的三条棱 AB 、1CC 、11A D 所在直线的距离相等的点( ) A.有且只有1个 B.有且只有2个 C.有且只有3个 D.有无数个 2.(09福建)设,m n 是平面α内的两条不同直线;12,l l 是平面β内的两条相交直线, 则//αβ的一个充分而不必要条件是( ) A. 1////m l βα且 B. 12////m l l 且n C. ////m n ββ且 D. 2////m n l β且 3.(08四川)直线l α?平面,经过α外一点A 与l α、都成30?角的直线有且只有( ) A.1条 B.2条 C.3条 D.4条 4.(08宁夏)已知平面α⊥平面β,α∩β= l ,点A ∈α,A ?l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定...成立的是( ) A. AB ∥m B. AC ⊥m C. AB ∥β D. AC ⊥β 5.(10湖北)用a 、b 、c 表示三条不同的直线,y 表示平面,给出下列命题: ①若a ∥b ,b ∥c ,则a ∥c ;②若a ⊥b ,b ⊥c ,则a ⊥c ;③若a ∥y ,b ∥y ,则a ∥b ; ④若a ⊥y ,b ⊥y ,则a ∥b .其中真命题是( ) A. ①② B. ②③ C. ①④ D.③④ 6.(10新课标)设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积 为( ) A.3πa 2 B.6πa 2 C.12πa 2 D. 24πa 2 7.(08全国Ⅱ)正四棱锥的侧棱长为32,侧棱与底面所成的角为?60,则该棱锥的体积

历年全国理科数学高考试题立体几何部分精选(含答案)

(一) 1.在一个几何体的三视图中,正视图和俯视图如 右图所示,则相应的俯视图可以为 2.已知矩形ABCD的顶点都在半径为4的球O的球面上,且6,23 ==,则棱锥 AB BC -的体积为。 O ABCD 3.如图,四棱锥P—ABCD中,底面ABCD为平行四 边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD. (Ⅰ)证明:PA⊥BD; (Ⅱ)若PD=AD,求二面角A-PB-C的余弦值。

(一) 1.D 2.83 3. 解:(Ⅰ)因为60,2DAB AB AD ∠=?=, 由余弦定理得3BD AD = 从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD (Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D-xyz ,则 ()1,0,0A ,()03,0B ,,()1,3,0C -,()0,0,1P 。 (1,3,0),(0,3,1),(1,0,0)AB PB BC =-=-=- 设平面PAB 的法向量为n=(x ,y ,z ),则0,0,{n AB n PB ?=?= 即 30 30x y y z -+=-= 因此可取n=(3,1,3) 设平面PBC 的法向量为m ,则 m 0,m 0,{PB BC ?=?= 可取m=(0,-1,3-) 27cos ,727 m n ==- 故二面角A-PB-C 的余弦值为 27-

(二) 1. 正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A 23 B 33 C 23 D 63 2. 已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ?的最小值为 (A) 42-+ (B)32-+ (C) 422-+ (D)322-+ 3. 已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 (A) 23 (B)43 (C) 23 (D) 83 4. 如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC ,AB=AD=1, DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC . (Ⅰ)证明:SE=2EB ; (Ⅱ)求二面角A-DE-C 的大小 .

相关文档
相关文档 最新文档