文档库 最新最全的文档下载
当前位置:文档库 › 差热与热重分析研究五水硫酸铜的脱水过程与差示扫描量热法

差热与热重分析研究五水硫酸铜的脱水过程与差示扫描量热法

差热与热重分析研究五水硫酸铜的脱水过程与差示扫描量热法
差热与热重分析研究五水硫酸铜的脱水过程与差示扫描量热法

差热与热重分析研究CuSO4?5H20的脱水过程与差示扫描量热法

一.实验目的

(1)掌握差热分析法和热重法的基本原理和分析方法,了解差热分析仪,热重分析仪,差热热重联用仪的基本结构,熟练掌握仪器操作。

(2)运用分析软件对测得数据进行分析,研究CuSO4?5H20的脱水过程。

(3)了解差示扫描量热法的基本原理和差示扫描量热仪的基本结构,熟练掌握仪器操作。

二.实验原理

1.差热分析法

物质在受热或冷却过程中,当达到某一温度时,往往回发生熔化、凝固、晶型转变、分解、化合、吸附、脱附等物理或化学变化,并伴随着焓的改变,因而产生热效应,其表现为体系与环境(样品与参比物)之间有温度差。差热分析是在程序控温下测量样品和参比物的温度差与温度(或时间)相互关系。在加热(或冷却)过程中,因物理-化学变化而产生吸热或者放热效应的物质,均可运用差热分析法进行鉴定。

2.热重法

物质受热时,发生化学反应,质量也随之改变,测定物质质量的变化就可研究其过程。热重法(TG)是在程序控制温度下,测量物质质量与温度关系的一种技术。

热重法的主要特点是定量强,能准确地测量物质的变化及变化的速率。

从热重法派生出微商热重法(DTG),即TG曲线对温度(或时间)的一阶导数。DTG 曲线能精确地反映出起始反应温度,达到最大反应速率的温度和反应终止温度。在TG曲线上,对应于整个变化过程中各阶段的变化互相衔接而不易分开,同样的变化过程在DTG曲线上能呈现出明显的最大值,故DTG能很好地显示出重叠反应,区分各个反应阶段,而且DTG曲线峰的面积精确地对应着变化了的质量,因而DTG能精确地进行定量分析。

现在发展起来的差热-热重(DTA-TG)联用仪,是将DTA与TG的样品室相连,在同样气氛中,控制同样的升温速率进行测试,同时得到DTA和TG曲线,从而一次测试得到更多的信息,对照进行研究。

3.差示扫描量热法

差示扫描量热法(简称DSC)是在程序升温的条件下,测量试样与参比物之间的能量差随温度变化的一种分析方法。是为克服DTA在定量测量方面的不足而发展起来的一种新技术。

差示扫描量热法有功率补偿式和热流式两种。在差示扫描量热中,为使试样和参比物的温差保持为零在单位时间所必需施加的热量与温度的关系曲线为DSC曲线。曲线的纵轴为单位时间所加热量,横轴为温度或时间。曲线的面积正比于热焓的变化。

DSC与DTA原理相同,但性能优于DTA,测定热量比DTA准确,而且分辨率和重现性也比DTA好,因此DSC在聚合物领域获得了广泛应用,大部分DAT应用领域都可以采用DSC进行测量,灵敏度和精确度更高,试样用量更少。由于其在定量上的方便从而更适和测量结晶度、结晶动力学以及聚合、固化、交联氧化、分解等反应的反应热及研究其反应动力学。

三.仪器与试剂

1.仪器

日本岛津公司DTA-50差热分析仪;TGA-50热重分析仪;DTG60H差热-热重联用仪;日本岛津公司DSC60差示扫描量热仪;TA-60WS工作站;电子天平;SSC-30 压样机;FC60A气体流量控制器等。

2.试剂

待测样品CuSO4 5H2O;参比物Al2O3,In

四.实验步骤

1.差热分析(DTA)

(1)通水通气

接通冷却水,开启水源使水流畅通,保持冷却水流量300ml/min以上,根据需要在通气口通入保护气体,将气瓶出口压力调节到0.59到0.98Mpa.

(2)开机

依次打开专用变压器开关,DTA -50开关,TA-60WS工作站开关,同时开启计算机开关和打印机开关。

(3)调节气体流量

将仪器左侧流量控制钮旋至25ml/min至50ml/min。

(4)称量及放样

用电子天平称10mg样品后放入坩埚内,在另一只坩埚内放入适量参比物(大致比例:试样为无机物时,试样与参比物1:1;试样为有机物时,试样与参比物1:2),将两只坩埚轻轻敲打颠实,按DTA-50 控制面板键,炉子升起,将试样坩埚放在检测支持器右皿,将参比物坩埚放在左皿,按键放下炉子。

(5)参数设定

电脑屏幕上进入TA-60WS Collect界面,点击DTA-50,点击Measure,输入升温速率,终止温度;进入PID Parameters,确定P:10;I:10;D:10;进入Sampling Parameters,确定Sampling time:10;进入File Information,依次输入测量序号、样品名称、重量、分子量、坩埚名称、气氛、气体流速、操作者姓名。检查计算机输入的参数,单击“确认”。

(6)测量

回到Measure,点击Sart,测量开始。当试样达到预设的终止温度时,测量自动停止。

(7)关机

等炉温降下来再依次关TA-60WS工作站开关,DTA -50开关,专用变压器开关,关冷却水,关气瓶(为保护仪器,注意炉温在500C以上不得关闭DTA-50主机电源)。

(8)数据分析

进入分析界面(Analysis),打开所做测量文件,由所测样品的DTA曲线,选择项目进行分析,如切线(Tangent)求反应外推起始点,Peak求峰值,Peak Height 求峰高,Heat求峰面积,等等。最后数据存盘,打印差热曲线图。

2.热重分析(TG)

(1)通气

根据实验需要在通气口通入保护气体,将气瓶出口压力调节到0.59到0.98Mpa.

(2)开机

依次打开专用变压器开关,TGA-50开关,工作站开关,同时开启计算机及打印机开关。

(3) 调节气体流量

将仪器左侧流量控制钮旋至25ml/min至50ml/min。

(4) 天平调零

按TGA-50控制面板键,炉子下降,将样品托板拨至炉子瓷体端口(注意为避免操作失误导致杂物掉入加热炉中,在打开炉子操作时,一定要将样品托板拨至热电偶下),用镊子取一只空坩埚小心放入Pt样品吊篮内,移开样品托板,按键升起炉子,待天平稳定后,调节控制面板上平衡钮及归零键,仪器自动扣除坩埚自重。

(5)放样

按down键,炉子下降,移过样品托板,小心取出坩埚,装入约占坩埚1/3-1/2高度的样

品,轻轻敲打坩埚使样品均匀,然后将坩埚放入样品吊篮内,移开样品托板,升起炉子(6)测量

电脑屏幕上进入TA-60WS COLLECT界面,点击TGA-50,进入Measure,进行实验参数设定,输入升温速率,终止温度等等;进入PID Parameters,确定P:10;I:10;D:10;进入Sampling Parameters,确定Sampling Time:10;进入File Information,依次输入测量序号,样品名称,重量(点击Read Weight,电脑会直接显示出样品重量),分子量,坩埚名称,气氛,气体流速,操作者姓名,回到Measure,点击Sart,测量开始,炉内开始加热升温,记录开始。当试样达到预设的终止温度时,测量自动停止。

(7)关机

等炉温降下来再依次关TA-60WS工作站开关,TGA -50开关,专用变压器开关,关气瓶(为保护仪器,注意炉温在500℃以上不得关闭TGA-50主机电源)。

(8)数据分析

进入分析界面(Analysis),打开所做测量文件,对原始热重记录曲线进行适当处理,先对其求导,得到DTG曲线;选定每个台阶或峰的起止位置,算出各个反应阶段的TG失重百分比,失重始温,终温,失重速率最大点温度。最后数据存盘,打印热重曲线图。

3. 差热-热重联用(DTA-TG)

(1)开机

打开DTG-60 主机、计算机、TA-60WS 工作站以及FC-60A 气体控制器。

(2)气体

接好气体管路。DTG-60 主机后面有3 个气体入口。测定样品用“GAS1 (purge)”入口,通常使用N2、He或Ar 等惰性气体,流量控制在30-50mL/min;分析样品中用到反应气的情况,使用“GAS2(reaction)”入口通入气体,通常使用O2,流量最大100mL/min;气体吹扫清理样品腔时使用“cleaning”窗口,通常使用N、空气,流量控制在200-300mL/min。

(3)按DTG-60AH 主机前面板的“OPEN/ CLOSE”键,炉盖缓缓升起。把空白坩埚放置于左边参比样品盘,把空的样品坩埚放置于右边样品盘中,按“OPEN/ CLOSE”键降下炉盖。

(4) TG 基线(重量值)稳定后,按前面板的“DISPLAY”键,前面板屏幕显示重量值,按“ZERO”键,重量值归零,显示“0.000mg”。如果归零后,读数跳动,可以多按几次“ZERO”键,直到读数为零,或者上下漂移很小。备注:通过面板上的“DISPLAY”键,可以使显示在温度、电压、质量之间切换。

(5)按“OPEN/ CLOSE”键,升起炉盖,用镊子把右边样品盘上的坩锅取下,装上适量的样品,重新放到右边的样品盘上。样品质量一般为3-5mg,请保证样品平铺于坩埚底部,与坩埚接触良好。

(6)按“OPEN/ CLOSE”键,降下炉盖。当屏幕显示TG (重量值)稳定后,仪器内置的天平自动精确称出样品的重量,并显示出来。

(7)设定测定参数

点击桌面上TA-60WS Collection Monitor 图标,打开TA-60WS Acquisition 软件。并在Detector 窗口中选择DTG-60AH,点击“Measure”菜单下的“Measuring Parameters”, 弹出“Setting Parameters”窗口。在“Temperature Program”一项中编辑起始温度以及温度程序。在Sampling Parameters 窗口中,把Sampling Time 设定为1sec(标准品校正时设定为0.1sec)。在“File Information”窗口中输入样品基本信息。包括:样品名称、重量、坩埚材料,使用气体种类、气体流速、操作者等信息。点击“确定”关闭“Setting Parameters”窗口。

(8)样品测试

等待仪器基线稳定后(大约10 分钟),点击“Start”键,在弹出“Start”窗口中设定

文件名称以及储存路径。点击“Read Weight”,这样仪器检测器把置于样品盘的样品重量显示在“Sample Weight”一项。(如果选中“Take the initial TG signal for the sample mass”一项,样品重量的数值将会记录为刚刚开始测定时的TG 值,这个功能在样品重量随准备测定过程中变化的情况下使用,比如测定高挥发性样品的时候。)点击“Start”运行一次分析测试,仪器会按照设定的参数进行运行,并按照设定的路径储存文件。样品分析完成后,等待样品腔温度降到室温左右,取出样品和参比坩埚,关机。

(9)数据分析

点击ta60 图标,打开数据分析软件。点击“文件”菜单下的“打开”项,在分析软件中打开所需分析的测量文件。鼠标选中DTG 曲线,点击“Analysis”菜单中“peak”项,或者点击“peak”按钮,设定温度范围,即可给出峰值温度;亦可选取起始点作为测定结果,点击“Analysis”菜单中“Tangent”一项,弹出Tangent 窗口。用鼠标分别在曲线上峰的起始点和到达峰高之前斜率相对稳定的一个点上点击,来选定起始点。点击Analyse”,熔点确定的tangent 点确定出来。再次点击“Analyse”,分析物的熔点就会在计算出来并在峰旁边显示。了可以给出峰值温度外,还可以提供有关峰值的其他信息,可在‘Option’选项中进行。鼠标选中DTA 曲线,点击“Analysis”菜单中“Heat”一项,弹出Heat 窗口。用鼠标规定峰的起始点和终止点,点击“Analyse”,具体结果在屏幕上显示出来。所得数值表示样品吸收或释放多大的热量。热量的显示可以以多种单位给出,在点击‘Heat’后弹出的对话框中,有Option 选项。可以根据需要进行选择,并添加文字注释,中英文均可。鼠标选中TG 曲线,点击“Analysis”菜单中“Weight Loss”一项,弹出Weight Loss 窗口。用鼠标规定峰的起始点和终止点,点击“Analyse”,样品重量的变化,以及起始点时间、温度等都会显示出来。重量的显示可以以多种单位给出,在点击‘Weight Loss’后弹出的对话框中,有Option 选项。可以根据需要进行选择,并添加文字注释,中英文均可。

(10)出具报告

点击菜单“file”中“print”,弹出打印窗口。选择路径,可以把DTG 图和分析参数打印到Microsoft Office Document Image Writer 或者Adobe Reader 上或者打印到文件。

4.差示扫描量热法(DSC)

(1) 开机

打开DSC-60 主机、计算机、TA-60WS 工作站以及FC-60A 气体控制器。

(2)气体

接好气体管路,接通气源,并在FC-60A 气体控制器上调整气体流量。

(3)样品制备

所用样品质量一般为3-5mg,可根据样品性质适当调整加样量。把样品压制得尽量延展平整,以保证压制样品时坩锅底的平整。把装样品的坩埚置于SSC-30 压样机中,盖上坩埚盖,旋转压样机扳手,把坩埚样品封好。同时不放样品,压制一个空白坩埚作为参比样品。压完后检查坩锅是否封好,且要保证坩埚底部清洁无污染。滑开DSC-60 样品腔体盖,用镊子移开炉盖和盖片,把空白坩埚放置于左边参比盘,把制备好的样品坩埚放置于右边样品盘中,盖上盖片和炉盖。

(4)设定测定参数

点击桌面上TA-60WS Collection Monitor 图标,打开TA-60WS Acquisition 软件。在detector 窗口中选择DSC-60,点击“Measure”菜单下的“Measuring Parameters”, 弹出“Setting Parameters”窗口。在“Temperature Program”一项中编辑起始温度、升温速率、结束温度以及保温时间等温度程序。在“File Information”窗口中输入样品基本信息。包括:样品名称、质量、坩埚材料,使用气体种类、气体流速、操作者、备注等信息。点击“确定”关闭“Setting Parameters”窗口,完成参数设定操作。

(5)样品测试

等待仪器基线稳定后,点击“Start”键,在弹出“Start”窗口中设定文件名称以及储存路径,点击“Start”运行一次分析测试,仪器会按照设定的参数进行运行,并按照设定的路径储存文件。

(6)关机

样品测量完成后,等待样品腔温度降到室温左右,取出样品,依次关机:DSC-60 主机、气体控制器FC-60A、系统控制器TA-60WS 和电脑。

(7)数据分析

点击TA60 图标,打开数据分析软件。点击“文件”菜单下的“打开”项,根据文件名以及预览图形,选择所需的文件在分析软件中打开。鼠标选中DSC 曲线,点击“Analysis”菜单中“peak”项,或者点击“peak”按钮,设定温度范围,即可给出峰值温度;亦可选取起始点作为测定结果,点击“analysis”中“Tangent”一项,弹出Tangent 窗口。用鼠标分别在曲线上峰的起始点和到达峰高之前斜率相对稳定的一个点上点击,来选定起始点。点击“Analyse”,熔点确定的tangent 点确定出来。再次点击“Analyse”,分析物的熔点就会在计算出来并在峰旁边显示。除了可以给出峰值温度外,还可以提供有关峰值的其他信息,可在“option”选项中进行。鼠标选中DSC 曲线,点击“Analysis”菜单中“Heat”一项,弹出Heat 窗口。用鼠标规定峰的起始点和终止点,点击“Analyse”,即可得到积分结果,其数值表示样品吸收或释放出多大的热量。在屏幕上显示。热量的显示可以以多种单位给出,在点击“Heat”后弹出的对话框中,有Option 选项。可以根据需要进行选择,并添加文字注释。

(8)出具报告

点击菜单“File”中“Print”,弹出打印窗口。选择路径,可以把DSC 图和分析数据打印到文件、Microsoft Office Document Image Writer 或者Adobe Reader 上。也可以选择菜单“Edit”中“Copy All”,将结果图形及数据拷到Word 文档上,再进行打印。

五.数据处理

1.DTA曲线分析

2.DTG曲线分析

峰对应反应:CuSO4·5H2O—2 H2O→CuSO4·3H2O

第二个峰,失重百分比为28.331%,折合成水分子3.93个,近似为4个,因此认为第二个峰对应反应:CuSO4·3H2O—2 H2O→CuSO4·H2O

第三个峰,失重百分比为35.080%,折合成水分子4.87个,近似为5个,因此认为第三个峰

对应反应:CuSO4·H2O—H2O→CuSO4

3.DSC曲线分析

热效应:ΔH m=-25.48J/g

六.思考题

1.DTA实验中如何选择参比物,要注意哪些事项?影响差热分析结果的主要因素有哪些?

要获得平稳的基线,参比物的选择很重要。要求参比物在加热或冷却过程中不发生任何变化,在整个升温过程中参比物的比热、导热系数、粒度尽可能与试样一致或相近。

影响仪器仪表差热分析的主要因素:

(1)气氛和压力的选择

气氛和压力可以影响样品化学反应和物理变化的平衡温度、峰形。因此,必须根据样品的性质选择适当的气氛和压力,有的样品易氧化,可以通入N2、Ne等惰性气体。

(2)升温速率的影响和选择

升温速率不仅影响峰温的位置,而且影响峰面积的大小,一般来说,在较快的升温速率下峰面积变大,峰变尖锐。但是快的升温速率使试样分解偏离平衡条件的程度也大,因而易使基线漂移。更主要的可能导致相邻两个峰重叠,分辨力下降。较慢的升温速率,基线漂移小,使体系接近平衡条件,得到宽而浅的峰,也能使相邻两峰更好地分离,因而分辨力高。但测定时间长,需要仪器的灵敏度高。一般情况下选择10℃/min~15℃/min为宜。

(3)试样的预处理及用量

试样用量大,易使相邻两峰重叠,降低了分辨力。一般尽可能减少用量,最多大至毫克。样品的颗粒度在100目~200目左右,颗粒小可以改善导热条件,但太细可能会破坏样品的结晶度。对易分解产生气体的样品,颗粒应大一些。参比物的颗粒、装填情况及紧密程度应与试样一致,以减少基线的漂移。

(4)参比物的选择

要获得平稳的基线,参比物的选择很重要。要求参比物在加热或冷却过程中不发生任何变化,在整个升温过程中参比物的比热、导热系数、粒度尽可能与试样一致或相近。

常用三氧化二铝(α-Al2O3)或煅烧过的氧化镁或石英砂作参比物。如分析试样为金属,也可以用金属镍粉作参比物。如果试样与参比物的热性质相差很远,则可用稀释试样的方法解决,主要是减少反应剧烈程度;如果试样加热过程中有气体产生时,

可以减少气体大量出现,以免使试样冲出。选择的稀释剂不能与试样有任何化学反应或催化反应,常用的稀释剂有SiC、Al2O3等。

除上述外还有许多因素,诸如样品管的材料、大小和形状、热电偶的材质以及热电偶插在试样和参比物中的位置等都是应该考虑的因素。

2. CuSO4·5H2O计算理论失重率,与实测值比较。如有差异,讨论原因。

失重率与理论值见表1。差异的原因:实验仪器本身有一定的误差,样品纯度有限。3. DSC的基本原理是什么?在聚合物中有哪些用途?

DSC的基本原理:DSC和DTA的曲线模式基本相似。它们都是以样品在温度变化时产生的热效应为检测基础的,由于一般的DTA方法不能得到能量的定量数据。于是人们不断地改进设计,直到有人设计了两个独立的量热器皿的平衡。从而使测量试样对热能的吸收和放出(以补偿对应的参比基准物的热量来表示)成为可能。这两个量热器皿都置于程序控温的条件下。采取封闭回路的形式,能精确、迅速测定热容和热焓,这种设计就叫做差示扫描量热计。DSC体系可分为两个控制回路。一个是平均温度控制回路,另一个是差示温度控制回路。

在平均温度控制回路中,由程序控温装置中提供一个电信号,并将此信号于试样池和参比池所需温度相比较,与之同时程度控温的电信号也接到记录仪进行记录。现在看一下程序温度与两个测量池温度的比较和控制过程。比较是在平均放大器内进行的,程序信号直接输入平均放大器,而两个测量池的信号分别由固定在各测量池上的铂电阻温度计测出,通过平均温度计算器加以平均后,再输入平均温度放大器。经比较后,如果程序温度比两个测量池的平均温度高,则由放大器分别输入更多的电功率给装在两个测量池上的独立电热器以提高它们的温度。反之,则减少供给的电功率,把它们的温度降到与程序温度相匹配的温度。这就是温度程序控制过程。

DSC与DTA所不同的是在测量池底部装有功率补偿器和功率放大器。因此在示差温度回路里,显示出DSC和DTA截然不同的特征,两个测量池上的铂电阻温度计除了供给上述的平均温度信号外,还交替地提供试样池和参比池的温度差值△T。输入温度差值放大器。当试样产生放热反应时,试样池的温度高于参比池,产生温差电势,经差热放大器放大后送入功率补偿放大器。

偿功率作用下,补偿热量随试样热量变化,即表征试样产生的热效应。因此实验中补偿功率随时间(温度)的变化也就反映了试样放热速度(或吸热速度)随时间(温度)的变化,这就是DSC曲线。它与DTA曲线基本相似,但其纵坐标表示试样产生热效应的速度(热流率),单位为毫卡(毫焦)/秒,横坐标是时间或温度,即 dH/dt —t, 同样规定吸热峰向下,放热峰向上,对曲线峰经积分,可得试样产生的热量△H。

在聚合物研究中有那些用途:DSC 方法以其优越的热量定量性能,在高聚物研究中发展极为迅速,而且已经成为高聚物常规测试和基本研究手段,应用面较广,但限于篇幅,在此只将主要方面加以简介。

(1)高聚物玻璃化转变温度Tg的测定

(2)DSC法测定橡胶的硫化,热固树脂的固化过程

(3)高聚物热稳定性的研究

(4)高聚物结晶行为的研究

(5)DSC在高聚物剖析鉴定上的应用

4.实验过程的注意事项和影响因素

(1)仪器影响因素

气氛的影响:

气氛可以是惰性的,也可以是参加反应的,视实验要求而定。测定时所用的气氛不同,有时会得到完全不同的DSC曲线。例如某一样品在氧气中加热会产生氧化裂解反应—先放热,后吸热;如在氯气中进行,产生的是分解反应—吸热反应。二者的DSC曲线就明显不同。

气氛还可分为动态和静态两种形式。静态气氛通常是密闭系统。反应发生后样品上空逐渐被分解出的气体所充满。这时由于平衡的原因会导致反应速度减慢。以致使反应温度移向高温。而炉内的对流作用使周围的气氛(浓度)不断的变化。这些情况会造成传热情况的不稳定。导致实验结果不易重复。反之在动态气氛中测定,所产生的气体能不断地被动态气氛带走。对流作用反而能保持相对的稳定,实验结果易重复。另外气体的流量应严格控制一致。否则结果将不会重复。

温度程序控制速度:

加热速度太快,峰温会偏高,峰面积偏大,甚至会降低两个相邻峰的分辨率。对聚合物的玻璃化的转变来说,是一个分子链段运动状态的松弛过程。对升(降)温速度有强烈依赖性。升温速度较慢时,大分子链段即可在较低的温度下吸热解冻。使Tg向低温移动,当升温速度极慢时,则根本观察不到玻璃化转变。因此,通常采用10℃/分

(2)样品因素

试样量:

试样量同参比物的量要匹配,以免两者热容相差太大引起基线漂移。试样量少,峰小而尖锐,峰的分辨率高。重视性好。并有利于与周围控制气氛相接触。容易释放裂解产物,从而提高分析效果;试样量大,峰大而宽,峰温移向高温。但试样量大,对一些细小的转变,可以得到较好的定量效果。对均匀性差的样品,也可获得较好的重复结果。

试样的粒度及装填方式:

试样粒度的大小,对那些表面反应或受扩散控制反应(例如氧化)影响较大。粒度小、峰移向低温方向。装填方式影响到试样的传热情况,尤其对弹性体。因此最好采用薄膜或细粉状试样。并使试样铺满盛器底部,加盖封紧,试样盛器底部尽可能平整。以保证和样品池之间的加盖接触。

差示扫描量热法在食品中的应用

龙源期刊网 https://www.wendangku.net/doc/332714955.html, 差示扫描量热法在食品中的应用 作者:李琪吕珍珍张娴 来源:《食品安全导刊·下旬刊》2019年第04期 前言 在食品加工过程中,涉及许多跟热能相关的工艺手段,如高温灭菌、煮制、干燥及冷冻等,在这些过程中,食品的性质和结构会发生一些变化,如淀粉糊化、蛋白质变性、热熔变化、相变及流变性改变等,其中伴随的能量的变化可用热分析技术进行研究。差示扫描量热法(Differential Scanning Calorimetry,DSC)是在程序控温的条件下,测定样品对热能的吸收和释放速率,并以热流率与温度或时间的关系来表示物质发生热力学变化的参数的一种热分析技术,在食品中广泛应用于比热容、结晶速率、相转变及玻璃化转变温度等的研究。差示扫描量热法可监测温度范围宽,具有较高的灵敏度和分辨率,且所需试样少,适用于多种不同形式和种类的食品样品的分析。 差示扫描量热法在蛋白质研究中的应用 不同的蛋白质具有不同的功能特性,这些性质与蛋白质的结构密切相关。在食品加工过程中蛋白质会变性,使蛋白质结构改变,而影响其功能。蛋白质从天然状态变成变性状态一般伴随着分子排列无序化以及结构从折叠状态变成展开状态,差示扫描量热法可以测量在这些状态变化过程中伴随的能量变化,进而评估加工形式对食品功能性的影响。加热是食品工业中处理大豆蛋白的常见方式,加热过程中蛋白质的天然结构改变而使其凝胶性、乳化性发生变化,通过差示扫描量热法来监测这个过程,可以分析溶剂条件、分子间相互作用及加工条件等对蛋白质功能性质的影响。 谷氨酰胺转胺酶是一种已广泛应用于食品工业加工领域的蛋白质交联剂,它是催化蛋白质分子之间酰基转移的催化剂,使各种蛋白质分子间产生共价交联,从而改善工业食品的产品性能,已成为酶制剂领域研究和生产的热点产品。谷氨酰胺转氨酶作为一种以蛋白质为结构基础的酶制剂,许多因素会导致蛋白质变性从而使其失去活性,如加热、重金属、紫外线照射等,其中温度变化是造成酶失去活性的主要原因,这极大地影响了蛋白质的生产、保存、运输和在较宽泛环境下的使用。加入外源性保护剂可以改善这一问题,如糖类、蛋白质和多肽类物质等可使活性酶蛋白分子折叠的驱动力和酶蛋白的自由能改变等方面来使蛋白质分子结构具有更高的稳定性。可以使用差示扫描量热法来研究改变这些外部条件的情况下谷氨酰胺转胺酶的热稳定性变化。 差示扫描量热法在油脂研究中的应用 在油脂加工业,劣质油掺杂造成的食品安全问题频发,气相色谱法是检测劣质油掺杂的主要方法,但存在样品前处理复杂、成本高等缺点。差示扫描量热法在检测油脂掺杂方面具有快

差示扫描量热仪的工作原理(DSC)

差示扫描量热仪的工作原理 差示扫描量热仪作为常见的煤炭化验设备—量热仪系列产品中 的一员,在整个的量热仪家族中占据这举足轻重的地位,一直以来,工作人员都在熟练的操作这些仪器进行工作,但是,同样也存在不少个的人对这种量热仪究竟是怎样工作的还不是很明白,本文特汇总部分资料说明下差示扫描量热仪的工作原理。 一、示差扫描量热法我们必须的明白这种量热仪运用的原理其实就是示差扫描量热法:示差扫描量热法(DSC)是在程序控制温度下,测量输给物质和参比物的功率差与温度关系的一种技术。DSC和DTA仪器装置相似,所不同的是在试样和参比物容器下装有两组补偿加热丝,当试样在加热过程中由于热效应与参比物之间出现温差腡时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化,当试样吸热时,补偿放大器使试样一边的电流立即增大;反之,当试样放热时则使参比物一边的电流增大,直到两边热量平衡,温差腡消失为止。换句话说,试样在热反应时发生的热量变化,由于及时输入电功率而得到补偿,所以实际记录的是试样和参比物下面两只电热补偿的热功率之差随时间t的变化关系。如果升温速率恒定,记录的也就是热功率之差随温度T的变化关系。 二、差示扫描量热仪差示扫描量热仪就是运用了以上的系统原理,现在我们找一款类似的设备看下这种类型的量热仪都有哪些配

置及特点? (一)、主要配置制冷系统除霜功能动态调制DSC功能(二)、主要特点功率补偿型设计原理,直接测定能量和温度而非温度差,灵敏度为微型炉设计,仪器升降温速度快,热慢性小,平衡时间短量热精度±温度精度±温度范围-170℃~+550℃动态量耗(三)、主要用途: 、高分子材料的定性,定量分析、熔点、玻璃化温度、结晶度、熔融热和结晶热、纯度、反应动力学、比热、相转变温度、相容性面向学科: 广泛应用于塑料,橡胶,涂料,胶粘剂,医药,石油化工等不同领域熟悉这种差示扫描量热仪的各种原理及配置后,以后我们在操作这种量热仪的时候就能够做到真正的熟练顺手,同时我们也将更多的一下类似于智能一体定硫仪、定硫仪、自动量热仪、微机全自动量热仪等各种煤炭化验设备,欢迎大家共同参与讨论学习 差示扫描量热仪记录到的曲线称DSC曲线,它以样品吸热或放热的速率,即热流率dH/dt(单位毫焦/秒)为纵坐标,以温度T 或时间t为横坐标,可以测定多种热力学和动力学参数,例如比热容、反应热、转变热、相图、反应速率、结晶速率、高聚物结晶度、样品纯度等。该法使用温度范围宽(-175~725℃)、分辨率高、试样用量少。适用于无机物、有机化合物及药物分析。 分类

1_差示扫描量热法的原理

1 差示扫描量热法的原理 DSC(differential scanning calorimetry)差示扫描量热法,是在程序控制温度下,测量输出物质与参比物的功率差与温度关系的一种技术。其主要特点是使用的温度范围比较宽(-175~725°C)、分辨能力高和灵敏度高。差示扫描量热仪得到的曲线以每秒钟的热量变化(热流率dH/dt)为纵坐标, 温度为横坐标, 称为DSC曲线, 与DTA 曲线形状相似,但峰向相反。在具体分析中图谱中峰的方向表示吸热或放热(通常峰表示放热,谷表示吸热);峰的数目表示在测定温度范围内待测药物样品发生变化的次数;峰的位置表示发生转化的温度范围;峰的面积反映热效应数值的大小;峰高峰宽及对称性与测定条件有关外,往往还与样品变化过程的动力学因素有关。根据测量方法的不同,又分为两种类型:功率补偿型DSC 和热流型DSC。 1.1功率补偿型DSC 功率补偿型DSC的主要特点是试样和参比物分别具有独立的加热器和传感器,其结构如图1-1所示。 图1-1 试样与参比物容器下装有两组补偿加热丝,当试样在加热过程中由于热效应与参比物之间出现温差时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化,当试样吸热时,补偿放大器使试样一边的电流立即增大;反之,当试样放热时使参比物一边电流增大,直到两边达到热平衡,温差消失为止。也就是说,试样在热反应中发生热量变化,由于及时输入电功率而得到补偿,所以实际记录的是试样和参比物下面的两只电热补偿的热功率之差随时间的变化关系。如果恒速升温,记录的也就是热功率之差随温度的变化。 1.2 热流型DSC 在热流型DSC中试样和参比物在同一个加热炉内,它们受同一温度-时间程序的监控。热流型DSC的结构如图1-2所示,该仪器的特点是利用鏮铜盘把热量传输到试样和参比物的,并且鏮铜盘还作为测量温度的热电偶结点的一部分。传输到试样和参比物的热流差通过试样和参比物平台下的镍铬板与鏮铜盘的结点所构成的镍铬-鏮铜热电偶进行监控。试样温度由镍铬板下方的镍铬-镍铝热电偶直接监控。试样和参比物的温差DT与两者的热流差成正比。为了获得一条水平的理想基线,在热流型DSC的构造中,结构对称性必须很高,温度滞后应该很小,炉温要均匀且总的传热系数必须很大。

差热与热重分析研究五水硫酸铜的脱水过程与差示扫描量热法

差热与热重分析研究CuSO4?5H20的脱水过程与差示扫描量热法 一.实验目的 (1)掌握差热分析法和热重法的基本原理和分析方法,了解差热分析仪,热重分析仪,差热热重联用仪的基本结构,熟练掌握仪器操作。 (2)运用分析软件对测得数据进行分析,研究CuSO4?5H20的脱水过程。 (3)了解差示扫描量热法的基本原理和差示扫描量热仪的基本结构,熟练掌握仪器操作。 二.实验原理 1.差热分析法 物质在受热或冷却过程中,当达到某一温度时,往往回发生熔化、凝固、晶型转变、分解、化合、吸附、脱附等物理或化学变化,并伴随着焓的改变,因而产生热效应,其表现为体系与环境(样品与参比物)之间有温度差。差热分析是在程序控温下测量样品和参比物的温度差与温度(或时间)相互关系。在加热(或冷却)过程中,因物理-化学变化而产生吸热或者放热效应的物质,均可运用差热分析法进行鉴定。 2.热重法 物质受热时,发生化学反应,质量也随之改变,测定物质质量的变化就可研究其过程。热重法(TG)是在程序控制温度下,测量物质质量与温度关系的一种技术。 热重法的主要特点是定量强,能准确地测量物质的变化及变化的速率。 从热重法派生出微商热重法(DTG),即TG曲线对温度(或时间)的一阶导数。DTG 曲线能精确地反映出起始反应温度,达到最大反应速率的温度和反应终止温度。在TG曲线上,对应于整个变化过程中各阶段的变化互相衔接而不易分开,同样的变化过程在DTG曲线上能呈现出明显的最大值,故DTG能很好地显示出重叠反应,区分各个反应阶段,而且DTG曲线峰的面积精确地对应着变化了的质量,因而DTG能精确地进行定量分析。 现在发展起来的差热-热重(DTA-TG)联用仪,是将DTA与TG的样品室相连,在同样气氛中,控制同样的升温速率进行测试,同时得到DTA和TG曲线,从而一次测试得到更多的信息,对照进行研究。 3.差示扫描量热法 差示扫描量热法(简称DSC)是在程序升温的条件下,测量试样与参比物之间的能量差随温度变化的一种分析方法。是为克服DTA在定量测量方面的不足而发展起来的一种新技术。 差示扫描量热法有功率补偿式和热流式两种。在差示扫描量热中,为使试样和参比物的温差保持为零在单位时间所必需施加的热量与温度的关系曲线为DSC曲线。曲线的纵轴为单位时间所加热量,横轴为温度或时间。曲线的面积正比于热焓的变化。 DSC与DTA原理相同,但性能优于DTA,测定热量比DTA准确,而且分辨率和重现性也比DTA好,因此DSC在聚合物领域获得了广泛应用,大部分DAT应用领域都可以采用DSC进行测量,灵敏度和精确度更高,试样用量更少。由于其在定量上的方便从而更适和测量结晶度、结晶动力学以及聚合、固化、交联氧化、分解等反应的反应热及研究其反应动力学。 三.仪器与试剂 1.仪器 日本岛津公司DTA-50差热分析仪;TGA-50热重分析仪;DTG60H差热-热重联用仪;日本岛津公司DSC60差示扫描量热仪;TA-60WS工作站;电子天平;SSC-30 压样机;FC60A气体流量控制器等。 2.试剂 待测样品CuSO4 5H2O;参比物Al2O3,In

差示扫描量热仪DSC的原理及应用范围

差示扫描量热仪的原理 应用范围及用途 ◆公司名称:南京汇诚仪器仪表有限公司◆品牌:汇诚仪器

差示扫描量热仪DSC-600 一、仪器介绍 差示扫描量热仪测量的是与材料内部热转变相关的温度、热流的关系。应用范围非常广,特别是材料的研发、性能检测和质量控制。应用于高分子材料的固化反应温度和热效应,物质相转变温度及其热效应的测定、高聚物材料的结晶、熔融温度、玻璃化转变温度等。 二、差示扫描量热仪的基本原理 差示扫描量热法DSC是在程序控制温度下,测量输给物质和参比物的功率和温度关系的一种技术。当试样在加热过程中由于热效应与参比物之间出现温差?T时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化,当试样吸热时,补偿放大器使试样一边的电流立即增大,反之,当试样放热时,使参比物一边的电流增大,直到两边热量平衡,温差?T消失为止。换句话说,试样在热反应时发生的热量变化,由于及时输入电功率得到补偿,所以实际记录的是试样和参比物下面两只电热补偿的热功率之差随时间T的变化关系。如升温速率恒定,记录的也就是热功率之差随温度T的变化关系。

三、差示扫描量热仪的用途 1、成分分析:有机物、无机物、药物、高聚物等的鉴别及相图研究。 2、稳定性测定:物质的稳定性、抗氧化性能的测定等。 3、化学反应研究:研究固体物质与气体反应的研究、催化性能测定、反应动力学研究、反应热测定、相变和结晶过程研究。 4、材料质量检定:纯度测定、固体脂肪指数测定、高聚物质量检验、物质的玻璃化转变和居里点、材料的使用寿命等。 5、材料力学性质测定:抗冲击性能、粘弹性、弹性模量、损耗模数等测定。

差示扫描量热法DSC说明介绍

聚合物的热分析------差示扫描量热法(DSC) 差示扫描量热法是在差热分析(DTA)的基础上发展起来的一种热分析技术。它被定义为:在温度程序控制下,测量试量相对于参比物的热流速随温度变化的一种技术。简称DSC(Diffevential Scanning Calovimltry)。DSC技术克服了DTA 在计算热量变化的困难,为获得热效应的定量数据带来很大方便,同时还兼具DTA的功能。因此,近年来DSC的应用发展很快,尤其在高分子领域内得到了越来越广泛的应用。它常用于测定聚合物的熔融热、结晶度以及等温结晶动力学参数,测定玻璃化转变温度T g;研究聚合、固化、交联、分解等反应;测定其反应温度或反应温区、反应热、反应动力学参数等,业已成为高分子研究方法中不可缺少的重要手段之一。 一、目的和要求 了解差示扫描量热法的基本原理及应用范围,掌握测定聚合物熔点、结晶度、结晶温度及其热效应的方法。 二、实验原理 DSC和DTA的曲线模式基本相似。它们都是以样品在温度变化时产生的热效应为检测基础的,由于一般的DTA方法不能得到能量的定量数据。于是人们不断地改进设计,直到有人设计了两个独立的量热器皿的平衡。从而使测量试样对热能的吸收和放出(以补偿对应的参比基准物的热量来表示)成为可能。这两个量热器皿都置于程序控温的条件下。采取封闭回路的形式,能精确、迅速测定热容和热焓,这种设计就叫做差示扫描量热计。DSC体系可分为两个控制回路。一个是平均温度控制回路,另一个是差示温度控制回路。

在平均温度控制回路中,由程序控温装置中提供一个电信号,并将此信号于 试样池和参比池所需温度相比较,与之同时程度控温的电信号也接到记录仪进行记录。现在看一下程序温度与两个测量池温度的比较和控制过程。比较是在平均放大器内进行的,程序信号直接输入平均放大器,而两个测量池的信号分别由固定在各测量池上的铂电阻温度计测出,通过平均温度计算器加以平均后,再输入平均温度放大器。经比较后,如果程序温度比两个测量池的平均温度高,则由放大器分别输入更多的电功率给装在两个测量池上的独立电热器以提高它们的温度。反之,则减少供给的电功率,把它们的温度降到与程序温度相匹配的温度。这就是温度程序控制过程。 DSC 与DTA 所不同的是在测量池底部装有功率补偿器和功率放大器。因此在示差温度回路里,显示出DSC 和DTA 截然不同的特征,两个测量池上的铂电阻温度计除了供给上述的平均温度信号外,还交替地提供试样池和参比池的温度差值△T 。输入温度差值放大器。当试样产生放热反应时,试样池的温度高于参比池,产生温差电势,经差热放大器放大后送入功率补偿放大器。 在补偿功率作用下,补偿热量随试样热量变化,即表征试样产生的热效应。因此实验中补偿功率随时间(温度)的变化也就反映了试样放热速度(或吸热速度)随时间(温度)的变化,这就是DSC 曲线。它与DTA 曲线基本相似,但其

化合物纯度测定 差示扫描量热(DSC)法

《化合物纯度测定差示扫描量热(DSC)法》编制说明 1. 制标任务来源 本标准系国家认证认可监督管理委员会2009年标准制修订项目计划2009B051《化合物纯度测定差示扫描量热(DSC)法》的制订,现已完成。 2. 标准制定的目的、意义和国内外同类研究概况 差示扫描量热技术(DSC Differential Scanning Calorimetry)对低分子化合物进行纯度测定在上世纪六十年代就提出来,在八十年代逐渐发展成熟,并得到广泛应用。它是测量在程序控温下,输入到样品和参比物的功率差与温度的关系的技术。又分为功率补偿式(Power Compensation)和热流式(Heat Flux)两种。与其它测定纯度的方法相比,DSC 法测定纯度具有许多优点:试样用量少,快速,操作简便,不需要标准品,不需分离杂质,能测定物质的绝对纯度,由DSC曲线计算出的杂质含量重现性好,准确度高,适合于测定高纯度化工医药产品。ASTM在上世纪80年代中期陆续颁布了一系列有关DSC技术测定物质纯度的标准,为DSC技术的应用奠定了基础。美国药典在1980年20版开始确定DSC法作为药品纯度检验的标准方法推荐使用, 并推荐DSC为药品纯度检验及生产质量控制方面的首选方法。DSC法也被标准定值机构列为可供使用的标准定值方法。 本项标准制修订项目计划是国家认证认可监督管理委员会2009年标准制修订项目计划2009B051《化合物纯度测定差示扫描量热(DSC)法》的制订,部分工作承接山东检验检疫局1999年度科研项目《差示扫描热分析(DSC)对固体有机化工品纯度、熔点测定的研究》(SK9903)的研究内容,并于2001年完成山东省地方标准《邻苯二甲酸酐的差示扫描量热法(DSC)纯度测定》的制订。本标准的制订参考了ASTM E 928-01《纯度的差示扫描热法测定标准试验方法》。 本标准立项后,课题组积极组织攻关研究,建立了差示扫描热分析法(DSC)对化合物纯度的测定方法,并对影响检测结果的重要实验条件进行了实验,得到纯度测定的优化条件;同时,组织了多个实验室参加的一致性水平试验,获得了方法的精密度、重现性及再现性数据。 3. 原理 用DSC测定纯度的方法在六十年代中期提出,后经许多研究者对数百种物质进行纯度测

差示扫描量热仪实验报告

4.差示扫描量热仪 一、实验目的及要求 1.了解差示扫描分析法的基本原理和差热扫描量热仪的基本构造; 2.掌握差热扫描量热仪的使用方法 二、实验原理 差示扫描量热仪DSC是在程序控温下,测量物质和参比物之间的能量差随温度变化关系的一种技术。根据测量方法的不同,又分为功率补偿型DSC和热流型DSC两种类型。常用的功率补偿DSC是在程序控温下,使试样和参比物的温度相等,测量每单位时间输给两者的热能功率差与温度的关系的一种方法。DSC是在控制温度变化情况下,以温度(或时间)为横坐标,以样品与参比物间温差为零所需供给的热量为纵坐标所得的扫描曲线。 当试样在加热过程中由于热效应与参比物之间出现温差ΔT时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化,当试样吸热时,补偿放大器使试样一边的电流立即增大;反之,当试样放热时则使参比物一边的电流增大,直到两边热量平衡,温差ΔT消失为止。换句话说,试样在热反应时发生的热量变化,由于及时输入电功率而得到补偿,所以实际记录的是试样和参比物下面两只电热补偿的热功率之差随时间t的变化的关系。 三、实验仪器 差示扫描量热仪Q100(DSC)测量的是与材料内部热转变相关的温度、热流的关系,应用范围非常广,特别是材料的研发、性能检测与质量控制。材料的特性,如玻璃化转变温度、冷结晶、相转变、熔融、结晶、产品稳定性、固化/交联、氧化诱导期等,都是DSC的研究领域。美国TA仪器公司生产。 主要附件:Q系列Advantage操作软件及分析软件λ,压片机λ 技术参数: 温度范围:-90℃~ 550℃(压缩机制冷);温度准确度:±0.1℃;温度精度:±0.01℃;量热精度(基于标准金属):±1 %;最大量热灵敏:0.2μW;基线弯曲(-50℃~300℃):10μW;基线重现性:10μW;动态范围:+/-500mW;线性升温速率:0.01 ~ 200℃/min;峰高/半峰高:2.2mW/℃ 功能应用:高分子材料的固化反应温度和热效应、物质相变温度及其热效应测定、高聚物材料的结晶、熔融温度及其热效应测定、高聚物材料的玻璃化转变温度。

15.-实验二-差示扫描量热法(DSC)

实验二差示扫描量热法(DSC) 在等速升温(降温)的条件下,测量试样与参比物之间的温度差随温度变化的技术称为差热分析,简称DTA(Differential Thermal Analysis)。试样在升(降)温过程中,发生吸热或放热,在差热曲线上就会出现吸热或放热峰。试样发生力学状态变化时(如玻璃化转变),虽无吸热或放热,但比热有突变,在差热曲线上是基线的突然变动。试样对热敏感的变化能反映在差热曲线上。发生的热效大致可归纳为: (1)发生吸热反应。结晶熔化、蒸发、升华、化学吸附、脱结晶水、二次相变(如高聚物的玻璃化转变)、气态还原等。 (2)发生放热反应。气体吸附、氧化降解、气态氧化(燃烧)、爆炸、再结晶等。(3)发生放热或吸热反应。结晶形态转变、化学分解、氧化还原反应、固态反应等。 用DTA方法分析上述这些反应,不反映物质的重量是否变化,也不论是物理变化还是化学变化,它只能反映出在某个温度下物质发生了反应,具体确定反应的实质还得要用其他方法(如光谱、质谱和X光衍射等)。 由于DTA测量的是样品和基准物的温度差,试样在转变时热传导的变化是未知的,温差与热量变化比例也是未知的,其热量变化的定量性能不好。在DTA基础上增加一个补偿加热器而成的另一种技术是差示扫描量热法。简称DSC(Differential Scanning Calorimetry)。因此DSC直接反映试样在转变时的热量变化,便于定量测定。 DTA、DSC广泛应用于: (1)研究聚合物相转变,测定结晶温度T c 、熔点T m 、结晶度X D 。结晶动力学参数。 (2)测定玻璃化转变温度T g 。 (3)研究聚合、固化、交联、氧化、分解等反应,测定反应热、反应动力学参数。 一、目的要求: 1.了解DTA、DSC的原理。 2.掌握用DSC测定聚合物的T g 、T c 、T m 、X D 。 二、基本原理: 1.DTA 图(11-1)是DTA的示意图。通常由温度程序控制、气氛控制、变换放大、显示记录等部分所组成。比较先进的仪器还有数据处理部分。温度程序控制是使试样在要求的温度范围内进行温度控制,如升温、降温、恒温等,它包括炉子(加热器、制冷器等)、

实验2 聚合物的热谱分析——差示扫描量热法(DSC)

实验二聚合物的热谱分析——差示扫描量热法(DSC) 在等速升温(降温)的条件下,测量试样与参比物之间的温度差随温度变化的技术称为差热分析,简称DTA(Differential Thermal Analysis)。试样在升(降)温过程中,发生吸热或放热,在差热曲线上就会出现吸热或放热峰。试样发生力学状态变化时(如玻璃化转变),虽无吸热或放热,但比热有突变,在差热曲线上是基线的突然变动。试样对热敏感的变化能反映在差热曲线上。发生的热效大致可归纳为: (1)发生吸热反应。结晶熔化、蒸发、升华、化学吸附、脱结晶水、二次相变(如高聚物的玻璃化转变)、气态还原等。 (2)发生放热反应。气体吸附、氧化降解、气态氧化(燃烧)、爆炸、再结晶等。(3)发生放热或吸热反应。结晶形态转变、化学分解、氧化还原反应、固态反应等。 用DTA方法分析上述这些反应,不反映物质的重量是否变化,也不论是物理变化还是化学变化,它只能反映出在某个温度下物质发生了反应,具体确定反应的实质还得要用其他方法(如光谱、质谱和X光衍射等)。 由于DTA测量的是样品和基准物的温度差,试样在转变时热传导的变化是未知的,温差与热量变化比例也是未知的,其热量变化的定量性能不好。在DTA基础上增加一个补偿加热器而成的另一种技术是差示扫描量热法。简称DSC (Differential Scanning Calorimetry)。因此DSC直接反映试样在转变时的热量变化,便于定量测定。 DTA、DSC广泛应用于: (1)研究聚合物相转变,测定结晶温度T c、熔点T m、结晶度X D。结晶动力学参数。 (2)测定玻璃化转变温度T g。 (3)研究聚合、固化、交联、氧化、分解等反应,测定反应热、反应动力学参数。 一、目的要求: 1.了解DTA、DSC的原理。 2.掌握用DTA、DSC测定聚合物的T g、T c、T m、X D。 二、基本原理: 1.DTA 图(11-1)是DTA的示意图。通常由温度程序控制、气氛控制、变换放大、显示记录等部分所组成。比较先进的仪器还有数据处理部分。温度程序控制是使试样在要求的温度范围内进行温度控制,如升温、降温、恒温等,它包括炉子(加热器、制冷器等)、控温热电偶和程序温度控制器。气氛控制是为试样提供真空、保护气

差示扫描量热法的应用

差示扫描量热法的应用 差示扫描量热技术在高分子材料与工程中的具体应用,将和差热分析技术一起讨论。为此,光将这两种技术作一比较,以便了解实际应用时究竟采用哪种技术更为有益.DTA和DSC的主要区别:DTA测定的是试样与参比物之间的温度差△T了,而DSC 测定的是热流率dH/dt,定量方便。因此,DSC的主要优点就是热量定量方便,分辨率高,灵敏度好.其缺点是使用温度低。以美国SII公司生产的DSC7020,最高温度只能到725℃.一般用到600℃以上,基线便明显变环,已不能使用最高灵敏度档.对于DTA,因为没有补偿加热器,目前超高温DTA,可做到2400℃,一般高温炉也能作到l 500一]700℃.所以,需要用高温的矿物、冶金等领域还只能用DTA.对于需要温度不高,而灵敏度要求很高的有机物高分子及生物化学领域,DSC则是一种很有用的技术,正因如此,其发展也非常迅速.本书列举的DSC曲线,就是用美国Perkin—Elmer公司生产的DSC—7型仪器测定的,见附录2. 近年来,DTA和DSC在高分子方面的应用特别广泛,如研究聚合物的相转变,测定结晶温度T c。结晶度θ,熔点T m,等温结晶动力学参数,破璃化转变温度了T g,以及研究聚合、固化、交联、氧化、分解等反应,并测定反应温度成反应温区、反应热、反应动力学参数等.图1.29说明这两种技术在聚合物科学上的应用.图1.30例说明聚合物材料各种热行为在DTA(DSC)曲线上的表现形式. 这里仅就应用DTA(DSC)曲线测定熔点、比热容、玻璃化转变温度、纯度、结晶变、固化反应工艺参数相固化反动力学参数,以及聚合物材料组成的剖析等作简要的介绍.

聚合物的热分析------差示扫描量热法(DSC)

化学化工学院材料化学专业实验报告实验实验名称:聚合物的热分析------差示扫描量热法(DSC) 年级:2011级材料化学日期:2013-10-17 姓名:学号:同组人: 一、预习部分 1、差热分析 差热分析(Differential Thermal Analysis—DTA)法是一种重要的热分析方法,是指在程序控温下,测量物质和参比物的温度差与温度或者时间的关系的一种测试技术。该法广泛应用于测定物质在热反应时的特征温度及吸收或放出的热量,包括物质相变、分解、化合、凝固、脱水、蒸发等物理或化学反应。广泛应用于无机、有机、特别是高分子聚合物、玻璃钢等领域。差热分析操作简单,但在实际工作中往往发现同一试样在不同仪器上测量,或不同的人在同一仪器上测量,所得到的差热曲线结果有差异。峰的最高温度、形状、面积和峰值大小都会发生一定变化。其主要原因是因为热量与许多因素有关,传热情况比较复杂所造成的。虽然过去许多人在利用DTA进行量热定量研究方面做过许多努力,但均需借助复杂的热传导模型进行繁杂的计算,而且由于引入的假设条件往往与实际存在差别而使得精度不高,差示扫描热法(简称DSC)就是为克服DTA在定量测量方面的不足而发展起来的一种新技术。20世纪60年代,差示扫描量热法(Differential Scanning Calorimetry,DSC)被提出,其特点是使用温度范围比较宽,分辨能力和灵敏度高,根据测量方法的不同,可分为功率补偿型DSC和热流型DSC,主要用于定量测量各种热力学参数和动力学参数。 差示扫描量热法是在程序升温的条件下,测量试样与参比物之间的能量差随温度变化的一种分析方法。差示扫描量热法有补偿式和热流式两种。在差示扫描量热中,为使试样和参比物的温差保持为零在单位时间所必需施加的热量与温度的关系曲线为DSC曲线。曲线的纵轴为单位时间所加热量,横轴为温度或时间。曲线的面积正比于热焓的变化。DSC与DTA原理相同,但性能优于DTA,测定热量比DTA准确,而且分辨率和重现性也比DTA好。由于具有以上优点,DSC在聚合物领域获得了广泛应用,大部分DAT应用领域都可以采用DSC进行测量,灵敏度和精确度更高,试样用量更少。由于其在定量上的方便更适于测量结晶度、结晶动力学以及聚合、固化、交联氧化、分解等反应的反应热及研究其反应动力学。 2、DSC的工作原理 DSC和DTA的曲线模式基本相似。它们都是以样品在温度变化时产生的热效应为检测基础的,由于一般的DTA方法不能得到能量的定量数据。于是人们不断地改进设计,直到有人设计了两个独立的量热器皿的平衡。从而使测量试样对热能的吸收和放出(以补偿对应的参比基准物的热量来表示)成为可能。这两个量热器皿都置于程序控温的条件下。采取封闭回路的形式,能精确、迅速测定热容和热焓,这种设计就叫做差示扫描量热计。DSC体系可分为两个 控制回路。一个是平均温度控制回路,另一个是差示温度控制回路。 在平均温度控制回路中,由程序控温装置中提供一个电信号,并将此信号于试样池和参比池所需温度相比较,与之同时程度控温的电信号也接到记录仪进行记录。现在看一下程序温度与两个测量池温度的比较和控制过程。比较是在平均放大器内进行的,程序信号直接输入平均放大器,而两个测量池的信号分别由固定在各测量池上的铂电阻温度计测出,通过平

差示扫描量热法(DSC)测定聚合物热性能

差示扫描量热法(DSC )测定聚合物热性能 一、实验目的 1. 了解DSC 的基本原理,通过DSC 测定聚合物的加热及冷却谱图; 2. 通过DSC 测定聚合物的玻璃化转变温度)(g T 、熔点)(m T 和结晶温度)(c T 二、实验原理 (1)原理 DSC 分为功率补偿式DSC 和热流式DSC 。图1是功率补偿式DSC 示意图。 图1 功率补偿式DSC 示意图 当试样发生热效应时,如放热,试样温度高于参比物温度,放置在它们下面的一组差示热电偶产生温差电势,经差热放大器放大后送入功率补偿放大器,功率补偿放大器自动调节补偿加热丝的电流,使试样下面的电流减小,参比物下面的电流增大。降低试样的温度,增高参比物的温度,使试样与参比物之间的温差△T 趋于零。上述热量补偿能及时、迅速完成,使试样和参比物的温度始终维持相同。 (2)DSC 曲线 图2是聚合物DSC 曲线的模式图。当温度升高,达到玻璃化转变温度T g 时,

试样的热容由于局部链节移动而发生变化,一般为增大,所以相对于参比物,试样要维持与参比物相同温度就需要加大试样的加热电流。由于玻璃化温度不是相变化,曲线只产生阶梯状位移,温度继续升高,试样发生结晶则会释放大量结晶热而出现吸热峰。再进一步升温,试样可能发生氧化、交联反应而放热,出现放热峰,最后试样则发生分解、吸热、出现吸热峰。并不是所有的聚合物试样都存在上述全部物理变化和化学变化。 图2 聚合物DSC 曲线的模式图 确定T g 的方法是由玻璃化转变前后的直线部分取切线,再在实验曲线上取一点,使其平分两切线间的距离A ,这一点所对应的温度即为T g 。 T m 的确定,由峰的两边斜率最大处引切线,相交点所对应的温度取作为T m ,或取峰顶温度作为T m 。 T m 通常也是取峰顶温度。如果100%试样的熔融热*f H ?已知,则试样的结晶度可以用下式计算: 结晶度%100/* ???=f f D H H X (3)影响实验结果的因素 DSC 的原理和操作都比较简单,但取得精确的结果却很不容易,因为影响因素太多,这些因素有仪器因素、试样因素。仪器因素主要包括炉子大小和形状、热电偶的粗细和位置、加热速度、测试时的气氛、盛放样品的坩埚材料和形状等。试样因素主要包括颗粒大小、热导性、比热、装填密度、数量等。在固定一台仪器时,仪器因素中的主要影响因素是加热速度,样品因素中主要是样品的数量和

聚合物的差示扫描量热分析

聚合物的差示扫描量热分析 聚合物的差示扫描量热分析 差热分析(Differential Thermal Analysis—DTA)法是一种重要的热分析方法,是指在程序控温下,测量物质和参比物的温度差与温度或者时间的关系的一种测试技术。该法广泛应用于测定物质在热反应时的特征温度及吸收或放出的热量,包括物质相变、分解、化合、凝固、脱水、蒸发等物理或化学反应。广泛应用于无机、有机、特别是高分子聚合物、玻璃钢等领域。差热分析操作简单,但在实际工作中往往发现同一试样在不同仪器上测量,或不同的人在同一仪器上测量,所得到的差热曲线结果有差异。峰的最高温度、形状、面积和峰值大小都会发生一定变化。其主要原因是因为热量与许多因素有关,传热情况比较复杂所造成的。虽然过去许多人在利用DTA进行量热定量研究方面做过许多努力,但均需借助复杂的热传导模型进行繁杂的计算,而且由于引入的假设条件往往与实际存在差别而使得精度不高,差示扫描热法(简称DSC)就是为克服DTA在定量测量方面的不足而发展起来的一种新技术。20世纪60年代,差示扫描量热法(Differential Scanning Calorimetry,DSC)被提出,其特点是使用温度范围比较宽,分辨能力和灵敏度高,根据测量方法的不同,可分为功率补偿型DSC和热流型DSC,主要用于定量测量各种热力学参数和动力学参数。 差示扫描量热法是在程序升温的条件下,测量试样与参比物之间的能量差随温度变化的一种分析方法。差示扫描量热法有补偿式和热流式两种。在差示扫描量热中,为使试样和参比物的温差保持为零在单位时间所必需施加的热量与温度的关系曲线为DSC曲线。曲线的纵轴为单位时间所加热量,横轴为温度或时间。曲线的面积正比于热焓的变化。DSC与DTA原理相同,但性能优于DTA,测定热量比DTA准确,而且分辨率和重现性也比DTA好。由于具有以上优点,DSC在聚合物领域获得了广泛应用,大部分DAT应用领域都可以采用DSC进行测量,灵敏度和精确度更高,试样用量更少。由于其在定量上的方便更适于测量结晶度、结晶动力学以及聚合、固化、交联氧化、分解等反应的反应热及研究其反应动力学。 一、实验目的和要求 1)掌握差示扫描量热法(DSC)的基本原理及仪器使用方法。 2)测量聚乙烯的DSC曲线,并求出其Tm、ΔHm和Xc 。 二、实验内容和原理 DSC简介 DSC是在程序控制温度下测量输入到物质(试样)和参比物的能量差与温度(或时间)关系的一种技术。根据测量的方法又可分为两种基本类型:功率补偿型和热流型,两者分别测量输入试样和参比物的功率差及试样和参比物的温度差。 DSC相对DTA的优势 差热分析(DTA)的缺点 1)精确度不高,只能得到近似值; 2)需要使用较多的试样,在发生热效应时试样温度与程序温度间有明显的偏差; 3)试样内部温度均匀性较差。 差示扫描量热法(DSC)的优点 1)灵敏度和精确度更高;

相关文档
相关文档 最新文档