文档库 最新最全的文档下载
当前位置:文档库 › 用递归和非递归算法实现二叉树的三种遍历

用递归和非递归算法实现二叉树的三种遍历

用递归和非递归算法实现二叉树的三种遍历
用递归和非递归算法实现二叉树的三种遍历

○A ○C

○D

○B

○E○F G

《数据结构与算法》实验报告三

——二叉树的操作与应用

一.实验目的

熟悉二叉链表存储结构的特征,掌握二叉树遍历操作及其应用

二. 实验要求(题目)

说明:以下题目中(一)为全体必做,(二)(三)任选其一完成

(一)从键盘输入二叉树的扩展先序遍历序列,建立二叉树的二叉链表存储结构;(二)分别用递归和非递归算法实现二叉树的三种遍历;

(三)模拟WindowsXP资源管理器中的目录管理方式,模拟实际创建目录结构,并以二叉链表形式存储,按照凹入表形式打印目录结构(以扩展先序遍历序列输入建立二叉链表结构),如下图所示: (基本要求:限定目录名为单字符;扩展:允许目录名是多字符组合)

三. 分工说明

一起编写、探讨流程图,根据流程图分工编写算法,共同讨论修改,最后上机调试修改。

四. 概要设计

实现算法,需要链表的抽象数据类型:

ADT Binarytree {

数据对象:D是具有相同特性的数据元素的集合

数据关系R:

若D为空集,则R为空集,称binarytree为空二叉树;

若D不为空集,则R为{H},H是如下二元关系;

(1)在D中存在唯一的称为根的数据元素root,它在关系H下无前驱;

(2)若D-{root}不为空,则存在D-{root}={D1,Dr},且D1∩Dr为空集;

(3)若D1不为空,则D1中存在唯一的元素x1,∈H,且存在D1上的关系H1是H的子集;若Dr不为空集,则Dr中存在唯一的元素

Xr,∈H,且存在Dr上的关系Hr为H的子集;H={

x1>,,H1,Hr};

(4) (D1,{H1})是一颗符合本定义的二叉树,称为根的左子树,(Dr,{Hr})

是一颗符合本定义的二叉树,称为根的右子树。

基本操作:

Creatbitree(&S,definition)

初始条件:definition给出二叉树S的定义

操作结果:按definition构造二叉树S

counter(T)

初始条件:二叉树T已经存在

操作结果:返回二叉树的总的结点数

onecount(T)

初始条件:二叉树T已经存在

操作结果:返回二叉树单分支的节点数

Clearbintree(S)

初始条件:二叉树S已经存在

操作结果:将二叉树S清为空树

Bitreeempty(S)

初始条件:二叉树S已经存在

操作结果:若S为空二叉树,则返回TRUE,否则返回FALSE

Bitreedepth(S,&e)

初始条件:二叉树S已经存在

操作结果:返回S的深度

Parent(S)

初始条件:二叉树S已经存在,e是S中的某个结点

操作结果:若e是T的非根结点,则返回它的双亲,否则返回空Preordertraverse(S)

初始条件:二叉树S已经存在,Visit是对结点操作的应用函数。

操作结果:先序遍历S,对每个结点调用函数visit一次且仅一次。

一旦visit失败,则操作失败。

Inordertraverse (S,&e)

初始条件:二叉树S已经存在,Visit是对结点操作的应用函数。

操作结果:中序遍历S,对每个结点调用函数visit一次且仅一次。

一旦visit失败,则操作失败。

Postordertraverse (&S,e)

初始条件:二叉树S已经存在,Visit是对结点操作的应用函数。

操作结果:后序遍历S,对每个结点调用函数visit一次且仅一次。

一旦visit失败,则操作失败。

}ADT Binarytree

五、详细设计

扩展先序遍历:

# include

# include

#include

typedef struct binarytree

{

char data;

struct binarytree *lchild,*rchild;

}BiTreeNode,*BiTree;

void CreateBiTree(BiTree *bt)

{char ch;

ch=getchar();

if(ch=='.') *bt=NULL;

else

{

*bt=(BiTreeNode *)malloc(sizeof(BiTreeNode));

(*bt)->data=ch;

CreateBiTree(&((*bt)->lchild));

CreateBiTree(&((*bt)->rchild));

}

}

void PreOder(BiTree root)

{if(root!=NULL)

{printf("%4c",root->data);

PreOder(root->lchild);

PreOder(root->rchild);

}

}

main()

{

BiTree root;

CreateBiTree(&root);

printf("先序遍历:\n");

PreOder(root);

}

递归算法:

#include"stdio.h"

#define PR printf

#define ERROR 0

#define MAX 100

/*============================建立各结构体===============================*/ typedef struct node

{

char data; /*数据域*/

struct node *lchild;

struct node *rchild; /*结点的左右指针,分别指向结点的左右孩子*/

}BTNode;

typedef BTNode *DataType;

typedef struct

{

DataType data[MAX];

int top;

}SeqStack;

SeqStack *s;

/*============================栈的操作===================================*/

SeqStack *createemptystacks() /*创建一个空栈*/

{

SeqStack *s;

s=(SeqStack*)malloc(sizeof(SeqStack));

s->top=0;

return s;

}

int stackemptys(SeqStack *s) /*判栈空*/

{

return s->top==0;

}

int stackfulls(SeqStack *s) /*判栈满*/

{

return s->top==MAX;

}

void pushs(SeqStack *s,DataType x) /*进栈*/

{

if(stackfulls(s))

PR("over flow\n");

else

s->data[s->top++]=x;

}

void pops(SeqStack *s) /*退栈*/

{

if(stackemptys(s))

PR("underflow\n");

else

s->top--;

}

DataType gettops(SeqStack *s) /*栈非空时取栈顶元素*/

{

return s->data[s->top-1];

}

/*============================建立二叉树

==================================*/

BTNode *createbintree() /*输入扩充的先序序列,建立二叉树*/ {

BTNode *t;

char x;

scanf("%c",&x);

if(x=='#')

t=NULL; /*读入#,返回空指针 */

else

{

t=(BTNode *)malloc(sizeof(BTNode)); /*生成结点*/ t->data=x;

t->lchild=createbintree(); /*构造左子树*/

t->rchild=createbintree(); /*构造右子树*/ }

return(t);

}

/*==============================树的遍历

===================================*/

void preorder(BTNode *t) /*NLR 先序遍历*/

{

if(t!=NULL)

{

PR(" %c\t",t->data); /*访问结点*/

preorder(t->lchild); /*中序遍历左子树*/

preorder(t->rchild); /*中序遍历右子树*/

}

}

/*========================================================================= */

void inorder(BTNode *t) /*LNR 中序遍历*/

{

if(t!=NULL)

{

inorder(t->lchild); /*中序遍历左子树*/

PR(" %c\t",t->data); /*访问结点*/

inorder(t->rchild); /*中序遍历右子树*/

}

}

/*========================================================================= */

void postorder(BTNode *t) /*LRN 后序遍历*/

{

if(t!=NULL)

{

postorder(t->lchild); /*后序遍历左子树*/

postorder(t->rchild); /*后序遍历右子树*/

PR(" %c\t",t->data); /*访问结点*/

}

}

/*===============================主函数

=============================-=======*/

void main()

{

BTNode *t;

int n=0;

PR(" ->> 请输入二叉树各元素:(例如 abd##e##cf##g##)\n"); //例如

abd##e##cf##g##

t=createbintree();

PR("\n\n ->> 1.按先序遍历输出为:\n");

preorder(t); /*NLR 先序遍历*/

PR("\n 按中序遍历输出为:\n");

inorder(t); /*LNR 中序遍历*/

PR("\n 按后序遍历输出为:\n");

postorder(t); /*LRN 后序遍历*/

}

# include

# include

# include

# define TRUE 1

# define FALSE 0

# define Stack_Size 50

# define NUM 20

typedef struct binarytree /*定义一棵二叉树*/

{

char data;

struct binarytree *LChild,*RChild;

}BiTNode,*BiTree;

typedef struct /*定义顺序栈S*/

{

BiTree data[Stack_Size];

int top;

}SeqStack;

void CreateBiTree(BiTree &bt) /*利用“扩展先序遍历”创建二叉链表*/

{

char ch;

ch=getchar(); /*调用getchar函数,需要用户输入字符,用户按回车键结束输入*/

if(ch=='.') bt=NULL;

else

{

bt=(BiTNode *)malloc(sizeof(BiTNode));

bt->data=ch;

CreateBiTree(bt->LChild);

CreateBiTree(bt->RChild);

}

}

void InitStack(SeqStack &S) /*初始化顺序栈S*/ {

S.top=-1;

}

int IsEmpty(SeqStack S) /*判栈空*/

{

return(S.top==-1? TRUE:FALSE);

}

int Push(SeqStack &S,BiTree &x) /*进栈*/

{

if(S.top==Stack_Size-1)return(FALSE);

S.top++;

S.data[S.top]=x;

return(TRUE);

}

int Pop(SeqStack &S,BiTree &x) /*出栈*/

{

if(S.top==-1)

return(FALSE);

else

{

x=S.data[S.top];

S.top--;

return(TRUE);

}

}

void PreOrder(BiTree root) /*先序遍历非递归*/ {

BiTNode *p;

SeqStack S;

p=root;

InitStack(S);

while(p!=NULL||!IsEmpty(S))

{

while(p!=NULL)

{

printf("%4c",p->data);

Push(S,p);

p=p->LChild;

}

if(IsEmpty(S))

return;

Pop(S,p);

p=p->RChild;

}

}

void InOrder(BiTree root) /*中序遍历非递归*/

{

BiTNode *p;

SeqStack S;

InitStack(S);

p=root;

while(p!=NULL || ! IsEmpty(S))

{

if(p!=NULL)

{

Push(S,p);

p=p->LChild;

}

else

{

Pop(S,p);

printf("%4c",p->data);

p=p->RChild;

}

}

}

void PostOrder(BiTree root) /*后序遍历非递归*/

{BiTNode *p,*q;

BiTNode **S;

int top=0;

q=NULL;

p=root;

S=(BiTNode**)malloc(sizeof(BiTNode*)*NUM); /*NUM为预定义的常数*/ while(p!=NULL || top!=0)

{

while(p!=NULL)

{

top++;S[top]=p;p=p->LChild;

}

if(top>0)

{

p=S[top];

if((p->RChild==NULL)||(p->RChild==q))

{

printf("%4c",p->data);

q=p;

top--;

p=NULL;

}

else

p=p->RChild;

}

}

free(S);

}

void main() /*主函数部分*/

{

loop:

BiTree root=NULL;

CreateBiTree(root);

printf("PreOrder traversal is:\n");

PreOrder(root);

printf("\n");

printf("InOrder traversal is:\n");

InOrder(root);

printf("\n");

printf("PostOrder traversal is:\n");

PostOrder(root);

printf("\n");

printf("Please input a new one:\n");

char c=getchar();goto loop;

}

实现概要设计中定义的所有的数据类型,对每个操作给出伪码算法或算法流程图。对主程序和其他模块也都需要写出伪码算法或流程图。

五、调试分析(主要描述调试过程中碰到的问题及解决方法)

⒈初步完成编程的工作时,在输入二叉树的发现只能输入一个字符,而且

程序不再进行,最后是自己的不小心将语句char a; scanf("%c",&a);

中的%c写为%d导致的。

⒉在编写元素入栈和出栈的时候,程序报如下的错误:语法有错误。,经

过检查原来是定义的时候的类型使用错了。

六、程序使用说明

(通过运行截图再加以必要的文字说明)

七、程序测试结果(提供测试数据和运行结果)

扩展先序遍历

递归算法:

非递归算法:

1、函数的参数传递有哪几种?ref和out的区别?

值传递、引用传递、输出传递、参数数组

ref和out的区别:

out 关键字会导致参数通过引用来传递,这与ref 关键字类似。

不同之处在于:

(1)ref传进去的参数必须在调用前初始化,而out不必,因为out的函数会先清空变量,即使变量已经赋值。

(2)ref传进去的参数在函数内部可以直接使用,而out不可。

(3)ref传进去的参数在函数内部可以不被修改,但out必须在离开函数体前进行赋值。

(4)ref:当需要通过调用某函数来改变实参变量的值时,使用ref。

out:主要是为了一个方法能返回两个以上的结果。

2、虚函数和抽象函数的区别?

答:虚函数是有代码的并明确允许子类去覆盖,但子类也可不覆盖,就是说可以直接用,不用重写;抽象函数没有实现代码,即没有函数体,而是由abstract修饰符声明。抽象函数只提供函数名称,具体实现交由继承的派生类,子类继承后必须要重写。

3、抽象类和接口的区别?

相同点:都不能被直接实例化,都可以通过继承实现其抽象方法。

都是面向抽象编程的技术基础,实现了诸多的设计模式。

不同点:

接口支持多继承;抽象类不能实现多继承。

接口只能定义抽象规则;抽象类既可以定义规则,还可能提供已实现的成员。

接口是一组行为规范;抽象类是一个不完全的类,着重类族的概念。

接口只包含方法、属性、索引器、事件的签名,但不能定义字段和包含实现的方法;抽象类可以定义字段、属性和包含有实现的方法。

接口可以作用于值类型和引用类型;抽象类只能作用于引用类型。例如,struct能继承接口,但不能继承类。

接口可以用于支持回调;抽象类不能实现回调。

4.static函数的特点?为什么main()函数前一定要加static?

答:(1)静态方法属于一个类,不属于具体的对象;

(2)非静态的方法属于某个对象,在这个对象创建时该方法在内存中拥有自己专用的代码段;而静态方法属于整个类,它在内存中的代码段被所有对象共享,不被任何一个对象专有;

(3)静态方法不能访问非静态的变量,而只能访问静态变量。

(4)在外部调用静态方法时,可以使用"类名.方法名"的方式,也可以使用"对象名.方法名"的方式。也就是说,调用静态方法可以无需创建对象。

(5)静态方法类加载就能用,就是可以用类名.方法();这种形式调用

因为main()是程序的入口,在执行程序时首先要寻找main()然后执行main()中的代码,而此时没有任何对象实例生成,但是静态类无需创建实例就能够访问数据和函数也就是说static函数不需要实例化就可以调用,静态类是在加载包含该类的程序或命名空间时被.NET Framework公共语言运行库(CLR)自动加载。所以main函数要声明为static才能够运行。

5.密封类是干什么用的?

当类和方法被sealed修饰时,就成为了密封类和密封方法。对类来说,这表示不能继承该类;对于方法来说,这表示不能重写该方法。对于密封类和密封方法的应用场合通常是商业上保护版权,防止被他人扩展。

创建一个二叉树并输出三种遍历结果

实验报告 课程名称数据结构 实验项目实验三--创建一个二叉树并输出三种遍历结果 系别■计算机学院 _________________ 专业_______________ 班级/学号_____________ 学生姓名___________ 实验日期— 成绩______________________________ 指导 教师

实验题目:实验三创建一个二叉树并输出三种遍历结果 实验目的 1)掌握二叉树存储结构; 2)掌握并实现二叉树遍历的递归算法和非递归算法; 3)理解树及森林对二叉树的转换; 4)理解二叉树的应用一哈夫曼编码及WPL计算。 实验内容 1)以广义表或遍历序列形式创建一个二叉树,存储结构自选; 2)输出先序、中序、后序遍历序列; 3)二选一应用题:1)树和森林向二叉树转换;2)哈夫曼编码的应用问题。 题目可替换上述前两项实验内容) 设计与编码 1)程序结构基本设计框架 (提示:请根据所选定题目,描述程序的基本框架,可以用流程图、界面描述图、 框图等来表示) 2)本实验用到的理论知识遍历二叉树,递归和非递归的方法 (应用型

(提示:总结本实验用到的理论知识,实现理论与实践相结合。总结尽量简明扼要,并与本次实验密切相关,要求结合自己的题目并阐述自己的理解和想法) 3) 具体算法设计 1) 首先,定义二叉树的存储结构为二叉链表存储,每个元素的数 据类型Elemtype,定义一棵二叉树,只需定义其根指针。 2) 然后以递归的先序遍历方法创建二叉树,函数为CreateTree(),在输 入字符时要注意,当节点的左孩子或者右孩子为空的时候,应当输入一 个特殊的字符(本算法为“ #”),表示左孩子或者右孩子为空。 3) 下一步,创建利用递归方法先序遍历二叉树的函数,函数为 PreOrderTreeQ,创建非递归方法中序遍历二叉树的函数,函数为 InOrderTree(),中序遍历过程是:从二叉树的根节点开始,沿左子树 向下搜索,在搜索过程将所遇到的节点进栈;左子树遍历完毕后,从 栈顶退出栈中的节点并访问;然后再用上述过程遍历右子树,依次类 推,指导整棵二叉树全部访问完毕。创建递归方法后序遍历二叉树的 函数,函数为LaOrderTree()。 (提示:该部分主要是利用C、C++ 等完成数据结构定义、设计算法实现各种操作,可以用列表分步形式的自然语言描述,也可以利用流程图等描述) 4) 编码 #include #include #include typedef char DataType; #define MaxSize 100 typedef struct Node { DataType data; struct Node *lchild; struct Node *rchild; } *BiTree,BitNode;

树的遍历(递归和非递归)

二叉树的遍历 一、设计思想 二叉树的遍历分为三种方式,分别是先序遍历,中序遍历和后序遍历。先序遍历实现的顺序是:根左右,中序遍历实现的是:左根右,后续遍历实现的是:左右根。根据不同的算法分,又分为递归遍历和非递归遍历。 递归算法: 1.先序遍历:先序遍历就是首先判断根结点是否为空,为空则停止遍历,不为空则将左子作为新的根结点重新进行上述判断,左子遍历结束后,再将右子作为根结点判断,直至结束。到达每一个结点时,打印该结点数据,即得先序遍历结果。 2.中序遍历:中序遍历是首先判断该结点是否为空,为空则结束,不为空则将左子作为根结点再进行判断,打印左子,然后打印二叉树的根结点,最后再将右子作为参数进行判断,打印右子,直至结束。 3.后续遍历:指针到达一个结点时,判断该结点是否为空,为空则停止遍历,不为空则将左子作为新的结点参数进行判断,打印左子。左子判断完成后,将右子作为结点参数传入判断,打印右子。左右子判断完成后打印根结点。 非递归算法: 1.先序遍历:首先建立一个栈,当指针到达根结点时,打印根结点,判断根结点是否有左子和右子。有左子和右子的话就打印左子同时将右子入栈,将左子作为新的根结点进行判断,方法同上。若当前结点没有左子,则直接将右子打印,同时将右子作为新的根结点判断。若当前结点没有右子,则打印左子,同时将左子作为新的根结点判断。若当前结点既没有左子也没有右子,则当前结点为叶子结点,此时将从栈中出栈一个元素,作为当前的根结点,打印结点元素,同时将当前结点同样按上述方法判断,依次进行。直至当前结点的左右子都为

空,且栈为空时,遍历结束。 2.中序遍历:首先建立一个栈,定义一个常量flag(flag为0或者1),用flag记录结点的左子是否去过,没有去过为0,去过为1,默认为0.首先将指针指向根结点,将根结点入栈,然后将指针指向左子,左子作为新的结点,将新结点入栈,然后再将指针指向当前结点的左子,直至左子为空,则指针返回,flag置1,出栈一个元素,作为当前结点,打印该结点,然后判断flag,flag为1则将指针指向当前结点右子,将右子作为新的结点,结点入栈,再次进行上面的判断,直至当前结点右子也为空,则再出栈一个元素作为当前结点,一直到结束,使得当前结点右子为空,且栈空,遍历结束。 3.后续遍历:首先建立两个栈,然后定义两个常量。第一个为status,取值为0,1,2.0代表左右子都没有去过,1代表去过左子,2,代表左右子都去过,默认为0。第二个常量为flag,取值为0或者1,0代表进左栈,1代表进右栈。初始时指针指向根结点,判断根结点是否有左子,有左子则,将根结点入左栈,status置0,flag置0,若没有左子则判断结点有没有右子,有右子就把结点入右栈,status置0,flag置1,若左右子都没有,则打印该结点,并将指针指向空,此时判断flag,若flag为0,则从左栈出栈一个元素作为当前结点,重新判断;若flag为1则从右栈出栈一个元素作为当前结点,重新判断左右子是否去过,若status为1,则判断该结点有没有右子,若有右子,则将该结点入右栈,status置1,flag置1,若没有右子,则打印当前结点,并将指针置空,然后再次判断flag。若当前结点status为2,且栈为空,则遍历结束。若指针指向了左子,则将左子作为当前结点,判断其左右子情况,按上述方法处理,直至遍历结束。 二、算法流程图

二叉树的各种算法

二叉树的各种算法.txt男人的承诺就像80岁老太太的牙齿,很少有真的。你嗜烟成性的时候,只有三种人会高兴,医生你的仇人和卖香烟的。 /*用函数实现如下二叉排序树算法: (1)插入新结点 (2)前序、中序、后序遍历二叉树 (3)中序遍历的非递归算法 (4)层次遍历二叉树 (5)在二叉树中查找给定关键字(函数返回值为成功1,失败0) (6)交换各结点的左右子树 (7)求二叉树的深度 (8)叶子结点数 Input 第一行:准备建树的结点个数n 第二行:输入n个整数,用空格分隔 第三行:输入待查找的关键字 第四行:输入待查找的关键字 第五行:输入待插入的关键字 Output 第一行:二叉树的先序遍历序列 第二行:二叉树的中序遍历序列 第三行:二叉树的后序遍历序列 第四行:查找结果 第五行:查找结果 第六行~第八行:插入新结点后的二叉树的先、中、序遍历序列 第九行:插入新结点后的二叉树的中序遍历序列(非递归算法) 第十行:插入新结点后的二叉树的层次遍历序列 第十一行~第十三行:第一次交换各结点的左右子树后的先、中、后序遍历序列 第十四行~第十六行:第二次交换各结点的左右子树后的先、中、后序遍历序列 第十七行:二叉树的深度 第十八行:叶子结点数 */ #include "stdio.h" #include "malloc.h" #define TRUE 1 #define FALSE 0 #define OK 1 #define ERROR 0

#define INFEASIBLE -1 #define OVERFLOW -2 typedef int Status; typedef int KeyType; #define STACK_INIT_SIZE 100 // 存储空间初始分配量 #define STACKINCREMENT 10 // 存储空间分配增量 #define MAXQSIZE 100 typedef int ElemType; typedef struct BiTNode{ ElemType data; struct BiTNode *lchild,*rchild;//左右孩子指针 } BiTNode,*BiTree; Status SearchBST(BiTree T,KeyType key,BiTree f,BiTree &p) { if(!T){p=f;return FALSE;} else if(key==T->data){p=T;return TRUE;} else if(keydata)return SearchBST(T->lchild,key,T,p); else return(SearchBST(T->rchild,key,T,p)); } Status InsertBST(BiTree &T,ElemType e) { BiTree s,p; if(!SearchBST(T,e,NULL,p)) { s=(BiTree)malloc(sizeof(BiTNode)); s->data=e;s->lchild=s->rchild=NULL; if(!p)T=s; else if(edata)p->lchild=s; else p->rchild=s; return TRUE; } else return FALSE; } Status PrintElement( ElemType e ) { // 输出元素e的值 printf("%d ", e ); return OK; }// PrintElement

二叉树遍历C语言(递归,非递归)六种算法

数据结构(双语) ——项目文档报告用两种方式实现表达式自动计算 专业: 班级: 指导教师: 姓名: 学号:

目录 一、设计思想 (01) 二、算法流程图 (02) 三、源代码 (04) 四、运行结果 (11) 五、遇到的问题及解决 (11) 六、心得体会 (12)

一、设计思想 二叉树的遍历分为三种方式,分别是先序遍历,中序遍历和后序遍历。先序遍历实现的顺序是:根左右,中序遍历实现的是:左根右,后续遍历实现的是:左右根。根据不同的算法分,又分为递归遍历和非递归遍历。 递归算法: 1.先序遍历:先序遍历就是首先判断根结点是否为空,为空则停止遍历,不为空则将左子作为新的根结点重新进行上述判断,左子遍历结束后,再将右子作为根结点判断,直至结束。到达每一个结点时,打印该结点数据,即得先序遍历结果。 2.中序遍历:中序遍历是首先判断该结点是否为空,为空则结束,不为空则将左子作为根结点再进行判断,打印左子,然后打印二叉树的根结点,最后再将右子作为参数进行判断,打印右子,直至结束。 3.后续遍历:指针到达一个结点时,判断该结点是否为空,为空则停止遍历,不为空则将左子作为新的结点参数进行判断,打印左子。左子判断完成后,将右子作为结点参数传入判断,打印右子。左右子判断完成后打印根结点。 非递归算法: 1.先序遍历:首先建立一个栈,当指针到达根结点时,打印根结点,判断根结点是否有左子和右子。有左子和右子的话就打印左子同时将右子入栈,将左子作为新的根结点进行判断,方法同上。若当前结点没有左子,则直接将右子打印,同时将右子作为新的根结点判断。若当前结点没有右子,则打印左子,同时将左子作为新的根结点判断。若当前结点既没有左子也没有右子,则当前结点为叶子结点,此时将从栈中出栈一个元素,作为当前的根结点,打印结点元素,同时将当前结点同样按上述方法判断,依次进行。直至当前结点的左右子都为空,且栈为空时,遍历结束。 2.中序遍历:首先建立一个栈,定义一个常量flag(flag为0或者1),用flag记录结点的左子是否去过,没有去过为0,去过为1,默认为0.首先将指针指向根结点,将根结点入栈,然后将指针指向左子,左子作为新的结点,将新结点入栈,然后再将指针指向当前结点的左子,直至左子为空,则指针返回,flag置1,出栈一个元素,作为当前结点,打印该结点,然后判断flag,flag为1则将指针指向当前结点右子,将右子作为新的结点,结点入栈,再次进行上面的判断,直至当前结点右子也为空,则再出栈一个元素作为当前结点,一直到结束,使得当前结点右子为空,且栈空,遍历结束。 3.后续遍历:首先建立两个栈,然后定义两个常量。第一个为status,取值为0,1,2.0代表左右子都没有去过,1代表去过左子,2,代表左右子都去过,默认为0。第二个常量为flag,取值为0或者1,0代表进左栈,1代表进右栈。初始时指针指向根结点,判断根结点是否有左子,有左子则,将根结点入左栈,status置0,flag置0,若没有左子则判断结点有没有右子,有右子就把结点入右栈,status置0,flag置1,若左右子都没有,则打印该结点,并将指针指向空,此时判断flag,若flag为0,则从左栈出栈一个元素作为当前结点,重新判断;若flag为1则从右栈出栈一个元素作为当前结点,重新判断左右子是否去过,若status 为1,则判断该结点有没有右子,若有右子,则将该结点入右栈,status置1,flag置1,若没有右子,则打印当前结点,并将指针置空,然后再次判断flag。若当前结点status为2,且栈为空,则遍历结束。若指针指向了左子,则将左子作为当前结点,判断其左右子情况,按上述方法处理,直至遍历结束。

树转换成二叉树-树的前序、后序的递归、非递归和层次序的非递归

#include <> #include <> #include <> #define MAX_TREE_SIZE 100 typedef struct { int data; int parent; ata,[i].parent); printf("\n"); } } /*用双亲表示法创建树*/ PTree CreatTree(PTree T) { int i=1; int fa,ch; PTNode p; for(i=1;ch!=-1;i++) { printf("输入第%d结点:\n",i); scanf("%d,%d",&fa,&ch); printf("\n"); =ch; =fa; ++; [].data = ; [].parent = ; } printf("\n"); printf("创建的树具体情况如下:\n"); print_ptree(T); return T; } /*一般树转换成二叉树*/ BTNode *change(PTree T) { int i,j=0; BTNode p[MAX_TREE_SIZE]; BTNode *ip,*is,*ir,*Tree; ip=(BTNode *)malloc(sizeof(BTNode)); is=(BTNode *)malloc(sizeof(BTNode));

ir=(BTNode *)malloc(sizeof(BTNode)); Tree=(BTNode *)malloc(sizeof(BTNode)); for(i=0;i<;i++) { p[i]=GetTreeNode[i].data); } for(i=1;i<;i++) { ip=&p[i]; is=&p[j]; while[i].parent!=is->data) { j++; is=&p[j]; } if(!(is->firstchild)) { is->firstchild=ip; ir=ip; } else { ir->rightsib=ip; ir=ip; } } Tree=&p[0]; return Tree; } /*主菜单*/ void Menu() { printf("=================主菜单=======================\n"); printf("***输入-以双亲法创建一棵一般树***\n"); printf("***输入2-------------树的前序遍历(递归)*******\n"); printf("***输入3-------------树的后序遍历(递归)*******\n"); printf("***输入4-------------树的前序遍历(非递归)*****\n"); printf("***输入5-------------树的后序遍历(非递归)*****\n"); printf("***输入6-------------层次序的非递归遍历*******\n"); printf("***输入0-------------退出程序*****************\n"); printf("==============================================\n");

数据结构C语言实现二叉树三种遍历

实验课题一:将下图中得二叉树用二叉链表表示: 1用三种遍历算法遍历该二叉树,给出对应得输出结果; 2写一个函数对二叉树搜索,若给出一个结点,根据其就是否属于该树,输出true或者f alse。 3写函数完成习题4、31(C++版)或4、28(C版教科书)。 #include "stdio、h" #include”malloc、h" typedefstruct BiTNode { char data; structBiTNode *lchild,*rchild; }BiTNode,*BiTree; BiTree Create(BiTreeT) { char ch; ch=getchar(); if(ch=='#’) T=NULL; else { T=(BiTNode *)malloc(sizeof(BiTNode)); T-〉data=ch; T->lchild=Create(T—〉lchild); T—〉rchild=Create(T-〉rchild); } return T; } int node(BiTree T) { int sum1=0,a,b; ?if(T) { if(T!=NULL) ??sum1++;

?a=node(T->lchild); sum1+=a; b=node(T—>rchild); sum1+=b; ?} return sum1; } int mnode(BiTree T) { ?int sum2=0,e,f; if(T) { ?if((T->lchild!=NULL)&&(T-〉rchild!=NULL))?sum2++; ?e=mnode(T-〉lchild); sum2+=e; f=mnode(T-〉rchild); sum2+=f; ?} return sum2; } void Preorder(BiTree T) { if(T) { printf("%c”,T->data); Preorder(T—>lchild); Preorder(T-〉rchild); } } int Sumleaf(BiTree T) { int sum=0,m,n; if(T) { if((!T-〉lchild)&&(!T-〉rchild)) sum++; m=Sumleaf(T->lchild); sum+=m; n=Sumleaf(T—>rchild); sum+=n; } return sum; }

用递归非递归两种方法遍历二叉树

数据结构(双语) ——项目文档报告 用递归、非递归两种方法遍历二叉树 专业:计算机科学与技术 班级: 指导教师: 姓名:

学号: 目录 一、设计思想 (03) 二、算法流程图 (04) 三、源代码 (06) 四、运行结果 (12) 五、遇到的问题及解决 (14) 六、心得体会 (15)

一、设计思想 1.递归: (1)主函数main()主程序要包括:定义的二叉树T、建树函数、先序遍历函数、中序遍历函数、后序遍历函数。 (2)建树函数定义一个输入的数是字符型的,当ch为空时,T就为空值,否则的话就分配空间给T,T就指向它的结点,然后左指针域指向左孩子,右指针指向右孩子,若还有,继续调用,依次循环下去,直到ch遇到空时,结束。最后要返回建立的二叉树T。 (3)先序遍历函数根据先序遍历规则,当T为非空时,先输出结点处的数据,指针指向左、右孩子,依次进行下去。 (4) 中序遍历函数根据中序遍历规则,当T为非空时,先左指针指向左孩子数据,然后输出结点处的数据,再右指针指向右孩子,依次进行下去。 (5)后序遍历函数根据后序遍历规则,当T为非空时,先右指针指向右孩子,然后左指针指向左孩子,最后输出结点处的数据,依次进行下去。 2.非递归: (1)跟递归遍历二叉树的前提一样,首先应该创建一个二叉树,同样使用先序递归的方式创建二叉树。 (2)然后是中序,先序,后序非递归遍历二叉树。 (3)中序非递归遍历二叉树的思想是:首先是根节点压栈,当根节点的左子树不是空的时候,左子树压栈。直到左子树为空的时候,不再压栈。将栈顶元素出栈,访问栈顶元素,并将栈顶的右子树进栈。当右子树的左子树不是空的时候,左子树一直进栈,直到左子树为空,则不再进栈。重复上面的操作,直到栈空的时候。 (4)先序非递归遍历二叉树的思想是:首先是根节点进栈,然后当栈不为空的时候,将栈顶元素出栈,然后访问。同时将出栈元素的右子树进栈,左子树进栈。重复上面的操作,直到栈为空。 (5)后序非递归遍历二叉树的思想:首先是根节点进栈,当根节点的左子树不为空的时候,左子树进栈,直到左为空的时候,左子树不再进栈。指针指向的是右子树,当右子树为空的时候,直接访问根节点。当右子树不为空的时候,则右子树的指针进栈,当右子树的左子树不为空的时候,则左也进栈,直到左为空。重复上面的操作,直到栈为空的时候,则遍历树完成。

二叉树的建立及几种简单的遍历方法

#include "stdio.h" #include "stdlib.h" #define STACK_INIT_SIZE 100 //栈存储空间初始分配量 #define STACKINCREMENT 10 //存储空间分配增量 //------二叉树的存储结构表示------// typedef struct BiTNode{ int data; struct BiTNode *lchild,*rchild; }BiTNode,*BiTree; //-----顺序栈的存储结构表示------// typedef struct{ BiTree *top; BiTree *base; int stacksize; }SqStack; //*************************************************** //构造一个空栈s SqStack *InitStack(); //创建一颗二叉树 BiTree CreatBiTree(); //判断栈空 int StackEmpty(SqStack *S); //插入元素e为新的栈顶元素 void Push(SqStack *S,BiTree p); //若栈不为空,则删除s栈顶的元素e,将e插入到链表L中void Pop(SqStack *S,BiTree *q); //非递归先序遍历二叉树 void PreOrderTraverse(BiTree L); //非递归中序遍历二叉树 void InOrderTraverse(BiTree L); //非递归后序遍历二叉树 void PostOrderTraverse(BiTree L); //递归后序遍历二叉树 void PostOrder(BiTree bt); //递归中序遍历二叉树 void InOrder(BiTree bt); //递归先序遍历二叉树 void PreOrder(BiTree bt); //***************************************************

递归非递归两种算法遍历二叉树讲解

用递归、非递归两种方法遍历二叉树 一、设计思想 1. 用递归算法遍历 设计思想:主要是通过不同程序顺序,从而实现递归的顺序遍历 前序遍历:先判断节点是否为空,如果不为空,则输出。再判断左节点是否为空,如果不为空,则递归调用,直到遍历到最左边。接着再遍历最左边的右子树,如果此时右子树不为空,则递归遍历左子树的操作,直到遍历到叶子节点。如果右子树为空,则回溯上次的递归调用,重复输出和遍历右子树的操作。 中序遍历:先遍历左节点是否为空,如果不为空,则递归调用,直到遍历到最左边或者叶子节点,然后输出,接着再遍历最左边的右子树,如果此时右子树不为空,则递归重复遍历左子树的操作,直到遍历到叶子节点。如果右子树为空,则回溯到上次递归调用,重复输出和遍历右子树的操作。 后序遍历:先判断左节点是否为空,如果不为空则一直递归直到遍历到最左边,然后遍历右节点,再接着遍历到左子树的最右边,直到遍历到叶子节点。此时输出,回溯到上次递归,继续执行后面的操作,重复,直到将整个树遍历完毕。 2. 用非递归算法遍历 设计思想:主要是通过栈的存取,判空,从而实现树的遍历 前序遍历:通过一个循环实现。先输出节点的数值,因为栈的特性,则需要先判断右子树是否为空,如果不为空,则将右子树压栈。然后判断左子树是否为空,如果不为空,则将左子树压栈。接着再将栈里面的子树弹出赋给给当前节点变量,重复上述操作,直到栈为空后退出循环。 中序遍历:通过循环实现。将树一直遍历到最左端,并将中间所经过的节点保存在栈中,当遍历到最左边的时候,则弹出栈里面的子树。输出数值,将当前节点赋值为当前节点的右子树,遍历右子树,即重复上述操作,直到当前节点为空,并且栈内元素为0。 后序遍历:通过循环和标记栈实现。将数一直遍历到最左端,并将中间的节点保存在树栈中,同时同步的添加一个标记栈。当遍历到最左边的时候,弹栈并赋值给当前栈,然后判断标记栈的数值,如果数值为0的话则代表当前树没有遍历过,遍历右子树。然后重复上面的操作,如果数值为1的话则代表此时数已经遍历过了,可以开始输出了,为了避免重复输出,将当前栈赋为空。重复循环操作,直到栈内没有元素,且当前节点为空(因为一直左的操作并没有将右子树压栈)。

用递归和非递归算法实现二叉树的三种遍历

○A ○C ○D ○B ○E○F G 《数据结构与算法》实验报告三 ——二叉树的操作与应用 一.实验目的 熟悉二叉链表存储结构的特征,掌握二叉树遍历操作及其应用 二. 实验要求(题目) 说明:以下题目中(一)为全体必做,(二)(三)任选其一完成 (一)从键盘输入二叉树的扩展先序遍历序列,建立二叉树的二叉链表存储结构;(二)分别用递归和非递归算法实现二叉树的三种遍历; (三)模拟WindowsXP资源管理器中的目录管理方式,模拟实际创建目录结构,并以二叉链表形式存储,按照凹入表形式打印目录结构(以扩展先序遍历序列输入建立二叉链表结构),如下图所示: (基本要求:限定目录名为单字符;扩展:允许目录名是多字符组合) 三. 分工说明 一起编写、探讨流程图,根据流程图分工编写算法,共同讨论修改,最后上机调试修改。 四. 概要设计 实现算法,需要链表的抽象数据类型: ADT Binarytree { 数据对象:D是具有相同特性的数据元素的集合 数据关系R: 若D为空集,则R为空集,称binarytree为空二叉树;

若D不为空集,则R为{H},H是如下二元关系; (1)在D中存在唯一的称为根的数据元素root,它在关系H下无前驱; (2)若D-{root}不为空,则存在D-{root}={D1,Dr},且D1∩Dr为空集; (3)若D1不为空,则D1中存在唯一的元素x1,∈H,且存在D1上的关系H1是H的子集;若Dr不为空集,则Dr中存在唯一的元素 Xr,∈H,且存在Dr上的关系Hr为H的子集;H={,,H1,Hr}; (4) (D1,{H1})是一颗符合本定义的二叉树,称为根的左子树,(Dr,{Hr}) 是一颗符合本定义的二叉树,称为根的右子树。 基本操作: Creatbitree(&S,definition) 初始条件:definition给出二叉树S的定义 操作结果:按definition构造二叉树S counter(T) 初始条件:二叉树T已经存在 操作结果:返回二叉树的总的结点数 onecount(T) 初始条件:二叉树T已经存在 操作结果:返回二叉树单分支的节点数 Clearbintree(S) 初始条件:二叉树S已经存在 操作结果:将二叉树S清为空树 Bitreeempty(S) 初始条件:二叉树S已经存在 操作结果:若S为空二叉树,则返回TRUE,否则返回FALSE Bitreedepth(S,&e) 初始条件:二叉树S已经存在 操作结果:返回S的深度 Parent(S) 初始条件:二叉树S已经存在,e是S中的某个结点 操作结果:若e是T的非根结点,则返回它的双亲,否则返回空Preordertraverse(S) 初始条件:二叉树S已经存在,Visit是对结点操作的应用函数。 操作结果:先序遍历S,对每个结点调用函数visit一次且仅一次。 一旦visit失败,则操作失败。 Inordertraverse (S,&e) 初始条件:二叉树S已经存在,Visit是对结点操作的应用函数。

java二叉树的遍历(递归非递归)

import java.util.Stack; public class MyTree{ public static void main(String[] s){ new MyTree(); } public MyTree(){ TreeNode root = init();//初始化二叉树并返回根节点 System.out.println("递归先序遍历"); preorder(root); System.out.println(); System.out.println("递归中序遍历"); inorder(root); System.out.println(); System.out.println("递归后续遍历"); posorder(root); System.out.println(); System.out.println("非递归先序遍历"); preorder(root); System.out.println(); System.out.println("非递归中序遍历"); _inorder(root); System.out.println(); System.out.println("非递归后续遍历"); _posorder(root); System.out.println(); } public void preorder(TreeNode root){//递归二叉树的前序遍历 if(root != null){ System.out.print(root.getValue());//访问节点值 preorder(root.getLeft()); preorder(root.getRight()); } } public void _preorder(TreeNode p){ Stack stack = new Stack(); if(p!=null){ stack.push(p); while(!stack.empty()){ p = stack.pop(); System.out.print(p.getValue()); //右子结点先进栈,左子结点再进栈,所以先访问的 是左子结点 if(p.getRight()!= null)

后序遍历的非递归算法.doc

第六章树二叉树 后序遍历的非递归算法。在对二叉树进行后序遍历的过程中,当指针p 指向某一个结点时,不能马上对它进行访问,而要先遍历它的左子树,因而要将此结点的地址进栈保存。当其左子树遍历完毕之后,再次搜索到该结点时(该结点的地址通过退栈得到) ,还不能对它进行访问,还需要遍历它的右子树,所以,再一次将此结点的地址进栈保存。为了区别同一结点的两次进栈,引入一个标志变量nae,有0 表示该结点暂不访问 1 表示该结点可以访问标志flag 的值随同进栈结点的地址一起进栈和出栈。因此,算法中设置两个空间足够的堆栈,其中, STACKlCM] 存放进栈结点的地址, STACK2[M] 存放相应的标志n 昭的值, 两个堆栈使用同一栈顶指针top , top 的初值为— 1 。 具体算法如下: #defineH 100 /?定义二叉树中结点最大数目。/ voidPOSTOiRDER(BTREET) { / *T 为二叉树根结点所在链结点的地址。/ BTREESTACKl[H] , p=T ;intSTACK2[M] , flag,top= —1;if(T!=NULL) d0{ while(p!=NULL){ STACK/[++top]=p ; /?当前p所指结点的地址进栈?/ STACK2[top]= 0 ; /,标志0 进栈?/ p=p->lchild ;/?将p 移到其左孩子结点x/ } p=STACKl[top) ;flag=STACK2[top--] ;if(flag==0){ STACKl[++top]=p ; /,当前p所指结点的地址进栈。/ STACK2[toP]=1 ; /?标志1 进栈?/ p=p->rchild ; /x将p移到其右孩子结点o/ } else{ VISIT(p) ; /x访问当前p所指的结点x/ p=NULL ; } }while(p!=NULLtttop!=-1) ; } 不难分析,上述算法的时间复杂度同样为O(n) 7.6.3 二叉树的线索化算法 对--X 树的线索化,就是把二叉树的二叉链表存储结构中结点的所有空指针域改造成指向某结点在某种遍历序列中的直接前驱或直接后继的过程, 因此, 二叉树的线索化过程只能 在对二叉树的遍历过程中进行。 下面给出二叉树的中序线索化的递归算法。算法中设有指针pre,用来指向中序遍历过 程中当前访问的结点的直接前驱结点,pre的初值为头结点的指针;T初始时指向头结点, 但在算法执行过程中,T总是指向当前访问的结点。voldlNTHREAD(TBTREET) { TBTREE pre ; if(T!=Null){ INTHREAD(T —>lchild); if(T —>rchild==NULL)

递归非递归两种算法遍历二叉树

. 一、设计思想 1. 用递归算法遍历 设计思想:主要是通过不同程序顺序,从而实现递归的顺序遍历 前序遍历:先判断节点是否为空,如果不为空,则输出。再判断左节点是否为空,如果不为空,则递归调用,直到遍历到最左边。接着再遍历最左边的右子树,如果此时右子树不为空,则递归遍历左子树的操作,直到遍历到叶子节点。如果右子树为空,则回溯上次的递归调用,重复输出和遍历右子树的操作。 中序遍历:先遍历左节点是否为空,如果不为空,则递归调用,直到遍历到最左边或者叶子节点,然后输出,接着再遍历最左边的右子树,如果此时右子树不为空,则递归重复遍历左子树的操作,直到遍历到叶子节点。如果右子树为空,则回溯到上次递归调用,重复输出和遍历右子树的操作。 后序遍历:先判断左节点是否为空,如果不为空则一直递归直到遍历到最左边,然后遍历右节点,再接着遍历到左子树的最右边,直到遍历到叶子节点。此时输出,回溯到上次递归,继续执行后面的操作,重复,直到将整个树遍历完毕。 2. 用非递归算法遍历 设计思想:主要是通过栈的存取,判空,从而实现树的遍历 前序遍历:通过一个循环实现。先输出节点的数值,因为栈的特性,则需要先判断右子树是否为空,如果不为空,则将右子树压栈。然后判断左子树是否为空,如果不为空,则将左子树压栈。接着再将栈里面的子树弹出赋给给当前节点变量,重复上述操作,直到栈为空后退出循环。 中序遍历:通过循环实现。将树一直遍历到最左端,并将中间所经过的节点保存在栈中,当遍历到最左边的时候,则弹出栈里面的子树。输出数值,将当前节点赋值为当前节点的右子树,遍历右子树,即重复上述操作,直到当前节点为空,并且栈内元素为0。 后序遍历:通过循环和标记栈实现。将数一直遍历到最左端,并将中间的节点保存在树栈中,同时同步的添加一个标记栈。当遍历到最左边的时候,弹栈并赋值给当前栈,然后判断标记栈的数值,如果数值为0的话则代表当前树没有遍历过,遍历右子树。然后重复上面的操作,如果数值为1的话则代表此时数已经遍历过了,可以开始输出了,为了避免重复输出,将当前栈赋为空。重复循环操作,直到栈内没有元素,且当前节点为空(因为一直左的操作并没有将右子树压栈)。

二叉树三种遍历算法代码_

二叉树三种遍历算法的源码 二叉树三种遍历算法的源码背诵版 本文给出二叉树先序、中序、后序三种遍历的非递归算法,此三个算法可视为标准算法,直接用于考研答题。 1.先序遍历非递归算法 #define maxsize 100 typedef struct { Bitree Elem[maxsize]; int top; }SqStack; void PreOrderUnrec(Bitree t) { SqStack s; StackInit(s); p=t; while (p!=null || !StackEmpty(s)) { while (p!=null) //遍历左子树 { visite(p->data); push(s,p); p=p->lchild; }//endwhile if (!StackEmpty(s)) //通过下一次循环中的内嵌while实现右子树遍历 { p=pop(s); p=p->rchild; }//endif }//endwhile }//PreOrderUnrec 2.中序遍历非递归算法 #define maxsize 100 typedef struct { Bitree Elem[maxsize];

int top; }SqStack; void InOrderUnrec(Bitree t) { SqStack s; StackInit(s); p=t; while (p!=null || !StackEmpty(s)) { while (p!=null) //遍历左子树 { push(s,p); p=p->lchild; }//endwhile if (!StackEmpty(s)) { p=pop(s); visite(p->data); //访问根结点 p=p->rchild; //通过下一次循环实现右子树遍历}//endif }//endwhile }//InOrderUnrec 3.后序遍历非递归算法 #define maxsize 100 typedef enum{L,R} tagtype; typedef struct { Bitree ptr; tagtype tag; }stacknode; typedef struct { stacknode Elem[maxsize]; int top; }SqStack; void PostOrderUnrec(Bitree t)

递归非递归两种算法遍历二叉树讲解

一、设计思想 1.用递归算法遍历 设计思想:主要是通过不同程序顺序,从而实现递归的顺序遍历 前序遍历:先判断节点是否为空,如果不为空,则输出。再判断左节点是否为空,如果不为空,则递归调用,直到遍历到最左边。接着再遍历最左边的右子树,如果此时右子树不为空,则递归遍历左子树的操作,直到遍历到叶子节点。如果右子树为空,则回溯上次的递归调用,重复输出和遍历右子树的操作。 中序遍历:先遍历左节点是否为空,如果不为空,则递归调用,直到遍历到最左边 或者叶子节点,然后输出,接着再遍历最左边的右子树,如果此时右子树不为空,则递归重复遍历左子树的操作,直到遍历到叶子节点。如果右子树为空,则回溯到上次递归调用, 重复输出和遍历右子树的操作。 后序遍历:先判断左节点是否为空,如果不为空则一直递归直到遍历到最左边,然后遍历右节点,再接着遍历到左子树的最右边,直到遍历到叶子节点。此时输出,回溯到上次递归,继续执行后面的操作,重复,直到将整个树遍历完毕。 2.用非递归算法遍历 设计思想:主要是通过栈的存取,判空,从而实现树的遍历 前序遍历:通过一个循环实现。先输出节点的数值,因为栈的特性,则需要先判断右子树是否为空,如果不为空,则将右子树压栈。然后判断左子树是否为空,如果不为空,则将左子树压栈。接着再将栈里面的子树弹出赋给给当前节点变量,重复上述操作,直到栈为空后退出循环。 中序遍历:通过循环实现。将树一直遍历到最左端,并将中间所经过的节点保存在栈中,当遍历到最左边的时候,则弹出栈里面的子树。输出数值,将当前节点赋值为当前节点的右子树,遍历右子树,即重复上述操作,直到当前节点为空,并且栈内元素为0。 后序遍历:通过循环和标记栈实现。将数一直遍历到最左端,并将中间的节点保存在树栈中,同时同步的添加一个标记栈。当遍历到最左边的时候,弹栈并赋值给当前栈,然后判断标记栈的数值,如果数值为0的话则代表当前树没有遍历过,遍历右子树。然后重 复上面的操作,如果数值为1的话则代表此时数已经遍历过了,可以开始输出了,为了避 免重复输出,将当前栈赋为空。重复循环操作,直到栈内没有元素,且当前节点为空(因为一直左的操作并没有将右子树压栈)。

二叉树遍历课程设计心得【模版】

目录 一.选题背景 (1) 二.问题描述 (1) 三.概要设计 (2) 3.1.创建二叉树 (2) 3.2.二叉树的非递归前序遍历示意图 (2) 3.3.二叉树的非递归中序遍历示意图 (2) 3.4.二叉树的后序非递归遍历示意图 (3) 四.详细设计 (3) 4.1创建二叉树 (3) 4.2二叉树的非递归前序遍历算法 (3) 4.3二叉树的非递归中序遍历算法 (4) 4.4二叉树的非递归后序遍历算法 (5) 五.测试数据与分析 (6) 六.源代码 (6) 总结 (10) 参考文献: (11)

一.选题背景 二叉树的链式存储结构是用指针建立二叉树中结点之间的关系。二叉链存储结构的每个结点包含三个域,分别是数据域,左孩子指针域,右孩子指针域。因此每个结点为 由二叉树的定义知可把其遍历设计成递归算法。共有前序遍历、中序遍历、后序遍历。可先用这三种遍历输出二叉树的结点。 然而所有递归算法都可以借助堆栈转换成为非递归算法。以前序遍历为例,它要求首先要访问根节点,然后前序遍历左子树和前序遍历右子树。特点在于所有未被访问的节点中,最后访问结点的左子树的根结点将最先被访问,这与堆栈的特点相吻合。因此可借助堆栈实现二叉树的非递归遍历。将输出结果与递归结果比较来检验正确性。。 二.问题描述 对任意给定的二叉树(顶点数自定)建立它的二叉链表存贮结构,并利用栈的五种基本运算(置空栈、进栈、出栈、取栈顶元素、判栈空)实现二叉树的先序、中序、后序三种遍历,输出三种遍历的结果。画出搜索顺序示意图。

三.概要设计 3.1.创建二叉树 3.2.二叉树的非递归前序遍历示意图 图3.2二叉树前序遍历示意图3.3.二叉树的非递归中序遍历示意图 图3.3二叉树中序遍历示意图

相关文档
相关文档 最新文档