文档库 最新最全的文档下载
当前位置:文档库 › 理论力学课件 接上,,加刚体平面运动动力学方程

理论力学课件 接上,,加刚体平面运动动力学方程

rad

s/t

θ

/

rad

s/t

在巴西一只蝴蝶翅膀的拍打能在美

国得克萨斯州产生一个龙卷风。

s /t rad

/θ失之毫厘、谬之千里。

竹中一滴曹溪水,涨起西江十八滩。

假如潘金莲不开窗户,就不会遇见西门

庆;不遇西门,就不会出轨;不出轨,

武松就不会逼上梁山。武松不上梁山,

方腊就不会被擒;方腊不被擒,就可灭

大宋江山,没有了大宋江山,就不会有

靖康耻;金兵就不会入关,就不会有大

清朝;没有大清朝,中国就不会闭关锁

国、不会有鸦片战争和八国联军入侵。

那么,中国,将是世界上唯一的超级大

国!美国等其他诸侯神马的都是浮云!

唉!金莲呀,没事你开什么窗户?

钉子缺,蹄铁卸;蹄铁卸,战马蹶;战

马蹶,骑士绝;骑士绝,战事折;战事

折,国家灭。

平面情况(对轴的动量矩计算)mv C d

矩。

理论力学课后习题答案 第6章 刚体的平面运动分析

第6章 刚体的平面运动分析 6-1 图示半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮滚动。曲柄OA 以等角加速度α绕轴O 转动,当运动开始时,角速度0ω= 0,转角0?= 0。试求动齿轮以圆心A 为基点的平面运动方程。 解:?cos )(r R x A += (1) ?sin )(r R y A += (2) α为常数,当t = 0时,0ω=0?= 0 2 2 1t α?= (3) 起始位置,P 与P 0重合,即起始位置AP 水平,记θ=∠OAP ,则AP 从起始水平位置至图示AP 位置转过 θ??+=A 因动齿轮纯滚,故有? ? =CP CP 0,即 θ?r R = ?θr R = , ??r r R A += (4) 将(3)代入(1)、(2)、(4)得动齿轮以A 为基点的平面运动方程为: ??? ? ?? ??? +=+=+=22 2212sin )(2cos )(t r r R t r R y t r R x A A A α?αα 6-2 杆AB 斜靠于高为h 的台阶角C 处,一端A 以匀速v 0沿水平向右运动,如图所示。试以杆与铅垂线的夹角 表示杆的角速度。 解:杆AB 作平面运动,点C 的速度v C 沿杆AB 如图所示。作速度v C 和v 0的垂线交于点P ,点P 即为杆 AB 的速度瞬心。则角速度杆AB 为 h v AC v AP v AB θθω2000cos cos === 6-3 图示拖车的车轮A 与垫滚B 的半径均为r 。试问当拖车以速度v 前进时,轮A 与垫滚B 的角速度A ω与B ω有什么关系设轮A 和垫滚B 与地面之间以及垫滚B 与拖车之间无滑动。 解:R v R v A A ==ω 习题6-1图 A B C v 0 h 习题6-2图 P AB v C A B C v o h 习题6-2解图 习题6-3解图 习题6-3图 v A = v v B = v

《图解刚体力学——欧拉运动学方程》

本科生毕业论文 论文题目:图解刚体力学——欧拉运动学方程 学生姓名:罗加宽 学号: 2008021152 专业名称:物理学 论文提交日期: 2012年05月17日 申请学位级别:理学学士 论文评审等级: 指导教师姓名:陈洛恩 职称:教授 工作单位:玉溪师范学院 学位授予单位:玉溪师范学院 玉溪师范学院理学院物理系 2012年05月

图解刚体力学—欧拉运动学方程 罗加宽 (玉溪师范学院理学院物理系 08级物理1班云南玉溪 653100) 指导教师:陈洛恩、杨春艳 摘要:本文阐述了描述刚体定点转动的欧拉角及欧拉运动学方程的图解,以期让复杂的问题转 化得简单清晰而易于学习者的理解,抽象的概念变得直观具体而易于学习者的掌握;并能在一 定程度上对提高学习者的空间思维能力、引导和培养学习者的创新思维能力有一定的帮助。 关键字:图解;刚体;欧拉角;欧拉运动学方程 1.引言 理论力学是研究物体机械运动一般规律的科学;依照牛顿的说法,理论力学“是关于力产生的运动和产生任何运动的力的理论,是精确的论述和证明” [1]。理论力学作为使用数学方法的自然知识的一部分,不仅研究实际物体,而且研究其模型—质点、质点系、刚体和连续介质。从研究次序来看,通常先研究描述机械运动现象的运动学,然后再进一步研究机械运动应当遵循哪些规律的动力学。至于研究平衡问题的静力学,对理科来讲可以作为动力学的一部分来处理,但在工程技术上,静力学却是十分的重要,因此,常把它和动力学分开,自成一个系统[2]。本文图解的内容为刚体力学运动学问题之一的刚体的绕定点的转动。 “图解”的方法,较早见于上海科学技术出版社1988年翻译出版的《图解量子力学》,原书名为The Picture Book of Quantum Mechanics,由Springer-Verlag 出版;类似的书还有Springer-Verlag出版的Visual Quantum Mechanics。其特点是通过将理论物理与数值计算相结合实现可视化来讲解物理知识。国外对物理的可视化教学十分重视,早在1995-1996年间Wiley出版社出版了9本有关物理多媒体教学的丛书,是由大学高等物理软件联盟(The Consortium for Upper-Level Physics Software,CUPS)编写该丛书及其所用的教学软件[3]。如今,图解法已经广泛应用于力学、电磁学、模拟电子技术等方面,理论力学方面同样也有不少人已经采用了图解法。如赵宗杰使用3dsmax建立质点外弹道运动规律的虚拟模型和场景[4];乐山师范学院王峰等利用Matlab分别对质点受力仅为位置、速度或时间的函数进行了图解,并说明了Matlab在理论力学中的应用[5];阜阳师范学院孙美娟、韩修林利用Mathematica进行编程作出了落体的位移—时间图像[6]。通过图解,使很多抽象繁难的物理问题在解析时达到空间立体直观,概念形成清晰,逻辑链路晓畅明朗,数式转换准确易见。 理论力学因理论性较强,与高等数学联系密切,一些概念的形成、公式的推导、逻辑推理等较抽象、繁难、复杂,往往使教授者感到教学很难达到预期的效果,学

平面机构的运动分析答案

1.速度瞬心是两刚体上瞬时速度相等的重合点。 2.若瞬心的绝对速度为零,则该瞬心称为绝对瞬心; 若瞬心的绝对速度不为零,则该瞬心称为相对瞬心。 3.当两个构件组成移动副时,其瞬心位于垂直于导路方向的无穷远处。当两构件组成高副时,两个高副元素作纯滚动,则其瞬心就在接触点处;若两个高副元素间有相对滑动时,则其瞬心在过接触点两高副元素的公法线上。 4.当求机构的不互相直接联接各构件间的瞬心时,可应用三心定理来求。 5.3个彼此作平面平行运动的构件间共有 3 个速度瞬心,这几个瞬心必定位于一条直线上。 6.机构瞬心的数目K与机构的构件数N的关系是K=N(N-1)/2 。 7.铰链四杆机构共有 6 个速度瞬心,其中 3 个是绝对瞬心。 8.速度比例尺μ ν 表示图上每单位长度所代表的速度大小,单位为: (m/s)/mm 。 加速度比例尺μa表示图上每单位长度所代表的加速度大小,单位为 (m/s2)/mm。 9.速度影像的相似原理只能应用于构件,而不能应用于整个机构。 10.在摆动导杆机构中,当导杆和滑块的相对运动为平动,牵连运动为转动时(以上两空格填转动或平动),两构件的重合点之间将有哥氏加速度。哥氏加速度的大小为2×相对速度×牵连角速度;方向为相对速度沿牵连角速度的方向转过90°之后的方向。 二、试求出图示各机构在图示位置时全部瞬心的位置(用符号 ij P直接标注在图上)。 P 24)

12 三、 在图a 所示的四杆机构中, l AB =60mm,l CD =90mm ,l AD =l BC =120mm ,ω2=10rad/s ,试用瞬心法求: 1)当φ=165°时,点C 的速度v C ; 2)当φ=165°时,构件3的BC 线上速度最小的一点E 的位置及速度的大小; 3)当v C =0时,φ角之值(有两个解); 解:1)以选定的比例尺μl 作机构运动简图(图b )。 2)求v C ,定出瞬心P 13的位置(图b ) a ) (P 13) P P 23→∞

第十三讲刚体的运动和动力学问题

第十三讲 刚体的运动学与动力学问题 一 竞赛内容提要 1、刚体;2、刚体的平动和转动;3、刚体的角速度和角加速度;4、刚体 的转动惯量和转动动能;5、质点、质点系和刚体的角动量;6、转动定理和角动量定理;7、角动量守恒定律。 二 竞赛扩充的内容 1、刚体:在外力的作用下不计形变的物体叫刚体。刚体的基本运动包括刚体的平动和刚体绕定轴的转动,刚体的任何复杂运动均可由这两种基本运动组合而成。 2、刚体的平动;刚体的平动指刚体内任一直线在运动中始终保持平行,刚体上任意两点运动的位移、速度和加速度始终相同。 3、刚体绕定轴的转动;刚体绕定轴的转动指刚体绕某一固定轴的转动,刚体上各点都在与转轴垂直的平面内做圆周运动,各点做圆周运动的角位移Φ、角速度ω和角加速度β相同(可与运动 学的s 、v 、a 进行类比)。且有:ω=t t ??Φ→?lim 0;β=t t ??→?ωlim 0。当β为常量时,刚体做匀加 速转动,类似于匀加速运动,此时有:ω=ω0+βt ; Φ=Φ0+ω0t+βt 2/2; ω2-ω02=2β(Φ-Φ0)。式中,Φ0、ω0分别是初始时刻的角位移和角速度。对于绕定轴运动的刚体上某点的运动情况,有:v=ωR , a τ=βR , a n =ω2R=v 2/R, 式中,R 是该点到轴的距离,a τ、a n 分别是切向加速度和法向加速度。 例1 有一车轮绕轮心以角速度ω匀速转动,轮上有一小虫自轮心沿一根辐条向外以初速度v 0、 加速度a 作匀加速爬行,求小虫运动的轨迹方程。 例2 一飞轮作定轴转动,其转过的角度θ和时间t 的关系式为:θ=at+bt 2-ct 3,式中,a 、b 、c 都是恒量,试求飞轮角加速度的表示式及距转轴r 处的切向加速度和法向加速度。 例3 如图所示,顶杆AB 可在竖直槽K 内滑动,其下端由凸轮K 推动,凸轮 绕O 轴以匀角速度ω转动,在图示瞬间,OA=r ,凸轮轮缘与A 接触处,法线n 与OA 之间的夹角为α,试求此瞬时顶杆OA 的速度。

第3章 振动系统的运动微分方程题解

习 题 3-1 复摆重P ,对质心得回转半径为,质心距转动轴得距离为a ,复摆由水平位置无初速地释放,列写复摆得运动微分方程。 解:系统具有一个自由度,选复摆转角为广义坐标,原点及正方向如如题4-1图所示。 复摆在任意位置下,根据刚体绕定轴转动微分方程 ? 其中 ? 得到复摆运动微分方程为 ?? 或 ? 3-2均质半圆柱体,质心为C,与圆心O 1得距离为e ,柱体半径为R ,质量为m,对质心得回转半径为,在固定平面上作无滑动滚动,如题3-2图所示,列写该系统得运动微分方程。 解:系统具有一个自由度,选为广义坐标。 半圆柱 体在任意位置得动能为: ? 用瞬心法求: ? ?? 故 ? 系统具有理想约束,重力得元功为 ? 应用动能定理得微分形式 ? θθθρθθd mge m Re R e m d C sin 21)cos 2(2122222-=?? ????+-+ θθθθθθθθθθ ρd mge d mRe d mRe d R e m C sin sin cos 2)(2222-=+-++ 等式两边同除, θθθθθθθθθθ ρ sin sin cos 2)(2222mge mRe mRe R e m C -=+-++ ,等式两边同除 故微分方程为 0sin sin )cos 2(2222=+++-+θθθθ ρθmge mRe Re R e m C ?① 若为小摆动,,并略去二阶以上微量,上述非线性微分方程可线性化,系统微摆动得微分方程为 题3-1图 题3-2图

要点及讨论 (1)本题也可以用平面运动微分方程求解。系统得受力图与运动分析图如图(b)所示。列写微分方程 上述方程包含,,,,五个未知量,必须补充运动学关系才能求解。建立质心坐标与广义坐标之间得关系 , 所以 ? 运动学方程式⑤⑥与方程②③④联立,消去未知约束力,,就可以得到与式①相同得系统运动微分方程。 因为在理想约束得情况下,未知约束力在动能定理得表达式中并不出现,所以用动能定理解决已知力求运动得问题更简便、直接。 (2)本题也可用机械能守恒定律求解。 系统得动能? 选半圆柱体中心O1所在平面为零势面,系统得势能 ? 由? ? 两边对时间求导数,即可得到与式①相同得运动微分方程。 3-3 均质杆AB,长l,质量为m,沿光滑墙面滑下,如题3-3图所示。设水平面也为光滑得。列写该系统得运动微分方程。 题3-3图 解:系统具有一个自由度,选为广义坐标。系统在任一位置得动能为 由瞬心法求质心得速度 ,, 所以 系统得主动力图为图(a)所示。重力得元功为 由动能定理? 所以 ?? 系统得运动微分方程为 ? 要点及讨论 (1)平面运动刚体可用式计算刚体动能,式中为刚体对瞬心得转动惯量,为质心与瞬心间得距离。

理论力学刚体的平面运动

理论力学-刚体的平面运动

————————————————————————————————作者: ————————————————————————————————日期:

第七章 刚体的平面运动 一、是非题 1.刚体作平面运动时,绕基点转动的角速度和角加速度与基点的选取无关。 ( ) 2.作平面运动的刚体相对于不同基点的平动坐标系有相同的角速度与角加速度。( ) 3.刚体作平面运动时,平面图形内两点的速度在任意轴上的投影相等。 ( ) 4.某刚体作平面运动时,若A 和B 是其平面图形上的任意两点,则速度投影定理AB B AB A u u ][][ =永远成立。 ( ) 5.刚体作平面运动,若某瞬时其平面图形上有两点的加速度的大小和方向均相同,则该瞬时此刚体上各点的加速度都相同。 ( ) 6.圆轮沿直线轨道作纯滚动,只要轮心作匀速运动,则轮缘上任意一点的加速度的方向均指向轮心。 ( ) 7.刚体平行移动一定是刚体平面运动的一个特例。 ( ) 二、选择题 1.杆AB 的两端可分别沿水平、铅直滑道运动,已知B 端的速度为B u ,则图示瞬时B 点相对于A 点的速度为 。 ①uB si nθ; ②u B cos θ; ③uB/sin θ; ④u B/cos θ。 2.在图示内啮合行星齿轮转动系中,齿轮Ⅱ固定不动。已知齿轮Ⅰ和Ⅱ的半径各为r 1和r 2,曲柄OA 以匀角速度ω0逆时针转动,则齿轮Ⅰ对曲柄OA 的相对角速度ω1r 应为 。 ①ω1r =(r 2/ r 1)ω0(逆钟向); ②ω1r=(r 2/ r 1)ω0(顺钟向); ③ω1r=[(r 2+ r 1)/ r 1] ω0(逆钟向); ④ω1r =[(r2+ r 1)/ r 1] ω0(顺钟向)。 3.一正方形平面图形在其自身平面内运动,若其顶点A 、B 、C 、D 的速度方向如图(a )、图(b)所示,则图(a)的运 动是 的,图(b)的运动是 的。 ①可能; ②不可能; ③不确定。

第3章--振动系统的运动微分方程题解

习 题 3-1 复摆重P ,对质心的回转半径为C ρ,质心距转动轴的距离为a ,复摆由水平位置无初速地释放,列写复摆的运动微分方程。 解:系统具有一个自由度,选复摆转角?为广义坐标,原点及正方向如如题4-1图所示。 复摆在任意位置下,根据刚体绕定轴转动微分方程 O O M J =? 其中 )(22 a g P J C O += ρ 得到复摆运动微分方程为 ?? ρcos )(22 Pa a g P C =+ 或 0cos )(22 =-+?? ρga a C 3-2均质半圆柱体,质心为C ,与圆心O 1的距离为e ,柱体半径为R ,质量为m ,对质心的回转半径为C ρ,在固定平面上作无滑动滚动,如题3-2图所示,列写该系统的运动微分方程。 解:系统具有一个自由度,选θ为广义坐标。 半圆柱体在任意位置的动能为: 222 1 21ωC C J mv T += 用瞬心法求C v : 2222*2)cos 2()(θθθ Re R e CC v C -+== θω = 2 C C m J ρ= 故 222222 1)cos 2(21θρθθ C m Re R e m T +-+= 系统具有理想约束,重力的元功为 题3-1图 题3-2图

θθδd mge W sin -= 应用动能定理的微分形式 W dT δ= θθθρθθd mge m Re R e m d C sin 21)cos 2(2122222-=?? ????+-+ θθθθθθθθθθ ρd m g e d m R e d m R e d R e m C s i n s i n c o s 2)(2222-=+-++ 等式两边同除dt , θθθθθθθθθθ ρ s i n s i n c o s 2)(2222m g e m R e m R e R e m C -=+-++ 0≠θ ,等式两边同除θ 故微分方程为 0s i n s i n )c o s 2(2222=+++-+θθθθρθ m g e m R e Re R e m C ① 若为小摆动θθ≈sin ,1cos ≈θ,并略去二阶以上微量,上述非线性微分方程可线性化,系统微摆动的微分方程为 0])[(22=++-θθρge r R C 要点及讨论 (1)本题也可以用平面运动微分方程求解。系统的受力图与运动分析图如图(b )所示。列写微分方程 ??? ??--=-=-=④③② θ θθρsin )cos (2Ne e R F m mg N y m F x m C C C 上述方程包含C x ,C y ,θ ,F ,N 五个未知量,必须补充运动学关系才能求解。建立质心坐标与广义坐标θ之间的关系 ?? ?-=-=θθ θcos sin e R y e R x C C , ???=-=θθθθθ sin cos e y e R x C C 所以 ?????+=+-=⑥ ⑤22cos sin sin cos θθθθθθθθθ e e y e e R x C C 运动学方程式⑤⑥与方程②③④联立,消去未知约束力N ,F ,就可以得到与式①相同的系统运动微分方程。 因为在理想约束的情况下,未知约束力在动能定理的表达式中并不出现,所以用动能定理解决已知力求运动的问题更简便、直接。 (2)本题也可用机械能守恒定律求解。 系统的动能 222222 1)c o s 2(21θρθθ C m Re R e m T +-+=

02-23.3 平面运动刚体的运动微分方程(课件)

3、平面运动刚体的运动微分方程

平面运动刚体的运动微分方程 y x C '':过质心平移参考系 平面运动 随质心平移 绕质心转动 () ()e e ()C C C ma F J M F α?=∑??=∑??()()2 e 22 e 2d d d () d C C C r m F t J M F t ??=∑????=∑??投影式: () ()()e e e ()Cx x Cy y C C ma F ma F J M F α?=∑??=∑??=∑??() ()()e t e n e ()C t C n C C ma F ma F J M F α? =∑??=∑? ?=∑?? 以上各组均称为刚体平面运动微分方程

平面运动刚体的运动微分方程 已知:半径为r ,质量为m 的均质圆轮沿水平直线滚动, 如图所示.设轮的惯性半径为 ,作用于轮的力偶矩为M .求轮心的加速度.如果圆轮对地面的滑动摩擦因数为f ,问力偶M 必须符合什么条件不致使圆轮滑动? C 例 1 M

平面运动刚体的运动微分方程 解: N 2 Cx Cy C ma F ma F mg m M Fr ρα? =? =-? ?=-? () ()2 2 22 N ,, ,C C C C F r Mr a M r m r F ma F mg ρρ+==+==纯滚动的条件: s N F f F ≤即 2 2s C r M f mg ρ +≤C a 0C a r α =分析圆轮,受力和运动情况如图所示。 由平面运动刚体运动微分方程:

平面运动刚体的运动微分方程例 2 已知:均质圆轮半径为r 质量为m,受到轻微扰动后, 在半径为R 的圆弧上往复滚动,如图所示.设表面足够 粗糙,使圆轮在滚动时无滑动. 求:质心C 的运动规律.

理论力学-平面力系

第二章平面力系 一、是非题 1.一个力在任意轴上投影的大小一定小于或等于该力的模,而沿该轴的分力的大小则可能大于该力的模。()2.力矩与力偶矩的单位相同,常用的单位为牛·米,千牛·米等。()3.只要两个力大小相等、方向相反,该两力就组成一力偶。()4.同一个平面内的两个力偶,只要它们的力偶矩相等,这两个力偶就一定等效。()5.只要平面力偶的力偶矩保持不变,可将力偶的力和臂作相应的改变,而不影响其对刚体的效应。()6.作用在刚体上的一个力,可以从原来的作用位置平行移动到该刚体内任意指定点,但必须附加一个力偶,附加力偶的矩等于原力对指定点的矩。()7.某一平面力系,如其力多边形不封闭,则该力系一定有合力,合力作用线与简化中心的位置无关。()8.平面任意力系,只要主矢≠0,最后必可简化为一合力。()9.平面力系向某点简化之主矢为零,主矩不为零。则此力系可合成为一个合力偶,且此力系向任一点简化之主矩与简化中心的位置无关。()10.若平面力系对一点的主矩为零,则此力系不可能合成为一个合力。()11.当平面力系的主矢为零时,其主矩一定与简化中心的位置无关。()12.在平面任意力系中,若其力多边形自行闭合,则力系平衡。() 二、选择题 1.将大小为100N的力F沿x、y方向分解,若F在 x轴上的投影为86.6N,而沿x方向的分力的大小为 115.47N,则F在y轴上的投影为。 ①0; ②50N; ③70.7N; ④86.6N; ⑤100N。 2.已知力的大小为=100N,若将沿图示x、 y方向分解,则x向分力的大小为N,y向分力 的大小为N。 ①86.6; ②70.0; ③136.6; ④25.9; ⑤96.6; 3.已知杆AB长2m,C是其中点。分别受图示 四个力系作用,则和是等效力系。 ①图(a)所示的力系;

084 刚体平面运动微分方程

6 刚体平面运动微分方程 刚体的平面运动可简化成刚体的平面图形S 在某一固定平面内的运动,用3个独立坐标 描述。作用在刚体上的外力可简化为S 平面内的一平面力系F i (=1, 2,…,n )。设坐标系Oxy 为固定的惯性参考系,Cx ′ y ′为质心平移坐标系,如图8-6所示。平面图形的运动可用质心坐标x C , y C 和绕质心的转动角?描述。刚体的绝对运动可分解成跟随质心的平移和相对质心平移坐标系的转动。由动量定理所述,刚体跟随质心的平移仅与外力系的主矢有关,由质点系相对质心的动量矩定理可知,刚体相对质心平移坐标系的运动仅与外力系对质心的主矩有关。于是,由式(8.1.11)可写出 y C x C F y m F x m R R ,==&&&& (8.1.55) 式中m 为刚体的质量,F R x , F R y 分别是外力系的主矢在y x ,方向上的分量。由式(8.1.54)在垂直于平面图形S 方向上的投影,可得 Cz Cz M t L =d d (8.1.56) 其中M Cz 是外力系对通过质心且垂直于平面图形S 的轴之矩的代数和。而? &C Cz J L =,J C 是刚体对于通过质心且垂直于平面图形S 的轴的转动惯量。 应用质心运动定理和相对质心的动量矩定理,得到了三个动力学方程,给出了三个广义 坐标x C , y C 和?的封闭方程组,用以解决刚体的平面运动问题。动力学方程组 m (8.1.57) Cz C n i iy C n i ix C M J F y m F x ===∑∑==? &&&&&&,,1 1 称为刚体平面运动微分方程组。 给出相应的初始条件,例如,t =0时,刚体质心的位置分别为x C 0和y C 0,质心在初始时 的速度分别为和,平面图形S 在初始时的角位移和角速度分别为?0C x &0C y &0和0?&。作用力已知时,方程(8.1.57)和该初始条件构成一初始值问题。可解得任意时刻的质心坐标和转角。 刚体平面运动的动力学的分析过程中建立了质心平移坐标系,将运动分解为跟随质心的 平移和相对质心的转动,实际上就是采用运动学中的基点法来分析运动。但是,在运动学中基点是可以任意选择的。而在动力学中,平移参考系的原点应选在刚体的质心上。从动力学角度来看,方程组(8.1.57)已经封闭,可提供三个独立的方程来解刚体平面运动问题。但是在具体应用时,经常遇到除了三个基本未知之外还存在其它未知量而使方程组变得不封闭的情况,此时需要从运动学寻找补充方程。 例8.1-7: 半径为r ,质量为m 的均质圆柱体, 放置于固定的倾角为θ的粗糙斜面的顶端,在重力的作用下向下运动。设轮与斜面间的滑动摩擦因数为f s ,不计滚动摩阻,求圆柱体质心的运动规律。 (a) 解:圆柱体作平面运动,建立Oxy 为固定坐 标系,如图 (a)所示。圆柱体受到的作用力有,静滑动摩擦力F ,斜面对圆柱体的约束力F N ,如图 (b)所示。设x C , y C 和α分别为圆柱体质心坐标和角加速度,则柱体的运动微分方程为

理论力学-刚体的平面运动

第七章 刚体的平面运动 一、是非题 1.刚体作平面运动时,绕基点转动的角速度和角加速度与基点的选取无关。 ( ) 2.作平面运动的刚体相对于不同基点的平动坐标系有相同的角速度与角加速度。( ) 3.刚体作平面运动时,平面图形内两点的速度在任意轴上的投影相等。 ( ) 4.某刚体作平面运动时,若A 和B 是其平面图形上的任意两点,则速度投影定理AB B AB A u u ][][ 永远成立。 ( ) 5.刚体作平面运动,若某瞬时其平面图形上有两点的加速度的大小和方向均相同,则该瞬时此刚体上各点的加速度都相同。 ( ) 6.圆轮沿直线轨道作纯滚动,只要轮心作匀速运动,则轮缘上任意一点的加速度的方向均指向轮心。 ( ) 7.刚体平行移动一定是刚体平面运动的一个特例。 ( ) 二、选择题 1.杆AB 的两端可分别沿水平、铅直滑道运动,已知B 端的速度为B u ,则图示瞬时B 点相对于A 点的速度为。 ①u B sin ; ②u B cos ; ③u B /sin ; ④u B /cos 。 2.在图示内啮合行星齿轮转动系中,齿轮Ⅱ固定不动。已知齿轮Ⅰ和Ⅱ的半径各为r 1和r 2,曲柄OA 以匀角速度 0逆时针转动,则

齿轮Ⅰ对曲柄OA的相对角速度 1r应为 。 ① 1r=(r2/ r1) 0(逆钟向); ② 1r=(r2/ r1) 0(顺钟向); ③ 1r=[(r2+ r1)/ r1] 0(逆钟向); ④ 1r=[(r2+ r1)/ r1] 0(顺钟向)。 3.一正方形平面图形在其自身平面内运动,若其顶 点A、B、C、D的速度方向如图(a)、图(b)所示,则 图(a)的运动是的,图(b)的运动是的。 ①可能; ②不可能; ③不确定。 4.图示机构中,O1A=O2B。若以 1、 1与 2、 2分别表示O1A杆与O2B杆的角速度和角加速度的大小,则当O1A∥O2B时,有。 ① 1= 2, 1= 2; ② 1≠ 2, 1= 2; ③ 1= 2, 1≠ 2; ④ 1≠ 2, 1≠ 2。

理论力学 刚体平面运动部分参考答案

一、如图所示,OA 杆以匀角速度ω绕O 轴转动,圆轮可沿水平直线作纯滚动。已知圆轮半径为R ,且OA=R , AB=2R 。试求图示位置圆轮的角速度和圆心B 的加速度。 一、如图所示,OA 杆以匀角速度ω绕O 轴转动,圆轮可沿水平直线作纯滚动。已知圆轮半径为R ,且OA=R ,AB=2R 。试求图示位置圆轮的角速度和圆心B 的加速度。(18分) 解:(1)速度分析及计算:AB 杆和圆轮作平面运动,选A 为基点 BA A B v v v += OA 杆绕O 轴转动:ω?=R v A AB=2R ,圆轮半径为R ,所以杆AB 与水平面夹角为30° 速度平行四边行如图。由图中几何关系可得: 3/330tan ω?= =R v v A B C 为速度瞬心,此瞬时,圆轮可看成绕速度瞬心C 做定轴转动。 O 轴转动: 2ω?==R a a n A A 由速度平行四边行中几何关系可得: 3 / 230cos /ω?==R v v A BA 所以:22 2 3 2 2// ω?== = R R v AB v a BA BA n BA 选A 为基点,则B 点加速度: τ ++=BA n BA a a a a A B 将上式向x 轴投影得:n BA a a a n --= 30cos 30cos

二、平面连杆机构如图所示。已知:OA =10cm ,AB =BC =24cm 。在图示位置时,OA 的角速度ωOA =3rad/s ,角加 速度αOA =0,θ=60°。图示瞬时O 、A 、C 三点位于同一水平线上。试求该瞬时AB 杆的角速度和角加速度。 二、平面连杆机构如图所示。已知:OA =10cm ,AB =BC =24cm 。在图示位置时,OA 的角速度ωOA =3rad/s ,角加速度αOA =0,图示瞬时O 、A 、C 三点位于同一水平线上。试求该瞬时AB 杆的角速度和角加速度。 解:以A 为基点,根据速度合成定理BA A B v v v +=,对B 进行速度分析, 在速度平行四边形中得: cm /s 30310=?=?===OA v v v oA B A BA ω 选A n B A B A a a a a ++= τ A B 即:n B A B A B n B a a a a a ++=+ττA B 点作加速度矢量图如图。由题可知: 222cm /s 90310=?=?=ωOA a n A 222cm/s 5.3724 30===AB v a BA n BA 22 2cm/s 5.372430===BC v a B n B 将 B 点作加速度矢量式向y 轴投影得: τBA n BA n A n B a a a a +-=- 60cos 30sin 得 : 2cm /s 75.63 -=τBA a 因此得杆AB 的角加速度:

清华大学版理论力学课后习题答案大全_____第6章刚体平面运动分析汇总

6章 刚体的平面运动分析 6-1 图示半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮滚动。曲柄OA 以等角加速度α绕轴O 转动,当运动开始时,角速度0ω= 0,转角0?= 0。试求动齿轮以圆心A 为基点的平面运动方程。 解:?c o s )(r R x A += (1) ?sin )(r R y A += (2) α为常数,当t = 0时,0ω=0?= 0 22 1t α?= (3) 起始位置,P 与P 0重合,即起始位置AP 水平,记θ=∠OAP ,则AP 从起始水平位置至图示AP 位置转过 θ??+=A 因动齿轮纯滚,故有? ? =CP CP 0,即 θ?r R = ?θr R = , ??r r R A += (4) 将(3)代入(1)、(2)、(4)得动齿轮以A 为基点的平面运动方程为: ??? ? ?? ??? +=+=+=22 2212sin )(2cos )(t r r R t r R y t r R x A A A α?αα 6-2 杆AB 斜靠于高为h 的台阶角C 处,一端A 以匀速v 0沿水平向右运动,如图所示。试以杆与铅垂线的夹角θ 表示杆的角速度。 解:杆AB 作平面运动,点C 的速度v C 沿杆AB 如图所示。作速度v C 和v 0的垂线交于点P ,点P 即为杆AB 的速度瞬心。则角速度杆AB 为 h v AC v AP v AB θθω2 000cos cos === 6-3 图示拖车的车轮A 与垫滚B 的半径均为r 。试问当拖车以速度v 前进时,轮A 与垫滚B 的角速度A ω与B ω有什么关系?设轮A 和垫滚B 与地面之间以及垫滚B 与拖车之间无滑动。 解:R v R v A A == ω R v R v B B 22==ω B A ωω2= 6-4 直径为360mm 的滚子在水平面上作纯滚动,杆BC 一端与滚子铰接,另一端与滑块C 铰接。设杆BC 在水平位置时,滚子的角速度ω=12 rad/s ,θ=30?,?=60?,BC =270mm 。试求该瞬时杆BC 的角速度和点C 的速度。 习题6-1图 习题6-2图 习题6-2解图 习题6-3解图 习题6-3图 v A = v v B = v ωA ωB

质点运动微分方程

第3篇 动力学 第10章 质点运动微分方程 一、目的要求 1.对质点动力学的基本概念(如惯性、质量等)和动力学基本定律要在物理课程的基础上进一步理解其实质。 2.深刻理解力和加速度的关系,能正确地建立质点的运动微分方程,掌握质点动力学第一类基本问题的解法。 3.掌握质点动力学第二类基本问题的解法,特别是当作用力分别为常力、时间函数、位置函数和速度函数时,质点直线运动微分方程的积分求解方法。对运动的初始条件的力学意义及其在确定质点运动中的作用有清晰的认识,并会根据题目的已知条件正确提出运动的初始条件。 二、基本内容 1.基本概念: 动力学的基本定律,质点的运动微分方程;质点动力学的两类基本问题。 2.主要公式: (1)牛顿第二定律:a m F =(式中,质点的质量为m ,所受合力为F ,其加速度为a 。) (2)质点运动微分方程 1)矢径形式:22dt r d m F =或F r m =,∑=i F F 2)直角坐标形式:∑=x F dt x d m 22,∑=y F dt y d m 22,∑=z F dt z d m 22 3)自然坐标形式:2n m F υρ=∑,d m F dt τυ =∑,∑ = b F 0 强调:动力学基本定律仅在惯性参考系中成立,因此,公式中的速度、加速度指的是绝对速度和绝对加速度。 三、重点和难点 1.重点: (1)建立质点运动微分方程。 (2)求解质点动力学的两类基本问题。 2.难点: 在质点动力学第二类问题中,根据题目所要求的问题对质点运动微分方程进行变量交换后再积分的方法。 四、教学提示 1.建议 (1)在复习物理课程有关内容的基础上,进一步理解动力学各定律的实质,了解古典力学的适用范围。 (2)复习和运用静力学中的合力投影定理与点的运动学知识,学习如何建立不同形式的质点运动微分方程。 (3)注意区分质点动力学的两类基本问题及其解题特点,归纳动力学问题的解题步骤。 2.建议学时 课内(2学时)课外(3学时) 3.作业 10-5,10-12,10-14

第3章平面机构的运动分析答案

一、填空题: 1.速度瞬心是两刚体上瞬时速度相等的重合点。 2.若瞬心的绝对速度为零,则该瞬心称为绝对瞬心; 若瞬心的绝对速度不为零,则该瞬心称为相对瞬心。 3.当两个构件组成移动副时,其瞬心位于垂直于导路方向的无穷远处。当两构件组成高副时,两个高副元素作纯滚动,则其瞬心就在接触点处;若两个高副元素间有相对滑动时,则其瞬心在过接触点两高副元素的公法线上。 4.当求机构的不互相直接联接各构件间的瞬心时,可应用三心定理来求。 5.3个彼此作平面平行运动的构件间共有 3 个速度瞬心,这几个瞬心必定位于一条直线上。 6.机构瞬心的数目K与机构的构件数N的关系是K=N(N- 1)/2 。

7.铰链四杆机构共有 6 个速度瞬心,其中 3 个是绝对瞬心。 8.速度比例尺μν表示图上每单位长度所代表的速度大小,单位为:(m/s)/mm 。 加速度比例尺μa表示图上每单位长度所代表的加速度大小,单位为(m/s2)/mm。 9.速度影像的相似原理只能应用于构件,而不能应用于整个机构。 10.在摆动导杆机构中,当导杆和滑块的相对运动为平动,牵连运动为转动时(以上两空格填转动或平动),两构件的重合点之间将有哥氏加速度。哥氏加速度的大小为2×相对速度×牵连角速度;方向为相对速度沿牵连角速度的方向转过90°之后的方向。 二、试求出图示各机构在图示位置时全部瞬心的位置(用符号 P直接标注在 ij 图上)。

12 三、在图a所示的四杆机构中,l AB=60mm,l CD=90mm,l AD=l BC=120mm,ω2=10rad/s,试用瞬心法求: 1)当φ=165°时,点C的速度v C;

理论力学课后习题答案-第6章--刚体的平面运动分析

理论力学课后习题答案-第6章--刚体的平面运动分析

第6章 刚体的平面运动分析 6-1 图示半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮滚动。曲柄OA 以等角加速度α绕轴O 转动,当运动开始时,角速度0ω= 0,转角0?= 0。试求动齿轮以圆心A 为基点的平面运动方程。 解:?cos )(r R x A += (1) ?sin )(r R y A += (2) α为常数,当t = 0时,0 ω=0 ?= 0 2 2 1t α?= (3) 起始位置,P 与P 0重合,即起始位置AP 水平,记θ=∠OAP ,则AP 从起始水平位置至图示AP 位置转过 θ??+=A 因动齿轮纯滚,故有? ?=CP CP 0 ,即 θ?r R = ?θr R =, ??r r R A +=(4) 将(3)代入(1)、(2)、(4)得动齿轮以A 为基点的平面运动方程为: ??? ? ? ? ??? +=+=+=222212sin )(2cos )(t r r R t r R y t r R x A A A α?αα 6-2 杆AB 斜靠于高为h 的台阶角C 处,一端A 以匀速v 0沿水平向右运动,如图所示。试以杆与铅垂线的夹角θ 表示杆的角速度。 解:杆AB 作 平面运动,点C 的速度v C 沿杆AB 如图所示。作速度v C 和v 0的垂线交于点P ,点P 即为杆AB 的速度瞬心。则角速度杆AB 习题6-1图 A B C v 0 h θ 习题6-2图 P ωA v C A B C v o h θ 习题6-2解图

习题6-6图 习题6-6解图 l ? υ l 2B O 1ωA B A υB υO 1 O AB ωω 解:图(a )中平面运动的瞬心在点O ,杆BC 的瞬心在点C 。 图(b )中平面运动的杆BC 的瞬心在点P ,杆 AD 做瞬时平移。 6-6 图示的四连杆机械OABO 1中,OA = O 1B = 2 1 AB ,曲柄OA 的角速度ω= 3rad/s 。试求当示。?= 90°而曲柄O 1B 重合于OO 1的延长线上时,杆AB 和曲柄O 1B 的角速度。 解:杆AB 的瞬心在O 3===ωωOA v A AB rad/s ωl v B 3= 2.531===ωωl v B B O rad/s 6-7 绕电话线的卷轴在水平地面上作纯滚动,线上的点A 有向右的速度v A = 0.8m/s ,试求卷轴中心O 的速度与卷轴的角速度,并问此时卷轴是向左,还是向右方滚动? 解:如图 333.16 .08 .03.09.0==-=A O v ωrad/s 2.16 89.09.0=?==O O v ωm/s 卷轴向右滚动。 ω ω 习题6-5解图 O O 1 A B C O O 1 A B D v B v v v v B v v P (a (b 习题6-7图

刚体的运动学与动力学问题

刚体的运动学与动力学问题 编者按中国物理学会全国中学生物理竞赛委员会2000 年第十九次会议对《全国中学生物理竞赛内容提要》作了一些调整和补充,并决定从2002 年起在复赛题与决赛题中使用提要中增补的内容. 一、竞赛涉及有关刚体的知识概要 1. 刚体 在无论多大的外力作用下,总保持其形状和大小不变的物体称为刚体.刚体是一种理想化模型,实际物体在外力作用下发生的形变效应不显著可被忽略时,即可将其视为刚体,刚体内各质点之间的距离保持不变是其重要的模型特征. 2 . 刚体的平动和转动 刚体运动时,其上各质点的运动状态(速度、加速度、位移)总是相同的,这种运动叫做平动.研究刚体的平动时,可选取刚体上任意一个质点为研究对象.刚体运动时,如果刚体的各个质点在运动中都绕同一直线做圆周运动,这种运动叫做转动,而所绕的直线叫做转轴.若转轴是固定不动的,刚体的运动就是定轴转动.刚体的任何一个复杂运动总可看做平动与转动的叠加,刚体的运动同样遵从运动独立性原理. 3. 质心质心运动定律 质心这是一个等效意义的概念,即对于任何一个刚体(或质点系),总可以找到一点C,它的运动就代表整个刚体(或质点系)的平动,它的运动规律就等效于将刚体(或质点系)的质量集中在点C,刚体(或质点系)所受外力也全部作用在点C时,这个点叫做质心.当外力的作用线通过刚体的质心时,刚体仅做平动;当外力作用线不通过质心时,整个物体的运动是随质心的平动及绕质心的转动的合成.质心运动定律物体受外力F 作用时,其质心的加速度为aC,则必有F=maC,这就是质心运动定律,该定律表明:不管物体的质量如何分布,也不管外力作用点在物体的哪个位置,质心的运动总等效于物体的质量全部集中在此、外力亦作用于此点时应有的运动. 4 . 刚体的转动惯量J 刚体的转动惯量是刚体在转动中惯性大小的量度,它等于刚体中每个质点的质量mi与该质点到转轴的距离ri的平方的乘积的总和,即 J=miri2. 从转动惯量的定义式可知,刚体的转动惯量取决于刚体各部分的质量及对给定转轴的分布情况.我们可以利用微元法求一些质量均匀分布的几何体的转动惯量. 5. 描述转动状态的物理量 对应于平动状态参量的速度v、加速度a、动量p=mv、动能Ek=(1 /2 )mv2;描述刚体定轴转动状态的物理量有: 角速度ω角速度的定义为ω=Δθ/Δt.在垂直于转轴、离转轴距离r处的线速度与角速度之间的关系为v=rω. 角加速度角加速度的定义为α=Δω/Δt.在垂直于转轴、离转轴距离r处的线加速度与角加速度的关系为at=rα. 角动量L角动量也叫做动量矩,物体对定轴转动时,在垂直于转轴、离转轴距离r处某质量为m的质点的角动量大小是mvr=mr2ω ,各质点角动量的总和即为物体的角动量,即 L=miviri=(miri2)ω=Jω. 转动动能Ek当刚体做转动时,各质点具有共同的角速度ω及不同的线速度v,若第i个质点质

《理论力学》第八章 刚体的平面运动习题解

第八章 刚体的平面运动习题解 [习题8-1] 椭圆规尺AB由曲柄OC带动,曲柄以匀角速度ω0绕O轴匀速转动。如OC= BC=AC=r,并取C为基点,求椭圆规尺AB的平面运动方程。 解: 椭圆规尺AB的平面运动方程为: t r r x C 0cos cos ω?== t r r y C 0sin sin ω?== t 0ω?-=(顺时针转为负)。 [习题8-2] 半径为r的齿轮由曲柄OA带动,沿半径为R的固定齿轮滚动。如曲柄OA以匀加 速度α绕O轴转动,且当运动开始时,角速度ω0=0,转角φ=0,求动齿轮以中心A为基点 的平面运动方程。 解: αω =dt d dt d αω= 1C t +=αω 100C +?=α 01=C t αω= t dt d αω? == tdt d α?= 222 1C t +=α? 22021 0C +?=α 02=C 22 1t α?=

2cos )(cos )(2 t r R r R x A α?+=+= 2 sin )(sin )(2 t r R r R y A α?+=+= A A r t r R OA v ωαω=?+=?=)( t r r R A αω?+= t r r R dt d A α??+= dt t r r R d A ??+= α? 32 2 C t r r R A +??+=α? 32020C r r R +??+= α 03=C 22t r r R A α??+= 故,动齿轮以中心A为基点的平面运动方程为: 2 cos )(2 t r R x A α+= 2 sin )(2 t r R y A α+= 22t r r R A α??+= [习题8-3] 试证明:作平面运动的平面图形内任意两点的连线中点的速度等于该两点速度的矢量和之一半。 已知:如图所示,CB AC =, →A v ,→ B v 求证:)(2 1→ →→ +=B A C v v v 证明:

相关文档
相关文档 最新文档