文档库 最新最全的文档下载
当前位置:文档库 › 太原理工大学理论力学知识点集合

太原理工大学理论力学知识点集合

太原理工大学理论力学知识点集合
太原理工大学理论力学知识点集合

平面力系

1. 平面汇交力系可简化为以合力,其大小和方向等于各分力的矢量和,合力的

作用线通过汇交点。

2. 平面汇交力系平衡的充要条件为合力等于零,与任意力系不同,任意力系由

于不能汇交,会产生力偶,必须得满足主矢主矩都等于零才平衡。

3. 平面汇交力系可以通过解析法,即将各力分解到直角坐标系上,再求合力。

4. 力对点取矩:是一个代数量,绝对值等于力的大小与力臂的乘积:

Fd F Mo =)( 5. 合力矩定理:平面力系的合力对于平面内任一点的矩等于所有分力对该点的

矩的代数和。

6. 力偶、力偶矩:力偶由两个大小相等,方向相反,作用线不在同一直线上的

平行力组成。力偶矩等于平行力的大小乘上平行力的间距,逆时针为正,顺时针为负。

7. 力偶的等效定理:在同一平面内,只要力偶矩的大小和转向不变,力偶的作

用效果就不变。

8. 平面力系的简化:平面任意力系向一点的简化结果为一合力和一合力偶,合

力称为主矢,合力偶为主矩。主矢作用线过简化中心。

9. 平面任意力系平衡的充要条件:???==00'Mo F R ,其平衡方程为∑=0x F ,∑=0y F ,

∑=0)(Fi Mo ,是三个独立的方程,可以求解三个未知数。

10. 静定问题:当系统中的未知量数目等于独立平衡方程的数目,则所有未知数

都能解出,这种问题称为静定问题。反之为非静定问题。

空间力系

11. 空间汇交力系的合力等于各分力的矢量和,合力的作用线过汇交点。可得合

力的大小和方向余弦:()()()222∑∑∑++Fz Fy Fx R F ,()

R R F Fx i F ∑=,cos ,其余类似。 12. 空间汇交力系平衡的充要条件为该力系的合力为零,或所有分力在三个坐标

轴上投影的代数和为零,∑∑∑===0,0,0Fz Fy Fx ,可求三个未知数。

13. 力对点的矩矢等于该力作用点的矢径与该力的矢量积:()F r F M ?=o ;若k

Fz j Fy i Fx F k z j y i x r ++=++=,,由行列式可得,()()()()k y F x x F y j x F z z F x i z F y y

F z F Mo -+-+-=,在坐标轴上的投影为()[]y F z z F y F Mo x -=,()[]xFz zFx F Mo y -=,()[]yFx xFy F Mo z

-=。 14. 力对轴的矩是一个代数量,其绝对值等于该力在垂直于该轴的平面上的投影

对于这个平面与该轴的交点的矩,而正负号只表示其转向。 15. 力对点的矩与力对通过该点的轴的矩的关系:()[]()F M F Mo x

x =。 16. 空间力偶矩矢是自由矢量,而空间力偶对刚体的作用效果完全由力偶来确定,于是存在空间力偶等效定理:作用在同一刚体上的两个空间力偶,如果其力偶矩矢相等,则它们彼此等效。

17. 等效定理表明:空间力偶可以平移到与其作用面平行的任意平面而不改变力

偶对刚体的作用,只要力偶矩矢的大小方向不改变,其作用效果不改变。力偶矩矢d F M ?=,其中d 为'F F 和的间距。

18. 空间力偶系平衡的充要条件为:该力偶系的合力偶矩等于零或在各坐标轴上

的投影代数和分别为零。

19. 空间力系向任一点的简化同平面力系一样得到主矢和主矩,而主矢与简化中

心的选取无关,主矩与简化中心的选取一般有关。

20. 当简化结果为一合力偶时,主矩与简化中心的位置无关,当简化结果为一合力时,由于合力与力系等效,因此合力对空间任一点的矩等于力系中各力对同一点的矩的矢量和。当简化结果为主矢与主矩而Mo F R //'时,便形成了力螺旋,如钻头。

21. 空间任意力系平衡的充要条件:力系的主矢和对任一点的主矩都等于零。其

平衡方程为:∑∑∑===0,0,0Fz Fy Fx ,()∑=0F Mx ,()

∑=0F My ,()∑=0F Mz 。可以求6个未知数。

22. 空间平行力系的平衡方程只有3个方程,如()

∑∑==0,0F Mx Fz ,()∑=0F My 。

23. 为了解题方便,每个方程最好只含有一个未知数,为此,选择投影轴应尽量

与其余为治理垂直,选择矩的轴时应尽量与其余未知的力平行或相交。投影轴不必相互垂直,取矩的轴不必与投影轴重合。

24. 平行力系合力作用点的位置仅由各平行力的大小及作用点的位置确定,与方

向无关,该点即为平行力系的中心。

25. 平行力系中心坐标公式:

∑∑=i i i F x F x c ,y,z 与此类似。 26. 重心坐标公式:∑∑=i i i c

P x P x ,y ,z 与此类似。如果物体是均质的,则V xdv x v

c ?=,

(V 为均质物体的体积)y,z 与此类似。均质物体的重心是其几何重心。

27. 常用求重心的方法有积分法和分割法和负面积法。

摩擦

28. 最大静摩擦力的大小与两物体见的正压力成正比:N s F f F =max ,其中s f 称为

静摩擦因素,相应的N d fF F =,其中f 称为动摩擦因素,一般s f f <。

29. 全约束力是指所有约束力的合力,全约束力与法线之间的夹角f ?达到最大

时,即全约束力最大(经摩擦力最大)时,此时f ?称为摩擦角,其正切值等于静摩擦因素。

30. 如果作用于物体的全部主动力的合力的作用线在f ?之间,那么无论该力多

大,物体都静止,相反,若在f ?之外,那么无论该力多小,物体都会运动。

点的运动学

31. 矢量法:选取某点O 为坐标原点,自点O 到M 的矢量表示M 相对于O 的位置矢量r ,当该矢量随时间变化时,)(t r r =称为以矢量表示点的运动方程。点的速度矢量t d r

d v =,点的加速度矢量22dt r d a =。 32. 直角坐标法:点的运动方程为)(),(),(321t f z t f y t f x ===,可以求出任一瞬

时点的位置。消除t 即可获得点的轨迹方程。注意:计算点的速度加速度时,一定要算出各自的方向余弦。

33. 自然法:)(t f s =称为点沿轨迹的运动方程,或以弧坐标表示的点的运动方程。沿轨迹切线方向的单位矢量为ds r

d =τ,其指向与弧坐标正向一致。

34. 自然法中点的速度:τdt ds dt r d v ==。理解此式时,牢记τ是单位矢量,和单位向量0n 的作用相同。

35. 自然法中的切向法向加速度:τ?

=v a t ,r v a n 2

=。 刚体的简单运动

36. 平移的特点:刚体上各点的速度大小及方向均相同,加速度大小方向也相同。

所以刚体的平移可以归结为刚体上任一点的运动。

37. 刚体绕定轴转动的运动方程:)(t f =?。角速度dt

d ?ω=,瞬时角加速度:dt d ?α2=。 38. 定轴转动刚体中:任一点的速度ωR v =,任一点的切向加速度αR a t =,任

一点的法向加速度2ωR a n =,其中R 为该点到转轴的距离。

39. 齿轮转动和带轮转动:齿轮转动:1

21221z z R R ==ωω,z 为齿轮齿数;带轮转动:1221r r =ωω。

点的合成运动

40. 点的速度合成定理:动点在某瞬时的绝对速度等于它在该瞬时的牵连速度与相对速度的矢量和。即e r a v v v +=。

41. 牵连运动是平移时点的加速度合成定理:当牵连运动为平移时,动点在某瞬

时的绝对加速度等于它的牵连加速度和相对加速度的矢量和。即e r a a a a +=。

42. 牵连运动是定轴转动时点的加速度合成定理:当动系做定轴转动时,动点在

某瞬时的绝对加速度等于该瞬时它的牵连加速度、相对加速度与科氏加速度的矢量和。其中科氏加速度r c v a ?=ω2。注意,此处的ω为角速度矢量,与

角速度的方向不同,确定其方向要对角速度用右手螺旋定则。

刚体的平面运动

43. 求速度的基点法:平面运动可分解成基点的平移以及绕基点的转动,则速度就为基点的速度与该点随图形绕基点转动速度的矢量和。BA A B v v v +=,一共有6个要素,解题时一般要知道其中4个要素才行,而BA v 的方向总是已知的,故只需要知道任何其他三个要素即可。

44. 速度投影定理:同一平面图形上任意两点的速度在这两点连线上的投影相等。

45. 求速度的瞬心法:平面内速度等于零的点称为瞬时速度中心,平面内任一点

的速度等于该点随图形绕瞬心转动的速度。

46. 确定瞬心的方法:对于纯滚动的情况,图形与固定面的接触点就是图形的速

度瞬心;如果已知图形上两点的速度的方向,则过两作用点作速度方向的法线,法线交点即为速度瞬心。当两点的大小方向均相同时,此时图形作瞬时平移。

47. 用基点法求平面内各点的加速度:平面内任一点的加速度等于基点的加速度

与该点随图形转动的切向加速度和法向加速度的矢量和。

如图,BA n BA t A B a a a a ++=,其中BA t a 为点B 绕基点A 转动的切向加速度,

α?=AB a BA t ;BA n a 为点B 绕基点A 转动的法向加速度,2ω?=AB a BA n ,其中ω

α、分别为平面图形的角加速度、角速度。

48. 当平面图形做瞬时平动时,任意两点的加速度在两点连线上投影相等。

质点动力学的基本方程

49. 第二定律:质点的质量与加速度的乘积等于作用于质点的力的大小,加速度的方向与力的方向相同:F a m =。

50. 第三定律:两物体间的作用力与反作用力总是大小相等,方向相反,沿着同

一直线,且同时分别作用在这两个物体上。

51. 矢量形式的微分方程:∑=i F dt r d m 2

2

52. 微分方程在直角坐标系上的投影:∑=ix F dt x d m 22,∑=iy F dt y d m 22,∑=iz F dt

z d m 22。 53. 微分方程在自然轴上的投影:n a a a n t +=τ,0=b a ,其中n ,

τ分别为沿轨迹切线方向和主法线方向的单位矢量,b a 为沿副法线法向的分量。其中,

)(切线方向∑=it F dt

dv m ,)(2主法线方向∑=in F v m ρ,)(0副法线方向∑=ib F 。 54. 质点动力学的两类基本问题:一:一直质点的运动求作用于质点的力;二:

已知作用于质点的力求质点的运动。解决第一类问题只需将运动方程两次求导得到质点的加速度,待人质点的运动微分方程,即可求解。解决第二类问题,其实就是解微分方程或求积分的问题,需按照作用力的函数规律进行积分,并根据具体问题的运动条件确定积分函数。

动量定理

55. 质点的动量定理:微分形式:dt F v m d =)(;积分形式:?=-2112t t dt F v m v m 。

56. 质点系动量定理:质点系的动量对时间的导数等于作用于质点系的外力的矢

量和(或外力的主矢),即∑=)(e i F dt

p d ,可改写成?∑?=2121)(p p t t e i dt F p d ,∑=-)(12e i I p p 。以上格式均可在直角坐标系上投影

57. 在实际计算中,记得先表示出动量,常常要用到动量的分量,再利用质点系

动量定理的投影式,计算在各投影轴上合外力。

58. 质点系动量守恒定律:如果作用于质点系的外力的主矢恒等于零,则质点系

的动量保持不变。如果外力主矢在某一轴上的投影恒等于零,则质点系的动量在该轴上的投影恒不变。

59. 质心坐标:????

?????===∑∑∑m z m z m y m y m x m x i

i c i i c i i c 。 60. 质心运动定理:质点系的质量与质心加速度的乘积等于作用于质点系外力的

矢量和,即∑=)(e i c F a m 。此式可在直角坐标系上投影。在自然轴上的投影为0,,)()()(===∑∑∑e b e n n c e t t c F F ma F ma 。

61. 质心运动守恒定律:如果作用于质点系的外力主矢恒等于零,则质心的

运动状态恒不变;做合外力在某轴上的投影为零,则质心在该轴上的速度投影恒为零。若开始速度为零,则质心沿该轴的坐标不变。

动量矩定理

62. 质点的动量矩:质点Q 的动量对点O 的矩,定义为质点对点O 的动量矩,即v m r v m M o ?=)(。

63. 质点动量v m 在Oxy 平面内的投影对点O 的矩等于质点动量对于Z 轴的矩,质点对点O 的动量矩矢在Z 轴上的投影等于对Z 轴的动量矩,即[])()(v m M v m M z

z o =。 64. 质点系的动量矩等于各质点动量对该点矩的矢量和。质点系对某点O 的动量矩矢在通过该点的Z 轴上的投影等于质点系对该轴的动量矩。

65. 绕定轴转动刚体对其转轴的动量矩等于刚体对其转轴的转动惯量与转动角速度的乘积,即ωz z J L =。(注意:只能对固定点或固定轴求动量矩)

66. 质点动量矩定理:质点对某点的动量矩对时间的一阶导数等于作用力对同一点的矩。即)()(F M v m M dt

d o o = 67. 将质点动量矩定理在直角坐标系上投影,可用于求在各轴上的分力,常用于求约束力分力。

68. 质点系动量矩定理:质点系对于某定点O 的动量矩对时间的导数等于作用于质点系的外力对于同一点的矩的矢量和,即∑=)()(e i o o F M L dt

d 。此式还可投影到直角坐标系上。

69. 实际计算时,先用速度和角速度表示出动量矩,然后再用外力对转轴取矩,将两式相等,然后适量变形,求出要求量。详见例11-1

70. 动量矩守恒定律:当外力对某定点(或某定轴)的主矩恒等于零时,质点系对该点的动量矩保持不变。

71. 运用动量矩守恒定律解题时,先受力分析,当分析出所有外力对固定轴或固定点的矩为零时,就可直接用动量矩守恒定律。

72. 刚体绕定轴转动的微分方程:)(F M J z z ∑=α或∑=)(2

2F M dt d J z Z ?。 73. 转动惯量:均质细直杆对于杆端Z 轴的转动惯量为2

3

1ml J z =,均质细直杆对于中点Z 轴的转动惯量为212

1ml J z =

,均质薄圆环对于中心轴的转动惯量为2mR J z =,均质圆板对于中心轴的转动惯量为22

1mR J z =,薄壁空心球对球心的轴的转动惯量为232mR J z =,实心球对球心的轴的转动惯量为252mR J z =。 74. 回转半径:m J z

z =ρ。

75. 平行轴定理:刚体对一轴的转动惯量等于刚体对于通过质心、并与该轴平行的轴的转动惯量,加上刚体的质量与两轴间距离平方的乘积,即2md J J c z +=。 76. ir i i ir i c i i c c v m r v m M v m M L ?===∑∑∑')()(,表明以质点的相对速度或绝对速

度计算质点系对于质心的动量矩,其结果是相等的。'i r 为质点相对于质心的矢径。

77. c c c o L v m r L +?=,表明质点系对任一点O 的动量矩等于质点系随质心平移时对点O 的动量矩)(c c v m r ?加上质点系相对于质心的动量矩c L 。

78. 相对于质心的动量矩定理:∑=)()(e i c c F M dt

L d ,即对质心的动量矩对时间的导数等于作用于质点系的外力对质心的矩的矢量和(即主矢)。

79. 刚体平面运动的微分方程为∑=)(22e F dt r d m ,)()(22e c c F M dt

d J ∑=?。既有随刚体的平动又有饶刚体的转动。后者就为刚体定轴转动的微分方程。平面运动的微分方程可分解为以下式子:直角坐标系上)(

e x c F a m x ∑=,∑=)(e y y F a m ,

∑=)()(e c c F M J α,自然坐标上∑=t c t

F ma ,∑=n c n F ma ,∑=)()(e c c F M J α。以上两种投影均可求解三个未知数。(注意:C 为质心)

动能定理

80. 弹性力的功:弹性力做功只与弹簧在初末位置的变形量有关:)(2

222112δδ-=k W 。 81. 定轴转动刚体上作用力的功:?=2

112???d M W z ,表明该作用力做功等于该作用

力对转轴的矩在转动角度上的积分。

82. 任意运动刚体上力系做功:??+?=2121'12C C c c R d M r d F W ???,其中C 为质心,即力系做功可分解为主矢做功与主矩做功的代数和。若C 不是质心,此式也成立。

83. 定轴转动刚体的动能:22

1ωz J T =

。 84. 平面运动刚体的动能:222121ωc c J mv T +=,表明平面运动刚体的动能等于随质心平移的动能与绕质心转动的动能的和。

85. 质点的动能定理:在质点的某个运动过程中,质点动能的改变量等于作用于质点的力做的功,即121221222

121W mv mv T T =-=-。 86. 质点系动能定理:起点终点的动能的改变量等于作用于质点系的全部力在这段过程中所做功的和。

87. 注意下表 动量(只与质心有

关)

动量矩 动能 平动

c v M P = c c c v m r L ?= 221c mv T = 定轴转动

c v M P = ωz z J L = 22

1ωz J T =

平面运动

c v M P = c c c L v m r L +?= 221212ωc J mv T c += 88. 功率:公式一:v F P t =,其中t F 为沿轨迹切线方向的作用力;公式二:ωz M P =,

该式是绕定轴转动刚体的功率公式。

89. 重力场中的势能:取0z 为零势能点,则z 处的势能为:?--=0

0)(z z z z mg V 90. 弹性力场中的势能:)(2

1202δδ-=k V ,以变形量为0δ处为零势能点,该式为形变量为δ处的势能。当0δ为弹簧的自然位置时,22

1δk V =。 达朗贝尔原理

91. 惯性力:它的大小等于质量与加速度的乘积,但是方向与加速度的方向相反。

92. 达朗贝尔原理:作用在质点上的主动力、约束力和惯性力在形式上构成平衡

力系。即0=++I N F F F .

93. 不管刚体做平移、定轴转动或平面运动,其惯性力系大小和方向均为

c IR a m F -=。

94. 谨记下表:

运动类型

平移 定轴转动 平面运动 主矢

c g a M F -= c g a M F -= c g a M F -= 主矩

0=IC M αo g J M -= αc g J M -= 简化中心 质心C 转轴O 质心C

虚位移原理

95. 几何约束:限制质点或质点系在空间的几何位置的条件为几何约束。

96. 运动约束:限制质点系运动情况的运动学条件。

97. 非定常约束:约束条件随时间变化的约束。

98. 实位移除了与约束条件有关,还与时间、主动力以及运动的初始条件有关;而虚位移仅与约束条件有关。

99. 如果在质点系的任何虚位移中,所有约束力所做虚功的和等于零,称这种约

束为理想约束。

100. 虚位移原理(虚功原理):对于具有理想约束的质点系,其平衡的充要条

件为:作用于质点系的所有主动力在任何虚位移中所做虚功的和等于零。 101.

记住:运用虚位移原理求约束力时应该先将约束去掉。 102. 在外力较多时,各力的约束力大小往往不同,这是要根据虚位移之间的

关系,计算各力的虚功。

分析力学基础 103. 在完整约束的条件下,确定质点系位置的独立参数的数目等于系统的自

由度数。而描述质点系在空间中位置的独立参数称为广义坐标。广义坐标的数目不一定等于系统的自由度数,只有在完整系统中才相等。

104. 广义虚功方程:∑==N

k k q Q W k F 1δδ。其中k Q 为与广义坐标k q 相对应的广义

力。当k q 为线位移时,k Q 有力的量纲;当k q 为角位移时,k Q 有力矩的量纲。 105. 求广义力的两种方法:一,由下式求解∑=??+??+??=n i k

i iz k i iy k i ix

k q z F q y F q x F Q 1)(,),,2,1(N k =;二,利用广义虚位移的任意性,k

F k q W Q ??=。注意,广义坐

标的选择应与实坐标关系易判定。 106. 广义惯性力∑=?????

=n i k

i i i Ik q r r m Q 1- ),,3,2,1(N k =,此式不方便使用,往往可以经过以下变形:(1) ??

??=??k i k i q r q r 。(2)k i k i q r q r dt d ??=???

)(。 107. 拉格朗日方程:0)(=-??-???k k k

Q q T q T dt d ,),,2,1(N k =,其中T 为质点系的动能,),,2,1(1N k q r r m Q n i k

i i i k =???

=∑=??,k q 为广义坐标。

理论力学复习总结(知识点)

第一篇静力学 第1 章静力学公理与物体的受力分析 1.1 静力学公理 公理1 二力平衡公理:作用于刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力大小相等、方向相反且作用于同一直线上。F=-F’ 工程上常遇到只受两个力作用而平衡的构件,称为二力构件或二力杆。 公理 2 加减平衡力系公理:在作用于刚体的任意力系上添加或取去任意平衡力系, 不改变原力系对刚体的效应。 推论力的可传递性原理:作用于刚体上某点的力,可沿其作用线移至刚体内任意一点,而不改变该力对刚体的作用。 公理3 力的平行四边形法则:作用于物体上某点的两个力的合力,也作用于同一点上,其大小和方向可由这两个力所组成的平行四边形的对角线来表示。 推论三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。 公理4 作用与反作用定律:两物体间相互作用的力总是同时存在,且其大小相等、 方向相反,沿着同一直线,分别作用在两个物体上。 公理 5 钢化原理:变形体在某一力系作用下平衡,若将它钢化成刚体,其平衡状 态保持不变。对处于平衡状态的变形体,总可以把它视为刚体来研究。 1.2 约束及其约束力 1.柔性体约束 2.光滑接触面约束 3.光滑铰链约束

第2章平面汇交力系与平面力偶系 1.平面汇交力系合成的结果是一个合力,合力的作用线通过各力作用线的汇交点,其大小和 方向可由失多边形的封闭边来表示,即等于个力失的矢量和,即F R=F1+F2+…..+Fn=∑F 2.矢量投影定理:合矢量在某轴上的投影,等于其分矢量在同一轴上的投影的代数和。 3.力对刚体的作用效应分为移动和转动。力对刚体的移动效应用力失来度量;力对刚体的 转动效应用力矩来度量,即力矩是度量力使刚体绕某点或某轴转动的强弱程度的物理 量。(Mo(F)=±Fh) 4.把作用在同一物体上大小相等、方向相反、作用线不重合的两个平行力所组成的力系称 为力偶,记为(F,F’)。 例2-8 如图2.-17(a)所示的结构中,各构件自重忽略不计,在构件AB上作用一力偶,其力偶矩 为500kN?m,求A、C两点的约束力。 解构件BC只在B、C两点受力,处于平衡状态,因此BC是二力杆,其受力如图2-17(b)所示。 由于构件AB上有矩为M的力偶,故构件AB在铰链A、B处的一对作用力FA、FB’构成一力偶与矩为M的力偶平衡(见图2-17(c))。由平面力偶系的平衡方程∑Mi=0,得﹣Fad+M=0 则有FA=FB’N=471.40N 由于FA、FB’为正值,可知二力的实际方向正为图2-17(c)所示的方向。 根据作用力与反作用力的关系,可知FC=FB’=471.40N,方向如图2-17(b)所示。 第3章平面任意力系 1.合力矩定理:若平面任意力系可合成为一合力。则其合力对于作用面内任意一点之矩等于力系中各力对于同一点之矩的代数和。 2.平面任意力系平衡的充分和必要条件为:力系的主失和对于面内任意一点Q的主矩同时为零,即F R`=0,Mo=0. 3.平面任意力系的平衡方程:∑Fx=0, ∑Fy=0, ∑Mo(F)=0.平面任意力系平衡的解析条件是,力系中所有力在作用面内任意两个直角坐标轴上投影的代数和分别等于零,各力对于作用面内任一点之矩的代数和也是等于零. 例3-1 如图3-8(a)所示,在长方形平板的四个角点上分别作用着四个力,其中F1=4kN,F2=2kN,F3=F4=3kN,平板上还作用着一力偶矩为M=2kN·m的力偶。试求以上四个力及 一力偶构成的力系向O点简化的结果,以及该力系的最后合成结果。 解(1)求主矢FR’,建立如图3-8(a)所示的坐标系,有 F’Rx=∑Fx=﹣F2cos60°+F3+F4cos30°=4.598kN F’Ry=∑Fy=F1-F2sin60°+F4sin30°=3.768kN

理论力学复习总结(重点知识点)

第一篇静力学 第 1 章静力学公理与物体的受力分析 1.1 静力学公理 公理 1 二力平衡公理:作用于刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力大小相等、方向相反且作用于同一直线上。F=-F' 工程上常遇到只受两个力作用而平衡的构件,称为二力构件或二力杆。 公理 2 加减平衡力系公理:在作用于刚体的任意力系上添加或取去任意平衡力系,不改变原力系对刚体的效应。 推论力的可传递性原理:作用于刚体上某点的力,可沿其作用线移至刚体内任意一点,而不改变该力对刚体的作用。 公理 3 力的平行四边形法则:作用于物体上某点的两个力的合力,也作用于同一点上,其大小和方向可由这两个力所组成的平行四边形的对角线来表示。 推论三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。 公理 4 作用与反作用定律:两物体间相互作用的力总是同时存在,且其大小相等、方向相反,沿着同一直线,分别作用在两个物体上。 公理 5 钢化原理:变形体在某一力系作用下平衡,若将它钢化成刚体,其平衡状态保持不变。对处于平衡状态的变形体,总可以把它视为刚体来研究。 1.2 约束及其约束力 1.柔性体约束 2?光滑接触面约束 3.光滑铰链约束

第2章平面汇交力系与平面力偶系 1. 平面汇交力系合成的结果是一个合力,合力的作用线通过各力作用线的汇交点,其大小和 方向可由失多边形的封闭边来表示,即等于个力失的矢量和,即F R=F1+F2+…..+Fn=^ F 2. 矢量投影定理:合矢量在某轴上的投影,等于其分矢量在同一轴上的投影的代数和。 3. 力对刚体的作用效应分为移动和转动。力对刚体的移动效应用力失来度量;力对刚体的转动效应 用力矩来度量,即力矩是度量力使刚体绕某点或某轴转动的强弱程度的物理量。(Mo ( F) =± Fh) 4. 把作用在同一物体上大小相等、方向相反、作用线不重合的两个平行力所组成的力系称为力偶, 记为(F,F')。 例2-8 如图2.-17 (a)所示的结构中,各构件自重忽略不计,在构件AB上作用一力偶,其力偶矩 为500kN?m,求A、C两点的约束力。 解构件BC只在B、C两点受力,处于平衡状态,因此BC是二力杆,其受力如图2-17( b) 所示。 由于构件AB上有矩为M的力偶,故构件AB在铰链A、B处的一对作用力FA、FB) 构成一力偶与矩为M的力偶平衡(见图2-17 (c))。由平面力偶系的平衡方程刀Mi=0,得-Fad+M=0 500 则有FA=FB ' N=471.40N 由于FA、FB'为正值,可知二力的实际方向正为图2-17 ( c)所示的方向。 根据作用力与反作用力的关系,可知FC=FB '471.40N,方向如图2-17 ( b)所示。 第3章平面任意力系 1. 合力矩定理:若平面任意力系可合成为一合力。则其合力对于作用面内任意一点之矩等于力系中 各力对于同一点之矩的代数和。 2. 平面任意力系平衡的充分和必要条件为:力系的主失和对于面内任意一点Q的主矩同时 为零,即F R'=0,M O=0. 3. 平面任意力系的平衡方程:刀Fx=0,刀Fy=O,刀Mo(F)=0.平面任意力系平衡的解析条件是,力系 中所有力在作用面内任意两个直角坐标轴上投影的代数和分别等于零,各力对于作用面内任一点之矩的代数和也是等于零 例3-1 如图3-8 (a)所示,在长方形平板的四个角点上分别作用着四个力,其中F仁4kN , F2=2kN , F3=F4=3kN,平板上还作用着一力偶矩为M=2kN ? m的力偶。试求以上四个力及 一力偶构成的力系向O点简化的结果,以及该力系的最后合成结果。 解(1)求主矢FR'建立如图3-8 (a)所示的坐标系,有 F 'Rx=刀Fx= - F2cos60° +F3+F4cos30 ° =4.598kN

理论力学考试知识点总结

《理论力学》考试知识点 静力学 第一章静力学基础 1、掌握平衡、刚体、力的概念以及等效力系与平衡力系,静力学公理。 2、掌握柔性体约束、光滑接触面约束、光滑铰链约束、固定端约束与球铰链的性质。 3、熟练掌握如何计算力的投影与平面力对点的矩,掌握空间力对点的矩与力对轴之矩的计算方法,以及力对轴的矩与对该轴上任一点的矩之间的关系。 4、对简单的物体系统,熟练掌握取分离体并画出受力图。 第二章力系的简化 1、掌握力偶与力偶矩矢的概念以及力偶的性质。 2、掌握汇交力系、平行力系、力偶系的简化方法与简化结果。 3、熟练掌握如何计算主矢与主矩;掌握力的平移定理与空间一般力系与平面力系的简化方法与简化结果。 4、掌握合力投影定理与合力矩定理。 5、掌握计算平行力系中心的方法以及利用分割法与负面积法计算物体重心。 第三章力系的平衡条件 1、了解运用空间力系(包括空间汇交力系、空间平行力系与空间力偶系)的平衡条件求解单个物体与简单物体系的平衡问题。 2、熟练掌握平面力系(包括平面汇交力系、平面平行力系与平面力偶系)的平衡条件及其平面力系平衡方程的各种形式;熟练掌握利用平面力系平衡条件求解单个物体与物体系的平衡问题。 3、了解静定与静不定问题的概念。 4、掌握平面静定桁架计算内力的节点法与截面法,掌握判断零力杆的方法。 第四章摩擦 1、掌握运用平衡条件求解平面物体系的考虑滑动摩擦的平衡问题。 2、了解极限摩擦定律、滑动摩擦系数、摩擦角、自锁现象、摩阻的概念。 运动学 第五章点的运动 1、掌握描述点的运动的矢量法、直角坐标法与弧坐标法,能求点的运动方程。 2、熟练掌握如何计算点的速度、加速度及其有关问题。 第六章刚体的基本运动

整理理论力学复习总结知识点教学提纲

此文档收集于网络,如有侵权,请联系网站删除 第一篇静力学 第1 章静力学公理与物体的受力分析 1.1 静力学公理 公理1 二力平衡公理:作用于刚体上的两个力,使刚体保持平衡的必要和充 分条件是:这两个力大小相等、方向相反且作用于同一直线上。F=-F'工程上常遇到只受两个力作用而平衡的构件,称为二力构件或二力杆。 公理 2 加减平衡力系公理:在作用于刚体的任意力系上添加或取去任意平衡 力系,不改变原力系对刚体的效应。 推论力的可传递性原理:作用于刚体上某点的力,可沿其作用线移至刚体内任意一点,而不改变该力对刚体的作用。 公理3 力的平行四边形法则:作用于物体上某点的两个力的合力,也作用于 同一点上,其大小和方向可由这两个力所组成的平行四边形的对角线来表示。 推论三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。 公理4作用与反作用定律:两物体间相互作用的力总是同时存在,且其大小相等、方向相反,沿着同一直线,分别作用在两个物体上。 公理5 钢化原理:变形体在某一力系作用下平衡,若将它钢化成刚体,其平 衡状态保持不变。对处于平衡状态的变形体,总可以把它视为刚体来研究。1.2 约束及其约束力 1.柔性体约束 2.光滑接触面约束 3.光滑铰链约束

精品文档. 此文档收集于网络,如有侵权,请联系网站删除 第2章平面汇交力系与平面力偶系 1.平面汇交力系合成的结果是一个合力,合力的作用线通过各力作用线的汇交点,其大小和方向可由失多边形的封闭边来表示,即等于个力失的矢量和,即 FR=F1+F2+…..+Fn=∑F 2.矢量投影定理:合矢量在某轴上的投影,等于其分矢量在同一轴上的投影的代数和。 3.力对刚体的作用效应分为移动和转动。力对刚体的移动效应用力失来度量;力对刚体的转动效应用力矩来度量,即力矩是度量力使刚体绕某点或某轴转动的强弱程度的物理量。(Mo(F)=±Fh) 4.把作用在同一物体上大小相等、方向相反、作用线不重合的两个平行力所组成的力系称为力偶,记为(F,F')。 例2-8 如图2.-17(a)所示的结构中,各构件自重忽略不计,在构件AB上作用一力偶,其力偶矩为500kN?m,求A、C两点的约束力。 解构件BC只在B、C两点受力,处于平衡状态,因此BC是二力杆,其受力如图2-17(b)所示。 由于构件AB上有矩为M的力偶,故构件AB在铰链A、B处的一对作用力FA、FB'构成一力偶与矩为M的力偶平衡(见图2-17(c))。由平面力偶系的平,得衡方程∑Mi=0﹣Fad+M=0 则有FA=FB' N=471.40N 由于FA、FB'为正值,可知二力的实际方向正为图2-17(c)所示的方向。 根据作用力与反作用力的关系,可知FC=FB'=471.40N,方向如图2-17(b)所示。 第3章平面任意力系 1.合力矩定理:若平面任意力系可合成为一合力。则其合力对于作用面内任意一点之矩等于力系中各力对于同一点之矩的代数和。 2.平面任意力系平衡的充分和必要条件为:力系的主失和对于面内任意一点Q 的主矩同时为零,即FR`=0,Mo=0. 3.平面任意力系的平衡方程:∑Fx=0, ∑Fy=0, ∑Mo(F)=0.平面任意力系平衡的解析条件是,力系中所有力在作用面内任意两个直角坐标轴上投影的代数和分别等于零,各力对于作用面内任一点之矩的代数和也是等于零. 精品文档. 此文档收集于网络,如有侵权,请联系网站删除

理论力学复习公式

静力学知识点 静力学公理和物体的受力分析 本章总结 1.静力学是研究物体在力系作用下的平衡条件的科学。 2.静力学公理 公理1 力的平行四边形法则。 公理2 二力平衡条件。 公理3 加减平衡力系原理 公理4 作用和反作用定律。 公理5 刚化原理。 3.约束和约束力 限制非自由体某些位移的周围物体,称为约束。约束对非自由体施加的力称为约束力。约束力的方向与该约束所能阻碍的位移方向相反。 4.物体的受力分析和受力图 画物体受力图时,首先要明确研究对象(即取分离体)。物体受的力分为主动力和约束力。要注意分清内力与外力,在受力图上一般只画研究对象所受的外力;还要注意作用力和反作用力之间的相互关系。 常见问题 问题一画受力图时,严格按约束性质画,不要凭主观想象与臆测。 平面力系 本章总结 1. 平面汇交力系的合力 ( 1 )几何法:根据力多边形法则,合力矢为 合力作用线通过汇交点。 ( 2 )解析法:合力的解析表达式为 2. 平面汇交力系的平衡条件 ( 1 )平衡的必要和充分条件: ( 2 )平衡的几何条件:平面汇交力系的力多边形自行封闭。 ( 3 )平衡的解析条件(平衡方程): 3. 平面内的力对点O 之矩是代数量,记为 一般以逆时针转向为正,反之为负。 或

4. 力偶和力偶矩 力偶是由等值、反向、不共线的两个平行力组成的特殊力系。力偶没有合力,也不能用一个力来平衡。 平面力偶对物体的作用效应决定于力偶矩M 的大小和转向,即 式中正负号表示力偶的转向,一般以逆时针转向为正,反之为负。 力偶对平面内任一点的矩等于力偶矩,力偶矩与矩心的位置无关。 5. 同平面内力偶的等效定理:在同平面内的两个力偶,如果力偶相等,则彼此等效。力偶矩是平面力偶作用的唯一度量。 6. 平面力偶系的合成与平衡 合力偶矩等于各分力偶矩的代数和,即 平面力偶系的平衡条件为 7、平面任意力系 平面任意力系是力的作用线可杂乱无章分布但在同一平面内的力系。当物体(含物体系)有一几何对称平面,且力的分别关于此平面对称时,可简化为平面力系计算。还有其他情况也可按平面任意力系计算。 本章用力的平移定理对平面任意力系进行简化,得到主矢主矩的概念,并进一步对力系简化结果进行讨论;然后得出平面任意力系的平衡条件,得出平衡方程的三种形式,并用平衡方程求解一些平衡问题;介绍静定超静定问题的概念,对物体系的平衡问题进行比较多的训练;最后介绍平面简单桁架的概念和内力计算。 常见问题 问题一不要因为这一章的内容简单,就认为理论力学容易学,而造成轻视理论力学的印象,这将给后面的学习带来影响。 问题二本章一开始要掌握好单个物体的平衡问题与解题技巧,这样才能熟练掌握物体系平衡问题的解法与解题技巧。 问题三在平时做题时,要注意解题技巧的训练,能用一个方程求解的就不用两个方程,但考试时则不一定如此。 第三章空间力系 本章总结 1. 力在空间直角坐标轴上的投影 ( 1 )直接投影法 ( 2 )间接投影法(图形见课本) 2. 力矩的计算 ( 1 )力对点的矩是一个定位矢量, ( 2 )力对轴的矩是一个代数量,可按下列两种方法求得: ( a )

理论力学运动学知识点总结

运动学重要知识点 一、刚体的简单运动知识点总结 1.刚体运动的最简单形式为平行移动和绕定轴转动。 2.刚体平行移动。 ·刚体内任一直线段在运动过程中,始终与它的最初位置平行,此种运动称为刚体平行移动,或平移。 ·刚体作平移时,刚体内各点的轨迹形状完全相同,各点的轨迹可能是直线,也可能是曲线。 ·刚体作平移时,在同一瞬时刚体内各点的速度和加速度大小、方向都相同。 3.刚体绕定轴转动。 ?刚体运动时,其中有两点保持不动,此运动称为刚体绕定轴转动,或转动。 ?刚体的转动方程φ=f(t)表示刚体的位置随时间的变化规律。 ?角速度ω表示刚体转动快慢程度和转向,是代数量,。角速度也可 以用矢量表示,。 ?角加速度表示角速度对时间的变化率,是代数量,,当α与ω同号时,刚体作匀加速转动;当α与ω异号时,刚体作匀减速转动。角加速度 也可以用矢量表示,。 ?绕定轴转动刚体上点的速度、加速度与角速度、角加速度的关系: 。 速度、加速度的代数值为。 ?传动比。

一、点的运动合成知识点总结 1.点的绝对运动为点的牵连运动和相对运动的合成结果。 ?绝对运动:动点相对于定参考系的运动; ?相对运动:动点相对于动参考系的运动; ? 牵连运动:动参考系相对于定参考系的运动。 2.点的速度合成定理。 ?绝对速度:动点相对于定参考系运动的速度; ?相对速度:动点相对于动参考系运动的速度; ?牵连速度:动参考系上与动点相重合的那一点相对于定参考系运动的速度。 3.点的加速度合成定理。 ?绝对加速度:动点相对于定参考系运动的加速度; ?相对加速度:动点相对于动参考系运动的加速度; ?牵连加速度:动参考系上与动点相重合的那一点相对于定参考系运动的加速度; ?科氏加速度:牵连运动为转动时,牵连运动和相对运动相互影响而出现的一项附加的加速度。 ?当动参考系作平移或= 0 ,或与平行时, = 0 。 该部分知识点常见问题有

理论力学复习题

1.For personal use only in study and research; not for commercial use 2. 3.物体重P=20KN,用绳子挂在支架的滑轮B上,绳子的另一端接在绞D上,如图所示,转动绞,物体便能升起。设滑轮的大小,AB与CD杆自重及摩擦忽略不算,A,B,C三处均为铰链链接。当物体平衡时,求拉杆AB和支杆CB所受的力。 2.在图示刚架的点B作用一水平力F尺寸如图,钢架重量忽略不计,求支座A,D的约束力Fa和Fd。 3.已知梁AB上作用一力偶,力偶矩为M,梁长为L,梁重不计,求在图a,b,c三种情况下,支座A,B的约束力。 4.无重水平梁的支撑和载荷如图a,b所示,已知力F,力偶矩M的力偶和强度为q的均布载荷,求支座A,B处的约束力。 5.由AC和CD构成的组合梁通过铰链C链接,它的支撑和受力如图所示,已知均布载荷强度q=10kN/m,力偶矩M=40kN·m,不计梁重,求支座A,B,D的约束力和铰链C处的所受的力。 6.在图示构架中,各杆单位长度的重量为300N/m,载荷P=10kN,A处为固定端,B,C,D,处为铰链,求固定端A处及B,C铰链处的约束力。 7..杆OA长L,有推杆推动而在图面内绕点O转动,如图所示,假定推杆的速度为v,其弯头高为a。求杆端A的速度大小(表示为x的函数)。 8.平底顶杆凸轮机构如图所示,顶杆AB课沿导槽上下移动,偏心圆盘绕轴O转动,轴O 位于顶杆轴线上。工作时顶杆的平底始终接触凸轮表面。该凸轮半径为R,偏心距OC=e,凸轮绕轴O 转动的角速度为w,OC与水平线成夹角φ。当φ=0°时,顶杆的速度。 9.图示铰接四边形机构中,O1A=O2B=100mm,又O1O2=AB,杆O1A以等角速度w=2rad/s 绕轴O1转动。杆AB上有一套筒C,此套筒与杆CD相铰接。机构的各部件都在同一铅直面内。求φ=60°时,杆CD的速度和加速度。 10半径为R的半圆形凸轮D以等速Vo沿水平线向右运动,带动从动杆AB沿铅直方向上升,如图所示,求φ=30°时杆AB相对于凸轮的速度和加速度。 11.图示直角曲子杆OBC绕O轴转动,使在其上的小环M沿固定支杆OA滑动,已知:OB=0.1m,OB与BC垂直,曲杆的角速度w=0.5rad/s,角加速度为零,求当φ=60°时,小环M的速度和加速度。 12.如图所示,平面图形上的亮点A,B的速度方向能是这样吗?为什么? 13.平面图形在其平面内运动,某瞬时其上有两点的加速度矢相同,试判断下述说法是否正确:(1)其上各点速度在该瞬时一定都相等。 (2)其上各点加速度在该瞬时一定都相等。 14.如图所示,车轮沿着曲面滚动,已知轮心O在某一瞬时的速度V o和加速度a0,问车轮的角加速度是否等于a0cosβ/R?速度瞬心C的加速度大小和方向如何确定? 15.如图所示各平面图形均作平面运动,问图示各种运动状态是否可能? 16.汽车以36km/h的速度在水平直到上行驶,设车轮在制动后立即停止转动,问车轮对地面的动滑动摩擦因数f应为多大方能使汽车制动后6s停止。 17.跳伞者质量为60KG,自停留在高空中的直升飞机中挑出,落下100M后,将降落伞打开,设开伞前的空气阻力忽略不计,伞重不计,开伞后所受的阻力不变,经5S后跳伞者的速度减为4.3m/s。求阻力大小。 18.图示水平面上放一均质三棱柱A,在其斜面上又放一个均质三棱柱B。两三棱柱的横截面均为直角三角形,三棱柱A的质量为Ma为三棱柱B的三倍,其尺寸如图所示,设各处摩擦不计,初始时系统静止,求当三棱柱B沿三棱柱A华夏接触到水平面时,三棱柱A移动的距离。

理论力学知识点总结—静力学篇

静力学知识点 第一章静力学公理和物体的受力分析 本章总结 1.静力学是研究物体在力系作用下的平衡条件的科学。 2.静力学公理 公理1 力的平行四边形法则。 公理2 二力平衡条件。 公理3 加减平衡力系原理 公理4 作用和反作用定律。 公理5 刚化原理。 3.约束和约束力 限制非自由体某些位移的周围物体,称为约束。约束对非自由体施加的力称为约束力。约束力的方向与该约束所能阻碍的位移方向相反。 4.物体的受力分析和受力图 画物体受力图时,首先要明确研究对象(即取分离体)。物体受的力分为主动力和约束力。要注意分清内力与外力,在受力图上一般只画研究对象所受的外力;还要注意作用力和反作用力之间的相互关系。 常见问题 问题一画受力图时,严格按约束性质画,不要凭主观想象与臆测。 第二章平面力系 本章总结 1. 平面汇交力系的合力 ( 1 )几何法:根据力多边形法则,合力矢为

合力作用线通过汇交点。 ( 2 )解析法:合力的解析表达式为 2. 平面汇交力系的平衡条件 ( 1 )平衡的必要和充分条件: ( 2 )平衡的几何条件:平面汇交力系的力多边形自行封闭。 ( 3 )平衡的解析条件(平衡方程): 3. 平面内的力对点O 之矩是代数量,记为 一般以逆时针转向为正,反之为负。 或 4. 力偶和力偶矩 力偶是由等值、反向、不共线的两个平行力组成的特殊力系。力偶没有合力,也不能用一个力来平衡。 平面力偶对物体的作用效应决定于力偶矩M 的大小和转向,即 式中正负号表示力偶的转向,一般以逆时针转向为正,反之为负。

力偶对平面内任一点的矩等于力偶矩,力偶矩与矩心的位置无关。 5. 同平面内力偶的等效定理:在同平面内的两个力偶,如果力偶相等,则彼此等效。力偶矩是平面力偶作用的唯一度量。 6. 平面力偶系的合成与平衡 合力偶矩等于各分力偶矩的代数和,即 平面力偶系的平衡条件为 7、平面任意力系 平面任意力系是力的作用线可杂乱无章分布但在同一平面内的力系。当物体(含物体系)有一几何对称平面,且力的分别关于此平面对称时,可简化为平面力系计算。还有其他情况也可按平面任意力系计算。 本章用力的平移定理对平面任意力系进行简化,得到主矢主矩的概念,并进一步对力系简化结果进行讨论;然后得出平面任意力系的平衡条件,得出平衡方程的三种形式,并用平衡方程求解一些平衡问题;介绍静定超静定问题的概念,对物体系的平衡问题进行比较多的训练;最后介绍平面简单桁架的概念和内力计算。 常见问题 问题一不要因为这一章的内容简单,就认为理论力学容易学,而造成轻视理论力学的印象,这将给后面的学习带来影响。 问题二本章一开始要掌握好单个物体的平衡问题与解题技巧,这样才能熟练掌握物体系平衡问题的解法与解题技巧。 问题三在平时做题时,要注意解题技巧的训练,能用一个方程求解的就不用两个方程,但考试时则不一定如此。 第三章空间力系 本章总结 1. 力在空间直角坐标轴上的投影 ( 1 )直接投影法

理论力学考试知识点总结

理论力学》考试知识点 静力学 第一章静力学基础 1、掌握平衡、刚体、力的概念以及等效力系和平衡力系,静力学公理。 2、掌握柔性体约束、光滑接触面约束、光滑铰链约束、固定端约束和球铰链的性质。 3、熟练掌握如何计算力的投影和平面力对点的矩,掌握空间力对点的矩和力对轴之矩的计算方法,以及力对轴的矩与对该轴上任一点的矩之间的关系。 4、对简单的物体系统,熟练掌握取分离体并画出受力图。 第二章力系的简化 1、掌握力偶和力偶矩矢的概念以及力偶的性质。 2、掌握汇交力系、平行力系、力偶系的简化方法和简化结果。 3、熟练掌握如何计算主矢和主矩;掌握力的平移定理和空间一般力系和平面力系的简化方法和简化结果。 4、掌握合力投影定理和合力矩定理。 5、掌握计算平行力系中心的方法以及利用分割法和负面积法计算物体重心。 第三章力系的平衡条件 1、了解运用空间力系(包括空间汇交力系、空间平行力系和空间力偶系)的平衡条件求解单个物体和简单物体系的平衡问题。 2、熟练掌握平面力系(包括平面汇交力系、平面平行力系和平面力偶系)的平衡条件及其平面力系平衡方程的各种形式;熟练掌握利用平面力

系平衡条件求解单个物体和物体系的平衡问题。 3、了解静定和静不定问题的概念 4、掌握平面静定桁架计算内力的节点法和截面法,掌握判断零力杆的方法。 第四章摩擦 1、掌握运用平衡条件求解平面物体系的考虑滑动摩擦的平衡问题。 2、了解极限摩擦定律、滑动摩擦系数、摩擦角、自锁现象、摩阻的概念。 运动学 第五章点的运动 1、掌握描述点的运动的矢量法、直角坐标法和弧坐标法,能求点的运动方程。 2、熟练掌握如何计算点的速度、加速度及其有关问题。 第六章刚体的基本运动 1、掌握刚体平动和定轴转动的特征;掌握刚体定轴转动的转动方程、角速度和角加速度;掌握定轴转动刚体角速度矢量和角加速度矢量的概念以及刚体内各点的速度和加速度的矢积表达式。 2、熟练掌握如何计算定轴转动刚体的角速度和角加速度、刚体内各点的速度和加速度。 第七章点的复合运动 1、掌握运动合成和分解的基本概念和方法。 2、理解哥氏加速度的原理。 3、熟练掌握点的速度合成定理和牵连运动为平动时的加速度合成定理的应用。

理论力学复习总结(重点知识点)

第一篇静力学 第1章静力学公理与物体得受力分析 1、1 静力学公理 公理1二力平衡公理:作用于刚体上得两个力,使刚体保持平衡得必要与充分条件就是:这两个力大小相等、方向相反且作用于同一直线上。F=-F’ 工程上常遇到只受两个力作用而平衡得构件,称为二力构件或二力杆。 公理2 加减平衡力系公理:在作用于刚体得任意力系上添加或取去任意平衡力系,不改变原力系对刚体得效应。 推论力得可传递性原理:作用于刚体上某点得力,可沿其作用线移至刚体内任意一点,而不改变该力对刚体得作用。 公理3 力得平行四边形法则:作用于物体上某点得两个力得合力,也作用于同一点上,其大小与方向可由这两个力所组成得平行四边形得对角线来表示。 推论三力平衡汇交定理:作用于刚体上三个相互平衡得力,若其中两个力得作用线汇交于一点,则此三个力必在同一平面内,且第三个力得作用线通过汇交点。 公理4 作用与反作用定律:两物体间相互作用得力总就是同时存在,且其大小相等、方向相反,沿着同一直线,分别作用在两个物体上。 公理5 钢化原理:变形体在某一力系作用下平衡,若将它钢化成刚体,其平衡状态保持不变。对处于平衡状态得变形体,总可以把它视为刚体来研究。 1、2约束及其约束力 1.柔性体约束 2.光滑接触面约束 3.光滑铰链约束 第2章平面汇交力系与平面力偶系 1.平面汇交力系合成得结果就是一个合力,合力得作用线通过各力作用线得汇交点,其大小 与方向可由失多边形得封闭边来表示,即等于个力失得矢量与,即FR=F1+F2+…、、+Fn=∑F 2.矢量投影定理:合矢量在某轴上得投影,等于其分矢量在同一轴上得投影得代数与。 3.力对刚体得作用效应分为移动与转动。力对刚体得移动效应用力失来度量;力对刚体得转 动效应用力矩来度量,即力矩就是度量力使刚体绕某点或某轴转动得强弱程度得物理量。 (Mo(F)=±Fh) 4.把作用在同一物体上大小相等、方向相反、作用线不重合得两个平行力所组成得力系称 为力偶,记为(F,F’)。 例2-8 如图2、-17(a)所示得结构中,各构件自重忽略不计,在构件AB上作用一力偶,其力偶矩为500kN?m,求A、C两点得约束力。 解构件BC只在B、C两点受力,处于平衡状态,因此BC就是二力杆,其受力如图2-17(b)所示。 由于构件AB上有矩为M得力偶,故构件AB在铰链A、B处得一对作用力FA、FB’构成一力偶与矩为M得力偶平衡(见图2-17(c))。由平面力偶系得平衡方程∑Mi=0,得﹣Fad+M=0

完整word版,理论力学动力学知识点总结,推荐文档

质点动力学的基本方程 知识总结 1.牛顿三定律适用于惯性参考系。 质点具有惯性,以其质量度量; 作用于质点的力与其加速度成比例; 作用与反作用力等值、反向、共线,分别作用于两个物体上。 2.质点动力学的基本方程。 质点动力学的基本方程为,应用时取投影形式。 3.质点动力学可分为两类基本问题。 质点动力学可分为两类基本问题: (1). 已知质点的运动,求作用于质点的力; (2). 已知作用于质点的力,求质点的运动。 求解第一类问题,需先求得质点的加速度;求解第二类问题,一般是积分的过程。质点的运动规律不仅决定于作用力,也与质点的运动初始条件有关,这两类的综合问题称为混合问题。 动量定理 知识点总结 1.牛顿三定律适用于惯性参考系。 质点具有惯性,以其质量度量; 作用于质点的力与其加速度成比例; 作用与反作用力等值、反向、共线,分别作用于两个物体上。 2.质点动力学的基本方程。 质点动力学的基本方程为,应用时取投影形式。 3.质点动力学可分为两类基本问题。 质点动力学可分为两类基本问题: (1). 已知质点的运动,求作用于质点的力; (2). 已知作用于质点的力,求质点的运动。

求解第一类问题,需先求得质点的加速度;求解第二类问题,一般是积分的过程。质点的运动规律不仅决定于作用力,也与质点的运动初始条件有关,这两类的综合问题称为混合问题。 常见问题 问题一在动力学中质心意义重大。质点系动量,它只取决于质点系质量及质心速度。 问题二质心加速度取决于外力主失,而与各力作用点无关,这一点需特别注意。 动量矩定理 知识点总结 1.动量矩。 质点对点O 的动量矩是矢量。 质点系对点O 的动量矩是矢量。 若z 轴通过点O ,则质点系对于z 轴的动量矩为 。 若 C 为质点系的质心,对任一点O 有。 2.动量矩定理。 对于定点O 和定轴z 有 若 C 为质心,C z 轴通过质心,有

周衍柏理论力学教学总结

周衍柏理论力学教学总结 篇一:理论力学总结 理论力学总结 姓名:黄亚敏班级0911物理学学号:20XX110102指导老师:夏清华前言:学习一门课程很重要的一个环节就是总结,这样才能知道自己学到了什么,还有那些不了解,还有哪些地方需要再进一步的学习,同时还可以总结出一些好的学习方法和学习习惯,这样皆可以运用到其他方面上。 初看周衍柏《理论力学》一书,只觉得满书全是数学公式,比如第一章质点力学中的极坐标系中的速度、加速度的分量表达式,对我来说就是一个大困难,怎么就弄不明白为什么 ?didt??did?d?dt ????j , ? djdt ? ?djd?d?dt ?????i?,即曲线上的某点p的沿位矢方向的坐标i对 时间t求导之后为另一方向单位矢量,自己看的时候很不能理解,后

来经过推导之后发现确实是这样的,后来自己又推导一遍,发现是正确的,是数学上的微分运算 ?? 因为我开始的错误理解是:i与时间没有关系,因为在直角坐标系中,并没有对i求??? 导,但是不同的是,在直角坐标系中,单位矢量i,j,k是不变的,但在极坐标中,?? 单位矢量i,j的量值虽然为1,但方向一直随着位矢的方向的变化而变化,所以这????? ?里的单位矢量i,j是一个变量。求得的速度加速度表达式为v??ri??rj,??? 2??????)ja?(??r?r?)i?(r??2r ,还可以用自然坐标算出加速度,表达式简单一些,但前 ??ds? v?vi?i dt 提是要清楚曲线的曲率半径?,才会简化加速度表达式,为 ?? 2?2?dvdsdsdidv?v? a??i??i?j2 dtdtdtdtdt? ,

初中物理力学知识点总结

初中物理力学知识点总结 力知识归纳 1.什么是力:力是物体对物体的作用。 2.物体间力的作用是相互的。 (一个物体对别的物体施力时,也同时受到后者对它的力)。 3.力的作用效果:力可以改变物体的运动状态,还可以改变物体的形状。(物体形状 或体积的改变,叫做形变。) 4.力的单位是:牛顿(简称:牛),符合是N。1牛顿大约是你拿起两个鸡蛋所用的力。 5.实验室测力的工具是:弹簧测力计。 6.弹簧测力计的原理:在弹性限度内,弹簧的伸长与受到的拉力成正比。 7.弹簧测力计的用法:(1)要检查指针是否指在零刻度,如果不是,则要调零;(2)认清 最小刻度和测量范围;(3)轻拉秤钩几次,看每次松手后,指针是否回到零刻度,(4)测量时弹簧测力计内弹簧的轴线与所测力的方向一致;⑸观察读数时,视线必须与刻度盘垂直。(6)测量力时不能超过弹簧测力计的量程。 8.力的三要素是:力的大小、方向、作用点,叫做力的三要素,它们都能影响力的作 用效果。 9.力的示意图就是用一根带箭头的线段来表示力。具体的画法是: (1)用线段的起点表示力的作用点; (2)延力的方向画一条带箭头的线段,箭头的方向表示力的方向; (3)若在同一个图中有几个力,则力越大,线段应越长。有时也可以在力的示意图标 出力的大小, 10.重力:地面附近物体由于地球吸引而受到的力叫重力。重力的方向总是竖直向下的。 11. 重力的计算公式:G=mg,(式中g是重力与质量的比值:g=9.8 牛顿/千克,在粗 略计算时也可取g=10牛顿/千克);重力跟质量成正比。 12.重垂线是根据重力的方向总是竖直向下的原理制成。

13.重心:重力在物体上的作用点叫重心。 14.摩擦力:两个互相接触的物体,当它们要发生或已经发生相对运动时,就会在接触面是产生一种阻碍相对运动的力,这种力就叫摩擦力。 15.滑动摩擦力的大小跟接触面的粗糙程度和压力大小有关系。压力越大、接触面越粗糙,滑动摩擦力越大。 16.增大有益摩擦的方法:增大压力和使接触面粗糙些。 减小有害摩擦的方法:(1)使接触面光滑和减小压力;(2)用滚动代替滑动;(3)加润滑油;(4)利用气垫。(5)让物体之间脱离接触(如磁悬浮列车)。 二、力和运动知识归纳 1.牛顿第一定律:一切物体在没有受到外力作用的时候,总保持静止状态或匀速直线运动状态。(牛顿第一定律是在经验事实的基础上,通过进一步的推理而概括出来的,因而不能用实验来证明这一定律)。 2.惯性:物体保持运动状态不变的性质叫惯性。牛顿第一定律也叫做惯性定律。 3.物体平衡状态:物体受到几个力作用时,如果保持静止状态或匀速直线运动状态,我们就说这几个力平衡。当物体在两个力的作用下处于平衡状态时,就叫做二力平衡。 4.二力平衡的条件:作用在同一物体上的两个力,如果大小相等、方向相反、并且在同一直线上,则这两个力二力平衡时合力为零。 5. 物体在不受力或受到平衡力作用下都会保持静止状态或匀速直线运动状态。三、压强和浮力知识归纳 1.压力:垂直作用在物体表面上的力叫压力。 2.压强:物体单位面积上受到的压力叫压强。 3.压强公式:P=F/S ,式中p单位是:帕斯卡,简称:帕,1帕=1牛/米2,压力F 单位是:牛;受力面积S单位是:米2 4.增大压强方法 :(1)S不变,F↑;(2)F不变,S↓ (3) 同时把F↑,S↓。而减小压强方法则相反。 5.液体压强产生的原因:是由于液体受到重力。

理论力学重点总结

理论力学重点总结

绪论 1.学习理论力学的目的:在于掌握机械运动的客 观规律,能动地改造客观世界,为生产建设服务。 2.学习本课程的任务:一方面是运用力学基本知 识直接解决工程技术中的实际问题;另一方面是为学习一系列的后继课程提供重要的理论基础,如材料力学、结构力学、弹性力学、流体力学、机械原理、机械零件等以及有关的专业课程。此外,理论力学的学习还有助于培养辩证唯物主义世界观,树立正确的逻辑思维方法,提高分析问题与解决问题的能力。 第一章静力学的基本公理与物体的受力分析 1-1静力学的基本概念 1.刚体:即在任何情况下永远不变形的物体。这 一特征表现为刚体内任意两点的距离永远保持不变。 2.质点:指具有一定质量而其形状与大小可以忽 略不计的物体。 1-3约束与约束力

1.

2.胶带、链条) 3.光滑接触面(线)约束:为单面约束,其约束 力常又称为法向约束力。光滑接触面(线)的约束力只能是压力,作用在接触处,方向沿着接触表面在接触处的公法线而指向物体,常用符号F N表示。 4.光滑圆柱形铰链约束:简称圆柱铰,是连接两 个构件的圆柱形零件,通常称为销钉。光滑圆柱铰链约束的约束力只能是压力,在垂直于圆柱销轴线的平面内,通过圆柱销中心,方向不定。 5.铰支座:用光滑圆柱销把结构物或构件与底座 连接,并把底座固定在支承物上而构成的支座称为固定铰链支座,简称铰支座。铰支座约束的约束力在垂直于圆柱销轴线的平面内,通过圆柱销中心,方向不定,通常表示为相互垂直的两个分力。 6.辊轴支座:将结构物或构件的铰支座用几个辊 轴支承在光滑的支座面上,就称为辊轴支座,亦称为可动铰链支座。辊轴支座约束的约束力应垂直于支承面,通过圆柱销中心,常用F N 表示。

理论力学知识点概括

理论力学知识点概括 理论力学是土木工程专业三大力学中的一门课程,也是一门相当重要的专业基础课,学好理论力学是学好后续课程的前提,要学好理论力学,那么就要注重理论力学中的基本概念、基本原理、基本方法。理论力学包括三大部分:静力学、运动学、动力学,其中动力学可以看着是静力学和运动学的综合运用。下面概括三大部分各自的知识要点: 静力学部分 在理论力学中,静力学部分研究的模型是刚体模型;在理论力学中,基本概念是相当的多,在静力学这部分主要掌握力、力偶、力系、约束、约束力、摩擦的定义;学好静力学这部分也并不是很难,掌握这部分的基本概念、基本原理、基本方法,并且正确地受力分析是学好理论力学的前提。 重要的基本概念及基本原理: 静力学中的五大公理,重点掌握其中的汇交原理、加减平衡力系及相应的推论、二力平衡原理 力对点之距,等于力的作用点对距心的矢径乘以该力的矢的矢积,判断力矩的方向时可以运用右手法则 力对轴之距,等于力在垂直这条轴的平面上的投影,对轴与此平面交点的距,力对轴的距是标量 有摩擦存在的时候,得出的答案往往是一个范围,而不是一个具体的值;摩擦分为滑动摩擦和滚动摩擦,滑动摩擦又分为静滑动摩擦和动滑动摩擦,在解答题的时候,往往利用F≤μFN来建立补充方程,而对于滚动摩擦,往往利用M ≤δFN来建立补充方程,在有滚动摩擦的时候,记住分析滚动摩阻M。 物体平衡的隐含意思是物体既不平动也不转动 二力杆是指只两端被铰结,且杆件上不受其他外力;二力杆与杆件的形状无关,只看杆件是否满足二力杆的受力条件。 在静力学这部分掌握这些基本概念就足够了。 在力学中,受力分析应该要有一个规划的步骤,下面介绍一下理论力学中受力分析的步骤: i.确定研究对象 ii.分析受力物体上的主动力 iii.分析受力物体所受的约束力,有接触的地方才会有约束力 在理论力学中,约束力的种类很多,但主要掌握这几种约束的受力分析:圆柱铰链、滚动铰链、固定端、球铰链。 在掌握上面的知识的基础上,我们可以深度地概括解答静力学这部分的具体方法:1.正确选择研究对象,并且对研究对象做出正确的受力分析 2.判断研究对象所受的力系是属于平面力系还是空间力系;如果是平面力系,那么进一步判断是平面汇交力系?平面平行力系?还是平面任意力系?如果是空间力系,那么进一步判断是空间汇交力系?空间平行力系?还是空间任意力系? 3.确定是什么力系后,就用力系相对应的方程列方程 4.如果方程的个数少于求解未知数的个数,也就是超静定问题,那么还需要找补充方程 5.联立方程求解未知数

理论力学重点总结

绪论 1.学习理论力学的目的:在于掌握机械运动的客观规律,能动地改造客观世界,为生产建 设服务。 2.学习本课程的任务:一方面是运用力学基本知识直接解决工程技术中的实际问题;另一 方面是为学习一系列的后继课程提供重要的理论基础,如材料力学、结构力学、弹性力学、流体力学、机械原理、机械零件等以及有关的专业课程。此外,理论力学的学习还有助于培养辩证唯物主义世界观,树立正确的逻辑思维方法,提高分析问题与解决问题的能力。 第一章静力学的基本公理与物体的受力分析 1-1静力学的基本概念 1.刚体:即在任何情况下永远不变形的物体。这一特征表现为刚体内任意两点的距离永远 保持不变。 2.质点:指具有一定质量而其形状与大小可以忽略不计的物体。 1-3约束与约束力 1.自由体:凡可以在空间任意运动的物体称为自由体。 2.非自由体:因受到周围物体的阻碍、限制不能作任意运动的物体称为非自由体。 3.约束:力学中把事先对于物体的运动(位置和速度)所加的限制条件称为约束。约束是 以物体相互接触的方式构成的,构成约束的周围物体称为约束体,有时也称为约束。4.约束力:约束体阻碍限制物体的自由运动,改变了物体的运动状态,因此约束体必须承 受物体的作用力,同时给予物体以相等、相反的反作用力,这种力称为约束力或称反力,属于被动力。 5.单面约束、双面约束:凡只能阻止物体沿一方向运动而不能阻止物体沿相反方向运动的 约束称为单面约束;否则称为双面约束。单面约束的约束力指向是确定的,即与约束所能阻止的运动方向相反;而双面约束的约束力指向还决定于物体的运动趋势。 6.柔性体约束:为单面约束。只能承受拉力,作用在连接点或假想截割处,方向沿着柔软 体的轴线而背离物体,常用符号F T表示。(绳索、胶带、链条) 7.光滑接触面(线)约束:为单面约束,其约束力常又称为法向约束力。光滑接触面(线) 的约束力只能是压力,作用在接触处,方向沿着接触表面在接触处的公法线而指向物体,常用符号F N表示。 8.光滑圆柱形铰链约束:简称圆柱铰,是连接两个构件的圆柱形零件,通常称为销钉。光 滑圆柱铰链约束的约束力只能是压力,在垂直于圆柱销轴线的平面内,通过圆柱销中心,方向不定。 9.铰支座:用光滑圆柱销把结构物或构件与底座连接,并把底座固定在支承物上而构成的 支座称为固定铰链支座,简称铰支座。铰支座约束的约束力在垂直于圆柱销轴线的平面内,通过圆柱销中心,方向不定,通常表示为相互垂直的两个分力。 10.辊轴支座:将结构物或构件的铰支座用几个辊轴支承在光滑的支座面上,就称为辊轴支 座,亦称为可动铰链支座。辊轴支座约束的约束力应垂直于支承面,通过圆柱销中心,常用F N表示。 11.链杆约束:为双面约束。两端用光滑铰链与其他构件连接且不考虑自重的刚杆称为链杆。 链杆约束的约束力沿链杆两端铰链的连线,指向不能预先确定,通常假设链杆受拉。12.解除约束原理:当受约束的物体在某些主动力的作用下处于平衡,若将其部分或全部的 约束除去,代之以相应的约束力,则物体的平衡不受影响。

相关文档
相关文档 最新文档