文档库 最新最全的文档下载
当前位置:文档库 › 可靠性设计要求

可靠性设计要求

可靠性设计要求
可靠性设计要求

可靠性设计要求

1适用范围

本标准规定了可靠性设计的一般要求和详细要求。

本标准适用于公司所有产品的可靠性设计工作。

2引用标准

IEC60300-2-1992 可靠性管理第2部分可靠性程序元素和任务

GB6993-86 系统和设备研制生产中的可靠性程序

GJB 450-88 装备研制与生产的可靠性通用大纲

GJB 451-90 可靠性维修性术语

GJB 437-- 88 军用软件开发规范

GB 4943-1995 信息技术设备(包括电气事务设备)的安全

3名词术语

3.1可靠性reliability

产品在规定的条件下和规定的时间内,完成规定功能的能力。

3.2可信性dependability

产品在任一时刻完成规定功能的能力。它是一个集合性术语,用来表示可用性及其影响因素:可靠性、维修性、保障性。在不引起混淆和不需要区别的条件下,与可靠性等同使用。

3.3测试性testability

产品能及时并准确地确定其状态(可工作、不可工作或性能下降),并隔离其内部的一种设计特性。

3.4维修性maintainability

产品在规定的条件下和规定的时间内,按规定的程序和方法进行维修时,保持或恢复到规定状态的能力。

3.5可靠性要求(目标)

产品可靠性的高低是由一系列指标来描述的,包括MTBF值、环境应力范围、EMC应力范围等等。这一系列指标就是对产品的可靠性要求或产品的可靠性目标。

3.6可靠性(设计)方案

为实现产品可靠性目标而制定的技术路径和方法。

3.7可靠性(设计)报告

为实现产品可靠性目标而实施的技术路径和方法。

3.8可靠性设计

从制定可靠性目标到提供可靠性(设计)报告的全过程。

3.9工作项目

组成可靠性设计的相对独立的工作内容和过程。

3.10可靠性设计评审

由不直接参加设计的专家对可靠性设计进行论证和确认的过程。

4一般要求

4.1 可靠性设计是产品设计的一部分,应与产品设计同时进行。

4.2 可靠性部负责可靠性设计标准的制定,可靠性设计的技术支持,参加重要产品可靠性设计的评审。

4.3 各事业部设可靠性负责人,负责本事业部可靠性工作。各产品设可靠性工程师,负责

本产品的可靠性设计、试验和改进。

4.4 可靠性设计分阶段进行,各阶段的输出满足本标准的要求。

a)研制规范中的可信性部分(可信性要求),主要规定系统可信性的目标和要求,在

产品方案阶段输出(模板1);

b)总体方案中的可信性部分,也可以做成单独的可信性设计方案,主要规定实现产

品可信性目标的方法和技术路线,在产品方案阶段输出(模扳2);

c)产品可信性设计报告,主要报告产品可靠性设计的实施情况,产品工程研制阶段

输出;

d)产品可靠性试验方案,产品工程研制阶段输出。

4.5 产品可信性设计,由必做的工作项目和选做的工作项目组成。

a)必做的工作项目有:

可靠性建模、预计和分配;

热设计;

EMC设计;

元器件使用设计;

b)选做的工作项目有:

安全性设计

测试性、维修性设计;

故障模式影响分析(FMEA);

元器件和电路的容差分析;

软件可靠性

4.6 本标准规定的工作项目和模板规定的内容可以裁减,但要有足够的理由。

a)产品本身的特点;

b)有关标准是否要求;

c)用户是否要求;

d)该项目所涉及的问题是否存在;

4.7可靠性设计的工作项目,由产品可靠性工程师根据本标准的要求和产品具体情况,征得项目经理同意后决定。意见不一致时由公司可靠性部裁定。

4.8 可靠性设计的各种输出,均在研发流程的相应基线进行评审,评审结果对产品是

否进入下一阶段具有一票否决权。

5详细要求

5.1 可信性要求(工作项目1)

研制规范中的可信性要求应同时满足产品使用环境、相关国内外标准和用户的要求。

5.2 可信性设计方案(工作项目2)

总体方案中的可信性设计部分(或单独的可信性设计方案)要对实现可靠性目标的各项指标进行路径和方法的描述。

5.3 可靠性试验方案(工作项目3)

5.4 可靠性建模、预计和分配(工作项目4);

a)可靠性模型要说明各单板的串并联关系,说明冗余技术的采用与否;

b)MTBF预计值要超过设计目标值;

c)MTBF预计值要超过分配值;

5.5 热设计(工作项目5)

a)进行系统级热设计,系统温升满足研制规范的要求;

b)对发热量最大和发热密度最高的局部进行热校核,局部最大温升低于研制规范要求;

5.6 EMC设计(工作项目6)

a)接地方法说明(分系统、整机、单板三层或整机、单板二层);

b)屏蔽方法和效能说明(分整机和单板二层);

c)搭接方法和效果说明;

d)滤波设计和效果说明;

e)接口抗浪涌设计和效果说明;

5.7元器件使用设计(工作项目7)

a)关键元器件清单

b)元器件降额级别,关键元器件降额说明。

c)独家元器件说明。

5.8 安全性设计(工作项目8)

按相应设计标准进行。

5.9 测试性设计(工作项目9)

按相应设计标准进行。

5.10 维修性设计

按相应设计标准进行。

5.11 故障模式分析

按相应设计标准进行。

5.12 电路板和元器件容差分析

按相应设计标准进行。

5.13 软件可靠性设计

按相应设计标准进行。

6模板

6.1 研制规范中的可信性要求

1)环境适应性

说明产品的工作环境、防潮、防震、贮存及运输等环境条件的要求。

2)可靠性要求

说明产品的MTBF目标和使用寿命,产品的致命故障时间间隔要求。

3) EMC要求

说明产品的抗静电放电 (ESD)要求;浪涌、电快速瞬变脉冲群(EFT)、电压瞬时跌落要求;射频电磁场辐射抗扰性要求;无线电干扰发射和敏感度要求等。

4)安全性要求

说明产品安全防护方面的要求。

5)可测试性要求

说明系统机内测试要求:提出检出率、虚警率、隔离率(指明故障定位及其隔离能力);

生产可测试性要求:提出在线测试的能力及应具有的方式(包括中、大规模集成电路的边界扫描测试要求),功能测试的覆盖率要求等;

软件可测试性要求:软件模型应具有可测试性,通过相应的测试软件可以进行白盒测试;对关键程序的运行状况和关键数据(或全局数据)变化情况应能够实时或准实时显示;系统的各类程序在发生运行故障时应能告警并留下历史记录,通过该记录可以准确地定位故障;软件应具有接口的跟踪能力。比如:对通讯能力的可测试性要求。>

6)维修性要求

说明产品故障的平均维修时间(MTTR)和产品的最大维修时间,产品维修方法的要求。

7)软件可靠性

a)软件可靠性要求

针对本产品提出具体的软件可靠性设计技术和指标要求。如:

确定本软件中的关键功能、关键数据,提出软件冗余设计要求;

提出软件可靠性具体指标的目标值(失效容限、平均无故障时间、软件可靠性试验要求等)。

注:编写此项内容时,可参考技术中心研究部拟制的《软件可靠性报告》。>

b)软件的安全性要求

参照相关标准,针对本产品提出软件安全性设计技术和要求。如:

防止盗版、非法用户进入系统,提出软件加密技术和要求;

对重要数据和信息,提出软件加密技术和要求;

对可能造成意外人身伤害的设备及情况,提出软件安全性设计要求。>

c)故障处理要求:

对系统中可能发生的硬件故障或错误、用户误操作等,提出软件容错设计要求;

列出必须采取措施自动记录检测出的所有系统故障及系统运行情况;

必要时,列出故障处理一览表,包括可能发生的故障级别、类型和软件容错设计技术。

6.2总体方案中的可信性设计部分(或单独的可信性设计方案)

1) 耐环境设计

根据产品的使用环境要求,确定产品的防潮、防盐雾、防霉菌、防辐射等措施,对于运

输和振动的要求,确定产品的结构和单元、单板应做的相应的防振、减振设计。同时对包装的防振、减振提出相应的要求。

2)可靠性建模、分配和预计

a)根据系统的总体设计进行可靠性建模(包括基本可靠性和任务可靠性)

b)根据系统的总体设计和MTBF规定值, 分配到各个单板的λ值(包括单板的冗余前后的λ值)。

c)过相似法和快速预计法等大概预计出每个单板λ值,与前面分配的结果相比较并进行修正,以达到整个系统的MTBF要求。>

d)简化设计

系统进行的简化设计思想,由此带来的相关单元或单板的可靠性指标的如何满足,包括功能合一的单板以及多功能的单板。

d)冗余和备份

说明系统进行的冗余设计的思想及方式,冗余前后单元、单板的可靠性指标变化和实现的要求变化。

3)热设计

产品的功耗和每个模块、单元及单板分配的功耗,确定大功耗单元/单板是否在机器的上部或者两侧,机器内部的热分布是否均匀。

确定产品内的大功耗的器件的功耗要求和发热要求,如何进行散热。机器的热流密度和体积功率密度是多少,确定必须采用何种冷却方式。

如果是强迫空气冷却方法,确定出所需的分量风量和风道。

估算机器内部实际的温度上限、温升和热分布情况

4) EMC设计

确定产品结构设计上的电磁屏蔽应采用的方法;内部地线安排的方式,与外部的地线连接的方式;确定机器内是否有保护地以及走线方式,

确定产品的外连接信号线和电源的进线,应承受的雷击浪涌、脉冲串等干扰的措施,电源进线的是否应滤波,其它的如传导干扰等线路上EMC问题的设计。

确定对静电的防护在单板和单元等各级必须满足的设计要求和方法。必须考虑防静电插座的位置。

5)元器件使用设计

参照公司的《元器件优选手册》和《元器件降额准则》确定本产品元器件的使用标准和规格,外购件、外协件的使用要求、可靠性参数和质量水平。

确定元器件的降额水平,关键元器件降额的说明。

说明独家元器件的使用情况。

确定通用件与新型号器件的使用比例,规定在单板中新电路的使用范围。

安规关键器件的确定和选择。

6)安全性设计

分析产品可能发生的危险的严重性等级和可能性等级,进行系统危险分析。

对产品的电气危险设计,确定产品中绝缘、隔离和接地要求,应采取的办法,进行FMECA 并提出控制方法。

进行产品的机械危险设计,考虑到包括机器的重心、稳定性,使用、安装和装卸中是否有卡、挤、轧或撞击,以及防爆等问题,对上述问题的措施。

危险性标志的设计,故障指示灯、安全警示标志、按钮、导线颜色等,有操作顺序要求的应有操作顺序的设计方法。

确定在错误操作后,有不会引起故障或者III级以上危险的故障。

7)防错设计

确定产品的单板或单元在结构上是否会混淆,如插错是否有危险,确定结构和电气上应采取的防范措施,以及防错的安装标志等。

对有信息显示的产品确定采用何种显示,确定显示的数据或其它信息如果有误,其它的纠正信息应能在操作能很直观地得到。

8)维修性设计

根据产品的维修性要求,确定单元、单板的维修方式和所需的维修复杂程度,包括单元的安装方法设计,可达性设计、标准化设计等,以达到最低的维修时间和费用。

可靠性设计基础试卷答案

可靠性设计基础试卷 考试时间 2013.11. 学院:—— 班级:—— 姓名:—— 学号:—— 一.填空题1'20, (共20分) 1、浴盆曲线可以分为 早期失效期 、 偶然失效期 、 耗损失效期三个阶段。我们应着力提高产品的 偶然失效期 。 2、系统故障概率变化率和引起其单元故障变化率的比值成为该单元的 关键重要 度 。 3、在FTA 树中,仅导致其他事件发生的原因事件称为 底事件 。 4、金字塔系统可靠性的评估是从金字塔的最 上 层依次想最 下 层进行,逐步进行各层次的可靠性评估,直至系统。 5、FMEA 是一种 自下而上 的失效因果关系的分析程序。 6、工程中常用的失效分布类型: 成败型 (二项分布),寿命型( 指 数 分布),性能和结构可靠性模型( 正态 分布)。 7、 降额 就是使元器件在低于其额定值的应力条件下工作。 8、产品可分为单元产品和 系统产品 。 9、可靠性筛选的目的是 剔除早期失效的产品 。 10、为了评价或提高产品(包括系统、设备、元器件、原材料)的可靠性而进行的试验,称为 可靠性试验 。 11、可靠性试验中,环境应力筛选的最有效方法是 温度循环 和 随机 振动 。 12.寿命试验的截尾方式分为 定时 截尾和 定数 截尾两种。

二.判断题'15, (1共15分) 1、点估计的特点是“简单、精度高”,区间估计的特点是“复杂、精度低”。 ( × ) 2、FEMA 只能进行定性分析,FTA 只能进行定量分析。 ( × ) 3 、 降 额 越 多 , 电 子 线 路 可 靠 性 越 高 。 ( × ) 4 、 旁 联 属 于 工 作 储 备 模 型 。 ( × ) 5、系统的逻辑图表示系统中各部分之间的物理关系。 ( × ) 6、若使用储备模型时,在层次低的部位采用的储备效果比层次高的差。 ( ×) 7、FTA 是一种由上而下的系统完整的失效因果关系的分析程序。 (√ ) 8 、 同 一 产 品 越 新 , 可 靠 性 越 高 。 ( × ) 9、 r/n 系统中的MTBFS 比并联系统少,比串联系统大。 ( √ ) 10.在工程中常认为组成系统的任何一个单元失效都会引起系统失效,故认为系统的可靠性 建模基本上是由各单元组成的并联系统。 ( × ) 11 、 严 重度分 布图 是以严 重度 级别为 纵坐 标。 ( ×) 12、割集是指故障树中一些底事件的集合,当这些事件同时发生时,顶事件必须发生。 (√ ) 13、系统结构可靠性分配过程中,对重要的单元,应分配较高的可靠度。 ( √) 14、一个系统的逻辑图和原理图是一一对应的,他们在联系形式和方框联系数目上是相同的。

可靠性设计准则

可靠性设计准则 1、新技术采用准则: 实施合理的继承性设计,在原有成熟产品的基础上开发、研制新产品; 尽量不使用不成熟的新技术、新工艺及新材料; 新技术的采用必须有良好的预研基础,并按规定进行评审和鉴定。 2、简化设计准则: 分析权衡产品功能,合并相同或相似功能,消除不必要功能; 在满足技术指标前提下尽量简化设计方案,减少零部件的数量; 尽量减少执行同一或相近功能的零部件、元器件数量; 优选标准化程度高的零部件、紧固件、元器件、连接件等; 最大限度采用通用组件、零部件、元器件,并尽量减少其品种; 必须使故障率高、易损坏、关键件的单元具有良好互换性和通用性; 产品修改时,不应改变其安装和连接方式以及有关部位的尺寸,使新旧可互换;设计须尽量使电路、结构简单的同时不给其他电路、结构增加不合理应力。 3、热设计准则: 元器件布局时应考虑周围零部件热辐射影响,将发热较大器件尽可能分散; 将热敏感器件远离热源或采取隔离(如电容器); 尽量采用温度漂移小的器件; 尽量降低接触面的热阻——加大热传导的面积、增加传导器件之间的接触压力、接触面应平整光滑且必要时可在发热体表面涂上散热图层以增加黑度系数、在传导路径中不应有绝热或隔热件; 应选用导热系数大的材料制造传导材料; 尽量缩短热传导的路径(加大横截面); 接近高温区的所有器件均应采取防护措施(间隙及使用耐高温绝缘材料); 发热器件应尽可能置于上方,条件允许应处于气流通道上; 发热量较大或电流较大元器件应安装散热器并远离其他器件; 尽可能利用金属机箱或底盘散热。

4、容差设计准则: 设计应考虑零部件元器件的制造容差、温漂、时漂的影响; 对系统参数影响较大的器件应选用低允差和高稳定性器件; 电路的阻抗匹配参数应保证在极限温度情况下电路工作稳定; 对稳定性要求高的电路,应通过容差分析进行参数设计; 正确选择元器件的工作点,使温度和使用环境的变化对电路影响最小。 5、机械环境设计准则: 应使电路结构对机械环境的影响最小; 元器件、材料的特性应满足产品的机械环境要求; 细长或较重的元器件应予以固定,以防振动疲劳断裂; 对振动和冲击强烈的部位应进行减震设计; 接插件等可移动的点接触部位,应加固和锁紧,以免振动时接触不良; 零部件应避免悬挂式安装,以防振动疲劳断裂; 供导线通过的金属隔板孔必须设置绝缘套,导线不得沿锐边、棱角铺设,以防磨损; 对于印制电路板应加固和锁紧,以免在振动时产生接触不良和脱开; 继电器安装应使触电的动作方向与衔铁的吸合方向相同,尽量不要与振动方向一致; 接插头处尽可能有支撑物; 在绕曲与振动环境下,应尽量使用软导线。 6、电磁兼容设计准则: 应采用良导体(如铜、铝)作为高频电场的屏蔽材料; 应采用导磁材料(如铁)作为低频磁场的屏蔽材料; 多重屏蔽能提高屏蔽效果和扩大屏蔽的频率范围; 有屏蔽要求的设备,应注意开口和间断处并做屏蔽处理; 金属表面之间必须紧密接触是获得良好搭接的关键; 搭接最好选用相同材料,选用不同材料时要注意搭接腐蚀问题; 在需要的场合,必须保护搭接免受潮气和其它腐蚀作用; 应把搭接片直接搭接在基体构件上,搭接片应能承受流过的电流;

可靠性设计的主要内容

可靠性设计的主要内容 1、研究产品的故障物理和故障模型 搜集、分析与掌握该类产品在使用过程中零件材料的老化、损伤和故障失效等(均为受许多复杂随机因素影响的随机过程)的有关数据及材料的初始性能(强度、冲击韧性等)对其平均值的偏离数据,揭示影响老化、损伤这一复杂物理化学过程最本质的因素,追寻故障的真正原因。研究以时间函数形式表达的材料老化、损伤的规律,从而较确切的估计产品在使用条件下的状态和寿命。用统计分析的方法使故障(失效)机理模型化,建立计算用的可靠度模型或故障模型,为可靠性设计奠定物理数学基础,故障模型的建立,往往以可靠性试验结果为依据。 2、确定产品的可靠性指标及其等级 选取何种可靠性指标取决于产品的类型、设计要求以及习惯和方便性等。而产品可靠性指标的等级或量值,则应依据设计要求或已有的试验,使用和修理的统计数据、设计经验、产品的重要程度、技术发展趋势及市场需求等来确定。例如,对于汽车,可选用可靠度、首次故障里程、平局故障间隔里程等作为可靠性指标,对于工程机械则常采用有效度。 3、合理分配产品的可靠性指标值

将确定的产品可靠性指标的量值合理分配给零部件,以确定每个零部件的可靠性指标值,后者与该零部件的功能、重要性、复杂程度、体积、重量、设计要求与经验、已有的可靠性数据及费用等有关,这些构成对可靠性指标值的约束条件。采用优化设计方法将产品(系统、设备)的可靠性指标值分配给各个零部件,以求得最大经济效益下的各零部件可靠性指标值最合理的匹配。 4、以规定的可靠性指标值为依据对零件进行可靠性设计 即把规定的可靠性指标值直接设计到零件中去,使它们能够保证可靠性指标值的实现。

可靠性设计技术工作规范

可靠性设计技术工作规范 1. 范围 本规范规定了可靠性设计大纲、工作计划编制的相关要求。 本规范规定了可靠性设计准则、原则与方法的相关要求。 2. 规范性引用文件 GJB450A-2004 装备可靠性工作通用要求 GJB841-1990 故障报告、分析和纠正措施系统 GJB899A-2009 可靠性鉴定和验收试验 GB/T7826-20012 系统可靠性分析技术――失效模式和影响分析(FMEA)程序 3. 术语和定义 3.1 可靠性 可靠性(Reliability)指产品(包括零件和元器件、整机设备、系统)在规定的条件下和规定的时间内,完成规定功能的能力。 可靠性指标主要反映产品或设备的可靠性(Reliability),可靠性是部件(Part)、元件(Component)、产品(Product)或系统(System)的完整性的最佳数量的度量。 平均故障间隔时间又称平均无故障时间(Mean Time Between Failure,MTBF)指可修复产品两次相邻故障之间的平均时间,是衡量一个产品的可靠性指标。 3.2 可靠性设计 可靠性设计(Reliability Design),即根据可靠性理论与方法确定产品零部件以及整机的结构方案和有关参数的过程。设计水平是保证产品可靠性的基础。 可靠性设计,在产品设计过程中,为消除产品的潜在缺陷和薄弱环节,防止故障发生,以确保满足规定的固有可靠性要求所采取的技术活动。可靠性设计是可靠性工程的重要组成部分,是实现产品固有可靠性要求的最关键的环节,是在可靠性分析的基础上通过制定和贯彻可靠性设计准则来实现的。 4. 可靠性设计大纲 为了保证产品满足规定的可靠性要求而制定的一套文件,包括可靠性设计组织机构及其职责,要求按进度实施的工作项目、工作程序和需要的资源等。

通用的可靠性设计分析方法

通用的可靠性设计分析方法 1.识别任务剖面、寿命剖面和环境剖面 在明确产品的可靠性定性定量要求以前,首先要识别产品的任务剖面、寿命剖面和环境剖面。 (1)任务剖面“剖面”一词是英语profile的直译,其含义是对所发生的事件、过程、状态、功能及所处环境的描述。显然,事件、状态、功能及所处环境都与时间有关,因此,这种描述事实上是一种时序的描述。 任务剖面的定义为:产品在完成规定任务这段时间内所经历的事件和环境的时序描述。它包括任务成功或致命故障的判断准则。 对于完成一种或多种任务的产品,均应制定一种或多种任务剖面。任务剖面一般应包括:1)产品的工作状态; 2)维修方案; 3)产品工作的时间与程序; 4)产品所处环境(外加有诱发的)时间与程序。 任务剖面在产品指标论证时就应提出,它是设计人员能设计出满足使用要求的产品的最基本的信息。任务剖面必须建立在有效的数据的基础上。 图1表示了一个典型的任务剖面。 (2)寿命剖面寿命剖面的定义为:产品从制造到寿命终结或退出使用这段时间内所经历的全部事件和环境的时序描述。寿命剖面包括任务剖面。 寿命剖面说明产品在整个寿命期经历的事件,如:装卸、运输、储存、检修、维修、任务剖面等以及每个事件的持续时间、顺序、环境和工作方式。 寿命剖面同样是建立产品技术要求不可缺少的信息。 图2表示了寿命剖面所经历的事件。

(3)环境剖面环境剖面是任务剖面的一个组成部分。它是对产品的使用或生存有影响的环境特性,如温度、湿度、压力、盐雾、辐射、砂尘以及振动冲击、噪声、电磁干扰等及其强度的时序说明。 产品的工作时间与程序所对应的环境时间与程序不尽相同。环境剖面也是寿命剖面和任务剖面的一个组成部分。 2.明确可靠性定性定量要求 明确产品的可靠性要求是新产品开发过程中首先要做的一件事。产品的可靠性要求是进行可靠性设计分析的最重要的依据。 可靠性要求可以分为两大类:第一类是定性要求,即用一种非量化的形式来设计、分析以评估和保证产品的可靠性;第二类是定量要求,即规定产品的可靠性指标和相应的验证方法。 可靠性定性要求通常以要求开展的一系列定性设计分析工作项目表达。常用的可靠性定性设计工作项目见表1。

可靠性设计的基本概念与方法

4.6 可靠性设计的基本概念与方法 一、结构可靠性设计概念 1.可靠性含义 可靠性是指一个产品在规定条件下和规定时间内完成规定功能的能力;而一个工业产品(包括像飞机这样的航空飞行器产品)由于内部元件中固有的不确定因素以及产品构成的复杂程度使得对所执行规定功能的完成情况及其产品的失效时间(寿命)往往具有很大的随机性,因此,可靠性的度量就具有明显的随机特征。一个产品在规定条件下和规定时间内规定功能的概率就称为该产品的可靠度。作为飞机结构的可靠性问题,从定义上讲可以理解为:“结构在规定的使用载荷/环境作用下及规定的时间内,为防止各种失效或有碍正常工作功能的损伤,应保持其必要的强刚度、抗疲劳断裂以及耐久性能力。”可靠度则应是这种能力的概率度量,当然具体的内容是相当广泛的。例如,结构元件或结构系统的静强度可靠性是指结构元件或结构系统的强度大于工作应力的概率,结构安全寿命的可靠性是指结构的裂纹形成寿命小于使用寿命的概率;结构的损伤容限可靠性则一方面指结构剩余强度大于工作应力的概率,另一方面指结构在规定的未修使用期间内,裂纹扩展小于裂纹容限的概率.可靠性的概率度量除可靠度外,还可有其他的度量方法或指标,如结构的失效概率F(c),指结构在‘时刻之前破坏的概率;失效率^(().指在‘时刻以前未发生破坏的条件下,在‘时刻的条件破坏概率密度;平均无故障时间MTTF(MeanTimeToFailure),指从开始使用到发生故障的工作时间的期望值。除此而外,还有可靠性指标、可靠寿命、中位寿命,对可修复结构还有维修度与有效度等许多可靠性度量方法。 2..结构可靠性设计的基本过程与特点 设计一个具有规定可靠性水平的结构产品,其内容是相当丰富的,应当贯穿于产品的预研、分析、设计、制造、装配试验、使用和管理等整个过程和各个方面。从研究及学科划分上可大致分为三个方面。 (1)可靠性数学。主要研究可靠性的定量描述方法。概率论、数理统计,随机过程等是它的重要基础。 (2)可靠性物理。研究元件、系统失效的机理,物理成固和物理模型。不同研究对象的失效机理不同,因此不同学科领域内可靠性物理研究的方法和理论基础也不同. (3)可靠性工程。它包含了产品的可靠性分析、预测与评估、可靠性设计、可靠性管理、可靠性生产、可靠性维修、可靠性试验、可靠性数据的收集处理和交换等.从产品的设计到产品退役的整个过程中,每一步骤都可包含于可靠性工程之中。 由此我们可以看出,结构可靠性设计仅是可靠性工程的其中一个环节,当然也是重要的环节,从内容上讲,它包括了结构可靠性分析、结构可靠性设计和结构可靠性试验三大部分。结构可靠性分析的过程大致分为三个阶段。 一是搜集与结构有关的随机变量的观测或试验资料,并对这些资料用概率统计的方法进行分析,确定其分布概率及有关统计量,以作为可靠度和失效概率计算的依据。

系统可靠性设计与分析

可靠性设计与分析作业 学号:071130123 姓名:向正平一、指数分布的概率密度函数、分布函数、可靠度函数曲线 (1)程序语言 t=(0:0.01:20); Array m=[0.3,0.6,0.9]; linecolor=['r','b','y']; for i=1:length(m); f=m(i)*exp(-m(i)*t); F=1-exp(-m(i)*t); R=exp(-m(i)*t); color=linecolor(i); subplot(3,1,1); title('指数函数概率密度函数曲线'); plot(t,f,color); hold on subplot(3,1,2); title('指数函数分布函数函数曲线'); plot(t,F,color); hold on subplot(3,1,3); title('指数指数分布可靠度函数曲线 plot(t,R,color); hold on end (3)指数分布的分析 在可靠性理论中,指数分布是最基本、最常用的分布,适合于失效率为常数 的情况。指数分布不但在电子元器件偶然失效期普遍使用,而且在复杂系统和整 机方面以及机械技术的可靠性领域也得到使用。 有图像可以看出失效率函数密度f(t)随着时间的增加不断下降,而失效率随 着时间的增加在不断的上升,可靠度也在随着时间的增加不断地下降,从图线的 颜色可以看出,随着m的增加失效率密度函数下降越快,而可靠度的随m的增加 而不断的增加,则失效率随m的增加减小越快。 在工程运用中,如果某零件符合指数分布,那么可以适当增加m的值,使零 件的可靠度会提升,增加可靠性。 二、正态分布的概率密度函数、分布函数、可靠性函数、失效率函数曲线 (1)程序语言 t=-10:0.01:10; m=[3,6,9]; n=[1,2,3]; linecolor=['r','b','y'];

可靠性设计要求

可靠性设计要求 1适用范围 本标准规定了可靠性设计的一般要求和详细要求。 本标准适用于公司所有产品的可靠性设计工作。 2引用标准 IEC60300-2-1992 可靠性管理第2部分可靠性程序元素和任务 GB6993-86 系统和设备研制生产中的可靠性程序 GJB 450-88 装备研制与生产的可靠性通用大纲 GJB 451-90 可靠性维修性术语 GJB 437-- 88 军用软件开发规范 GB 4943-1995 信息技术设备(包括电气事务设备)的安全 3名词术语 3.1可靠性reliability 产品在规定的条件下和规定的时间内,完成规定功能的能力。 3.2可信性dependability 产品在任一时刻完成规定功能的能力。它是一个集合性术语,用来表示可用性及其影响因素:可靠性、维修性、保障性。在不引起混淆和不需要区别的条件下,与可靠性等同使用。 3.3测试性testability 产品能及时并准确地确定其状态(可工作、不可工作或性能下降),并隔离其内部的一种设计特性。 3.4维修性maintainability 产品在规定的条件下和规定的时间内,按规定的程序和方法进行维修时,保持或恢复到规定状态的能力。 3.5可靠性要求(目标) 产品可靠性的高低是由一系列指标来描述的,包括MTBF值、环境应力范围、EMC应力范围等等。这一系列指标就是对产品的可靠性要求或产品的可靠性目标。 3.6可靠性(设计)方案 为实现产品可靠性目标而制定的技术路径和方法。 3.7可靠性(设计)报告 为实现产品可靠性目标而实施的技术路径和方法。 3.8可靠性设计 从制定可靠性目标到提供可靠性(设计)报告的全过程。 3.9工作项目

可靠性设计的一些内容

可靠性设计的一些内容 一、可靠性评价分析技术的应用 由于设计阶段对产品的可靠性将起到奠基作用,故在设计过程中,应不断对产品的可靠性进行定性和定量的评价分析)以便及时了解产品的可靠性指标是否有了保证,所采取的各种可靠性设计措施是否有效,有效程度如何,设计中是否还存在薄弱环节和潜在缺陷,产品在今后使用中可能会发生什么样的故障,以及故障一旦发生时,其影响和危害程度如何等等。弄清以上问题将有助于及时发现缺陷,及时改进设计,防止“带病”投产,保证预定的可靠性指标得到满足。 下面介绍几种主要的评价分析技术的应用: 1 .可靠性预计与分配 可靠性预计是在设计阶段,根据设计中所选用的电路程式、元器件、可靠性结构模型、工作环境、工作应力以及过去积累的统计数据,推测产品可能达到的可靠性水平。预计的目的不是在于了解在什么时候将发生什么样的失效,而是在于从设计开始就采取措施以防止失效的发生,并用定量的方法评价可靠性设计的效果。 可靠性分配是将可靠性指标或预计所能达到的目标值加以分解,用科学的方法,合理分配给分系统、设备、部件直至各元器件和每一个连接点、焊接点,以保证可靠性既定目标得以实现。通过分配,不仅可以层层落实设计指标,还可发现设计的薄弱环节和尚能挖掘的潜力。可靠性预计的方法一般有相似设备法、相似电路法。有源

器件法、元器件计数法及元器件应力分析法等,它们分别适用于不同的设计阶段:当产品处于方论证阶段时,可用相似设备法、相似电路法、有源器件法等快速预计法进行可行性预计,以评价设计方案的可行性;当产品处于旱期的详细设计阶段时,可用元器件计数法进行初步设计预计,以了解元器件的初步选择是否恰当,并为可靠性分配打下预计的基础,而当产品处于详细设计阶段的中期和后期,可用元器件应力分析法进行详细的设计预计,以便及时发现设计的薄弱环节或潜在能力,及时改进设计,以期达到优化设计 的目的。 下面就三种预计方法作一些简略的介绍: (1)有源器件法 所谓有源器件法,即按设备为完成规定功能所需的串联有源器件的数目预计设备失效的方法。预计公式为 λs = N* K (11.1) 式中:λs --设备的预计失效率; N--串联有源器件的数目; K ---各种设备中每个有源器件的失效率。 (2) 元器件计数法 所谓元器件计数法就是根据组成设备的各类元器件的通用失效率及其使用数量,来预计设备失效率的方法 。(3)元器件应力分析法预计 元器件应力分析法预计是考虑了温度、电应力、环境条件、元器件选

可靠性设计基础试卷2(带答案)

可靠性设计基础试卷答案 考试时间:2012年月日 学院:_________________ 班级 :_________________ 学号: __________________ 一、 判断题(1′×10,共10分) 1、区间估计的置信度越高,置信区间越宽,估计精度越低。 (√) 2、FTA 可追溯系统失效的根源到基础元件失效的组合关系,它是一种多因素的分析方法,可以分析几种因素同时起作用才能导致的某种后果。(√) 3、系统的原理图为并联的,则其逻辑图一定是并联的。(×) 4、并联模型属于非工作贮备模型。(×) 5、机械结构不可靠性设计又称为概率设计。 (√) 6、并联单元越多,系统可靠性越高。 (√) 7、采用储备模型可以提高产品的任务可靠性及基本可靠性。(×) 8、战备完好性是保障性的出发点和归结点。(√) 9、产品的故障密度函数反映了产品的故障强度。 (×) 10、为简化故障树,可将逻辑门之间的中间事件省略。 (×) 二、 填空题(1′×20,共20分)

1、研究产品失效的两种常用方法__________、__________。(FMECA、FTA) 2、在FTA树中,用来表示事件关系的基本逻辑门符号有__________、__________、__________。(与门、或门、禁门) 3、工厂单独生产和可以单独验收的零部件称为__________。(单元产品) 4 、在可靠性设计中,影响可靠度大小的积分极限 u Zδ δ σ == , 该方程称为__________,由该方程可看出Z,不但取决于传统设计的 安全系数 s l u u,同时还取决于l X,s X的离散程度sσ与lσ,Z称为可靠 系数(概率安全系数)。(联结方程) 5、球故障树所有最小割据的方法有___________、_____________。(上行法、下行法) 6、产品丧失规定的功能叫___________。(失效) 7、FTA是一种_______________的系统完整的失效因果关系的分析程序。(自上而下/由系统到元件) 8、三次设计的容是:_________________________________(系统设计,参数设计,容差设计) 9、浴盆曲线分为________、__________、_________,我们应该着力提高产品的__________。 (早期失效期、偶然失效期、耗损失效期、偶然失效期) 10、从设计的角度,可靠性分为_________________和

软件设计基本原则

软件基本设计原则 ●友好、简洁的界面设计 ●结构、导向清晰,符合国际标准 ●强大的综合查询 ●信息数据共享 ●方便及时的信息交流板块 ●准确、可逆的科技工作流模块支持 ●良好的开放性和可扩展性 ●方案生命周期长 设计原则: 设计时考虑的总体原则是:它必须满足设计目标中的要求,并充分考虑本网站的基本约定,建立完善的系统设计方案。 信息系统的实施作为信息化规划的实践和实现,必须遵循信息化规划方案的思想,对规划进行项目实施层面上的细化和实现。 首先必须遵循信息化规划“投资适度,快速见效,成熟稳定,总体最优”的总原则。具体细化到信息系统分析设计和软件系统工程上来。 ●先进性 系统构成必须采用成熟、具有国内先进水平,并符合国际发展趋势的技术、软件产品和设备。在设计过程中充分依照国际上的规范、标准,借鉴国内外目前

成熟的主流网络和综合信息系统的体系结构,以保证系统具有较长的生命力和扩展能力。 ●实用性 实用性是指所设计的软件应符合需求方自身特点,满足需求方实际需要。在合法性的基础上,应根据需求方自身特点,设置符合需求方的设计需求。对于需求方的需求,在不违背使用原则的基础上,确定适合需求的设计,满足需求方内部管理的要求。 1)设计上充分考虑当前各业务层次、各环节管理中数据处理的便利和可行, 把满足管理需求作为第一要素进行考虑。 2)采取总体设计、分步实施的技术方案,在总体设计的前提下,系统实施 时先进行业务处理层及低层管理,稳步向中高层管理及全面自动化过渡。 这样做可以使系统始终与业务实际需求紧密连在一起,不但增加了系统 的实用性,而且可使系统建设保持很好的连贯性; 3)全部人机操作设计均充分考虑不同使用者的实际需要; 4)用户接口及界面设计充分考虑人体结构特征及视觉特征进行优化设计, 界面尽可能美观大方,操作简便实用。 ●可靠性 在可靠性设计过程中应遵循以下原则: (1)可靠性设计应有明确的可靠性指标和可靠性评估方案; (2)可靠性设计必须贯穿于功能设计的各个环节,在满足基本功能的同

可靠性设计心得

可靠性设计学习心得 随着科学技术的发展,对产品的要求不断提高,不仅要具有好的性能,更要具有高的可靠性水平。采用可靠性设计弥补了常规设计的不足,使得设计方案更加贴近生产实际。所谓可靠性是指“产品在规定时间内,在规定的使用条件下,完成规定功能的能力或性质”。可靠性的概率度量称为可靠度。可靠性工程的诞生已近半个世纪的历史, 以电子产品可靠性设计为先导的可靠性工程迄今发展得比较成熟, 已形成一门独立的学科。相比之下, 机械产品的可靠性设计与研究则起步较晚。所谓机械可靠性,是指机械产品在规定的使用条件下、规定的时间内完成规定功能的能力。由于工程材料特性的离散性以及测量、加工、制造和安装误差等因素的影响,使机械产品的系统参数具有固有的不确定性,因此考虑这种固有随机性的可靠性设计技术至关重要。据有关方面统计,产品设计对产品质量的贡献率可达70%~80%,可见设计决定了产品的固有质量特性(如:功能、性能、寿命、安全性和可靠性等),赋予了产品“先天优劣”的本质特性。上世纪60年代, 对机械可靠性问题引起了广泛的重视并开始对其进行了系统研究。虽然国内外都投入了研究力量, 取得了一定的进展,但终因机械产品可靠性涉及的领域太多、可靠性研究的范围大、基础性数据缺乏等原因,机械可靠性设计在工程实际中应用得并不广泛。本文简要介绍了可靠性技术在机械领域中的应用,主要介绍了一些在机械产品设计中应用的较为成熟的可靠性技术和可靠性设计方法,并且结合当今可靠性工程学科的发展,指出了可靠性技术在机械领域中的发展和趋势。 常规设计中,经验性的成分较多,如基于安全系数的设计。 常规设计可通过下式体现: S E l F f lim ][...),,,(σσμσ=≤= 计算中,F 、l 、E 、μ、slim 等各物理量均视为确定性变量,安全系数则是一个经验性很强的系数。 上式给出的结论是:若s≤[s]则安全;反之则不安全。 应该说,上述观点不够严谨。首先,设计中的许多物理量明是随机变量;基

可靠性维修性设计报告

XX研制 可靠性、维修性设计报告编制: 审核: 批准: 工艺: 质量会签: 标准化检查: XX有限公司 2015年4月

目录 1 概述................................................... 2维修性设计.............................................. 设计目的................................................ 设计原则................................................. 维修性设计的基本内容.................................... 简化设计................................................ 互换性.................................................. 防差错设计.............................................. 检测性.................................................. 维修中人体工程设计...................................... 3 维修性分析............................................. 产品的维修项目组成...................................... 系统平均故障修复试件(MTTR)计算模型 .................... MTTR值计算.............................................. 4可靠性设计.............................................. 可靠性设计原则........................................... 可靠性设计的基本内容.................................... 简化设计................................................. 降额设计................................................. 缓冲减振设计............................................. 抗干扰措施...............................................

可靠性设计基础试卷答案

可靠性设计基础试卷 考试时间2013.11. 学院:——班级:—— 姓名:——学号:—— 一.填空题1'20, ? (共20分) 1、浴盆曲线可以分为早期失效期、偶然失效期、耗损失效期三个阶段。我们应着力提高产品的偶然失效期。 2、系统故障概率变化率和引起其单元故障变化率的比值成为该单元的关键重要度。 3、在FTA树中,仅导致其他事件发生的原因事件称为底事件。 4、金字塔系统可靠性的评估是从金字塔的最上层依次想最下层进行,逐步进行各层次的可靠性评估,直至系统。 5、FMEA是一种自下而上的失效因果关系的分析程序。 6、工程中常用的失效分布类型:成败型(二项分布),寿命型(指数分布),性能和结构可靠性模型(正态分布)。 7、降额就是使元器件在低于其额定值的应力条件下工作。 8、产品可分为单元产品和系统产品。 9、可靠性筛选的目的是剔除早期失效的产品。 10、为了评价或提高产品(包括系统、设备、元器件、原材料)的可靠性而进行的试验,称为可靠性试验。 11、可靠性试验中,环境应力筛选的最有效方法是温度循环和随机振动。 12.寿命试验的截尾方式分为定时截尾和定数截尾两种。 二.判断题'15, (1共15分) ? 1、点估计的特点是“简单、精度高”,区间估计的特点是“复杂、精度低”。(×) 2、FEMA只能进行定性分析,FTA只能进行定量分析。(×) 3、降额越多,电子线路可靠性越高。(×) 4、旁联属于工作储备模型。(×) 5、系统的逻辑图表示系统中各部分之间的物理关系。(×) 6、若使用储备模型时,在层次低的部位采用的储备效果比层次高的差。(×) 7、FTA是一种由上而下的系统完整的失效因果关系的分析程序。(√)

可靠性设计要求

可靠性设计要求 适用范围 本标准规定了可靠性设计的一般要求和详细要求。 本标准适用于公司所有产品的可靠性设计工作。 引用标准 IEC60300-2-1992 可靠性管理第2部分可靠性程序元素和任务 GB6993-86 系统和设备研制生产中的可靠性程序 GJB 450-88 装备研制与生产的可靠性通用大纲 GJB 451-90 可靠性维修性术语 GJB 437-- 88 军用软件开发规范 GB 4943-1995 信息技术设备(包括电气事务设备)的安全 名词术语 可靠性reliability 产品在规定的条件下和规定的时间内,完成规定功能的能力。 可信性dependability 产品在任一时刻完成规定功能的能力。它是一个集合性术语,用来表示可用性及其影响因素:可靠性、维修性、保障性。在不引起混淆和不需要区别的条件下,与可靠性等同使用。 测试性testability 产品能及时并准确地确定其状态(可工作、不可工作或性能下降),并隔离其内部的一种设计特性。 维修性maintainability 产品在规定的条件下和规定的时间内,按规定的程序和方法进行维修时,保持或恢复到规定状态的能力。 可靠性要求(目标) 产品可靠性的高低是由一系列指标来描述的,包括MTBF值、环境应力范围、EMC应力范围等等。这一系列指标就是对产品的可靠性要求或产品的可靠性目标。 可靠性(设计)方案 为实现产品可靠性目标而制定的技术路径和方法。 可靠性(设计)报告 为实现产品可靠性目标而实施的技术路径和方法。 可靠性设计 从制定可靠性目标到提供可靠性(设计)报告的全过程。 工作项目 组成可靠性设计的相对独立的工作内容和过程。 可靠性设计评审 由不直接参加设计的专家对可靠性设计进行论证和确认的过程。 一般要求 可靠性设计是产品设计的一部分,应与产品设计同时进行。

宁波大学结构可靠性设计基础考试复习题

一﹑单项选择题 1.我国现行规范中一般建筑物的设计使用年限为 A .5年 B 。25年 C .50年 D 。100年 2.对普通房屋和构筑物,《建筑结构可靠度设计统一标准》给出的设计使用年限为 A .5年 B 。25年 C .50年 D 。100年 3.对临时性结构,《建筑结构可靠度设计统一标准》给出的设计使用年限为 A .5年 B 。25年 C .50年 D 。100年 4.我国现行建筑规范中设计基准期为 A .10年 B 。30年 C .50年 D 。100年 5. 现行《建筑结构荷载规范》规定的基本风压值的重现期为 A.30年 B.50年 C.100年 D.150年 6. 称确定可变作用及与时间有关的材料性能的取值而选用的时间参数为 A. 结构设计基准期 B. 结构设计使用年限 C. 结构使用年限 D. 结构全寿命 7.下面哪一个变量不是随机变量? A .结构构件抗力 B .荷载最大值 T Q C .功能函数Z D .永久荷载标准值 8.结构可靠性是指 A .安全性 B 。适用性 C .耐久性 D 。安全性﹑适用性和耐久性的总称 9.在结构可靠度分析中,描述结构的极限状态一般用 A .功能函数 B 。极限状态方程 C .可靠度 D 。失效概率 10.裂缝超标破坏属于哪个极限状态范畴. A .承载力极限状态 B. 正常使用极限状态 C. 稳定极限状态 D. 强度极限状态 11.规定时间规定条件预定功能相同时,可靠指标 越大,结构的可靠程度 A.越高 B.越低 C.不变 D.视情况而定 12. 结构的失效概率与可靠度之和 A.等于1 B.大于1 C.小于1 D.不确定 13.当功能函数服从哪一个分布时,可靠指标与失效概率具有一一对应关系。 A .正态分布 B 。均匀分布 C .极值分布 D .指数分布 14. 结构的失效概率 f P 与结构抗力R 和荷载效应S 的概率密度干涉面积。

人机系统可靠性设计基本原则正式样本

文件编号:TP-AR-L2059 There Are Certain Management Mechanisms And Methods In The Management Of Organizations, And The Provisions Are Binding On The Personnel Within The Jurisdiction, Which Should Be Observed By Each Party. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 人机系统可靠性设计基本原则正式样本

人机系统可靠性设计基本原则正式 样本 使用注意:该管理制度资料可用在组织/机构/单位管理上,形成一定的管理机制和管理原则、管理方法以及管理机构设置的规范,条款对管辖范围内人员具有约束力需各自遵守。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 1.系统的整体可靠性原则 从人机系统的整体可靠性出发,合理确定人与机 器的功能分配,从而设计出经济可靠的人机系统。 一般情况下,机器的可靠性高于人的可靠性,实 现生产的机械化和自动化,就可将人从机器的危险点 和危险环境中解脱出来,从根本上提高了人机系统可 靠性。 2.高可靠性组成单元要素原则 系统要采用经过检验的、高可靠性单元要素来进 行设计。

3.具有安全系数的设计原则 由于负荷条件和环境因素随时间而变化,所以可靠性也是随时间变化的函数,并且随时间的增加,可靠性在降低。因此,设计的可靠性和有关参数应具有一定的安全系数。 4.高可靠性方式原则 为提高可靠性,宜采用冗余设计、故障安全装置、自动保险装置等高可靠度结构组合方式。 (1)、系统“自动保险”装置。自动保险,就是即使是外行不懂业务的人或不熟练的人进行操作,也能保证安全,不受伤害或不出故障。 这是机器设备设计和装置设计的根本性指导思想,是本质安全化追求的目标。要通过不断完善结构,尽可能地接近这个目标。 (2)、系统“故障安全”结构。故障安全,就是

开关电源的可靠性设计方案

开关电源的可靠性设计方案 作者:power 摘要:对影响开关电源可靠性的几个方面作出较为详细的分析比较,从工程实际出发提出提高开关电源可靠性的方案。关键词:开关电源;可靠性;电磁兼容 引言 电子产品的质量是技术性和可靠性两方面的综合。电源作为一个电子系统中重要的部件,其可靠性决定了整个系统的可靠性,开关电源由于体积小,效率高而在各个领域得到广泛应用,如何提高它的可靠性是电力电子技术的一个重要方面?1开关电源电气可靠性工程设计技术 1.1供电方式的选择 供电方式一般分为:集中式供电系统和分布式供电。现代电力电子系统一般采用采用分布式供电系统,以满足高可靠性设备的要求。 1.2电路拓扑的选择 开关电源一般采用单端正激式、单端反激式、双管正激式、双单端正激式、双正激式、推挽式、半桥、全桥等八种拓扑。其中双管正激式、双正激式和半桥电路的开关管承压仅为输入电源电压,60%降额时选用600 V的开关管比较容易,而且不会出现单向偏磁饱和的问题,这三种拓扑在高压输入电路中得到广泛的应用。

1 .3功率因数校正技术 开关电源的谐波电流污染电网,干扰了其它共网设备,还可能会使采用三相四线制的中线电流过大,引发事故,解决途径之一是采用具有功率因素校正技术的开关电源。 1.4控制策略的选择 在中小功率的电源中,电流型PWM控制是大量采用的方法,在DC-DC变换器中输出纹波可以控制在10 mV,优于电压型控制的常规电源。 硬开关技术因开关损耗的限制,开关频率一般在350 kHz 以下;软开关技术是使开关器件在零电压或零电流状态下开关,实现开关损耗为零,从而可将开关频率提高到兆赫级水平,此技术主要应用于大功率系统,小功率系统中较少见。 1.5元器件的选用 因为元器件直接决定了电源的可靠性,所以元器件的选用是非常重要。元器件的失效主要集中在以下四点:制造质量问题、器件可靠性的问题、设计问题、损耗问题。在使用中应对此予以足够重视。 1.6保护电路 为使电源能在各种恶劣环境下可靠地工作,应在设计时加入多种保护电路,如防浪涌冲击、过欠压、过载、短路、过热等保护电路。 2电磁兼容性(EMC )设计技术

人机系统可靠性设计基本原则(设备改善遵循的原则)

人机系统可靠性设计基本原则 1.系统的整体可靠性原则 从人机系统的整体可靠性出发,合理确定人与机器的功能分配,从而设计出经济可靠的人机系统。 一般情况下,机器的可靠性高于人的可靠性,实现生产的机械化和自动化,就可将人从机器的危险点和危险环境中解脱出来,从根本上提高了人机系统可靠性。 2.高可靠性组成单元要素原则 系统要采用经过检验的、高可靠性单元要素来进行设计。 3.具有安全系数的设计原则 由于负荷条件和环境因素随时间而变化,所以可靠性也是随时间变化的函数,并且随时间的增加,可靠性在降低。因此,设计的可靠性和有关参数应具有一定的安全系数。 4.高可靠性方式原则 为提高可靠性,宜采用冗余设计、故障安全装置、自动保险装置等高可靠度结构组合方式。 (1)、系统“自动保险”装置。自动保险,就是即使是外行不懂业务的人或不熟练的人进行操作,也能保证安全,不受伤害或不出故障。 这是机器设备设计和装置设计的根本性指导思想,是本质安全化追求的目标。要通过不断完善结构,尽可能地接近这个目标。 (2)、系统“故障安全”结构。故障安全,就是即使个别零部件

发生故障或失效,系统性能不变,仍能可靠工作。 系统安全常常是以正常的准确的完成规定功能为前提。可是,由于组成零件产生故障而引起误动作,常常导致重大事故发生。为达到功能准确性,采用保险结构方法可保证系统的可靠性。 从系统控制的功能方面来看,故障安全结构有以下几种: ①消极被动式。组成单元发生故障时,机器变为停止状态。 ②积极主动式。组成单元发生故障时,机器一面报警,一面还能短时运转。 ③运行操作式。即使组成单元发生故障,机器也能运行到下次的定期检查。 通常在产业系统中,大多为消极被动式结构。 5.标准化原则 为减少故障环节,应尽可能简化结构,尽可能采用标准化结构和方式。 6.高维修度原则 为便于检修故障,且在发生故障时易于快速修复,同时为考虑经济性和备用方便,应采用零件标准化、部件通用化、设备系列化的产品。 7.事先进行试验和进行评价的原则 对于缺乏实践考验和实用经验的材料和方法,必须事先进行试验和科学评价,然后再根据其可靠性和安全性而选用。

软件可靠性设计与分析

软件可靠性分析与设计 软件可靠性分析与设计 软件可靠性分析与设计的原因?软件在使用中发生失效(不可靠会导致任务的失败,甚至导致灾难性的后果。因此,应在软件设计过程中,对可能发生的失效进行分析,采取必要的措施避免将引起失效的缺陷引入软件,为失效纠正措施的制定提供依据,同时为避免类似问题的发生提供借鉴。 ?这些工作将会大大提高使用中软件的可靠 性,减少由于软件失效带来的各种损失。 Myers 设计原则 Myers 专家提出了在可靠性设计中必须遵循的两个原则: ?控制程序的复杂程度

–使系统中的各个模块具有最大的独立性 –使程序具有合理的层次结构 –当模块或单元之间的相互作用无法避免时,务必使其联系尽量简单, 以防止在模块和单元之间产生未知的边际效应 ?是与用户保持紧密联系 软件可靠性设计 ?软件可靠性设计的实质是在常规的软件设计中,应用各种必须的 方法和技术,使程序设计在兼顾用户的各种需求时, 全面满足软件的可靠性要求。 ?软件的可靠性设计应和软件的常规设计紧密地结合,贯穿于常规 设计过程的始终。?这里所指的设计是广义的设计, 它包括了从需求分析开始, 直至实现的全过程。 软件可靠性设计的四种类型

软件避错设计 ?避错设计是使软件产品在设计过程中,不发生错误或少发生错误的一种设计方法。的设计原则是控制和减少程序的复杂性。 ?体现了以预防为主的思想,软件可靠性设计的首要方法 ?各个阶段都要进行避错 ?从开发方法、工具等多处着手 –避免需求错误 ?深入研究用户的需求(用户申明的和未申明的 ?用户早期介入, 如采用原型技术 –选择好的开发方法

?结构化方法:包括分析、设计、实现 ?面向对象的方法:包括分析、设计、实现 ?基于部件的开发方法(COMPONENT BASED ?快速原型法 软件避错设计准则 ? (1模块化与模块独立 –假设函数C(X定义了问题X 的复杂性, 函数E(X定义了求解问题X 需要花费的工作量(按时间计,对于问题P1和问题P2, 如果C(P1>C(P2,则有 E(P1> E(P2。 –人类求解问题的实践同时又揭示了另一个有趣的性质:(P1+P2>C(P1 +C(P2 –由上面三个式子可得:E(P1+ P2> E(P1+E(P2?这个结论导致所谓的“分治法” ----将一个复杂问题分割成若干个可管理的小问题后更易于求解,模块化正是以此为据。 ?模块的独立程序可以由两个定性标准度量,这两个标准分别称为内聚和耦合。耦合衡量不同模块彼此间互相依赖的紧密程度。内聚衡量一个模块内部各个元素彼此结合的紧密程度。 软件避错设计准则 ? (2抽象和逐步求精 –抽象是抽出事物的本质特性而暂时不考虑它们的细节 ?举例

相关文档
相关文档 最新文档