文档库 最新最全的文档下载
当前位置:文档库 › 第22章量子力学基础教案

第22章量子力学基础教案

第22章量子力学基础教案
第22章量子力学基础教案

第二十二章量子力学基础知识

1924年德布罗意提出物质波概念。1926年薛定谔给出物质波的波函数基本动力学方程----------薛定谔方程,

玻恩对波函数统计解释。1927年海森堡提出著名的不确定关系。

海森堡、狄拉克、薛定谔各建立矩阵力学、新力学和波动力学,

形成了完整的量子力学理论。

-----------------------------------------------------------------------------------------------------------------

教学要求:

* 了解实物粒子的波动性及实验,理解物质波的统计意义;

* 能用德布罗意关系式计算粒子的德布罗意波长;

* 了解波函数统计意义及其标准化条件和归一化条件,

会简单计算粒子的概率密度及归一化常数;

* 理解不确定关系并作简单的计算;

* 了解薛定谔方程及一维定态薛定谔方程

* 了解一维无限深势阱中粒子的波函数求解步骤,

学会用波函数求概率密度和发现粒子的概率。

教学内容:

§22-1波粒二象性

§22-2 波函数

§22-3 不确定关系

§22-4 薛定谔方程(简略,一维定态薛定谔方程)

§22-5 一维无限深势阱中的粒子

§22-6 势垒隧道效应 *

§22-7 谐振子 *

教学重点:

实物粒子的波粒二象性及其统计意

义;

概率密度和发现粒子的概率计算;

实物粒子波的统计意义—概率波;

波函数的物理意义及不确定关系。

作业

22-01)、22-03)、22-05)、22-07)、

22-09)、22-11)、22-13)、22-15)、

22-17)、22-18)、-----------------------------------------------------------------------

§22-1 波粒二象性

1924年,法国德布罗意在博士论文中提出:“整个世纪以来,在辐射理论方面,比起波动的研究方法来,是过于忽略了粒子的研究方法;那么在实物理论上,是否发生了相反的错误,把粒子的图象想象得太多,

而过于忽略了波的图象?”德布罗意根据光与实物

的对称性预言了实物粒子的波的频率和波长。

一 德布罗意假设

一切实物粒子都具有波粒二象性(德布罗

意按对称性及类比推论提出)。

* 物质波或德布罗意波:

其波频率和波长分别为:

???==p h h E //λν

(22-1) 式中:E ——实物粒子的能量 P ——实物粒子的动

量 ————

德布罗意关系式

讨论

1)实物粒子波与光的波粒二象性

[(21-4)、(21-6)式]完全一致,

宏观物体质量大,物质波长极短,

难以观测,

微观粒子(如电子),其质量小,物

质波长可观测到。

2) (22-1) 式左边为描写“波”的物

理量,右边为描写“粒子”的物理量。

3)经电势差U 加速后的电子(初速度忽略不计, 静质量e m ),

将获得eU E k =动能,由相对论动

量与能量关系:

022*********)(E E E E E E E E p c k k k +=-+=-=

可得电子动量为:

22022121eUm U e c E E E c p e k k +=+=

由德布罗意关系式得波长:

2222c

eUm U e hc p h e +==λ

(22-2)

4)如果经电势差U 加速后电子的速率c v <<,可忽略相对论效应,

直接由动量

eU m E m p e k e 22==得到: nm 225

.12U eU m h p h e ===λ (22-3)

--------------------------------------------------------------------------------------------------------------------

例22.1 计算电子经过 (1)

V 100.16?=U ,(2) V 150

=U 电压加速后的德布罗意波

长。

解 (1) 电子经电场加速后的德布罗意波长可由(22-2)式计算:

97

.01(2.12222U c eUm U e hc e +=+=

λ 代入V 100.16?=U ,可得:

nm 1071.84-?=λ(极短)

(电子显微镜加速电子获得波长

极短电子波,提高显微镜分辨率)

(2) 加速电压为150V 时(忽略相对

论效应),

采用非相对论波长公式(22-3)得:

nm 10.0225

.1==U λ

可知:由加速电压为150V 得动能

eV 150=k E 电子的德布罗意波长与X 射线波长同数量

级,因此观察电子衍射可采用与X 射线衍

射相同方法,例如用晶体作天然光栅实现衍射。

例22.2 计算质量kg 01.0=m ,速率

m/s 500=V 的子弹的德布罗意波长。 解: 根据(22-1)式得:

m 1033.1500

01.010626.63434

--?=??===mV h p h λ

可见:宏观物体的德布罗意波长小到

实验上难以观测,仅表现出粒子性。 二 物质波的实验验证

1、电子衍射实验(戴维逊和革末,

1927年)

热阴极K发出电子,过狭缝D成很细电子射线束,以掠射角φ投射镍单晶M上,集电器B收

集反射电子,电流计G测电子流强度I。保持掠射角φ不变,改变加速电压U大小测量出不

I~曲线如图所示。同电流强度I,绘制U

实验表明:随加速电压U增加,当电压取某些特定值时,电流呈现峰值,

显示规律性(与X射线在晶体上衍射规律极为相似)。

理论计算:按德布罗意波长公式:

nm 225.1U

p h ==λ (忽略相对论效应)

及电子波λ,φ及晶格常数

d 的布拉格公式:

λφk d =sin 2 ( k =

1,2,3,……. )

有:

U k d /225.1sin 2=φ

得电流峰值处对应的电压

为:

φsin 2/225.1d k U ?=

实验结果与理论预期值符合相当好。

实验还测量电子波长与德布罗意关系式计算一致

2、 电子衍射实验(汤姆逊,1927

年,英国),

高能电子束穿过多晶薄膜,照相底片

上得到电子衍射环状图样。

3、电子的单缝、双缝和多缝衍射实验(约恩逊,1961年)

图为电子双缝衍射实验明暗衍射条纹,直接表现电子的波动性。

* 对质子、中子及原子、分子等的有关实验:

证实波动性,其波长也都和德布罗

意关系相符合。

三、物质波的统计诠释——概率波

粒子概念和波动概念代表仅有的两种可能的能量输送方式。

经典波动代表某物理量在时空中周期性地变化,波是扩展的,弥漫在空间某一区域,

波还是兼容的,同一区域中,几列波可互相叠加,产生干涉、衍射现象。

而粒子表现为颗粒性,其空间广延性却等于零,并具有排它性,可在确定轨道上运行。

性质如此迥异的两概念如何互相联系统一到同一个客体上?

1、概率波概念(波恩)

(电子的双缝衍射实验说明这种波动性的意义)

两种实验方法:

1)射向双缝电子流强度很大,屏上出现衍射图样(图f)--------电子波动性;

2)控制电子流,电子一个个发射到屏,一个个感光点(图a、b)----电子粒子性;

实验发现:

1)当到达屏电子数少,感光点分布无

规则,随机性大。但电子数目不断

增多,

落点位置分布逐渐显出一定规律性,数目越多,规律性明显,(图c~f)。

2)电子分布最集中地方正好是衍射明纹中心的位置,

电子分布几乎为零的地方正好是衍射暗纹中心的位置。

3)在实验条件相同下,不管开始时电

子落点分布多么不规则,最终大量

电子落

点形成衍射图样都一样。

(大量电子不规则落点的群体行为遵从统计规律)

2、波恩统计观点解释:

衍射明纹地方,到达电子多,电子在这些地方出现概率大;

衍射暗纹地方,到达电子少,电子在这些地方出现概率小,

衍射条纹明暗分布与到达该处电子数目成正比,

实物粒子的波动性是一种统计行为,实物粒子波是概率波。

(波恩统计解释不仅对电子波适用,其它微观粒子波动性也如此)

* 讨论:

1)物质波不是指微观粒子以波形式在空间运动,而是指粒子在空间各处出现

的概率分

布服从波的规律。

2)物质波是概率波的统计解释,不意味必须有大量粒子存在时才具有波动性,容易误

解为波动性是粒子间相互作用的结果。

3)单个电子具有波动性,电子自身与自身干涉形成衍射图样。波动性是微观粒子自身

具有的特性。

4)在量子力学的概念中实物粒子波与经典波有明显区别。实物粒子波不代表描述粒子

某一物理量在时空中周期性变化,5)粒子在空间各处出现的概念分布呈现的波动表现——概率波,保留波具有迭加性,

不是经典波,是量子波。

6)实物粒子不是经典粒子,经典粒子在运动过程中有确定的轨道,实物粒子具有波动

性,同一时刻,它出现在空间不同的位置具有不同的概率----你不可能确切地知道它

到底出现在哪里,你只知道它出现在那里的概率,它没有轨道概念,只是一颗量子

粒子。量子粒子的统计行为遵循一种可以预言的波动图样,量子粒子与量子波是统

一的。

---------------------------------------------------------------------------------------------------------------------

§22-2 波函数

实物粒子具有波动性,其运动状态由概率波描述

* 波函数:

概率波的数学表达式称为波函数。波函数通常以ψ表示(一般是空间和时间的函数):

ψ

ψ

,

)t

(r

不同的粒子,在不同的作用条件下,波

函数的具体形式不同

1、粒子一维自由运动的波函数:

设:自由粒子沿x 轴正方向运动,

能量E 和动量p 恒定。

按照德布罗意关系,与自由粒子运

动相联系的:

德布罗意波长

p h =λ

德布罗意频率

h E =ν (保持不变)

在波动理论中频率和波长恒定的波

为单色平面波(一无限长的波列),

有:

)(2cos λνπx

t A y -=

也可表示成复指数函数形式:

)

(2λνπx t i Ae y --=

将波长和频率代入上式,并以ψ表

示波函数,0ψ表示波函数振幅,

可得:

)(0)(20)(20xp Et i xp Et h i h xp t h E i e e

e

------===ηψψψψππ

(在一般情况下,表示实物粒子运

动的波函数用复函数形式)

2、实物粒子波的强度:

用波函数描述概率波,波函数应能体现粒子在空间各处出现概率大小。

(以电子双缝衍射为例

理解两理论解释间关系)

由此可知粒子(电子)在某处出现概率

大小正比于该处粒子(电子)波强度

可将实物粒子波的强度表示为:

*2ψψψ?=

(波函数模的平方,*ψ为波函

数ψ的复共轭函数)

3、概率密度函数:

考虑空间某点(x ,y ,z )附近的一个小体积元dV ,

若粒子出现在dV 内的概率用ρd 表示,ρd 正比于该处粒子波的强度,

即正比于波函数模的平方:

dV d 2ψ∝ρ

(如果将比例常数包含在波函数ψ中)

则概率密度——粒子出现在单位体积中概率为:

*2ψψψ?===dV

d ρρ (22-4)

—— 概

率密度函数 (波函数模平方等于波函数描述粒子在t 时刻出现在空间(x ,y ,z )处的概率密度) 注意:

1)波函数意义:

波函数在经典物理中没有相对应力学量,也不具可观察测量的直接物理意义,波函数

意义体现在波函数模的平方上,给出了粒子出现的概率密度,并以概率的形式提供有

关粒子运动的全部信息,所以波函数又称为概率幅,其平方等于概率密度。

2)波函数的标准化条件:

波函数必须保证粒子在任一时刻任一空间范围内出现的概率具有唯一性,并且不应在

某处发生突变和变得无限大,

这要求波函数满足单值,连续,有限的条件——波函数的标准化条件。

3)波函数的归一化条件:

任一时刻粒子在整个空间出现的总概率应该等于1,

12=?dV V ψ

(22-5) —— 波函

数的归一化条件

-----------------------------------------------------------------------------------------------------------------

例22.3 求沿x 轴运动的自由粒子的概率密度函数。

解 沿x 轴运动的自由粒子的波函数为:

)xp Et (i e )t ,x (--=η0ψψ (0ψ为一常数)

概率密度函数为:

第1章 量子力学基础-习题与答案

一、是非题 1. “波函数平方有物理意义, 但波函数本身是没有物理意义的”。对否 解:不对 2. 有人认为,中子是相距为10-13 cm 的质子和电子依靠库仑力结合而成的。试用测不准关系判断该模型是否合理。 解:库仑吸引势能大大地小于电子的动能, 这意味着仅靠库仑力是无法将电子与质子结合成为中子的,这个模型是不正确的。 二、选择题 1. 一组正交、归一的波函数123,,,ψψψ。正交性的数学表达式为 a ,归一性的 表达式为 b 。 () 0,() 1i i i i a d i j b ψψτψψ** =≠=?? 2. 列哪些算符是线性算符------------------------------------------------------ (A, B, C, E ) (A) dx d (B) ?2 (C) 用常数乘 (D) (E) 积分 3. 下列算符哪些可以对易-------------------------------------------- (A, B, D ) (A) x ? 和 y ? (B) x ?? 和y ?? (C) ?x p 和x ? (D) ?x p 和y ? 4. 下列函数中 (A) cos kx (B) e -bx (C) e -ikx (D) 2 e kx - (1) 哪些是 dx d 的本征函数;-------------------------------- (B, C ) (2) 哪些是的22 dx d 本征函数;-------------------------------------- (A, B, C ) (3) 哪些是22dx d 和dx d 的共同本征函数。------------------------------ (B, C ) 5. 关于光电效应,下列叙述正确的是:(可多选) ------------------(C,D ) (A)光电流大小与入射光子能量成正比 (B)光电流大小与入射光子频率成正比 (C)光电流大小与入射光强度成正比 (D)入射光子能量越大,则光电子的动能越大 6. 提出实物粒子也有波粒二象性的科学家是:------------------------------( A )

《大学物理aii》作业 no08 量子力学基出 参考解答

《大学物理AII 》作业No.08量子力学基础 班级________学号________姓名_________成绩_______-------------------------------------------------------------------------------------------------------****************************本章教学要求**************************** 1、掌握物质波公式、理解实物粒子的波粒二象性特征。 2、理解概率波及波函数概念。 3、理解不确定关系,会用它进行估算;理解量子力学中的互补原理。 4、会用波函数的标准条件和归一化条件求解一维定态薛定谔方程。 5、理解薛定谔方程在一维无限深势阱、一维势垒中的应用结果、理解量子隧穿效应。 ------------------------------------------------------------------------------------------------------- 一、填空题 1、德布罗意在爱因斯坦光子理论的启发下提出,具有一定能量E 和动量P 的实物粒子也具波动性,这种波称为(物质)波;其联系的波长λ和频率ν与粒子能量E 和动量P 的关系为(νh E =)、(λh p =)。德布罗意的假设,最先由(戴维 孙-革末)实验得到了证实。因此实物粒子与光子一样,都具有(波粒二象性)的特征。 2、玻恩提出一种对物质波物理意义的解释,他认为物质波是一种(概率波),物质波的强度能够用来描述(微观粒子在空间的概率密度分布)。 3、对物体任何性质的测量,都涉及到与物体的相互作用。对宏观世界来说,这种相互作用可以忽略不计,但是对于微观客体来说,这种作用却是不能忽略。因此对微观客体的测量存在一个不确定关系。其中位置与动量不确定关系的表达式为(2 ≥???x p x );能量与时间不确定关系的表达式为(2 ≥???t E )。 4、薛定谔将(德布罗意公式)引入经典的波函数中,得到了一种既含有能量E 、动量P ,又含有时空座标的波函数),,,,,(P E t z y x ψ,这种波函数体现了微观粒子的波粒二象的特征,因此在薛定谔建立的量子力学体系中,就将这种波函数用来描述(微观粒子的运动状态)。

第22章量子力学基础教案

第二十二章量子力学基础知识 1924年德布罗意提出物质波概念。1926年薛定谔给出物质波的波函数基本动力学方程—薛定谔方程, 玻恩对波函数统计解释。1927年海森堡提出著名的不确定关系。 海森堡、狄拉克、薛定谔各建立矩阵力学、新力学和波动力学, 形成了完整的量子力学理论。--------------------------------------------------------------------------- 教学要求: * 了解实物粒子的波动性及实验,理解物质波的统计意义; * 能用德布罗意关系式计算粒子的德布罗意波长; * 了解波函数统计意义及其标准化条件和归一化条件,

会简单计算粒子的概率密度及归一化常数; * 理解不确定关系并作简单的计算; * 了解薛定谔方程及一维定态薛定谔方程 * 了解一维无限深势阱中粒子的波函数求解步骤, 学会用波函数求概率密度和发现粒子的概率。 教学内容: §22-1 波粒二象性 §22-2 波函数 §22-3 不确定关系 §22-4 薛定谔方程(简略,一维定态薛定谔方程) §22-5 一维无限深势阱中的粒子 §22-6 势垒隧道效应 * §22-7 谐振子 * 教学重点: 实物粒子的波粒二象性及其统计意

义; 概率密度和发现粒子的概率计算; 实物粒子波的统计意义—概率波; 波函数的物理意义及不确定关系。 作业 22-01)、22-03)、22-05)、22-07)、 22-09)、22-11)、22-13)、22-15)、 22-17)、22-18)、 ---------------------------------- --------------------------------- §22-1 波粒二象性 1924年,法国德布罗意在博士论文中提出:“整个世 纪以来,在辐射理论方面,比起波动的研究方法来, 是过于忽略了粒子的研究方法;那么在实物理论上, 是否发生了相反的错误,把粒子的图象想象得太多, 而过于忽略了波的图象?”德布罗意根据光与实物的

第十六章 量子力学基础

第十六章 量子力学基础 16-1试比较概率波与经典物理中的波的不同特性。 答:微观粒子的运动状态称为量子态,是用波函数(),r t ψ来描述的,这个波函数所反映的微观粒子波动性,就是德布罗意波,也称为概率波。它与经典物理中的波有如下区别: (1)描述微观粒子的波函数(),r t ψ并不表示某物理量的波动,它的本身没有直接的物理意义。这与经典物理中的波是不同的。 (2)微观粒子的波函数(),r t ψ的模的平方:()2 ,r t ψ表示在空间某处粒子被发现的概率密度,这种概率在空间的分布,遵从波动的规律,因此称之为概率波。这与经典物理中的波也是不同的。 (3)在经典物理学中,波函数(),r t ψ和(),A r t ψ(A 是常数)代表了能量或强度不同的两种波动状态;而在量子力学中,这两个波函数却描述了同一个量子态,或者说代表了同一个概率波,因为它们所表示的概率分布的相对大小是相同的。也就是说,对于空间任意两点i r 和j r 下面的关系必定成立: ()() ()() 222 2 ,,,,i i j j r t A r t r t A r t ψψ= ψψ 所以,波函数允许包含一个任意的常数因子。这与经典物理中的波也是不同的。 16-2概述概率波波函数的物理意义。 答:概率波波函数的物理意义:微观粒子的波函数(),r t ψ的模的平方:()2 ,r t ψ表示在空间某处粒子被发现的概率密度,这种概率在空间的分布,遵从波动的规律,因此称之为概率波。 波函数具有:(1)单值性、连续性和有限性;(2)波函数满足归一化条件。(3)波函数允许包含一个任意的常数因子(即:(),r t ψ与(),A r t ψ描述同一个量子态)(4)满足态叠加原理,即如果函数

第一章 量子力学基础和原子结构

第一章 量子力学基础和原子结构 一、填空题 1、若用波函数ψ来定义电子云,则电子云即为_________________。 2、氢原子s ψ1在 r =a 0和 r =2a 0处的比值为_____________。 3、有两个氢原子,第一个氢原子的电子处于主量子数 n =1 的轨道, 第二个氢原子的电子处于n =4 的轨道。 (1)原子势能较低的是______, (2) 原子的电离能较高的是____。 4、设氢原子中电子处在激发态 2s 轨道时能量为E 1, 氦原子处在第一激发态 1s 12s 1时的2s电子能量为E 2,氦离子He + 激发态一个电子处于 2s 轨道时能量为E 3, 请写出E 1,E 2,E 3的从大到小顺序。_____________。 5、对氢原子 1s 态: (1) 2ψ在 r 为_______________处有最高值 (2) 径向分布函数 224ψr π在 r 为____________处有极大值; (3) 电子由 1s 态跃迁至 3d 态所需能量为_____________。 6、H 原子(气态)的电离能为 13.6 eV, He +(气态)的电离能为 _______ eV。 二、选择题 1、波长为662.6pm 的光子和自由电子,光子的能量与自由电子的动能比为何值? (A )106:3663 (B )273:1 (C )1:C (D )546:1 2、一电子被1000V 的电场所加速.打在靶上,若电子的动能可转化

为光能,则相应的光波应落在什么区域? (A) X光区(约10-10m) (B)紫外区(约10-7m) (C)可见光区(约10-6m)(D)红外区(约10-5m 3、普通阴极管管径为10-2m数量级.所加电压可使电子获得105ms-1速度,此时电子速度的不确定量为十万分之一,可用经典力学处理.若以上其它条件保持不变则阴极管的管径在哪个数量级时必须用量子力学处理? (A)约10-7m (B)约10-5m (C)约10-4m (D)约10-2m 4、下列条件不是品优函数的必备条件的是 (A)连续(B)单值(C)归一(D)有限或平方可积 5、己知一维谐振子的势能表达式为V=kx2/2,则该体系的定态薛定谔方程应当为 6、粒子处于定态意味着 (A)粒子处于概率最大的状态 (B)粒子处于势能为0的状态 (C)粒子的力学量平均值及概率密度分布都与时间无关的状态

第一章 量子力学基础知识

《结构化学基础》 讲稿 第一章 孟祥军

第一章 量子力学基础知识 (第一讲) 1.1 微观粒子的运动特征 ☆ 经典物理学遇到了难题: 19世纪末,物理学理论(经典物理学)已相当完善: ? Newton 力学 ? Maxwell 电磁场理论 ? Gibbs 热力学 ? Boltzmann 统计物理学 上述理论可解释当时常见物理现象,但也发现了解释不了的新现象。 1.1.1 黑体辐射与能量量子化 黑体:能全部吸收外来电磁波的物体。黑色物体或开一小孔的空心金属球近似于黑体。 黑体辐射:加热时,黑体能辐射出各种波长电磁波的现象。 ★经典理论与实验事实间的矛盾: 经典电磁理论假定:黑体辐射是由黑体中带电粒子的振动发出的。 按经典热力学和统计力学理论,计算所得的黑体辐射能量随波长变化的分布曲线,与实验所得曲线明显不符。 按经典理论只能得出能量随波长单调变化的曲线: Rayleigh-Jeans 把分子物理学中能量按自由度均分原则用到电磁辐射上,按其公式计算所得结果在长波处比较接近实验曲线。 Wien 假定辐射波长的分布与Maxwell 分子速度分布类似,计算结果在短波处与实验较接近。 经典理论无论如何也得不出这种有极大值的曲线。 ? 1900年,Planck (普朗克)假定: 黑体中原子或分子辐射能量时作简谐振动,只能发射或吸收频率为ν, 能量为 ε=h ν 的整数倍的电磁能,即振动频率为 ν 的振子,发射的能量只能是 0h ν,1h ν,2h ν,……,nh ν(n 为整数)。 ? h 称为Planck 常数,h =6.626×10-34J ?S ? 按 Planck 假定,算出的辐射能 E ν 与实验观测到的黑体辐射能非常吻合: ●能量量子化:黑体只能辐射频率为 ν ,数值为 h ν 的整数倍的不连续的能量。 能量波长 黑体辐射能量分布曲线 () 1 /81 3 3 --= kt h c h e E ννπν

清华大学《大学物理》习题库试题及答案----10-量子力学习题解读

清华大学《大学物理》习题库试题及答案----10-量子力学习题解读

一、选择题 1.4185:已知一单色光照射在钠表面上, 测得光电子的最大动能是1.2 eV ,而钠的红限波 长是5400 ?,那么入射光的波长是 (A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? [ ] 2.4244:在均匀磁场B 内放置一极薄的金 属片,其红限波长为λ0。今用单色光照射,发现 有电子放出,有些放出的电子(质量为m ,电荷 的绝对值为e )在垂直于磁场的平面内作半径为 R 的圆周运动,那末此照射光光子的能量是: (A) (B) (C) (D) [ ] 3.4383:用频率为ν 的单色光照射某种金 属时,逸出光电子的最大动能为E K ;若改用频 率为2ν 的单色光照射此种金属时,则逸出光电 子的最大动能为: (A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K [ ] 4.4737: 在康普顿效应实验中,若散射光 波长是入射光波长的1.2倍,则散射光光子能量 ε与反冲电子动能E K 之比ε / E K 为 (A) 2 (B) 3 (C) 4 (D) 5 [ ] 0λhc 0λhc m eRB 2)(2+0λhc m eRB +0λhc eRB 2+

5.4190:要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV [] 6.4197:由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出: (A) 一种波长的光(B) 两种波长的光(C) 三种波长的光(D) 连续光谱[] 7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV,当氢原子从能量为-0.85 eV的状态跃迁到上述定态时,所发射的光子的能量为 (A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV [] 8.4750:在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是 (A) 12.1 eV (B) 10.2 eV (C) 12.1 eV,10.2 eV和1.9 eV (D) 12.1 eV,10.2 eV和 3.4 eV [] 9.4241:若 粒子(电荷为2e)在磁感应

第十九章 量子力学基础2(答案)

第十九章 量子力学基础(Ⅱ) (薛定谔方程、一维无限深势阱、隧道效应、能量和角动量量子化、电子自旋、多电子原子) 一. 选择题 [ C ]1.(基础训练10)氢原子中处于2p 状态的电子,描述其量子态的四个量子数(n ,l ,m l ,m s )可能取的值为 (A) (2,2,1,21?). (B) (2,0,0,21 ). (C) (2,1,-1,21?). (D) (2,0,1,2 1 ). 【提示】p 电子:l =1,对应的m l 可取-1、0、1, m s 可取 21或2 1?。 [ C ]2.(基础训练11)在激光器中利用光学谐振腔 (A) 可提高激光束的方向性,而不能提高激光束的单色性. (B) 可提高激光束的单色性,而不能提高激光束的方向性. (C) 可同时提高激光束的方向性和单色性. (D) 既不能提高激光束的方向性也不能提高其单色性. [ D ]3.(自测提高7)直接证实了电子自旋存在的最早的实验之一是 (A) 康普顿实验. (B) 卢瑟福实验. (C) 戴维孙-革末实验. (D) 斯特恩-革拉赫实验. [ C ]4.(自测提高9)粒子在外力场中沿x 轴运动,如果它在力场中的势能分布如附图所示,对于能量为 E < U 0从左向右运动的粒子,若用 ρ1、ρ2、ρ3分别表示在x < 0,0 < x a 三个区域发现粒子的概率,则有 (A) ρ1 ≠ 0,ρ2 = ρ3 = 0. (B) ρ1 ≠ 0,ρ2 ≠ 0,ρ3 = 0. (C) ρ1 ≠ 0,ρ2 ≠ 0,ρ3 ≠ 0. (D) ρ1 = 0,ρ2 ≠ 0,ρ3 ≠ 0. 【提示】隧道效应 二. 填空题 1.(基础训练17)在主量子数n =2,自旋磁量子数2 1 =s m 的量子态中,能够填充的最大电子数是_________. 【提示】L 壳层:n =2,能够填充的最大电子数是2n 2=8。考虑到本题m s 只取2 1 ,此时能够填充的最大电子数是4。 2.(基础训练20)在下列给出的各种条件中,哪些是产生激光的条件,将其标号列下:(2) (3 ) (4) (5). (1)自发辐射.(2)受激辐射.(3)粒子数反转.(4)三能极系统.(5)谐振腔. x O U (x )U 0 a

第一章量子力学基础和原子轨道报告

第一章 量子力学基础与原子结构 一、单项选择题(每小题1分) 1.一维势箱解的量子化由来( ) ① 人为假定 ② 求解微分方程的结果 ③ 由势能函数决定的 ④ 由微分方程的边界条件决定的。 2.下列算符哪个是线性算符( ) ① exp ② ▽2 ③ sin ④ 3.指出下列哪个是合格的波函数(粒子的运动空间为 0+)( ) ① sinx ② e -x ③ 1/(x-1) ④ f(x) = e x ( 0 x 1); f(x) = 1 ( x 1) 4.基态氢原子径向分布函数D(r) ~ r 图表示( ) ① 几率随r 的变化 ② 几率密度随r 的变化 ③ 单位厚度球壳内电子出现的几率随r 的变化 ④ 表示在给定方向角度上,波函数随r 的变化 5.首先提出微观粒子的运动满足测不准原理的科学家是( ) ①薛定谔 ② 狄拉克 ③ 海森堡 ③波恩 6.立方势箱中22 810m a h E <时有多少种状态( ) ① 11 ② 3 ③ 7 ④ 2 7.立方势箱在22 812m a h E ≤的能量范围内,能级数和状态数为( ) ①5,20 ② 6,6 ③ 5,11 ④ 6,17 8.下列函数哪个是22 dx d 的本征函数( ) ① mx e ② sin 2x ③ x 2+y 2 ④ (a-x)e -x 9.立方势箱中22 87m a h E <时有多少种状态( ) ① 11 ② 3 ③ 4 ④ 2 10.立方势箱中22 89m a h E <时有多少种状态( ) ① 11 ② 3 ③ 4 ④ 2 11.已知x e 2是算符x P ?的本征函数,相应的本征值为( ) ① i h 2 ② i h 4 ③ 4ih ④ πi h

11第十九章量子力学基础2作业答案.doc

3.(自 提高16)有一种原子,在基态时 =1和〃 =2的主壳层都填满电子, 3s 次壳层也 作业+—(第十九章 量子力学简介(II)) (薛定谱方程、一维无限深势阱、隧道效应、能量和角动量量子化、电子自旋、多电子原子) 电子组态 [C ]1.(基础训练10)氢原子中处于2p 状态的电子,描述其量子态的四个量子数(〃,I, 可能 取的值为 (A ) (2, 2, 1, ")? (B ) (2, 0, 0, O (C ) (2, 1, -1, 少 (D ) (2, 0, 1, 1 【提示】P 电子:Z=b 对应的叫可取一1、0、1,风可取上或一 2 2 2.(基础训练17)在主量子数// =2,自旋磁量子数=上的量子态中,能够填充的最大电 2 子数是 4 . 【提示】主量子数〃 =2的L 克层上最多可容纳2^=8个电子(电子组态为2$22p6),如 仅考虑自旋磁量子数=-的量子态,则能够填充的电子数为上述值的一半。 2 填满电子,而3p 壳层只填充一半.这种原子的原子序数是_15 ,它在基态的电子组态为 “2 2s? 2I )6 3S 2 31)3 . 4.(自测提高17)在下列各组量子数的空格上,填上适当的数值,以便使它们可以描述原子 中电子的状态: 1 I (1) n =2, / = 1 ,如=一1, in.=—. 2 n 1 (2) (2) n =2, / =0, nil = 0 , in,=—. ------ 2 If 1 (3) 〃 =2, / =1? mi — m s =—或-—. 2 2 【提示】/的取值:0,1,2,……(〃-1); 叫的取值:0,±1,±2,……±/; 的取值:±1 激光 [C ]5,(基础训练11)在激光器中利用光学谐振腔 (A) 可提高激光束的方向性,而不能提高激光束的单色性. (B) 可提高激光束的单色性,而不能提高激光束的方向性. (C) 可同时提高激光束的方向性和单色性.

第十三章 量子力学基础2作业答案

(薛定谔方程、一维无限深势阱、隧道效应、能量和角动量量子化、电子自旋、多电子原子) 一. 选择题 [ C ]1. (基础训练 10)氢原子中处于2p 状态的电子,描述其量子态的四个量子数(n ,l ,m l ,m s )可能取的值为 (A) (2,2,1,2 1 -). (B) (2,0,0,21). (C) (2,1,-1,2 1 -). (D) (2,0,1,21). ★提示:2p 电子对应的量子数n = 2; l = 1,只有答案(C )满足。 [ C ]2. (基础训练11)在激光器中利用光学谐振腔 (A) 可提高激光束的方向性,而不能提高激光束的单色性. (B) 可提高激光束的单色性,而不能提高激光束的方向性. (C) 可同时提高激光束的方向性和单色性. (D) 既不能提高激光束的方向性也不能提高其单色性. [ D ]3. (自测提高7)直接证实了电子自旋存在的最早的实验之一是 (A) 康普顿实验. (B) 卢瑟福实验. (C) 戴维孙-革末实验. (D) 斯特恩-革拉赫实验. [ C ]4. (自测提高9)粒子在外力场中沿x 轴运动,如果它在力场中的势能分布如图19-6所示,对于能量为 E < U 0从左向右运动的粒子,若用 ρ1、ρ2、ρ3分别表示在x < 0,0 < x a 三个区域发现粒子的概率,则有 (A) ρ1 ≠ 0,ρ2 = ρ3 = 0. (B) ρ1 ≠ 0,ρ2 ≠ 0,ρ3 = 0. (C) ρ1 ≠ 0,ρ2 ≠ 0,ρ3 ≠ 0. (D) ρ1 = 0,ρ2 ≠ 0,ρ3 ≠ 0. ★提示:隧道效应。 二. 填空题 1. (基础训练17)在主量子数n =2,自旋磁量子数2 1 =s m 的量子态中,能够填充的最大电子数是___4___. ★提示:主量子数n =2的L 壳层上最多可容纳228n =个电子(电子组态为2622s p ),如 仅考虑自旋磁量子数2 1 =s m 的量子态,则能够填充的电子数为上述值的一半。 图 19-6

作业10量子力学基础( I ) 作业及参考答案

() 一. 选择题 [ C]1.(基础训练2)下面四个图中,哪一个 正确反映黑体单色辐出度 M Bλ (T)随λ 和T的变化关 系,已知T2 > T1. 解题要点: 斯特藩-玻耳兹曼定律:黑体的辐 射出射度M0(T)与黑体温度T的四次方成正比,即 . M0 (T)随温度的增高而迅速增加 维恩位移律:随着黑体温度的升高,其单色辐出度最大值所对应的波长 m λ向短波方向移动。 [ D]2.(基础训练4)用频率为ν 的单色光照射某种金属时,逸出光电子的最大动能 为E K;若改用频率为2ν 的单色光照射此种金属时,则逸出光电子的最大动能为: (A) 2 E K.(B) 2hν - E K.(C) hν - E K.(D) hν + E K. 解题要点: 根据爱因斯坦光电效应方程:2 1 2m h mv A ν=+, 式中hν为入射光光子能量, A为金属逸出功,2 1 2m mv为逸出光电子的最大初动能,即 E K。所以有:0 k h E A ν=+及' 2 K h E A ν=+,两式相减即可得出答案。 [ C]3.(基础训练5)要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁 到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV.(B) 3.4 eV.(C) 10.2 eV.(D) 13.6 eV. 解题要点: 根据氢原子光谱的实验规律,莱曼系: 2 11 (1 R n ν λ ==- 式中,71 1.09677610 R m- =?,称为里德堡常数,2,3, n= 最长波长的谱线,相应于2 n=,至少应向基态氢原子提供的能量1 2E E h- = ν, 又因为 2 6. 13 n eV E n - =,所以l h E E h- = ν=?? ? ? ? ? - - - 2 21 6. 13 2 6. 13eV eV =10.2 eV [ A]4.(基础训练8)设粒子运动的波函数图线 分别如图19-4(A)、(B)、(C)、(D)所示,那么其中确定粒 子动量的精确度最高的波函数是哪个图? 解题要点: 根据动量的不确定关系: 2 x x p ???≥ (B) x (A) x (B) x (C) x (D)

大学物理量子力学习题附答案

1.4185:已知一单色光照射在钠表面上,测得光电子的最大动能是1.2 eV ,而钠的红限波长是5400 ?,那么入射光的波长是 (A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? [ ] 2.4244:在均匀磁场B 内放置一极薄的金属片,其红限波长为λ0。今用单色光照射,发现有电子放出,有些放出的电子(质量为m ,电荷的绝对值为e )在垂直于磁场的平面内作半径为R 的圆周运动,那末此照射光光子的能量是: (A) 0λhc (B) 0 λhc m eRB 2)(2+ (C) 0λhc m eRB + (D) 0λhc eRB 2+ [ ] 3.4383:用频率为ν 的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用频率为2ν 的单色光照射此种金属时,则逸出光电子的最大动能为: (A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K [ ] 4.4737: 在康普顿效应实验中,若散射光波长是入射光波长的1.2倍,则散射光光子能量ε与反冲电子动能E K 之比ε / E K 为 (A) 2 (B) 3 (C) 4 (D) 5 [ ] 5.4190:要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV [ ] 6.4197:由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出: (A) 一种波长的光 (B) 两种波长的光 (C) 三种波长的光 (D) 连续光谱 [ ] 7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV ,当氢原子从能量为-0.85 eV 的状态跃迁到上述定态时,所发射的光子的能量为 (A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV [ ] 8.4750:在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是 (A) 12.1 eV (B) 10.2 eV (C) 12.1 eV ,10.2 eV 和 1.9 eV (D) 12.1 eV ,10.2 eV 和 3.4 eV [ ] 9.4241: 若α粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨道运动,则α粒子的德布罗意波长是 (A) )2/(eRB h (B) )/(eRB h (C) )2/(1eRBh (D) )/(1eRBh [ ] 10.4770:如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的 (A) 动量相同 (B) 能量相同 (C) 速度相同 (D) 动能相同 [ ] 11.4428:已知粒子在一维矩形无限深势阱中运动,其波函数为: a x a x 23cos 1)(π?= ψ ( - a ≤x ≤a ),那么粒子在x = 5a /6处出现的概率密度为 (A) 1/(2a ) (B) 1/a (C) a 2/1 (D) a /1 [ ] 12.4778:设粒子运动的波函数图线分别如图(A)、(B)、(C)、(D)所示,那么其中确定 粒子动量的精确度最高的波函数是哪个图?

最新大学物理-量子力学基础习题思考题及答案

大学物理-量子力学基础习题思考题及答案

习题 22-1.计算下列客体具有MeV 10动能时的物质波波长,(1)电子;(2)质子。 解:(1) 电子高速运动,设电子的总能量可写为:20K E E m c =+ 用相对论公式, 22224 0E c p m c =+ 可得 p = = = h p λ= = 834 -= 131.210m -=? (2)对于质子,利用德布罗意波的计算公式即可得出: 3415h 9.110m p λ--====? 22-2.计算在彩色电 视显像管的加速电压作用下电子的物质波波长,已知加速电压为kV 0.25,(1)用非相对论公式;(2)用相对论公式。 解:(1)用非相对论公式: m meU h mE h 123 193134108.71025106.1101.921063.622p h ----?=???????====λ(2)用相对论公式: 4 20222c m c p +=E eU E E k ==-20c m

m eU eU c m h mE h 122 20107.722p h -?=+= == ) (λ 22-3.一中子束通过晶体发生衍射。已知晶面间距nm 1032.72-?=d ,中子的动能eV 20.4k =E ,求对此晶面簇反射方向发生一级极大的中子束的掠射角. 解:先利用德布罗意波的计算公式即可得出波长: 34 11 h 1.410p m λ--====? 再利用晶体衍射的公式,可得出:2sin d k ?λ= 0,1,2k =… 1111 1.410sin 0.095227.3210k d λ?--?===?? , 5.48?= 22-4.以速度m/s 1063?=v 运动的电子射入场强为5V/cm =E 的匀强电场中加速,为使电子波长 A 1=λ,电子在此场中应该飞行多长的距离? 解:34 10 h 110p m λ--====? 可得:U=150.9V ,所以 U=Ed ,得出d=30.2cm 。 22-5.设电子的位置不确定度为 A 1.0,计算它的动量的不确定度;若电子的能量约为keV 1,计算电子能量的不确定度。 解:由测不准关系: 34 2410 1.0510 5.2510220.110h p x ---??===???? 由波长关系式:E c h =λ 可推出: E E c h ?=?λ 2 151.2410E E E J hc pc λ-??===?? 22-6.氢原子的吸收谱线 A 5.4340=λ的谱线宽度为 A 102 -,计算原子处在被激发态上的平均寿命。 解:能量hc E h νλ == ,由于激发能级有一定的宽度ΔE ,造成谱线也有一定宽度Δλ,两 者之间的关系为:2 hc E λ λ?=? 由测不准关系,/2,E t ??≥平均寿命τ=Δt ,则

量子力学导论第12章答案

第十二章 散射 12-1)对低能粒子散射,设只考虑s 波和p 波,写出散射截面的一般形式。 解: ()()()2 2 c o s s i n 121∑∞ =+= l l l i P e l k l θδθσδ 只考虑s 波和p 波,则只取1,0=l ,于是 ()()()2 11002 cos sin 3cos sin 11 θ δθδθσδδP e P e k i i += ()1cos 0=θP , (),c o s c o s 1θθ=P 代入上式,得 ()2 102 cos sin 3sin 11 θ δδθσδδi i e e k += ()2 2 12 101002 2cos sin 9cos cos cos sin 6sin 1θ δθδδδδδ+-+=k 2 2 2102 cos cos 1θ θA A A k ++= 其中 020sin δ=A ,()10101cos cos sin 6δδδδ-=A ,122sin 9δ=A 。 12-2)用波恩近似法计算如下势散射的微分截面: (a ) ()?? ?><-=. , 0;,0a r a r V r V (b ) ()2 0r e V r V α-= (c ) ()r e r V αγ κ-= (d ) ()().r r V γδ= 解:本题的势场皆为中心势场,故有 ()() ? ∞ - =0 ' '' ' 2 sin 2dr qr r V r q u f θ ,2 sin 2θ k q = (1) ()() () 2 ' ' ' ' 2 4 22sin 4? ∞ = =dr qr r V r q u f θθσ (1) (a )()()qa qa qa q V dr qr V r a cos sin sin 2 00 ' ' 0' -- =-? ()()2 6 4 2 02cos sin 4 qa qa qa q V u -= ∴ θσ (b )()? ? ∞ --∞ --= ??? ??0 ' '00 ''0' ' ' 2 '2'2sin dr e e e r i V dr qr e V r iqr iqr r r αα

第13章 量子力学基础..

第13章 量子力学基础 13.1 绝对黑体和平常所说的黑色物体有什么区别? 答:绝对黑体是对照射其上的任意辐射全部吸收而不发生反射和透射的物体,而平常所说的黑色物体是只反射黑颜色的物体。 13.2 普朗克量子假设的内容是什么? 答:普朗克量子假设的内容是物体发射和吸收电磁辐射能量总是以νεh =为单位进行。 13.3 光电效应有哪些实验规律?用光的波动理论解释光电效应遇到了哪些困难? 答:光电效应的实验规律为:1)阴极K 在单位时间内所发射的光子数与照射光的强度成正比;2)存在截止频0ν;3)光电子的初动能与照射光的强度无关,而与频率成线性关系; 4)光电效应是瞬时的。 用光的波动理论解释光电效应遇到的困难在于:1)按照波动理论,光波的能量由光强决定,因而逸出光电子的初动能应由光强决定,但光电效应中光电子的初动能却与光强无关;2)若光波供给金属中“自由电子”逸出表面所需的足够能量,光电效应对各种频率的光都能发生,不应存在红限;3)光电子从光波中吸收能量应有一个积累过程,光强越弱,发射光子所需时间就越长。这都与光电效应的实验事实相矛盾。 13.4 波长λ为0.1nm 的X 射线,其光子的能量ε= J 151099.1-?;质量m = kg 321021.2-?;动量p = 1241063.6--???s m kg . 13.5 怎样理解光的波粒二象性? 答:光即具有波动性,又具有粒子性,光是粒子和波的统一,波动和粒子是光的不同侧面的反映。 13.6 氢原子光谱有哪些实验规律? 答:氢原子光谱的实验规律在于氢原子光谱都由分立的谱线组成,并且谱线分布符合组合规律 )11()()(~2 2n k R n T k T kn -=-=ν k 取 ,3,2,1,分别对应于赖曼线系,巴耳米线系,帕形线系,. 13.7 原子的核型结构模型与经典理论存在哪些矛盾? 答:原子的核型结构与经典理论存在如下矛盾:1)按经典电磁辐射理论,原子光谱应是连续的带状光谱;2)不存在稳定的原子。这些结论都与实验事实矛盾。 13.8 如果枪口的直径为5mm,子弹质量为0.01kg,用不确定关系估算子弹射出枪口时的横

第一章 量子力学基础

第一章 量子力学基础知识 一、概念题 1、几率波:空间一点上波的强度和粒子出现的几率成正比,即,微粒波的强度 反映粒子出现几率的大小,故称微观粒子波为几率波。 2、测不准关系:一个粒子不能同时具有确定的坐标和动量 3、若一个力学量A 的算符A ?作用于某一状态函数ψ后,等于某一常数a 乘以ψ,即,ψψa A =?,那么对ψ所描述的这个微观体系的状态,其力学量A 具有确定的数值a ,a 称为力学量算符A ?的本征值,ψ称为A ?的本征态或本征波函数,式ψψa A =?称为A ?的本征方程。 4、态叠加原理:若n ψψψψ,,,,321????为某一微观体系的可能状态,由它们线性组 合所得的ψ也是该体系可能存在的状态。其中: ∑=+??????+++=i i i n n c c c c c ψψψψψψ332211,式中n c c c c ,,,,321???为任意常 数。 5、Pauli 原理:在同一原子轨道或分子轨道上,至多只能容纳两个电子,这两个 电子的自旋状态必须相反。或者说两个自旋相同的电子不能占据相同的轨道。 6、零点能:按经典力学模型,箱中粒子能量最小值为0,但是按照量子力学箱中粒子能量的最小值大于0,最小的能量为228/ml h ,叫做零点能。 二、选择题 1、下列哪一项不是经典物理学的组成部分? ( ) a. 牛顿(Newton)力学 b. 麦克斯韦(Maxwell)的电磁场理论 c. 玻尔兹曼(Boltzmann)的统计物理学 d. 海森堡(Heisenberg)的测不准关系 2、下面哪种判断是错误的?( ) a. 只有当照射光的频率超过某个最小频率时,金属才能发身光电子

福师《结构化学》第一章 量子力学基础和原子结构 课堂笔记

福师《结构化学》第一章量子力学基础和原子结构课堂笔记 ◆主要知识点掌握程度 了解测不准关系,掌握和的物理意义;掌握一维势箱模型Schrodinger方程的求解以及该模型在共轭分子体系中的应用;理解量子数n,l,m的取值及物理意义;掌握波函数和电子云的径向分布图,原子轨道等值线图和原子轨道轮廓图;难点是薛定谔方程的求解。 ◆知识点整理 一、波粒二象性和薛定谔方程 1.物质波的证明 德布罗意假设:光和微观实物粒子(电子、原子、分子、中子、质子等)都具有波动性和微粒性两重性质,即波粒二象性,其基本公式为: 对于低速运动,质量为m的粒子: 其中能量E和动量P反映光和微粒的粒性,而频率ν和波长λ反映光和微粒的波性,它们之间通过Plank 常数h联系起来,普朗克常数焦尔·秒。 实物微粒运动时产生物质波波长λ可由粒子的质量m和运动度ν按如下公式计算。 λ=h/P=h/mν 量子化是指物质运动时,它的某些物理量数值的变化是不连续的,只能为某些特定的数值。如微观体系的能量和角动量等物理量就是量子化的,能量的改变为E=hν的整数倍。 2.测不准关系: 内容:海森保指出:具有波粒二象性的微观离子(如电子、中子、质子等),不能同时具有确定的坐标和动量,它们遵循“测不准关系”: (y、z方向上的分量也有同样关系式) ΔX是物质位置不确定度,ΔPx为动量不确定度。该关系是微观粒子波动性的必然结果,亦是宏观物体和微观物体的判别标准。对于可以把h看作O的体系,表示可同时具有确定的坐标和动量,是可用牛顿力学描述的宏观物体,对于h不能看作O的微观粒子,没有同时确定的坐标和动量,需要用量子力学来处理。 3.波函数的物理意义——几率波 实物微粒具有波动性,其运动状态可用一个坐标和时间的函数来描述,称为波函数或状态函数。 1926年波恩对波函数的物理意义提出了统计解释:由电子衍射实验证明,电子的波动性是和微粒的行为的统计性联系在一起的,波函数正是反映了微粒行为的统计规律。这规律表明:对大量电子而言,在衍射强度大 的地方,电子出现的数目多,强度小的地方电子出现的数目少,即波函数的模的平方与电子在空间分布的密度成正比。

答案 第15章 量子力学基础训练题

第15章 量子力学基础 综合训练题 一、选择题 1. 如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的 [ A ] (A) 动量大小相同。 (B) 能量相同。 (C) 速度相同。 (D) 动能相同。 2. 若α粒子在磁感应强度为B 的均匀磁场中沿半径为R 的圆形轨道运动,则粒子的德布罗意波长是 [ A ] (A) eRB h 2 (B) eRB h (C) eRB 21 (D) eRBh 1 3. 设粒子运动的波函数图线分别如图(A)、(B)、(C)、(D)所示,那么其中确定粒子动量的精确度最高的波函数是哪个图? [ A ] 4. 关于不确定关系??? ? ? =≥???π2h p x x 有以下几种理解: (1) 粒子的动量不可能确定。 (2) 粒子的坐标不可能确定。 (3) 粒子的动量和坐标不可能同时确定。 (4) 不确定关系不仅适用于电子和光子,也适用于其它粒子。 其中正确的是: [ C ] (A) (1)、(2) (B) (2)、(4) (C) (3)、(4) (D) (4)、(1) 5. 已知粒子在一维矩形无限深势阱中运动,其波函数为: ()()a x a a x a x ≤≤-?= 23cos 1πψ 那么粒子在6/5a x =处出现的概率密度为 [ A ] (A) a 21 (B) a 1 (C) a 21 (D) a 1 6. 根据玻尔氢原子理论,巴耳末线系中谱线最小波长与最大波长之比为 [ A ] (A) 9 5 (B) 9 4 (C) 9 7 (D) 9 2 7. 若外来单色光把氢原子激发至第三激发态,则当氢原子跃迁回低能态时,可发出的可见光光谱线的 () D x x x () A () B () C

第10章量子力学基础

第十章 量子力学基础 思 考 题 10-1 什么是绝对黑体?它与平常所说的黑色物体有何区别? 答:(1)在任何温度下都能全部吸收照射到它表面上的各种波长的光,这种物体称为绝对黑体,简称黑体。但黑体自身要向外界辐射能量,黑体并不一定是黑色,它的颜色是由它自身所发射的辐射频率决定的。若温度较低,则它辐射的能量就很少,辐射的峰值波长会远大于可见光波长,会呈现黑色;若温度较高,则它辐射的能量就很大,辐射的峰值波长处于可见光波长范围内,会呈现各种颜色。 (2)平常所说的黑色的物体,用肉眼看起来是黑色的,只表明它对可见光强烈吸收,并不能说它对不可见光(红外线、紫外线)都强烈吸收,所以黑色物体的单色吸收本领并不恒等于1,一般不能称为黑体。 10-2 若一个物体的温度(绝对温度数值)增加一倍,它的总辐射能增加到多少倍? 答:根据斯特藩-玻耳兹曼定律,绝对黑体的总辐出度(总辐射能)为 ()()40 d T T M T M B B σλλ==?∞ 现在,212=T T ,于是 1624 4 1212==??? ? ??=T T M M 即绝对黑体的温度增加一倍,它的总辐射能将增至为原来的16倍。 10-3 假设人体的热辐射是黑体辐射,请用维恩位移定律估算人体的电磁辐射中单色辐出度的最大波长(设人体的温度为310K )。 答:根据维恩位移定律 m T b λ= 可得 (m)1035.9310 10898.263 --?=?==T b m λ 10-4 所有物体都能发射电磁辐射,为什么用肉眼看不见黑暗中的物体? 答:物体要能够被眼睛观察到,必须需要两个条件:(1)物体要发射或者反射出眼睛能感觉到的可见光,其波长范围大约为0.40~0.78μm ;(2)可见光的能量要达到一定的阈值。根据黑体辐射,任何物体在一定温度下都发射出各种波长的电磁辐射,在不同温度下单色辐出度的峰值波长不同。黑暗中周围物体的温度等于环境温度(近似为人体温度),单色辐出度的峰值波长在10μm 附近,在可见光波长范围的电磁辐射能量都比较低,因此不能引起眼睛的视觉响应。

相关文档
相关文档 最新文档