文档库 最新最全的文档下载
当前位置:文档库 › 高中数学圆的方程检测试题1

高中数学圆的方程检测试题1

高中数学圆的方程检测试题1
高中数学圆的方程检测试题1

4.1 圆的方程

第1题. ABC △的顶点B ,C 的坐标分别是()3,1--,()2,1,顶点A 在圆

()()

22

244x y ++-=上运动,求ABC △的重心G 的轨迹方程.

答案:解:设ABC △的顶点A 的坐标为()00,x y ,重心G 的坐标为(),x y . 因为03233A B C x x x x x ++-+=

=,011

33

A B C y y y y y ++-+==, 所以,031x x =+,03y y =. ①

又点A 在圆()()22

244x y ++-=上运动, 所以()()22

00244x y ++-= ② 把①式代入②式,得()()22

33344x y ++-=.

整理得()2

2

44

139x y ??++-= ??

?. 所以,ABC △的重心G 的轨迹方程是()2

2

44139

x y ??++-= ???.

第2题. 点2(5)P m ,与圆2224x y +=的位置关系是( ) A.在圆外 B.在圆内 C.在圆上 D.不确定

答案:A.

第3题. 已知动点M到定点(80)

,的距离等于M到(20),的距离的2倍,那么点M的轨迹方程是()

A.2232

x y

+=

B.2216

+=

x y

C.22

x y

-+=

(1)16

D.22

+-=

(1)16

x y

答案:B.

第4题. 已知圆心在

x轴上,半径是5且以(54)

A,为中点的弦长是

则这个圆的方程是.

答案:22

x y

-+=

(7)25

-+=或22

(3)25

x y

第5题. 圆在x,y轴上分别截得弦长为4和14,且圆心在直线+=上,求此圆方程.

230

x y

答案:解:设圆的圆心为()

,,圆的半径为r,

a b

则圆的方程为222()()x a y b r -+-=.

∵圆在x 轴,y 轴上截得的弦长分别为4和14.则有222222

27a r b r ?+=?

?+=?? ① ②

又∵圆心在直线230x y +=上,

230a b +=∴ ③

由①②③可得29685a b r ?=?=-??=?,或29

685a b r ?=-?

=??=?

∴适合题意的圆的方程为22(9)(6)85x y -++=或22(9)(6)85x y ++-=.

第6题. 已知圆C 和y 轴相切,圆心在直线30x y -=上,且被直线y x =

截得的弦长为C 的方程.

答案:解:设圆C 的方程为222()()x a y b r -+-=. 由圆C 与y 轴相切得a r =. ①

又圆心在直线30x y -=上,30a b -=∴. ② 圆心()C a b ,到直线y x =

的距离为d =

由于弦心距d ,半径r 及弦的一半构成直角三角形,

222r +=∴ ③

联立①②③解方程组可得111

3

13

a b r =??

=??=?,或222313a b r =-??=-??=?

故圆C 的方程为22(3)(1)9x y -+-=或22(3)(1)9x y +++=.

第7题. 一个动点在圆221x y +=上移动时,它与定点(30),连线中点的轨迹方程是( ) A.22(3)4x y ++=

B.22(3)1x y -+=

C.22(23)41x y -+= D.223

1()2

2

x y ++=

答案:C.

第8题. 方程222460x y x y ++--=表示的图形是( )

A.以(12)-,

为半径的圆

B.以(12),

为半径的圆

C.以(12)--,

为半径的圆

D.以(12)-,

为半径的圆

答案:D.

第9题. 在方程220x y Dx Ey F ++++=中,若224D E F =>,则圆的位置满足( )

A.截两坐标轴所得弦的长度相等 B.与两坐标轴都相切 C.与两坐标轴相离 D.上述情况都有可能

答案:A.

第10题. 圆22(2)(1)9x y -++=的弦长为2,则弦的中点的轨迹方程是 .

答案:22(2)(1)8x y -++=

第11题. 求经过(42)A ,

,(13)B -,两点,且在两坐标轴上的四个截距之和为2的圆的方程.

答案:设所求圆的方程为220x y Dx Ey F ++++= ①

∵圆经过(42)A ,,(13)B -,两点,则有164420

1930

D E F D E F ++++=??

+-++=?

即422003100D E F D E F +++=??

---=? ② ③

令①中的0x =,得20y Ey F ++=,由韦达定理12y y E +=-. 令①中的0y =,得20x Dx F ++=, 由韦达定理12x x D +=-.

由于所求圆在两坐标轴上的四个截距之和为2,从而有

12122x x y y +++=,

即2E D --=,也就是20D E ++= ④

由②③④可得到2

012D E F =-??

=??=-?

∴所求圆的方程为222120x y x +--=.

第12题. 以点(34)-,

为圆心,且与x 轴相切的圆的方程是( ) A.22(3)(4)16x y -++= B.22(3)(4)16x y ++-= C.22(3)(4)9x y -++=

D.22(3)(4)9x y ++-=

答案:B.

第13题. 圆的直径端点为(20),,(22)-,,则此圆的方程为 .

答案: 22(2)(1)1x y -++=

第14题. 过点(11)

C -,和(13)

D ,,圆心在x 轴上的圆的方程是( ) A.22(2)10x y +-= B.22(2)10x y ++= C.22(2)10x y ++= D.22(2)10x y -+=

答案:D.

第15题. 已知一曲线是与两个定点(00)O ,

,(0)(0)A a a ≠,距离的比为(1)k k ≠的点的轨迹,求此曲线的方程,并判断曲线的形状.

答案:解:设()M x y ,是曲线上的任意一点,

也就是M 属于集合|OM P M k AM ????

==??????

. 由两点间的距离公式,点M 所适合的条件可以表示为

k =,

两边平方得222

22

()x y k x a y

+=-+, 化简得2222222(1)(1)20k x k y k ax k a -+--+=.

01k <<∵或1k >,210k -≠∴.

222

2

2

222011

k a k a x y x k k -+++=--∴.

224D E F +-∵

422222244(1)1k a k a k k =---22

2240(1)

k a k =>-, ∴所求曲线的方程是2222

2

222011

k a k a x y x k k -+++=--,曲线是一个圆.

第16题. 若圆C 与圆22(2)(1)1x y ++-=关于原点对称,则圆C 的方程是( )

A.22(2)(1)1x y -++= B.22(2)(1)1x y -+-= C.22(1)(2)1x y -++=

D.22(1)(2)1x y ++-=

答案:A.

第17题. 与原点距离等

于的点的坐标所满足的条件是 .

答案:223x y +=

第18题. 已知一圆经过点(30)A ,

,18

()55

B -,两点,且截x 轴所得的弦长为2.求此圆的方程.

答案:解:设圆方程为222()()x a y b r -+-=,

则222222222(3)1

8()()5

51a b r a b r r b ?-+=?

?--+-=???=+?

22a b r ?=?=??=?∴

或46a b r ?=?

=??=? ∴所求圆的方程为22(2)(2)5x y -+-=或22(4)(6)37x y -+-=.

第19题. 若圆220x y Dx Ey F ++++=与x 轴切于原点,则( )

A.0D =,0E =,0F ≠ B.0F =,0D ≠,0E ≠ D.0D =,0F =,0E ≠

D.0E =,0F =,0D ≠

答案:C.

第20题. 设直线

20x y -=与y 轴交点为P ,点P 把圆22(1)25x y ++=的直径分为两段,则其长度之比为( )

A.73或3

7 B.74或4

7

C.75或57

D.76或67

答案:A.

第21题. 如果实数x ,y 满足22(2)3x y -+=,那么y

x

的最大值是 .

第22题. 已知圆22(2)1C x y ++=:,()P x y ,为圆上任意一点, 求(1)2

1

y x --的最值; (2)2x y -的最值.

答案:解:(1)设

2

1

y k x -=-,即20kx y k --+=. 已知圆心为(20)C -,

,半径1r =,当圆心到该直线的距离等于圆的半径1时,

1=

,解得34

k ±=

, 21y x --∴

(2)设2x y b -=,即20l x y b --=:,当直线l 与圆C 相切时,1d =,

1=

,2b =-

2x y -∴

的最大值为2-

,最小值为2-

第23题. 圆心在直线40x y +=上且与直线110l x y +-=:切于点(32)P -,

的圆的方程是 .

答案:22(1)(4)8x y -++=

第24题. 以

为圆心,截直线y得弦长为8的圆的方程

是.

答案:22

-+=

x y

(25

第25题.点(11),在圆22

x a y a

-++=的内部,则a的取值范围是

()()4

()

A.11

a

<<

-<<B.01

a

C.1

a=±

a>D.1

a<-或1

答案:A.

第26题. 动圆222

+-+-+++=的圆心的轨迹方程

(42)24410

x y m x my m m

是()

A.210

-+=

x y

x y

+-=B.210

C.210x y -+= D.210x y --=

答案:D.

第27题. 若22(1)20x y x y λλλ++-++=表示圆,则λ的取值范围是( )

A.(0)+,∞

B.1

14??

????

C.1

(1)()5

+- ,∞∞,

D.R

答案:C .

高一数学圆的方程、直线与圆位置关系典型例题

高一数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-.∵圆心在0=y 上,故0=b .∴圆的方程为 222)(r y a x =+-.又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r .所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2=++==AC r . 故所求圆的方程为20)1(2 2 =++y x .又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22.∴点P 在圆外. 例2 求半径为4,与圆04242 2 =---+y x y x 相切,且和直线0=y 相切的圆的方程. 解:则题意,设所求圆的方程为圆2 22)()(r b y a x C =-+-: . 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆04242 2 =---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA . (1)当)4,(1a C 时,2 2 2 7)14()2(=-+-a ,或2 2 2 1)14()2(=-+-a (无解),故可得 1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .

高中数学圆的方程典型例题总结归纳(极力推荐)

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r .所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2 = ++==AC r . 故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(2 2 . ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢? 类型二:切线方程、切点弦方程、公共弦方程 例5 已知圆42 2 =+y x O :,求过点()42, P 与圆O 相切的切线. 解:∵点()42, P 不在圆O 上,∴切线PT 的直线方程可设为()42+-=x k y 根据r d = ∴ 21422 =++-k k 解得4 3 = k

圆的方程经典题目带答案

圆的方程经典题目 1.求满足下列条件的圆的方程 (1)过点A(5,2)和B(3,-2),且圆心在直线32-=x y 上;(2)圆心在835=-y x 上,且与两坐标轴相切;(3)过ABC ?的三个顶点)5,5()2,2()5,1(C B A 、、---;(4)与y 轴相切,圆心在直线03=-y x 上,且直线 x y =截圆所得弦长为72;(5)过原点,与直线1:=x l 相切,与圆1)2()1(:2 2 =-+-y x C 相外切;(6)以C(1,1)为圆心,截直线2-=x y 所得弦长为22;(7)过直线042:=++y x l 和圆0142:2 2 =+-++y x y x C 的交点,且面积最小的圆的方程. (8)已知圆满足①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为1:3③圆心到直线02:=-y x l 的距离为52.0,求该圆的方程. (9)求经过)3,1()2,4(-B A 两点且在两坐标轴上的四个截距之和是2的圆的方程 2、已知方程0916)41(2)3(24222=++-++-+m y m x m y x 表示一个圆(1)求实数m 的取值范围 (2)求该圆半径r 的取值范围(3)求面积最大的圆的方程(4)求圆心的轨迹方程 1. 已知圆252 2 =+y x , 求下列相应值

(1)过)4,3(-的切线方程(2)过)7,5(的切线方程、切线长;切点弦方程、切点弦长 (3)以)2,1(为中点的弦的方程 (4)过)2,1(的弦的中点轨迹方程 (5)斜率为3的弦的中点的轨迹方程 2. 已知圆 062 2 =+-++m y x y x 与直线032=-+y x 相交于Q P 、两点,O 为坐标原点,若OQ OP ⊥,求实数m 的值. 3、已知直线b x y l +=:与曲线21:x y C -=有两个公共点,求b 的取值范围 4、一束光线通过点)18,25(M 射到x 轴上,被反射到圆25)7(:2 2 =-+y x C 上.求: (1)通过圆心的反射线方程,(2)在x 轴上反射点A 的活动范围. 5、圆03422 2 =-+++y x y x 上到直线0=++m y x 的距离为2的点的个数情况 已知两圆01010:2 2 1=--+y x y x O 和04026:2 2 2=--++y x y x O (1)判断两圆的位置关系 (2)求它们的公共弦所在的方程 (3)求公共弦长 (4)求公共弦为直径的圆的方程. 题型五、最值问题 思路1:几何意义 思路2:参数方程 思路3、换元法 思路4、函数思想 1. 实数y x ,满足012462 2 =+--+y x y x (1)求 x y 的最小值 (2)求2 2y x ++32-y 的最值;(3)求y x 2-的最值(4)|143|-+y x 的最值 2. 圆25)2()1(:2 2=-+-y x C 与)(047)1()12(:R m m y m x m l ∈=--+++.(1)证明:不论m 取什么实数直线l 与圆C 恒相交(2)求直线l 被圆C 截得最短弦长及此时的直线方程 3、平面上有A (1,0),B (-1,0)两点,已知圆的方程为()()2 2 2342x y -+-=.⑴在圆上求一点1P 使△AB 1P 面积最大并求出此面积;⑵求使2 2 AP BP +取得最小值时的点P 的坐标. 4、已知P 是0843:=++y x l 上的动点,PB PA ,是圆01222 2 =+--+y x y x 的两条切线,A 、B 是切点, C 是圆心,那么四边形PACB 的面积的最小值为 5、已知圆的方程为0862 2=--+y x y x .设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为_________ 6、已知圆的方程为0862 2=--+y x y x .设该圆过点(3,5)的互相垂直的弦分别为AC 和BD ,则四边形ABCD 的面积为_________

高一数学圆的方程经典例题

典型例题一 例1 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个? 分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(22=-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324 311 34332 2 <=+-?+?= d . 如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意. 又123=-=-d r . ∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个. 解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点. 设所求直线为043=++m y x ,则14 3112 2 =++= m d , ∴511±=+m ,即6-=m ,或16-=m ,也即 06431=-+y x l :,或016432=-+y x l :. 设圆9)3()3(2 2 1=-+-y x O : 的圆心到直线1l 、2l 的距离为1d 、2d ,则 34 36 343322 1=+-?+?=d ,14 316 34332 2 2=+-?+?= d . ∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个. 说明:对于本题,若不留心,则易发生以下误解:

设圆心1O 到直线01143=-+y x 的距离为d ,则324 311 34332 2 <=+-?+?=d . ∴圆1O 到01143=-+y x 距离为1的点有两个. 显然,上述误解中的d 是圆心到直线01143=-+y x 的距离,r d <,只能说明此直线与圆有两个交点,而不能说明圆上有两点到此直线的距离为1. 到一条直线的距离等于定值的点,在与此直线距离为这个定值的两条平行直线上,因此题中所求的点就是这两条平行直线与圆的公共点.求直线与圆的公共点个数,一般根据圆与直线的位置关系来判断,即根据圆心与直线的距离和半径的大小比较来判断. 典型例题三 例3 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2=++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 124-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为: 23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C

(完整版)高中数学必修2圆与方程典型例题(可编辑修改word版)

标准方程(x - a )2 + (y - b )2 = r 2 ,圆心 (a , b ),半径为 r 11 11 11 11 0 0 第二节:圆与圆的方程典型例题 一、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。二、圆的方程 (1) ; 点 M (x , y ) 与圆(x - a )2 + ( y - b )2 = r 2 的位置关系: 当(x - a )2 + ( y - b )2 > r 2 ,点在圆外 当(x - a )2 + ( y - b )2 = r 2 ,点在圆上 当(x - a )2 + ( y - b )2 < r 2 ,点在圆内 (2) 一般方程 x 2 + y 2 + Dx + Ey + F = 0 当 D 2 + E 2 - 4F > 0 时,方程表示圆,此时圆心为?- D E ? ,半径为r = 当 D 2 + E 2 - 4F = 0 时,表示一个点; 当 D 2 + E 2 - 4F < 0 时,方程不表示任何图形。 ,- ? ? 2 2 ? 2 (3) 求圆方程的方法: 一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出 a ,b ,r ;若利用一般方程,需要求出 D ,E ,F ; 另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。 例 1 已知方程 x 2 + y 2 - 2(m - 1)x - 2(2m + 3) y + 5m 2 + 10m + 6 = 0 . (1) 此方程表示的图形是否一定是一个圆?请说明理由; (2) 若方程表示的图形是是一个圆,当 m 变化时,它的圆心和半径有什么规律?请说明理由. 答案:(1)方程表示的图形是一个圆;(2)圆心在直线 y =2x +5 上,半径为 2. 练习: 1.方程 x 2 + y 2 + 2x - 4 y - 6 = 0 表示的图形是( ) A.以(1,- 2) 为圆心, 为半径的圆 B.以(1,2) 为圆心, 为半径的圆 C.以(-1,- 2) 为圆心, 为半径的圆 D.以(-1,2) 为圆心, 为半径的圆 2.过点 A (1,-1),B (-1,1)且圆心在直线 x +y -2=0 上的圆的方程是( ). A .(x -3)2+(y +1)2=4 B .(x +3)2+(y -1)2=4 C .(x -1)2+(y -1)2=4 D .(x +1)2+(y +1)2=4 3.点(1,1) 在圆(x - a )2 + ( y + a )2 = 4 的内部,则 a 的取值范围是( ) A. -1 < a < 1 B. 0 < a < 1 C. a < -1 或 a > 1 D. a = ±1 4.若 x 2 + y 2 + ( -1)x + 2y + = 0 表示圆,则的取值范围是 5. 若圆 C 的圆心坐标为(2,-3),且圆 C 经过点 M (5,-7),则圆 C 的半径为 . 6. 圆心在直线 y =x 上且与 x 轴相切于点(1,0)的圆的方程为 . 7. 以点 C (-2,3)为圆心且与 y 轴相切的圆的方程是 . 1 D 2 + E 2 - 4F

高中数学圆的方程典型例题及详细解答

新课标高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

高中数学圆的方程综合训练试题

圆的方程综合训练试题 一、选择题 1.直线0643=+-y x 与圆4)3()2(2 2=-+-y x 的位置关系是( ) A.过圆心 B.相切 C.相离 D.相交但不过圆心王新敞 2.若直线0=++a y x 与圆a y x =+2 2相切,则a 为( ) A.0或2 B.2 C.2 D.无解王新敞 3.两圆094622 =+-++y x y x 和0191262 2=-+--+y x y x 的位置关系是( ) A.外切 B.内切 C.相交 D.外离王新敞 4.以M (-4,3)为圆心的圆与直线052=-+y x 相离,那么圆M 的半径r 的取值范围是( ) A.0<r <2 B.0<r <5 C.0<r <25 D.0<r <10 5.两圆2 2 2 r y x =+与r r y x ()1()3(2 2 2 =++->0)外切,则x 的值是( ) A.10 B. 5 C.5 D. 2 10 王新敞 6.已知半径为1的动圆与圆16)7()5(2 2 =++-y x 相切,则动圆圆心的轨迹方程是( ) A.25)7()5(2 2=++-y x B. 17)7()5(22=++-y x 或15)7()5(2 2=++-y x C. 9)7()5(2 2=++-y x D. 25)7()5(22=++-y x 或9)7()5(2 2=++-y x 王新敞 7.以点(-3,4)为圆心,且与x 轴相切的圆的方程是( ) A. 16)4()3(22=++-y x B. 16)4()3(2 2=-++y x C. 9)4()3(22=++-y x D. 9)4()3(2 2=-++y x 王新敞 二、填空题 8.圆02410222=-+-+y x y x 与圆08222 2=-+++y x y x 的交点坐标是 王新敞

人教版高中数学必修二圆与方程题库完整

(数学2必修)第四章 圆与方程 [基础训练A 组] 一、选择题 1.圆22(2)5x y ++=关于原点(0,0)P 对称的圆的方程为 ( ) A .22(2)5x y -+= B .22(2)5x y +-= C .22(2)(2)5x y +++= D .22(2)5x y ++= 2.若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是( ) A. 03=--y x B. 032=-+y x C. 01=-+y x D. 052=--y x 3.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A .2 B .21+ C .2 21+ D .221+ 4.将直线20x y λ-+=,沿x 轴向左平移1个单位,所得直线与 圆22 240x y x y ++-=相切,则实数λ的值为( ) A .37-或 B .2-或8 C .0或10 D .1或11 5.在坐标平面,与点(1,2)A 距离为1,且与点(3,1)B 距离为2的直线共有( ) A .1条 B .2条 C .3条 D .4条 6.圆0422=-+x y x 在点)3,1(P 处的切线方程为( ) A .023=-+y x B .043=-+y x C .043=+-y x D .023=+-y x 二、填空题 1.若经过点(1,0)P -的直线与圆03242 2=+-++y x y x 相切,则此直线在y 轴上的截距是 __________________. 2.由动点P 向圆221x y +=引两条切线,PA PB ,切点分别为0 ,,60A B APB ∠=,则动点P 的轨迹方程为 。 3.圆心在直线270x y --=上的圆C 与y 轴交于两点(0,4),(0,2)A B --,则圆C 的方程为 . 4.已知圆()4322 =+-y x 和过原点的直线kx y =的交点为,P Q 则OQ OP ?的值为________________。

高中数学圆的方程典型题型归纳总结

高中数学圆的方程典型题型归纳总结 类型一:巧用圆系求圆的过程 在解析几何中,符合特定条件的某些圆构成一个圆系,一个圆系所具有的共同形式的方程称为圆系方程。常用的圆系方程有如下几种: ⑴以为圆心的同心圆系方程 ⑵过直线与圆的交点的圆系方程 ⑶过两圆和圆的交点的圆系方程 此圆系方程中不包含圆,直接应用该圆系方程,必须检验圆是否满足题意,谨防漏解。 当时,得到两圆公共弦所在直线方程 例1:已知圆与直线相交于两点,为坐标原点,若,求实数的值。 分析:此题最易想到设出,由得到,利用设而不求的思想,联立方程,由根与系数关系得出关于的方程,最后验证得解。倘若充分挖掘本题的几何关系,不难得出在以为直径的圆上。而刚好为直线与圆的交点,选取过直线与圆交点的圆系方程,可极大地简化运算过程。

解:过直线与圆的交点的圆系方程为: ,即 ………………….① 依题意,在以为直径的圆上,则圆心()显然在直线上,则 ,解之可得 又满足方程①,则故 例2:求过两圆和的交点且面积最小的圆的方程。 解:圆和的公共弦方程为 ,即 过直线与圆的交点的圆系方程为 ,即 依题意,欲使所求圆面积最小,只需圆半径最小,则两圆的公共弦必为所求圆的直径,圆心 必在公共弦所在直线上。即,则代回圆系方程得所求圆方程 例3:求证:m为任意实数时,直线(m-1)x+(2m-1)y=m-5恒过一定点P,并求P点坐标。分析:不论m为何实数时,直线恒过定点,因此,这个定点就一定是直线系中任意两直线的交点。

解:由原方程得 m(x +2y -1)-(x +y -5)=0,① 即 ?? ?-==???=-+=-+4y 9 x 05y x 01y 2x 解得, ∴直线过定点P (9,-4) 注:方程①可看作经过两直线交点的直线系。 例4已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ). (1)证明:不论m 取什么实数,直线l 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时l 的方程. 剖析:直线过定点,而该定点在圆内,此题便可解得. (1)证明:l 的方程(x +y -4)+m (2x +y -7)=0. 2x +y -7=0, x =3, x +y -4=0, y =1, 即l 恒过定点A (3,1). ∵圆心C (1,2),|AC |=5<5(半径), ∴点A 在圆C 内,从而直线l 恒与圆C 相交于两点. (2)解:弦长最小时,l ⊥AC ,由k AC =-2 1 , ∴l 的方程为2x -y -5=0. 评述:若定点A 在圆外,要使直线与圆相交则需要什么条件呢? 思考讨论 类型二:直线与圆的位置关系 ∵m ∈R ,∴ 得

《椭圆》方程典型例题20例(含标准答案)

《椭圆》方程典型例题20例 典型例题一 例1 椭圆的一个顶点为()02,A , 其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置. 解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11 42 2=+ y x ; (2)当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116 42 2=+ y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况. 典型例题二 例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率. 解:3 1 222??=c a c ∴223a c =, ∴3 331- = e . 说明:求椭圆的离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可. 典型例题三 例3 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点, M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程. 解:由题意,设椭圆方程为1222 =+y a x , 由?????=+=-+1012 22y a x y x ,得()021222=-+x a x a , ∴22 2112a a x x x M +=+=,2111a x y M M +=-=,

4 1 12=== a x y k M M OM ,∴42=a , ∴14 22 =+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题. 典型例题四 例4椭圆19252 2=+y x 上不同三点()11y x A ,,?? ? ??594,B ,()22y x C ,与焦点()04,F 的 距离成等差数列. (1)求证821=+x x ; (2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k . 证明:(1)由椭圆方程知5=a ,3=b ,4=c . 由圆锥曲线的统一定义知: a c x c a AF =-12 , ∴ 115 4 5x ex a AF -=-=. 同理 25 4 5x CF - =. ∵ BF CF AF 2=+,且5 9= BF , ∴ 51854554521=??? ??-+??? ? ? -x x , 即 821=+x x . (2)因为线段AC 的中点为??? ? ?+2421y y ,,所以它的垂直平分线方程为 ()422 12 121---= +- x y y x x y y y . 又∵点T 在x 轴上,设其坐标为()00,x ,代入上式,得 () 2122 21024x x y y x --=-

最新高中数学-必修二-圆与方程-经典例题--整理

习题精选精讲圆标准方程 已知圆心),(b a C 和半径r ,即得圆的标准方程222)()(r b y a x =-+-;已知圆的标准方程222)()(r b y a x =-+-,即得圆心),(b a C 和半径r ,进而可解得与圆有关的任何问题. 一、求圆的方程 例1 以点)1,2(-为圆心且与直线0543=+-y x 相切的圆的方程为( ) (A)3)1()2(22=++-y x (B)3)1()2(22=-++y x (C)9)1()2(22=++-y x (D)9)1()2(22=-++y x 二、位置关系问题 例2 直线1=+y x 与圆0222=-+ay y x )0(>a 没有公共点,则a 的取值范围是( ) (A))12,0(- (B))12,12(+- (C))12,12(+-- (D))12,0(+ 三、切线问题 例3 (06重庆卷理) 过坐标原点且与圆02 52422=++-+y x y x 相切的直线方程为( ) (A)x y 3-=或x y 31= (B)x y 3=或x y 3 1-= (C)x y 3-=或x y 31-= (D)x y 3=或x y 31= 四、弦长问题 例4设直线03=+-y ax 与圆4)2()1(22=-+-y x 相交于B A 、两点,且弦AB 的长为32,则=a . 五、夹角问题 例5 从圆012222=+-+-y y x x 外一点)2,3(P 向这个圆作两条切线,则两切线夹角的余弦值为( ) (A)21 (B)5 3 (C)23 (D) 0 六、圆心角问题 例6 过点)2,1(的直线l 将圆4)2(22=+-y x 分成两段弧,当劣弧所对的圆心角最小时,直线l 的斜率=k . 七、最值问题 例7 圆0104422=---+y x y x 上的点到直线14-+y x 0=的最大距离与最小距离的差是( ) (A) 30 (B) 18 (C)26 (D)25 八、综合问题 例8 若圆0104422=---+y x y x 上至少有三个不同的点到直线0:=+by ax l 的距离为22,则直线l 的倾斜角的取值范围是( ) (A)]4,12[ π π (B)]125,12[ππ (C)]3,6[ππ (D)]2,0[π

(数学试卷高一)圆与方程测试题及答案

必修2第四章《圆与方程》单元测试题 (时间:60分钟,满分:100分) 班别 座号 姓名 成绩 一、 选择题(本大题共10小题,每小题5分,共50分) 1.方程x 2+y 2+2ax-by+c=0表示圆心为C (2,2),半径为2的圆,则a 、b 、c 的值依次为 (A )2、4、4; (B )-2、4、4; (C )2、-4、4; (D )2、-4、-4 2.直线3x-4y-4=0被圆(x-3)2+y 2=9截得的弦长为( ) (A)22 (B)4 (C)24 (D)2 3.点4)()()1,1(22=++-a y a x 在圆的内部,则a 的取值范围是( ) (A) 11<<-a (B) 10<-所表示的曲线关于直线y x =对称,必有 ( ) A .E F = B .D F = C . D E = D .,,D E F 两两不相等 8. 已知点A(1,-2,11),B(4,2,3),C(6,-1,4)则三角形ABC 的形状是( ) (A) 直角三角形 (B )锐角三角形 (C )钝角三角形 (D )斜三角形 9.直线0323=-+y x 截圆x 2+y 2=4得的劣弧所对的圆心角是 A 、6π B 、4π C 、3π D 、2π 10.两圆x 2+y 2-4x+6y=0和x 2+y 2 -6x=0的连心线方程为 ( ) A .x+y+3=0 B .2x -y -5=0

高中数学-圆的标准方程练习题

高中数学-圆的标准方程练习题 5分钟训练(预习类训练,可用于课前) 1.圆心是O(-3,4),半径长为5的圆的方程为( ) A.(x-3)2+(y+4)2=5 B.(x-3)2+(y+4)2 =25 C.(x+3)2+(y-4)2=5 D.(x+3)2+(y-4)2 =25 解析:以(a,b)为圆心,r 为半径的圆的方程是(x-a)2+(y-b)2=r 2 . 答案:D 2.以点A(-5,4)为圆心,且与x 轴相切的圆的标准方程为( ) A.(x+5)2+(y-4)2=16 B.(x-5)2+(y+4)2 =16 C.(x+5)2+(y-4)2=25 D.(x-5)2+(y+4)2 =25 解析:∵圆与x 轴相切,∴r=|b|=4.∴圆的方程为(x+5)2+(y-4)2 =16. 答案:A 3.圆心在直线y=x 上且与x 轴相切于点(1,0)的圆的方程为____________. 解析:设其圆心为P(a,a),而切点为A(1,0),则P A⊥x 轴,∴由PA 所在直线x=1与y=x 联立,得a=1.故方程为(x-1)2+(y-1)2 =1.也可通过数形结合解决,若圆与x 轴相切于点(1,0),圆心在y=x 上,可推知与y 轴切于(0,1). 答案:(x-1)2+(y-1)2 =1 10分钟训练(强化类训练,可用于课中) 1.设实数x 、y 满足(x-2)2 +y 2 =3,那么 x y 的最大值是( ) A. 2 1 B.33 C.23 D.3 解析:令 x y =k,即y=kx ,直线y=kx 与圆相切时恰好k 取最值. 答案:D 2.过点A(1,-1)、B(-1,1),且圆心在直线x+y-2=0上的圆的方程是( ) A.(x-3)2+(y+1)2=4 B.(x+3)2+(y-1)2 =4 C.(x-1)2+(y-1)2=4 D.(x+1)2+(y+1)2 =4 解:由题意得线段AB 的中点C 的坐标为(2 1 1, 211+--),即(0,0),直线AB 的斜率为k AB =11)1(1----=-1,则过点C 且垂直于AB 的直线方程为y-0=1 1--(x-0),即y=x.所以圆心坐标 (x,y)满足?? ?=-+=. 02, y x x y 得y=x=1. ∴圆的半径为])1(1[)11(2 2 --+-=2.因此,所求圆的方程为(x-1)2 +(y-1)2 =4. 答案:C 3.设点P(2,-3)到圆(x+4)2+(y-5)2 =9上各点距离为d,则d 的最大值为_____________. 解析:由平面几何性质,所求最大值为P(2,-3)到圆(x+4)2+(y-5)2 =9的圆心距离加上圆的半径,即d max =2 2 )53()42(--+++3=13.

高中数学_圆的方程题型总结

圆的方程题型总结 一、基础知识 1.圆的方程 圆的标准方程为___________________;圆心_________,半径________. 圆的一般方程为___________ _________ ____;圆心________ ,半径__________. 二元二次方程2 2 0Ax Cy Dx Ey F ++++=表示圆的条件为: (1)_______ _______; (2) _______ __ . 2.直线和圆的位置关系: 直线0Ax By C ++=,圆2 2 2 ()()x a y b r -+-=,圆心到直线的距离为d. 则:(1)d=_________________; (2)当______________时,直线与圆相离; 当______________时,直线与圆相切; 当______________时,直线与圆相交; (3)弦长公式:____________________. 3. 两圆的位置关系 圆1C :()()2 2 2 111x a y b r -+-=; 圆2C :()()2 2 2 222x a y b r -+-= 则有:两圆相离? __________________; 外切?__________________; 相交?__________________________; 切?_________________; 含?_______________________. 二、题型总结: (一)圆的方程 ☆1.2 2 310x y x y ++--=的圆心坐标 ,半径 .

☆☆2.点(1,2-a a )在圆x 2+y 2-2y -4=0的部,则a 的取值围是( ) A .-1所表示的曲线关于直线y x =对称,必有( ) A .E F = B .D F = C . D E = D .,,D E F 两两不相等 ☆☆☆4.圆03222 2 2 =++-++a a ay ax y x 的圆心在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 ☆5.若直线34120x y -+=与两坐标轴交点为A,B,则以线段AB 为直径的圆的方程是 ( ) A. 2 2 430x y x y ++-= B. 2 2 430x y x y +--= C. 2 2 4340x y x y ++--= D. 2 2 4380x y x y +--+= ☆☆6.过圆2 2 4x y +=外一点()4,2P 作圆的两条切线,切点为,A B ,则ABP ?的外接圆 方程是( ) A. 42x y --2 2 ()+()=4 B. 2x y -2 2 +()=4 C. 42x y ++2 2 ()+()=5 D. 21x y -+2 2 ()+()=5 ☆7.过点()1,1A -,()1,1B -且圆心在直线20x y +-=上的圆的方程( ) A. ()()22314x y -++= B.()()22 314x y ++-= C. ()()22111x y -+-= D. ()()22 111x y +++= ☆☆8.圆2 22690x y x y +--+=关于直线250x y ++=对称的圆的方程是 ( ) A .2 2 (7)(1)1x y +++= B .22 (7)(2)1x y +++= C . 2 2 (6)(2)1x y +++= D .2 2 (6)(2)1x y ++-= ☆9.已知△ABC 的三个项点坐标分别是A (4,1),B (6,-3),C (-3,0),求△ABC 外接圆的方程.

圆的方程经典例题

高中数学圆的方程典型例题 (1 点00(,)M x y 与圆222()()x a y b r -+-=的位置关系: 当 ,点在圆外 当 ,点在圆上 当 ,点在圆内 (2当 时,方程表示圆,此时圆心为 ,半径为 当 时,表示一个点; 当 时,方程不表示任何图形。 (3)求圆方程的方法: 一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出a ,b ,r ;若利用一般方程,需要求出D ,E ,F ; 另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。 1.若过点P(a,a)可作圆x 2+y 2-2ax+a 2+2a-3=0的两条切线,则实数a 的取值范围是 . 2.圆x 2+y 2-2x +6y +5a =0关于直线y =x +2b 成轴对称图形,则a -b 的取值范围是( ) A .(-∞,4) B .(-∞,0) C .(-4,+∞) D .(4,+∞) 3. 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关 4. 求半径为4,与圆04242 2=---+y x y x 相切,且和直线0=y 相切的圆的方程. 5. 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.

6.已知直线l :x+y-2=0和圆C:x 2+y 2-12x-12y+54=0,则与直线l 和圆C 都相切且半径最小的圆的标准方程是 . 7、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程. 8.已知点P(2,2),点M 是圆O 1:x 2+(y-1)2=上的动点,点N 是圆O 2:(x-2)2+y 2=上的动点,则|PN|-|PM|的最大值是 ( ) A.-1 B.-2 类型二:直线与圆的位置关系 直线与圆的位置关系有 三种情况: (1)设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,圆心()b a C ,到l 的距离为22B A C Bb Aa d +++= ,则有 k 不存在,验证是否成立②k 存在,设点斜式方程,用圆心到该直线距离=半径,求解k ,得到方程【一定两解】 (3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r 2,圆上一点为(x 0,y 0),则过此点的切线方程 1、已知直线0323=-+y x 和圆422=+y x ,判断此直线与已知圆的位置关系. 2:直线1=+y x 与圆)0(022 2>=-+a ay y x 没有公共点,则a 的取值范围是 3:若直线2+=kx y 与圆1)3()2(22=-+-y x 有两个不同的交点,则k 的取值范围是 . 4.圆x 2+y 2-2x -2y +1=0上的动点Q 到直线3x +4y +8=0距离的最小值为 .

高级中学数学圆的方程典型例题(经典编辑版)

-! 高中数学圆的方程典型例题 类型一:圆的方程 例 1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点 )4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢? 例2 求半径为4,与圆04242 2 =---+y x y x 相切,且和直线0=y 相切的圆的方程. 分析:根据问题的特征,宜用圆的标准方程求解. 解:则题意,设所求圆的方程为圆2 22)()(r b y a x C =-+-: . 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或 )4,(2-a C . 又已知圆04242 2 =---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA . (1)当)4,(1a C 时,2 2 2 7)14()2(=-+-a ,或2 2 2 1)14()2(=-+-a (无解),故可得1022±=a . ∴ 所 求 圆 方 程 为 2 224)4()1022(=-+--y x ,或

相关文档
相关文档 最新文档