文档库 最新最全的文档下载
当前位置:文档库 › 薄壁圆筒在弯曲和扭转组合变形下的主应力测试实验

薄壁圆筒在弯曲和扭转组合变形下的主应力测试实验

薄壁圆筒在弯曲和扭转组合变形下的主应力测试实验
薄壁圆筒在弯曲和扭转组合变形下的主应力测试实验

薄壁圆筒在弯曲和扭转组合变形下的主应力测试实验

实验目的: (1)了解在弯曲和扭转组合变形情况下的测试方法

(2)测定薄壁圆筒试件在弯曲和扭转组合受力情况下,试件表面某

点的正应力,并与理论值比较。

实验仪器: XL3418材料力学多功能试验台;测力仪;静力电阻应变仪。 实验原理: 薄壁圆筒受弯曲和扭转组合作用,使圆筒的m 点处于平面应力状态如图1所示。在m 点单元体上有弯矩引起来的正应力x σ,和由扭矩引起来的剪应力n τ。主应力是一对拉应力1σ和一对压应力3σ。

理论值计算:

132x σσσ=±

022n

x

tg τασ-=

x z M

W σ= 4

3132z D d W D π????=-?? ??????? M P L =??

n T

T

W τ= 43116T D d W D π????=-?? ???????

T P a =??

实验值计算:

°

°

145453()2(1)E εεσσμ-+=- °°°°°45-450045-45()2(2)

tg εεαεεε-=

--

图1 圆筒m 点的应力状况

矩形截面梁纯弯曲正应力的电测实验

A B C D L a a 1L b 2 F 2 F 2 F 2 F h 实验四 矩形截面梁纯弯曲正应力的电测实验 一、实验名称 矩形截面梁纯弯曲正应力的电测实验 二、实验目的 1.学习使用电阻应变仪,初步掌握电测方法; 2.测定矩形截面梁纯弯曲时的正应力分布规律,并与理论公式计算结果进行比较,验证弯曲正应力计算公式的正确性。 三、实验设备 1.WSG -80型纯弯曲正应力试验台 2.静态电阻应变仪 四、主要技术指标 1.矩形截面梁试样 图1 试样受力情况 材料:20号钢,E=208×109Pa ; 跨度:L=600mm ,a=200mm ,L 1=200mm ; 横截面尺寸:高度h=28mm ,宽度b=10mm 。 2.载荷增量 载荷增量ΔF=200N (砝码四级加载,每个砝码重10N 采用1:20杠杆比放大),砝码托作为初载荷,F 0=26 N 。 3.精度 满足教学实验要求,误差一般在5%左右。 五、实验原理

如图1所示,CD 段为纯弯曲段,其弯矩为Fa 2 1 M = ,则m 6N .2M 0?=,m 20N M ?=?。根据弯曲理论,梁横截面上各点的正应力增量为: z I My ?= ?理 σ (1) 式中:y 为点到中性轴的距离;Iz 为横截面对中性轴z 的惯性矩,对于矩形截面 12 bh I 3 z = (2) 由于CD 段是纯弯曲的,纵向各纤维间不挤压,只产生伸长或缩短,所以各点均为单向应力状态。只要测出各点沿纵向的应变增量ε?,即可按胡克定律计算出实际的正应力增量实σ?。 ε σ?=?E 实 (3) 在CD 段任取一截面,沿不同高度贴五片应变片。1片、5片距中性轴z 的距离为h/2,2片、4片距中性轴z 的距离为h/4,3片就贴在中性轴的位置上。 测出各点的应变后,即可按(3)式计算出实际的正应力增量实σ?,并画出正应力实σ?沿截面高度的分布规律图,从而可与(1)式计算出的正应力理论值 理σ?进行比较。 六、实验步骤及注意事项 1.开电源,使应变仪预热。 2.在CD 段的大致中间截面处贴五片应变片与轴线平行,各片相距h/4,作为工作片;另在一块与试样相同的材料上贴一片补偿片,放到试样被测截面附近。应变片要采用窄而长的较好,贴片时可把试样取下,贴好片,焊好固定导线,再小心装上。 3.调动蝶形螺母,使杠杆尾端翘起一些。 4.把工作片和补偿片用导线接到预调平衡箱的相应接线柱上,将预调平衡箱与应变仪联接,接通电源,调平应变仪。 5.先挂砝码托,再分四次加砝码,记下每次应变仪测出的各点读数。注意加砝码时要缓慢放手。 6.取四次测量的平均增量值作为测量的平均应变,代入(3)式计算可得各点的

材料力学实验指导书(矩形截面梁纯弯曲正应力的电测实验)

矩形截面梁纯弯曲正应力的电测实验 一、实验名称 矩形截面梁纯弯曲正应力的电测实验。 二、实验目的 1.学习使用电阻应变仪,初步掌握电测方法; 2.测定矩形截面梁纯弯曲时的正应力分布规律,并与理论公式计算结果进行比较,验证弯曲正应力计算公式的正确性。 三、实验设备 1.WSG-80型纯弯曲正应力试验台 2.静态电阻应变仪 四、试样制备及主要技术指标 1、矩形截面梁试样 材料:20号钢,E=208×109Pa; 跨度:L=600mm,a=200mm,L1=200mm; 横截面尺寸:高度h=28mm,宽度b=10mm。

2.载荷增量 载荷增量ΔF=200N (砝码四级加载,每个砝码重10N 采用1:20杠杆比放大),砝码托作为初载荷,F0=26 N 。 3.精度 满足教学实验要求,误差一般在5%左右。 五、实验原理 如图1所示,CD 段为纯弯曲段,其弯矩为a 2 1 F M = , 则m N M ?=6.20,m N M ?=?20。根据弯曲理论,梁横截面上各点的正应力增量为: z I y M ?= ?理σ (1) 式中:y 为点到中性轴的距离;Iz 为横截面对中性轴z 的惯性矩,对于矩 形截面, 12 bh I 3 z = (2) 由于CD 段是纯弯曲的,纵向各纤维间不挤压,只产生伸长或缩短,所以各点均为单向应力状态。只要测出各点沿纵向的应变增量ε?,即可按胡克定律计算出实际的正应力增量实σ?。 εσ?=?E 实 (3) 在CD 段任取一截面,沿不同高度贴五片应变片。1片、5片距中性轴z 的 距离为h/2,2片、4片距中性轴z 的距离为h/4,3片就贴在中性轴的位臵上。 测出各点的应变后,即可按(3)式计算出实际的正应力增量实σ?,并画出正应力实σ?沿截面高度的分布规律图,从而可与(1)式计算出的正应力理论值理σ?进行比较。 六、实验步骤 1.开电源,使应变仪预热。

纯弯梁的弯曲应力测定

纯弯梁的弯曲应力测定实验报告 使用设备名称与型号 同组人员 实验时间 1、 实验目的 1.测定梁纯弯曲时横截面上的正应力大小及分布规律,并与理论值比较,以验证弯曲正应力公式。 2.观察正应力与弯矩的线性关系。 3.了解电测法的基本原理和电阻应变仪的使用方法。 2、 实验设备与仪器 1.弯曲梁实验装置和贴有电阻应变片的矩形截面钢梁。 2.静态数字电阻应变仪YJ28A-P10R(见附录四)和载荷显示仪。 3.直尺。 3、 实验原理 梁纯弯曲时横截面上的正应力公式为σ= ,式中M为作用在横截面上的弯矩,Y为欲求应力点到中性轴Z的距离,I z为梁横截面对中性轴的惯性矩。本实验采用矩形截面钢梁,实验时将梁的支承及载荷情况布置如图6-1所示,梁的CD段为纯弯曲,在梁的CD段某截面不同高度(四等分点)处贴五片电阻应变片,方向平行梁轴,温度补偿片粘贴梁上不受力处,当纯弯梁受载变形时,利用电阻应变仪测出各应变片的应变值(即梁上各纵向应变值)ε实。由于纵向纤维间不互相挤压,故根据单向应力状态的虎克定律求出应力σ实=Eε实。E为梁所用材料的弹性模量。为了减少测量误差,同时也可以验证正应

力与弯矩的线性关系,采用等量加载来测定沿高度分布的各相应点的应变,每增加等量的载荷 F,测定各点相应的应变一次,取应变增量的平均值 ε实。求出各应力增量 σ实=E ε实,并与理论值 σ理= 进行比较,其中 M= Fa.,从而验证理论公式的正确性。

图6-1纯弯梁示意图 4、 实验操作步骤 1.将梁放在实验装置的支座上。注意应尽量使梁受平面弯曲,用尺测量力作用点的位置及梁的截面尺寸。 2.在确保梁的最大应力小于材料的比例极限σp前提下,确定加载方案。 3.将梁上各测点的工作应变片逐点连接到应变仪的A、B接线柱上,而温度补偿片接在B、C接线柱上。按电阻应变仪的使用方法,将应变仪调整好。 4.先加载至初载荷,记录此时各点的应变值,然后每次等量增加载荷 ΔF,逐次测定各点相应的应变值,直到最终载荷终止。卸载后,注意记录各测点的零点漂移。 5.检查实验数据是否与离开中性轴的距离成正比,是否与载荷成线形关系,结束工作。 5、 实验结果及分析计算 1、 实验数据 12345

纯弯曲正应力分布规律实验

实验三纯弯曲正应力分布规律实验 一、实验目的 1.用电测法测定梁纯弯曲时沿其横截面高度的正应变(正应力)分布规律并与理论值进行比较; 2.验证纯弯曲梁的正应力计算公式; 3.掌握运用电阻应变仪测量应变的方法。 二、实验仪器和设备 1.多功能组合实验装置一台或弯曲梁试验装置; 2.TS3860型静态数字应变仪一台; 3.纯弯曲实验梁一根; 4.温度补偿块一块; 5.游标卡尺 3-1 多功能组合实验装置 3-2弯曲梁试验装置 1—弯曲梁 2—铸铁架 3—支架 4—加载杆 5—加载螺杆系统 6—载荷传感器 7和8—组成电子秤 三、实验原理和方法 弯曲梁的材料为钢,其弹性模量E=200GN/m2,泊松比μ=0.29。用手转动实验装置上面的加力手轮,使四点弯上压头压住实验梁,则梁的中间段承受纯弯曲。根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为:

x M y I σ= (3-2) 式中:M 为弯矩;I x 为横截面对中性轴的惯性矩;y 为所求应力点至中性轴的距离。由上式可知,沿横截面高度正应力按线性规律变化。 实验时采用螺旋推进和机械加载方法,可以连续加载,载荷大小由带拉压传感器的电子测力仪读出。当增加压力ΔP 时,梁的四个受力点处分别增加作用力ΔP /2,如图3-3所示。 为了测量梁纯弯曲时横截面上应变分布规律,在梁纯弯曲段的侧面各点沿轴线方向布置了7片应变片(见图3-3)(对多功能组合装置:b =18.3mm ;h =38mm ;c =133.5mm ),各应变片的粘贴高度见弯曲梁上各点的标注。此外,在梁的下表面沿横向粘贴了应变片8# 。 如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的胡克定律公式σ=E ε,可求出各点处的应力实验值。将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。 若由实验测得应变片7#和8#的应变ε7,和ε8满足 87||εμε≈ 则证明梁弯曲时近似为单向应力状态,即梁的纵向纤维间无挤压的假设成立。 图3-3弯曲梁布片图 四、实验步骤 1.检查或测量(弯曲梁试验装置)矩形截面梁的宽度b 和高度h 、载荷作用点到梁支点距离c ,及各应变片到中性层的距离y i 。 2.检查压力传感器的引出线和电子秤的连接是否良好,接通电子秤的电源线。检查应变仪的工作状态是否良好。然后把梁上的应变片按序号接在应变仪上的各不同通道的接线柱A 、B 上,公共温度补偿片接在接线柱B 、C 上。相应电桥的接线柱B 需用短接片连接起来,而各接线柱C 之间不必用短接片连接,因其内部本来就是相通的。因为采用半桥接线法,故应变仪应处于半桥测量状态,应变仪的操作步骤见应变仪的使用说明书。 3.根据梁的材料、尺寸和受力形式,估计实验时的初始载荷P 0(一般按P 0=0.1σS 确定)、最大载荷P max (一般按P max ≤0.7σS 确定)和分级载荷ΔP (一般按加载4~6级考虑)。

纯弯曲梁正应力电测试验

实验二、纯弯曲梁正应力电测实验 一、 实验目的 1、 电测法测定纯弯曲梁正应力分布规律。 2、验证纯弯曲梁正应力计算公式。 二、 实验装置与仪器 1、 纯弯曲梁实验装置。 2、 数字式电阻应变仪。 三、 实验装置与实验原理 1、实验装置 弯曲梁试验装置如图1所示。它有弯曲梁 1, 定位板2,支座3,试验机架4,加载系统5, 两 端带万向接头的加载杆6,加载压头(包括φ16 钢珠)7,加载横梁8,载荷传感器9和测力 仪10等组成。该装置有已粘贴好应变片的钢梁(其弹性模量2210m G N E =)用来完成纯 弯曲梁正应变分布规律试验。 纯弯曲梁正应变分布规律试验

纯弯曲梁受力状态及有关尺寸见图2。 图 2 在梁的纯弯曲段内已粘贴好两组应变片,每组8片,分别为1~8号片和1*~8*号片, 各片距中心层的距离在图3中已标出。当梁受力变形后,可由应变仪测出每片应变片产生的应变,这样就可得到实测的沿梁横截面高度的正应变分布规律。根据材料力学中纯弯曲梁的平面假设,沿梁横截面高度的正应变分布规律应当是直线。另外材料力学中还假设梁在纯弯曲段内是单向应力状态,为此,我们在梁的下 表面粘贴有与7号片和7*号片垂直的8号片和 8* 号片,当梁受力变形后,可测得8ε和*8ε,根 据泊松比纵横εεμ=,可由78εε或* *78εε计算得到 'μ,若'μ近似等于μ时,则证明梁纯弯曲段 内近似于单向应力状态。 2、实验原理 梁的纯弯曲段内,每片应变片所处状态是单向应力状态。根据单向应力状态的虎克定律: σ = E ε 可以计算出梁的纯弯曲段内每片应变片所处的应力。 注:该装置只允许加4KN 载荷,超载会损坏传感器。

材料力学习题组合变形#(精选.)

组合变形 基 本 概 念 题 一、选择题 1. 偏心压缩时,截面的中性轴与外力作用点位于截面形心的两侧,则外力作用点到 形心的距离e 和中性轴到形心距离d 之间的关系是( )。 A .e = d B .e >d C .e 越小,d 越大 D .e 越大,d 越小 2.三种受压杆件如图所示,设 杆1、杆2和杆3中的最大压应力(绝 对值)分别用1max σ、2max σ、 3max σ表示,则( )。 A .1max σ=2max σ=3max σ B .1max σ>2max σ=3max σ C .2max σ>1max σ=3max σ D .2max σ<1max σ=3max σ 题2图 3.在图示杆件中,最大压应力发生在截面上的( )。 A .A 点 B .B 点 C .C 点 D .D 点 题3图 题4图 4. 铸铁杆件受力如图4所示,危险点的位置是( )。 A .①点 B .②点 C .⑧点 D .④点 5. 图示正方形截面直柱,受纵向力P 的压缩作用。则当P 力作用点由A 点移至B 点时柱内最大压应力的比值()max A σ﹕()max B σ为( )。 A .1﹕2 B .2﹕5 C .4﹕7 D .5﹕2 6. 图示矩形截面偏心受压杆件发生的变形为( )。 A .轴向压缩和平面弯曲组合 B .轴向压缩,平面弯曲和扭转组合 C .轴向压缩,斜弯曲和扭转组合 D .轴向压缩和斜弯曲组合 -41-

题5图 题6图 7. 图所示悬臂梁的横截面为等边角钢,外力P 垂直于梁轴,其作用线与形心轴 y 垂直,那么该梁所发生的变形是( )。 A .平面弯曲 B .扭转和斜弯曲 C .斜弯曲 D .两个相互垂直平面(xoy 平面和xoz 平面)内的平面弯曲 题7图 8. 图示正方形截面杆受弯扭组合变形,在进行强度计算时,其任一截面的危 险点位置有四种答案,正确的是( )。 A .截面形心 B .竖边中点A 点 C .横边中点B 点 D .横截面的角点D 点 题8图 题9图 9. 图示正方形截面钢杆,受弯扭组合作用,若已知危险截面上弯矩为M ,扭 矩为T ,截面上A 点具有最大弯曲正应力σ和最大剪应力τ,其抗弯截面模量为W 。关于A 点的强度条件是( )。 A .σ≤[σ],τ≤[τ] B .W T M 2122)(+≤[σ] C .W T M 2122)75.0(+≤[σ] D .122)3(τσ+≤[σ] 10. 折杆危险截面上危险点的应力状态是图中的( )。 -42-

梁弯曲正应力测量实验报告

厦 门 海 洋 职 业 技 术 学 院 编号:XH03J W024-05/0 实训(验) 报告 班级: 姓名: 座号: 指导教师: 成绩: 课程名称: 实训(验): 梁弯曲正应力测量 年 月 日 一、 实训(验)目的: 1、掌握静态电阻应变仪的使用方法; 2、了解电测应力原理,掌握直流测量电桥的加减特性; 3、分析应变片组桥与梁受力变形的关系,加深对等强度梁概念的理解。 二、 实训(验)内容、记录和结果(含数据、图表、计算、结果分析等) 1、实验数据: (1) 梁的尺寸: 宽度b =9mm ;梁高h=30mm ;跨度l =600mm;AC 、BD:弯矩a=200m m。测点距轴z 距离: 21h y ==15mm;42h y ==7.5mm ;3y =0cm ;-=-=44h y 7.5mm;-=-=2 5h y 15mm;E=210Gpa 。 抗弯曲截面模量W Z =b h2/6 惯性矩J Z =bh 3 /12 (2) 应变)101(6-?ε记录:

(3) 取各测点ε?值并计算各点应力: 1ε?=16×10-6 ;2ε?=7×10-6 ;3ε?= 0 ;4ε?=8×10-6 ;5ε?=15×10 - 6 ; 1σ?=E 1ε?=3.36MPa;2σ?=E 2ε?=1.47MP a;3σ?=0 ; 4σ?=E 4ε?=1.68MPa;5σ?=E 5ε?=3.15MPa ; 根据ΔM W=ΔF ·a/2=5 N ·m 而得的理论值: 1σ?=ΔM W/W Z =3.70MPa;2σ?=ΔMWh/4(J Z)=1.85M Pa ;3σ?=0 ; 4σ?=ΔM W h/4(J Z )=1.85MPa;5σ?=ΔMW /W Z=3.70MPa; (4) 用两次实验中线形较好的一组数据,将平均值ε?换算成应力εσ?=E ,绘在坐标 方格纸上,同时绘出理论值的分布直线。

基于ABAQUS的纯弯曲梁正应力实验模拟

基于ABAQUS的纯弯曲梁正应力实验模拟 作者:鲁华宾, 韩金华, LU Hua-bin, HAN Jin-hua 作者单位:南通航运职业技术学院机电系,南通,226010 刊名: 制造业自动化 英文刊名:Manufacturing Automation 年,卷(期):2012,34(1) 参考文献(9条) 1.卓勉直梁纯弯曲实验装置的改进 2008(01) 2.石亦平有限元分析实例详解 2006 3.ABAQUS Inc ABAQUS Example Problems Manual 2004 4.王玉镯ABAQUS结构工程分析及实例详解 2010 5.赵腾伦ABAQUS 6.6在机械工程中的应用 2007 6.庄卓ABAQUS非线性有限元分析与实例 2005 7.曾攀工程有限元方法 2010 8.浦广益材料力学实验教学与有限元方法的有机结合[期刊论文]-人力资源管理 2010(01) 9.赵连华基于VB和ANSYS的《材料力学仿真实验》系统[期刊论文]-长沙航空职业技术学院学报 2007(01) 本文读者也读过(10条) 1.LI Zhong.HAN Dan-fu A fast direct point-by-point generating algorithm for B Spline curves and surfaces[期刊论文]-浙江大学学报A(英文版)2005,6(6) 2.魏先顺.梁维中.王海波.Wei Xianshun.Liang Weizhong.Wang Haibo NiTiZrAlCuSi块体非晶合金等温晶化动力学[期刊论文]-铸造工程2006,30(4) 3.李锐.葛海龙.罗思东.刘敏.LI Rui.GE Hai-long.LUO Si-dong.LIU Min基于ABAQUS的常开干式离合器系统的有限元分析[期刊论文]-机械工程师2011(11) 4.蒋建平.顾晰妍基于ABAQUS的浅基础地层结构效应研究[期刊论文]-科技创新导报2012(3) 5.周梅芳.金向平.傅美贞.ZHOU Mei-fang.JIN Xiang-ping.FU Mei-zhen根据柔度判断压杆失稳的误区分析[期刊论文]-金华职业技术学院学报2005,5(1) 6.φ76mm二次穿孔机组定心辊设备改进[期刊论文]-冶金设备2005(5) 7.于宝林.霍学军.李强无限自由度压杆稳定数值解析法程序设计[会议论文]-2006 8.赵喜来.赵世功.杨晓红.ZHAO Xilai.ZHAO Shigong.YANG Xiaohong杆件顶镦失稳数学模型研究[期刊论文]-热加工工艺 2009,38(13) 9.龙也.赵炯ABAQUS接触分析在挖掘机动臂销轴故障处置中的应用[期刊论文]-建筑2012(6) 10.吴江龙.褚福运.曲淑英.王超.董锟基于压杆失稳定义的稳定试验装置研制过程[会议论文]-2009 本文链接:https://www.wendangku.net/doc/356004879.html,/Periodical_zzyzdh201201028.aspx

实验五----纯弯曲梁正应力实验

实验五 纯弯曲梁正应力实验 一、试验目的 1、熟悉电测法的基本原理。 2、进一步学会静态电阻应变仪的使用。 3、用电测法测定钢梁纯弯曲时危险截面沿高度分布各点的应力值。 二、试验装置 1、材料力学多功能实验装置 2、CM-1C 型静态数字应变仪 三、试验原理 本试验装置采用低碳钢矩形截面梁,为防止生锈将钢梁进行电镀。矩形截面钢梁架在两支座上,加载荷时,钢梁中段产生纯弯曲变形最大,是此钢梁最危险的截面。为了解中段危险截面纯弯曲梁应力沿高度方向分布情况,采用电测法测出加载时钢梁表面沿高度方向的应变情况,再由σ实=E ε实得到应力的大小。试验前在钢梁上粘贴5片应变 片见图5—1,各应变片的间距为4 h ,即把钢梁4等分。在钢梁最外侧不受力处粘贴一片 R 6作为温度补偿片。 图5—1 试验装置示意图 对于纯弯曲梁,假设纵向纤维仅受单向拉伸或压缩,因此在起正应力不超过比例极限时,可根据虎克定律进行计算: σ实=E ε实 E 为刚梁的弹性模量,ε实是通过电测法用电阻应变仪测得的应变值。 四、电测法基本原理 1、电阻应变法工作原理 电测法即电阻应变测试方法是根据应变应力关系,确定构件表面应力状态的一种实验应力分析法。 将应变片紧紧粘贴在被测构件上,连接导线接到电桥接线端子上 当构件受力 构件产生应变 应变片电阻值随之变化 应变仪内部的惠斯登电桥

将电阻值的变化转变成正比的电压信号电阻应变仪内部的放大、相敏、检波电路转换显示器读出应变量。

2、电阻应变片 1)电阻应变片的组成 由敏感栅、引线、基底、盖层和粘结剂组成,其构造简图如图5—2所示。敏感栅能把构件表面的应变转换为电阻相对变化。由于它非常敏感,故称为敏感栅。它用厚度为0.002~0.005mm的铜合金或铬合金的金属箔,采用刻图、制版、光刻及腐蚀等工艺过程制成,简称箔式应变。它粘贴牢固、散热性能好、疲劳寿命长,并能较好的反映构件表面的变形,使测量精度较高。在各测量领域得到广泛的应用。 图5—2 电阻应变片构造简图 2)电阻应变片种类 电阻应变片按敏感栅的结构形状可分为: 单轴应变片:单轴应变片一般是指具有一个敏感栅的应变片。 应变花(多轴应变片):具有两个或两个以上轴线相交成一定角度的敏感栅制成的应变片称为多轴应变片,也称为应变花。其敏感栅可由金属丝或金属箔制成。采用应变花可方便地测定平面应变状态下构件某一点处的应变。 3)应变灵敏系数(K) 将应变片贴在单向应力状态的试件表面,且其轴向与应力方向重合。在单向应力作用下,应变片的电阻相对变化ΔR/P与试件表面沿应变片轴线方向的应变ε之比值,称为应变片的灵敏系数 K=(ΔR/P)/ε 应变片灵敏系数是使用应变片的重要数据。它主要取决于敏感栅的材料、型式和几何尺寸。应变片的灵敏系数受到多种因素的影响,无法由理论求得,是由制造厂经抽样在专门的设备上进行标定,并于包装上注明。常用的应变片灵敏度系数为2—2.4。 当我们使用应变片时,必须在测量前进行校准。校准方法:根据应变片的K值,查表5—1,再根据表内K值所对应的标定值,来调节静态应变仪。 K值 1.9 1.952 2.05 2.1 2.15 2.2 2.25 2.3 2.35 校准值 120Ω5263518250004878476246514545444443474255 3、CM-1C型静态数字应变仪

单一材料梁的弯曲正应力实验

单一材料梁的弯曲正应力实验 一、实验目的 1.用电测法测量单一材料的矩形截面梁在纯弯曲状态时其横截面上正应力的大小及分布规律,并与理论计算值比较,从而验证梁的弯曲正应力理论公式。 2.初步掌握电测法原理和静态电阻应变仪的使用方法。 二、预习思考要点 1.本实验装置是如何实现使梁的某一区段处于纯弯曲状态的? 2.梁处于纯弯曲状态时其内力分布有何特征? 3.梁处于纯弯曲状态时,若要测取其上某一点的线应变为何只需在该点布设一枚应变计,且平行于梁的轴线方向? 三、实验装置和仪器 1.纯弯曲实验装置 本实验采用低碳钢或中碳钢制成的矩形截面梁,测试其正应力分布规律的实验装置如图1-26(a)所示,所加的砝码重量通过杠杆以一定的放大比例作用于加载辅梁的中央,设作用于辅梁中央的载荷为F,由于载荷对称,支承条件对称,则通过两个挂杆作用于待测梁上C、D处的载荷各为F/2。由待测梁的内力图可知CD段上的剪力Q=0, 弯矩为一常量M= 2a F ,即梁的CD段处于纯弯曲状态。 图1-26 弯曲正应力实验装置及试样贴片位置图 2.静态电阻应变仪 3.游标卡尺、钢直尺 四、实验原理 由于矩形截面梁的CD段处于纯弯曲状态,当梁发生变形其横截面保持平面的假设

成立,又可将梁视作由一层一层的纵向纤维叠合而成且假设纵向纤维间无挤压作用,此时纯弯曲梁上的各点处于单向应力状态,且弯曲正应力的方向平行于梁的轴线方向,所以若要测量纯弯曲状态下梁的横截面上的正应力的分布规律,可在梁的CD 段任一截面上沿不同高度处平行于梁的轴线方向布设若干枚电阻应变计,为简便计算,本实验的布片方案如图1-26(b )所示,一枚布设在梁的中性层上,其余四枚分别布设在距中性层h/4或h/2处(h 为梁矩形截面的高度),此外还布设了一枚温度补偿片。 当梁受载后,电阻应变计随梁的弯曲变形而产生伸长或缩短,使自身的电阻改变。通过力学量的电测法原理,利用电阻应变仪即可测出梁横截面上各测点的应变值ε实。由于本实验梁的变形控制在线弹性范围内,所以依据单向虎克定律即可求解相应各测点的应力值,即σ实=E ·ε实,E 为梁材料的弹性模量。 实验采用“等增量法”加载,即每增加等量的载荷ΔF ,测定一次各点相应的应变增量Δε实,并观察各点应变增量的线性程度。载荷分为3—5级,最终载荷的选取,应依据梁上的最大应力σmax <(0.7-0.8)σs (σs 为材料的屈服极限)。当加载至最后一级,测完各应变值后即卸载,最后算出各测点应变增量的算术平均值实ε?,依次求出各点的应力增量Δσ实。 Δσ实=E· 实ε? (1-43) 把Δσ实与理论公式计算的应力增量 Δσ理= z I y M ?? (1-44) 进行比较,算出截面上各测点的应力增量实验值与理论值的相对误差,即 %100???-?= 理 理 实σσση (1-45) 从而验证梁的弯曲正应力公式的正确性。 五、实验步骤 1.用游标卡尺和钢直尺测量梁的矩形截面的宽度b 和高度h ,载荷作用点到梁支点的距离a 。 2.根据梁的截面尺寸和支承条件,材料的σs 值,确定分级加载的载荷增量和级次,(每级加载应使梁上各点的应变有较明显的变化),最终载荷值。 3.本实验采用多点半桥公共补偿测量法,将5枚应变测量计和公共温度补偿计分别接入静态电阻应变仪的相邻桥臂上,根据电阻应变计所给出的灵敏系数k 值调好电阻

纯弯曲梁的正应力实验

纯弯曲梁的正应力实验 一、实验目的: 1.测定梁在纯弯曲时横截面上正应力大小和分布规律 2.验证纯弯曲梁的正应力公式 二、实验设备及工具: 1.材料力学多功能试验台中的纯弯曲梁实验装置 2.数字测力仪、电阻应变仪 三、实验原理及方法: 在纯弯曲条件下,根据平面假设和纵向纤维间无挤压的假设,可得到梁横截面上任意一点的正应力,计算公式:z M y I σ?= 为测量梁横截面上的正应力分布规律,在梁的弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。贴法:中性层一片,中性层上下1/4梁高处各一片,梁上下两侧各一片,共计五片。 采用增量法加载,每增加等量荷载△P (500N )测出各点的应变增量△ε,求的各点应变增量的平均值△ε实i ,从而求出应力增量: σ实i =E △ε实i 将实验应力值与理论应力值进行比较,已验证弯曲正应力公式。 四、原始数据:

五、实验步骤: 1. 打开应变仪、测力仪电源开关 2.连接应变仪上电桥的连线,确定第一测点到第五测点在电桥通道上的序号。 3. 检查测力仪,选择力值加载单位N或kg,按动按键直至显示N上的红灯亮起。按清零键,使测力计显示零。 4.应变仪调零。按下“自动平衡”键,使应变仪显示为零。 5.转动手轮,按铭牌指示加载,加力的学生要缓慢匀速加载,到测力计上显示500N,读数的学生读下5个测点的应变值,(注意记录下正、负号)。用应变仪右下角的通道切换键来显示第5测点的读数。以后,加力每次500N,到3000N为止。 6.读完3000N应变读数后,卸下载荷,关闭电源。 六、实验结果及处理:

1.各点实验应力值计算 根据上表数据求得应变增量平均值△εPi,带入胡克定律计算各点实验值: σ实i=E△εPi×10-6 2.各点理论应力值计算 载荷增量△P = 500N 弯矩增量△M = △P/2×L P 应力理论值计算(验证的就是它) 3.绘出实验应力值和理论应力值的分布图 以横坐标表示各测点的应力σ 实和σ 理 ,以纵坐标表示各测点距梁中性层的位置。 将各点用直线连接,实测用实线,理论用虚线。 σ y 4.实验值与理论值比较,验证纯弯曲梁的正应力公式

弯曲正应力实验报告

一、实验目的 1、用电测法测定梁纯弯曲时沿其横截面高度的正应变(正应力)分布规律; 2、验证纯弯曲梁的正应力计算公式。 3、初步掌握电测方法,掌握1/4桥,1/2桥,全桥的接线方法,并且对试验结果及误差进行比较。 二、实验仪器和设备 1、多功能组合实验装置一台; 2、TS3860型静态数字应变仪一台; 3、纯弯曲实验梁一根。 4、温度补偿块一块。 三、实验原理和方法 弯曲梁的材料为钢,其弹性模量E=210GPa ,泊松比μ=0.29。用手转动实验装置上面的加力手轮,使四点弯上压头压住实验梁,则梁的中间段承受纯弯曲。根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为: x M y I σ= 式中:M 为弯矩;x I 为横截面对中性轴的惯性矩;y 为所求应力点至中性轴的距离。由上式可知,沿横截面高度正应力按线性规律变化。 实验时采用螺旋推进和机械加载方法,可以连续加载,载荷大小由带拉压传感器的电子测力仪读出。当增加压力P ?时,梁的四个受力点处分别增加作用力/2P ?,如下图所示。 为了测量梁纯弯曲时横截面上应变分布规律,在梁纯弯曲段的侧面各点沿轴线方向布置了3片应变片,各应变片的粘贴高度见弯曲梁上各点的标注。此外,在梁的上表面和下表面也粘贴了应变片。 如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的虎克定律公式E σε=,可求出各点处的应力实验值。将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。 σ实 =E ε实 式中E 是梁所用材料的弹性模量。

图3-16 为确定梁在载荷ΔP 的作用下各点的应力,实验时,可采用“增量法”,即每增加等量的载荷ΔP 测定各点相应的应变增量一次,取应变增量的平均值Δε实来依次求出各点应力。 把Δσ实与理论公式算出的应力Z I MY =σ比较,从而验证公式的正确性,上述理论公式中的M 应按下式计算: Pa ?= M 2 1 (3.16) 四、实验步骤 1、检查矩形截面梁的宽度b 和高度h 、载荷作用点到梁支点距离a ,及各应变片到中性层的距离i y 。 2、检查压力传感器的引出线和电子秤的连接是否良好,接通电子秤的电源线。检查应变仪的工作状态是否良好。分别采用1/4桥,1/2桥,全桥的接线方法进行测量,其中1/4桥需要接温度补偿片,1/2桥通过交换接线方式分别进行两次试验来比较试验结果。 3、根据梁的材料、尺寸和受力形式,估计实验时的初始载荷0P (一般按00.1s P σ=确定)、最大载荷max P (一般按max 0.7s P σ≤确定)和分级载荷P ? (一般按加载4~6级考虑)。 本实验中分四次加载。实验时逐级加载,并记录各应变片在各级载荷作用下的读数应变。 4、实验完毕后将载荷卸掉,关上电阻应变仪电源开关,并请教师检查实验数据后,方可离开实验室。 五、数据处理

弯曲正应力实验报告

弯曲正应力实验 一、实验目的:1、初步掌握电测方法和多点测量技术。; 2、测定梁在纯弯和横力弯曲下的弯曲正应力及其分布规律。 二、设备及试样: 1. 电子万能试验机或简易加载设备; 2. 电阻应变仪及预调平衡箱; 3. 进行截面钢梁。 三、实验原理和方法: 1、载荷P 作用下,在梁的中部为纯弯曲,弯矩为1 M=2 Pa 。在左右两端长为a 的部分内为横力弯曲,弯矩为11 =()2 M P a c -。在梁的前后两个侧面上,沿梁的横截面高度,每隔 4 h 贴上平行于轴线上的应变片。温度补偿块要放置在横梁附近。对第一个待测应变片联同温度补偿片按半桥接线。测出载荷作用下各待测点的应变ε,由胡克定律知 E σε= 另一方面,由弯曲公式My I σ=,又可算出各点应力的理论值。于是可将实测值和理论值进 行比较。 2、加载时分五级加载,0F =1000N ,F ?=1000N ,max F =5000N ,缷载时进行检查,若应变差值基本相等,则可用于计算应力,否则检查原因进行复测(实验仪器中应变ε的单位是 610-)。 3、实测应力计算时,采用1000F N ?=时平均应变增量im ε?计算应力,即 i i m E σε?=?,同一高度的两个取平均。实测应力,理论应力精确到小数点后两位。 4、理论值计算中,公式中的3 1I=12 bh ,计算相对误差时 -100%e σσσσ= ?理测 理 ,在梁的中性层内,因σ理=0,故只需计算绝对误差。 四、数据处理 1、实验参数记录与计算: b=20mm, h=40mm, l=600mm, a=200mm, c=30mm, E=206GPa, P=1000N ?, max P 5000N =, k=2.19 3 -641I= =0.1061012 bh m ? 2、填写弯曲正应力实验报告表格

纯弯曲正应力分布实验报告

竭诚为您提供优质文档/双击可除纯弯曲正应力分布实验报告 篇一:弯曲正应力实验报告 一、实验目的 1、用电测法测定梁纯弯曲时沿其横截面高度的正应变(正应力)分布规律; 2、验证纯弯曲梁的正应力计算公式。 3、初步掌握电测方法,掌握1/4桥,1/2桥,全桥的接线方法,并且对试验结果及误差进行比较。 二、实验仪器和设备 1、多功能组合实验装置一台; 2、Ts3860型静态数字应变仪一台; 3、纯弯曲实验梁一根。 4、温度补偿块一块。三、实验原理和方法 弯曲梁的材料为钢,其弹性模量e=210gpa,泊松比μ =0.29。用手转动实验装置上面的加力手轮,使四点弯上压 头压住实验梁,则梁的中间段承受纯弯曲。根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为:?? m

yIx 式中:m为弯矩;Ix为横截面对中性轴的惯性矩;y为所求应力点至中性轴的距离。由上式可知,沿横截面高度正应力按线性规律变化。 实验时采用螺旋推进和机械加载方法,可以连续加载,载荷大小由带拉压传感器的电子测力仪读出。当增加压力?p 时,梁的四个受力点处分别增加作用力?p/2,如下图所示。 为了测量梁纯弯曲时横截面上应变分布规律,在梁纯弯曲段的侧面各点沿轴线方向布置了3片应变片,各应变片的粘贴高度见弯曲梁上各点的标注。此外,在梁的上表面和下表面也粘贴了应变片。 如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴 向应变,则由单向应力状态的虎克定律公式??e?,可求出各点处的应力实验值。将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。 σ实=eε 式中e是梁所用材料的弹性模量。 实 图3-16 为确定梁在载荷Δp的作用下各点的应力,实验时,可采用“增量法”,即每增加等量的载荷Δp测定各点相应的应变增量一次,取应变增量的平均值Δε

纯弯曲梁的正应力试验

实验六 纯弯曲梁的正应力实验 一、实验目的 1. 梁在纯弯曲时横截面上正应力大小和分布规律; 2. 验证纯弯曲梁的正应力计算公式; 3. 测定泊松比μ; 4. 掌握电测法的基本原理; 二、实验设备 1. 材料力学多功能实验台; 2. 静态数字电阻应变仪一台; 3. 矩形截面梁; 4. 游标卡尺; 三、实验原理 1. 测定弯曲正应力 本实验采用的是低碳钢制成的矩形截面试件,当力F 作用在辅助梁中央A 点时,通过辅助梁将压力F 分解为两个集中力2/F 并分别作用于主梁(试件)的B 、C 两点。实验装置受力简图如下图所示。 根据内力分析,BC 段上剪力0=S F ,弯矩Fa M 2 1=,因此梁的BC 段发生纯弯曲。 在BC 段中任选一条横向线(通常选择BC 段的中间位置),在离中性层不同高度处取5个点,编号分别为①、②、③、④、⑤,在5个点的位置处沿着梁的轴线方向粘贴5个电阻应变片,如下图所示。 D C B a F/2 F/2 E a ⑥ ⑤ ① ② ④ ③ h b

根据单向受力假设,梁横截面上各点均处于单向应力状态,应用轴向拉伸时的胡克定律, 即可通过测定的各点应变,计算出相应的实验应力。采用增量法,各点的实测应力增量表达 式为: i i E 实实εσ?=? 式中:i 为测量点的编号,i =1、2、3、4、5; i 实ε? 为各点的实测应变平均增量; 为各点的实测应力平均增量; 纯弯梁横截面上正应力的理论表达式为:z i i I y M ?=σ ; 增量表达式为: z i i I y M ??=?σ 通过同一点实测应力的增量与理论应力增量计算结果比较,算出相对误差,即验证纯弯 曲梁的正应力计算公式。 以截面高度为纵坐标,应力大小为横坐标,建立平面坐标系。将5个不同测点通过计 算得到的实测应力平均增量以及各测点的测量高度分别作为横坐标和纵坐标标画在坐标平 面内,并连成曲线,即可与横截面上应力理论分布情况进行比较。 2. 测定泊松比 在梁的下边缘纵向应变片⑤附近,沿着梁的宽度方向粘贴一片电阻应变片⑥(电阻应变 片⑥也可贴在梁的上边缘),测出沿宽度方向的应变,利用公式ε εν'=,确定泊松比。 四、实验步骤 1. 测量梁的截面尺寸h 和b ,力作用点到支座的距离以及各个测点到中性层的距离。 2. 根据材料的许用应力和截面尺寸及最大弯矩的位置,估算最大荷载,即: 然后确定量程,分级载荷和载荷重量。 3. 接通电阻应变仪电源,分清各测点应变片引线,把各个测点的应变片和公共补偿片接到 应变仪的相应通道,调整应变仪零点和灵敏度值。 4. 记录荷载为o F 的初应变,以后每增加一级荷载就记录一次应变值,直至加到n F 。 5. 按上面步骤再做一次。根据实验数据决定是否需要再做第三次。 [][]σσασa bh F bh F W M z 36212max 2max max max ≤?≤==i 实σ?

实验四:弯曲正应力电测实验

实验四:弯曲正应力电测实验 一、实验目的和要求 1.学习使用应变片和电阻应变仪测定静态应力的基本原理和方法。 2.用电测法测定纯弯曲钢梁横截面不同位置的正应力。 3.绘制正应力沿其横截面高度的的分布图,观察正应变(正应力)分布规律,验证纯弯曲梁的正应力计算公式。 二、实验设备、仪器和试件 1.CLDS-2000型材料力学多功能实验台。 2.YJZ —8型智能数字静态电阻应变仪。 3.LY —5型拉力传感器。 4.直尺和游标卡尺。 三、实验原理和方法 (1)理论公式: 本实验的测试对象为低碳钢制矩形截面简支梁,实验台如图4-1所示,加载方式如图4-2所示。 图4-1 图4-2 由材料力学可知,钢梁中段将产生纯弯曲,其弯矩大小为 c P M 2 ?= (1) 横截面上弯曲正应力公式为

Z I My = σ (2) 式中y 为被测点到中性轴z 的距离,I z 为梁截面对z 轴的惯性矩。 12 3bh I Z = (3) 横截面上各点正应力沿截面高度按线性规律变化,沿截面宽度均匀分布,中性轴上各点的正应力为零。截面的上、下边缘上各点正应力为最大,最大值为W M =max σ。 (2)实测公式: 实验采用螺旋推进和机械加载方法,可以连续加载,荷载大小可由电子测力仪读出。当增加压力P ?时,梁的四个点受力分别增加作用力2/P ?,如图4-2所示。 为了测量梁纯弯曲时横截面上应变分布规律,在梁的纯弯曲段侧面布置了5片应变片,如4-2所示,各应变片的粘贴高度见梁上各点标注。此外,在梁的上表面沿横向粘贴了第6片应变片,用以测定材料的泊松比μ;在梁的端部上表面零应力处粘贴了第7片温度补偿应变片,可对以上各应变片进行温度补偿。 在弹性范围内,如果测得纯弯曲梁在纯弯曲时沿横截面高度上的轴向应变,则由单向应力状态的胡克定律,即: σε=E (4) 由上式可求出各点处的应力实验值。将应力实验值σε=E 与理论值Z I My =σ进行比较,以验证弯曲正应力公式。 如果测得应变片4和6的应变满足 μεε=46/ 则证明梁弯曲时近似为单向应力状态,即梁的纵向纤维间无挤压的假设成立。 实验采用增量法。每增加等量载荷ΔP ,测得各点相应得应变增量实ε?一次。因每次ΔP 相同,故实ε?应是基本上按比例增加。 四、实验步骤 1.用游标卡尺和直尺分别测量矩形截面梁的宽度b 、高度h 以及载荷作用点到支点的距离a ,并记入实验记录表中。注意两端a 值应相等,可通过移动两根拉杆的位置来保证。 2.将1到5点测量应变片以4/1桥分别接入电阻应变仪的任意5个通道的A 、B 点之间(若考虑温度补偿,则须将仪器后面板B 、1C 端子的标准120Ω电阻去掉,再将温度补偿片接入该处),将拉力传感器的四根输出线与电阻应变仪的任意通道的A 、B 、C 、D 端对应连接(全桥测量),将应变仪的通讯电缆与PC 机的COM 口连接,注意检查各接点连接是否可靠。 3.打开PC 机及应变仪的电源,预热后设置各通道参数(通道使用与否、桥型、灵敏度系数、被测物理量量纲),参数设置有两种方法:一是由应变仪键盘设定,二是由PC 机安装的测试软件用通信方式设定,建议采用第二种方法设定参数,这样比较简单快捷。具体设定

第十一章组合变形

知识点11:组合变形 一、组合变形 1.杆件同时发生两种或两种以上的基本变形时,称为组合变形。 2.计算组合变形问题,是以杆件发生“小变形”为前提,在此条件下,不同基本变形所引起的应力和变形,各自独立,互不影响,可以应用叠加原理。即先根据各内力分量分别计算杆件在每一种基本变形下的应力和变形,再把计算结果叠加,得到杆件在原载荷作用下的应力和变形。 二、 斜弯曲 1.当梁所受到的横向力不在梁的主惯性平面内时,梁将发生斜弯曲。斜弯曲是梁在其两个主惯性平面内弯曲的组合变形。 2.对于圆形、正方形等截面梁,其截面对两个主惯性轴的惯性矩相等,不会发生斜弯曲。 3.当梁的载荷不通过截面的弯曲中心时,除斜弯曲外,梁还发生扭转变形。 4.图11-1所示矩形截面悬臂梁受横向力F作用,把力F沿y 轴和z 轴分解,梁将在xy 和xz 两个主惯性平面内弯曲。 图11-1 xy 平面内的弯曲应力: y I M z z = 'σ xz 平面内的弯曲应力: z I M y y = ''σ 组合变形(斜弯曲)的应力: z I M y I M y y z z +=''+'=σσσ 5.斜弯曲的中性轴方程

0=+z I M y I M y y z z 中性轴通过截面形心,但和载荷作用平面不垂直。距中性轴最远的点处正应力最大。 6.斜弯曲时梁的弯曲平面和载荷作用平面不在同一平面,但弯曲平面和中性轴相垂直。 三、拉伸(压缩)与弯曲的组合 1.杆件受拉伸(压缩)与弯曲组合时,弯曲变形的中性轴位置将偏移。 2. 杆在拉伸(压缩)与弯曲的组合变形时,分别计算拉伸(压缩)正应力和弯曲正应力,叠加后进行强度计算。 3.拉伸(压缩)时,横截面的正应力: A N N =σ 弯曲时,横截面的最大拉压正应力: W M M ± =σ 拉伸(压缩)与弯曲的组合,横截面的最大拉压正应力: W M A N ±=σ 4.杆件受偏心拉伸(压缩)时,其截面上存在称为截面核心的区域,当偏心轴向力作用在截面核心内时,截面上只产生拉应力(或压应力)。截面核心在工程上有很大的意义。 四、圆杆的弯曲与扭转组合变形 1.当圆杆发生两面弯曲与扭转的组合变形时,不能求出两个平面弯曲的最大正应力后,进行叠加得到圆杆的最大正应力,而应先求出两平面弯曲的合成弯矩,再求其最大弯曲正应力。 2. 图11-2为受弯曲与扭转组合变形构件危险点的应力状态,图中 弯曲正应力: W M = σ 扭转切应力: P W Mz =τ

相关文档