文档库 最新最全的文档下载
当前位置:文档库 › 连铸板坯表面星状裂纹的形成与控制

连铸板坯表面星状裂纹的形成与控制

连铸板坯表面星状裂纹的形成与控制
连铸板坯表面星状裂纹的形成与控制

混凝土裂缝控制技术总结

混凝土裂缝控制施工技术总结 1、工程概况 沈阳南站市政交通工程(一期工程)主体结构为东、西广场地下空间部分,涵盖旅客出站通道、地铁、公交枢纽、出租车蓄车场、社会停车及商业配套等功能。共涵盖6条匝道桥,地下空间主要包括一个地下两层建筑(局部为地下一层),公交车站候车大厅为出地下室顶板一层框架结构。本工程主体结构采用钢筋混凝土框架结构。基础采用筏板基础,混凝土强度等级C35,混凝土采用裂缝控制技术。 2、施工安排 2.1施工机械设备 主要施工机械统计表表 序号机械设备名称用途数量备注 1 塔吊配合混凝土浇筑10台 2 混凝土输送泵车混凝土浇筑辆 3 混凝土搅拌运输车混凝土运输辆 4 插入式振动棒混凝土振捣台 5 潜水泵排水台 2.2劳动力安排 主要劳动力统计表 序号工种工作内容人数

1 塔吊司机驾驶塔吊12 2 电工保证现场临时用电通畅及保护预 2 3 振动泵操作手混凝土振捣8 4 瓦工混凝土面抹光8 5 混凝土搅拌运输车司机混凝土运输12 6 木工看模、加固 4 7 钢筋工整理钢筋 4 8 小工杂活及道路清理 6 9 试验员混凝土试块制作 1 10 施工员指挥协调 2 2.3测温仪器 序号仪器名称用途数量备注 1 50Ω铜热电阻测温13 2 测温记录仪XQCJ-300 测温2台 3、施工方法 工程在比较干燥、寒冷的沈阳施工,为防止混凝土裂缝的产生及提高混凝土的成型质量,项目部技术人员重点对混凝土原材料的选择、混凝土配合比设计、混凝土温度的计算、养护材料的选用、温度应力的计算、各种资源的合理配备及施工方法的正确运用等进行了充分研究,最终确定了针对性较强的具体施工方法。 3.1混凝土用原材料 3.1.1采用P.O42.5级普通硅酸盐水泥; 3.1.2掺入适量的Ⅰ级粉煤灰减少水泥用量,降低混凝土

板坯连铸机粘结漏钢的原因分析及预防 刘雷锋

板坯连铸机粘结漏钢的原因分析及预防刘雷锋 发表时间:2018-01-02T16:54:15.037Z 来源:《基层建设》2017年第28期作者:刘雷锋 [导读] 摘要:随着连铸技术的发展和广泛应用,连铸坯的质量和品质受到了人们的广泛关注,提高连铸坯的质量成为连铸生产中重点关注的问题之一。 宁波钢铁有限公司浙江宁波 315807 摘要:随着连铸技术的发展和广泛应用,连铸坯的质量和品质受到了人们的广泛关注,提高连铸坯的质量成为连铸生产中重点关注的问题之一。连铸过程开始广泛运用于有色金属行业,尤其是铜和铝。连铸技术迅速发展起来。本文对此进行了分析研究。 关键词:坯;连铸;连铸工艺 连铸漏钢是个常见现象。钢水在结晶器内形成坯壳,连铸坯出结晶器后,薄弱的坯壳抵抗不住钢水静压力,出现断裂而漏钢。对于薄板坯连铸来说更易发生漏钢事故。漏钢对连铸生产危害很大。即影响了连铸车间的产量,又影响了连铸坯的质量,更危及操作者的安全。因此,降低薄板坯连铸漏钢率是提高生产效率,提高产量,提高产品质量,降低成本的重要途径。现对某厂自2008~2013年薄板坯漏钢率进行统计。2008年漏钢率达0.56%;2009年漏钢率达0.19%;2010年漏钢率达0.19%;2011年漏钢率达0.19%;2012年漏钢率达0.15%;2013年漏钢率达0.07。 1 工艺流程 某厂第一钢轧厂工艺流程为:鱼雷罐供应铁水/混铁炉供应铁水→铁水预处理→转炉炼钢→氩站→精炼→薄板坯连铸 2 薄板坯漏钢类型 某厂薄板坯连铸漏钢主要有:粘结漏钢、裂纹漏钢、卷渣漏钢、开浇漏钢、鼓肚漏钢五个类型。 3 薄板坯漏钢特征、原因及预防措施 3.1 粘结漏钢 粘结漏钢是指钢水直接与结晶器铜板接触形成粘结点,粘结点处坯壳与结晶器壁之间发生粘结,此处在结晶器振动和拉坯的双重作用下被撕裂,并向下和两侧扩展,形成倒“V”形破裂线,钢水补充后又形成新的粘结点,这一过程反复进行,粘结点随坯壳运动不断下移,此处坯壳较薄,出结晶器后,坯壳不能承受上部钢水的静压力,便会发生漏钢事故。据统计,粘结漏钢发生率最高,高达50%以上。 (1)铸坯粘结漏钢后特征。粘结漏钢后铸坯特征。坯壳呈“V”字型或“倒三角”状,粘结点明显。 (2)粘结漏钢的原因: 1)保护渣性能不好。保护渣在结晶器铜板与凝固坯壳之间起润滑的效果。保护渣的性能好坏直接影响凝固坯壳的质量,保护渣的粘度是一个重要指标,它决定渣膜的薄厚,保护渣粘度高,不易流入坯壳与铜板之间形成润滑渣膜,使得钢水和结晶器铜板之间易发生粘结。2)钢水纯净度低。钢水中[O]含量高,使得钢水中A12O3含量升高,进而结晶器保护渣中A12O3含量高,保护渣性能发生变化,渣粘度增大、不易流入坯壳与铜板之间形成润滑渣膜,使得钢水和结晶器铜板之间易发生粘结。3)结晶器振动参数不合适。合适的振动形式和振动参数可以降低结晶器铜板与凝固坯壳之间的摩擦力和减小振痕深度,改善铸坯表面的质量。若结晶器振动参数不合适,负滑脱时间过长造成凝固坯壳上的振痕过深,使坯壳容易在应力的作用下断裂产生粘结。4)浸入式水口烘烤不符合标准。如果浸入式水口烘烤温度不够,连铸开浇时水口与结晶器内外弧间的保护渣产生搭桥现象,保护渣不易熔化,进而流入到坯壳和结晶器之间的保护渣减少,渣膜变薄,润滑效果变差,容易粘结漏钢。5)钢水温度过低。钢水温度过低,保护渣粘度大,润滑效果不好,易粘结漏钢。 3.2 卷渣漏钢 定義:由于结晶器液面波动会将渣卷入初生坯壳,这些渣子附着在坯壳表面,由于其导热性差,卷渣处的坯壳较薄,铸坯出结晶器后,渣子在钢水静压力作用下脱落产生漏钢。 在结晶器内的固态或半熔融的夹渣物随着浇注钢流的运动,被推向结晶器壁;或在更换中间包长水口时,中间包内钢液面下降后,中间包内钢渣易随钢流进入结晶器,最后被初生坯壳捕捉; (1)卷渣漏钢后特征。卷渣漏钢主要特征表现为:漏钢部位有“孔洞或结渣”,漏钢部位一般发生在结晶器出口位置。 (2)卷渣漏钢原因: 1)残留在钢中的大型夹杂物较多造成卷渣现象;2)较大的结晶器液面波动造成卷渣现象;3)捞渣不及时或捞不净造成的卷渣现象。 3.3开浇漏钢 开浇漏钢是指铸机开浇或者换中间包时,由于连接不好而造成的漏钢。 (1)开浇漏钢后铸坯特征。开浇漏钢铸坯特征为:漏钢一般发生在开浇起步期间,引锭头刚拉出结晶器就发生漏钢。(2)开浇漏钢原因:引锭头未扎好,包括石棉绳没扎紧;开浇起步过快,凝固时间不够开拉,坯头强度不够,将引锭头处拉裂漏钢。 4 薄板坯漏钢的预防措施 4.1 优化结晶器保护渣性能 通过优化保护渣碱度、熔点、熔速、粘度等指标,有效地减少了粘结、卷渣、裂纹漏钢等生产事故。 4.2 恒温恒拉速浇注 恒温恒拉速浇注是降低薄板坯漏钢率的主要因素。 4.3 优化连铸工艺参数 对不同钢种、不同断面的连铸相关参数(结晶器水流量、结晶器初始锥度、二冷水各段分配比例及比水量、扇形段压下终点位置等)进行优化调整,并固化使用。 4.4 连铸耐材优化与管理 (1)加强水口的烘烤操作。(2)优化中间包结构。中间包控流装置由“单挡渣坝”式改为“一挡墙+两挡坝”组合结构,将钢包下渣完全挡在冲击区内,产生的流场有利于钢液中夹杂物的充分上浮,有利于钢液成分、温度的均匀,提高了钢水质量,降低了漏钢事故。(3)加

40Cr钢坯角部裂纹低倍评级图

山东石横特钢集团有限公司 企业标准 Q/STBj05-2008 40Cr钢坯角部裂纹低倍评级图 (第一版) 管理部门:技术中心 受控状态: 发放编号: 编制:张吉军 审核: 批准:陈小武 标准化审查:高敏张颖 2008-12-18 发布 2008-12-19 实施

文件审批单

更改履历表

40Cr钢坯角部裂纹低倍评级图 1 范围 本标准仅适用于评定锻造用40Cr连铸坯的横截面酸蚀低倍组织缺陷中的角部裂纹缺陷。 2 引用标准 GB/T 226 钢的低倍组织及缺陷酸蚀检验法 YB/T153 优质碳素结构钢和合金结构钢连铸方坯低倍组织缺陷评级图3 试样显示方法 试样显示方法按GB/T 226的规定执行。 4 角部裂纹的形貌特征及评定原则 4.1 特征 在酸蚀试样的角部,距表面有一定深度并与表面垂直,距与之平行的边部距离最大为25mm,当两条裂纹相距2mm时,按一条裂纹计算,裂纹严重时,沿对角线向内部扩展。 4.2 评定原则 评级时应首先考虑裂纹的宽度,其次为裂纹的长度和数量以及距表面的距离。距表面的距离越近,级别应越高。裂纹总长度为单条裂纹长度之和。 5 评级图片 角部裂纹缺陷共分8级。评级图片边长的实际尺寸为150mm。各类评级图片见附录A 。 6 评定方法 评定缺陷以肉眼可见为限,必要时可用卡尺量出实际尺寸,对照图谱进行评定。当其严重程度界于相邻两级之间时可评半级。在进行评定其它

尺寸的连铸坯角部裂纹级别时,可根据缺陷评级图按比例缩小或放大。 7 附录 7.1 本标准由理化检测中心金相检测室负责解释。 7.2 本标准产生的附录有: 1)附录A角部裂纹评级图 2)附录B角部裂纹微观组织

裂缝控制措施

裂缝控制措施 一、裂缝的成因分析 裂缝的形成有外荷载、材料的收缩(主要为的混凝土收缩、 温度变形)等原因造成。从技术角度来分析,有设计、施 工、材料等方面问题,主要反映如下: 1、从设计方面看 ⑴楼板刚度不足:部分楼板设计板厚不够,楼板跨高比 偏大,其刚度较小对裂缝控制很不利。此外设计按多跨连 续板进行配筋计算,侧重于满足结构安全,较少考虑混凝 土收缩特性和温度变形等多种因素。 ⑵楼板配筋设计考虑不周:受力钢筋采用三级钢,且间距 比较大;设计在支座处按常规配设负筋,在中部板面不配 钢筋,当板面出现温度变形和混凝土收缩,因无构造钢筋 约束,板面即出现裂缝。 ⑶楼板内布线欠合理:由于公用专业施工图由各专业设 计,实际施工中出现水电管交叉叠放,或由于设计考虑管 内容线面积,部分预埋管径≥D25;且设计管线位置在楼板 跨中,即在单层双向配筋处,楼板有效截面受到很大程度 (15%-40%)削弱,成为楼板最易开裂的部位;当楼板收缩 应力大于混凝土极限抗拉强度时,即出现沿管线表面呈直 线状的裂缝。 ⑷从房屋的空间结构来看,剪力墙刚度大,约束了剪力墙

间梁板的水平向自由变形,而梁刚度又较板刚度大,因各类因素引起的水平向收缩变形均集中到剪力墙间刚度最小的板上,造成板开裂。 ⑸膨胀剂的选用与掺量:设计未明确混凝土的限制膨胀率,只提出膨胀剂的品种和掺量范围,施工时按设计提供掺量进行配比施工,使混凝土的实际限制膨胀率不能达到最佳限制膨胀率。 2、从施工方面看 ⑴空载养护期不足:为赶工期,从楼面混凝土浇完、收光至施工材料堆放,平均空载养护期大为缩短,有的甚至不足一天,人为因素过早地震动、荷载造成楼板幼龄混凝土内部受损开裂。且施工中用塔吊吊运的钢管、钢筋等周转材料因受剪力墙钢筋影响多堆放在预埋管线部位。 ⑵水电预埋管施工时在板内位置欠合理:管位置过高或过低;位置过高时,极易在板面出现因混凝土硬化收缩产生的裂缝,也易在维修裂缝或室内装修时损坏管线;两根管线并行布置时,管线间距过小甚至并拢,更易因管线集中而产生裂缝。 ⑶项目部一般较重视混凝土浇筑后1-2天的养护工作,当上部主体施工开始,无法覆盖养护,只能让板面上部暴露在空气中,间断浇水养护,无法按规范要求保证良好的养护,造成商品混凝土有效补偿混凝土的收缩的性能降低。

连铸坯质量缺陷

连铸坯的质量缺陷及控制 摘要 连铸坯质量决定着最终产品的质量。从广义来说所谓连铸坯质量是得到合格产品所允许的连铸坯缺陷的严重程度,连铸坯存在的缺陷在允许范围以内,叫合格产品。连铸坯质量是从以下几个方面进行评价的: (1)连铸坯的纯净度:指钢中夹杂物的含量,形态和分布。 (2)连铸坯的表面质量:主要是指连铸坯表面是否存在裂纹、夹渣及皮下气泡等缺陷。连铸坯这些表面缺陷主要是钢液在结晶器内坯壳形成生长过程中产生的,与浇注温度、拉坯速度、保护渣性能、浸入式水口的设计,结晶式的内腔形状、水缝均匀情况,结晶器振动以及结晶器液面的稳定因素有关。 (3)连铸坯的内部质量:是指连铸坯是否具有正确的凝固结构,以及裂纹、偏析、疏松等缺陷程度。二冷区冷却水的合理分配、支撑系统的严格对中是保证铸坯质量的关键。 (4)连铸坯的外观形状:是指连铸坯的几何尺寸是否符合规定的要求。与结晶器内腔尺寸和表面状态及冷却的均匀程度有关。 下面从以上四个方面对实际生产中连铸坯的质量控制采取的措施进行说明。 关键词:连铸坯;质量;控制 1 纯净度与质量的关系 纯净度是指钢中非金属夹杂物的数量、形态和分布。夹杂物的存在破坏了钢基体的连续性和致密性。夹杂物的大小、形态和分布对钢质量的影响也不同,如果夹杂物细小,呈球形,弥散分布,对钢质量的影响比集中存在要小些;当夹杂物大,呈偶然性分布,数量虽少对钢质量的危害也较大。 此外,夹杂物的尺寸和数量对钢质量的影响还与铸坯的比表面积有关。一般板坯和方坯单位长度的表面积(S)与体积(V)之比在0.2~0.8。随着薄板与薄带技术的发展,S/V 可达10~50,若在钢中的夹杂物含量相同情况下,对薄板薄带钢而言,就意味着夹杂物更接近铸坯表面,对生产薄板材质量的危害也越大。所以降低钢中夹杂物就更为重要了。 提高钢的纯净度就应在钢液进入结晶器之前,从各工序着手尽量减少对钢液的污染,并最大限度促使夹杂物从钢液中排除。为此应采取以下措施:

混凝土裂缝控制技术的应用

裂缝是混凝土建筑物主要的老化病害之一,主要由干缩、砼自身质量、水泥水化热、温度、钢筋锈蚀、地基变形、荷载、碱骨料反应、地基冻胀等原因引起。 小浪底水利枢纽南岸引水口工程洞室衬砌工程混凝土的设计指标为C20P8F100。施工条件:泵送,洞外拌和,洞内浇筑,洞内恒温17~180C。为控制裂缝的产生,施工中采取了以下措施。 1.控制干缩裂缝 混凝土的干缩裂缝主要是由于毛细管压力造成的。毛细管孔隙在干燥过程中逐步失水,产生很大的毛细管张力,混凝土体积产生收缩,由于混凝土周围存在约束,内部又有拉应力,当拉应力超过混凝土材料抗拉强度时,便产生了干缩裂缝。 干缩裂缝的控制方法有: 1.1降低混凝土单位用水量:用水量的增加势必使剩余水增加,因此,从确保混凝土耐久性出发,应降低混凝土单位用水量。 1.2水泥的影响:不同水泥,混凝土收缩也不同,按收缩值大小排序:矿渣水泥>普通水泥>粉煤灰水泥。 1.3降低混凝土周围约束:若混凝土周围约束过大,内部拉应力无法释放,拉应力增大而使混凝土干裂,因此,应减少混凝土的分仓长度,以使混凝土内部拉应力能够充分释放。 1.4添加膨胀剂:适量添加膨胀剂后可以使混凝土体积膨胀,在混凝土内部产生压应力,部分抵消了混凝土因毛细孔隙干燥而产生的拉应力,从而起到控制干缩裂缝的作用。 本工程在控制混凝土干缩裂缝方面采用了上述1~3项方法。其中单位用水量为182kg,采用普通425#水泥,浇筑中掺用粉煤灰,分段浇筑长度在10m左右。 2.控制混凝土因自身质量欠缺而形成的裂缝 高强混凝土水泥的强度等级和水泥用量相对较高,开裂现象比较普遍,因此,高强混凝土不一定是高性能混凝土,而高性能混凝土因具有较高的体积稳定性,收缩变形较小而使抗裂性能大大提高,同时高强混凝土必须采用高效减水剂和超细活性掺和料作为混凝土的第五和 第六部分,来提高混凝土的密实性和抗渗能力。因本工程采用泵送施工工艺,要求的坍落度和水泥用量均较大,必须用掺加外加剂的方法来达到既减水又不使混凝土坍落度损失过大的目的,以及添加超细活性掺和料来达到降低水化热、改善与提高混凝土性能和节约水泥的目的。 综合上述两点,我们采用下表所示的混凝土配合比(单位:kg/m3)。 按上表配比,砂率38%、水灰比0.50、坍落度160~180mm、木钙掺量0.25%、粉煤灰掺量15%。 因混凝土中掺加粉煤灰技术在我省水利行业尚处于探索阶段,固替代量并不很大,只有15%,但根据有关资料,混凝土中单方水泥用量每增减10kg,水化热相应升降1~1.20C,即因本工程中掺用粉煤灰而使混凝土内部温度下降了约5.5~6.50C,从一定程度上控制了裂缝的产生。 3.控制水化热开裂 水泥水化后放出大量的热量,使混凝土内外形成较大的温差,从而在温度应力的作用下形成裂缝。特别是在夏季施工,中午气温一般在摄氏370C,露天存放的石子表面温度可达摄氏500C,砼出机口温度在摄氏300C左右,混凝土水化后内部温度更高。为控制混凝土水化开裂,施工中采用了以下措施。 3.1骨料降温 骨料的温度控制主要通过搭盖凉棚和洒水降温来进行。搭盖凉棚可避免太阳光直射,减

连铸方坯的缺陷及其处理

连铸方坯的缺陷及其处理 1 表面缺陷 1.1 气孔和针孔 定义 : 垂直铸坯表面并在铸坯表面肉眼可见的小气孔并可能以针孔的形式深入表面。 原因 : 钢水脱氧不足、凝固时产生一氧化碳; 脱氧后又钢流二次氧化吸收的气体; 结晶器保护渣质量不合要求; 钢包及中间包烘烤不好 改进方法: 钢水完全脱氧; 不浇注过氧化的钢水; 保持浇注温度;(注温不能过高) 使用干燥的钢水罐及中间罐; 保护渣不能受潮,摆放时间不能太久。 1.2 坯头气孔及针孔 定义: 同1.1,但仅出现在每次浇注的第一根钢坯坯头处 原因: 钢液温度太低; 结晶器中钢水氧化; 保护渣受潮或杂质多; 结晶器内壁上有冷凝水; 引锭头潮湿; 填入结晶器中切屑及废钢有锈、有油或潮湿; 中间罐内衬及钢水罐内衬潮湿; 改进方法: 保持浇注温度; 采用适宜的保护渣; 采用干燥和洁净的废钢及切屑; 绝对避免在结晶器内壁及锭头上产生冷凝水; 干燥及烘烤中间罐; 1.3 夹渣 定义: 表面分布不均匀的夹渣,有时针孔和渣聚集,呈疏松态的外观

原因: 由保护渣耐火材料颗粒和钢水氧化产物以及出钢渣等引起,随着钢流带入并被卷至铸坯表面。 改进方法: 用挡渣出钢; 采用适宜的保护渣及耐火材料; 钢水不能过氧化,注温要合适。 1.4 振动波纹及折叠 定义: 在与铸坯轴线垂直方向上,铸坯表面上以均匀间距分布的波纹振痕,在不利的情况下出现折叠。 原因: 浇注速度波动大,使结晶器中钢液面不稳定。 改进方法: 保持均匀的浇注速度,稳定结晶器钢水液面。 调整振动频率使其与拉速相适应。 1.5 结疤与重皮 定义: 铸坯角部和表面上出现的疤痕 原因: 由于结晶器内坯壳破裂、钢水渗入到结晶器和铸坯之间的夹缝,以及保护渣结块造成。 改进方法: 保证结晶器具有准确的锥度,当结晶器使用时间过长而磨损会使坯壳过早脱离结晶器内壁而导致坯壳破裂。 1.6 分层: (双浇) 定义: 铸坯中间出现分界层 原因: 浇注中断又重新开始浇注时,使两次浇注连接出现重接。 改进方法: 浇注过程中不要断流,拉速要相对稳定,不要忽高忽低。 1.7 纵裂 定义: 分布在铸坯角部的纵向裂纹, 角部纵裂常是拉漏的预兆。 原因: 针孔、气泡及夹杂; 结晶器内坯壳不均匀冷却; 由于铜结晶器中和足辊上有沟槽,缺口,渣子等而引起裂纹; 结晶器壁磨损或单面磨损使该处坯壳提前脱离结晶器壁; 浇注速度过高或浇注温度过高,坯壳厚度薄; 足辊对位不准; 二次冷却水不均匀;

混凝土裂缝控制技术总结学习资料

混凝土裂缝控制技术 总结

混凝土裂缝控制施工技术总结 1、工程概况 沈阳南站市政交通工程(一期工程)主体结构为东、西广场地下空间部分,涵盖旅客出站通道、地铁、公交枢纽、出租车蓄车场、社会停车及商业配套等功能。共涵盖6条匝道桥,地下空间主要包括一个地下两层建筑(局部为地下一层),公交车站候车大厅为出地下室顶板一层框架结构。本工程主体结构采用钢筋混凝土框架结构。基础采用筏板基础,混凝土强度等级C35,混凝土采用裂缝控制技术。 2、施工安排 2.1施工机械设备 主要施工机械统计表表 2.2劳动力安排 主要劳动力统计表

2.3测温仪器 3、施工方法 工程在比较干燥、寒冷的沈阳施工,为防止混凝土裂缝的产生及提高混凝土的成型质量,项目部技术人员重点对混凝土原材料的选择、混凝土配合比设计、混凝土温度的计算、养护材料的选用、温度应力的计算、各种资源的合理配备及施工方法的正确运用等进行了充分研究,最终确定了针对性较强的具体施工方法。 3.1混凝土用原材料 3.1.1采用P.O42.5级普通硅酸盐水泥; 3.1.2掺入适量的Ⅰ级粉煤灰减少水泥用量,降低混凝土水化热; 3.1.3掺入聚丙烯腈纤维改善混凝土性能;

3.1.4混凝土坍落度控制在180±30mm; 3.1.5采用泵送剂改善混凝土拌合物泵送性能; 3.1.6采用抗裂防水剂增加混凝土抗压防渗能力; 3.2混凝土裂缝预控 在混凝土浇筑前通过对混凝土里表温差、保温材料及温度应力的计算,采用了以下方法进行裂缝控制: 3.2.1根据混凝土内部温度的计算,在混凝土浇筑后第三天混凝土中心温升至45℃左右,比当时室外温度(-5℃)高出50℃,为防止大体积混凝土因温差过大产生裂缝,先在混凝土的外露面盖一层塑料薄膜,再将两层麻袋盖在薄膜上,薄膜间与麻袋间互相搭接,确保混凝土无外露部位,以保温保湿; 3.2.2根据温度应力的计算,与该混凝土的抗拉强度相比较后,发现不会因温差导致混凝土收缩裂缝的产生。

连铸坯横裂产生的原因

连铸坯横裂产生的原因 横裂纹是位于铸坯内弧表面振痕的波谷处,通常是隐藏看不见的。经酸洗检查指出,裂纹深度可达7mm,宽度0.2mm。裂纹位于铁素体网状区,而网状区正好是初生奥氏体晶界。且晶界上有细小质点(如A1N)的沉淀。尤其是C—Mn—Nb(V)钢,对裂纹敏感性更强。 横裂产生的原因:1)振痕太深是横裂纹的发源地。2)钢中A1、Nb含量增加,促使质点(A1N)在晶界沉淀,诱发横裂纹。 3)铸坯在脆性温度900~700~C矫直。4)二次冷却太强。防止横裂发生的措施:结晶器采用高频率(200~400次/分)小振辐(2~4mm)是减少振痕深度的有效办法。2)二次冷却区采用平稳的弱冷却,使矫直时铸坯表面温度大于900℃。3)结晶器液面稳定,采用良好润滑性能、粘度较低的保护渣。4)用火焰清理表面裂纹。 1.连铸坯表面纵裂产生的原因及其防止方法有哪些? 连铸坯表面纵裂纹,会影响轧制产品质量。如长300mm、深2.5mm的纵裂纹在轧制板材上留下1125mm分层缺陷。纵裂纹严重时会造成拉漏和废品。 研究指出:纵裂纹发源于结晶器弯月面初生坯壳厚度的不均匀性。作用于坯壳拉应力超过钢的允许强度,在坯壳薄弱处产生应力集中导致断裂,出结晶器后在二次冷却区扩展。 纵裂产生的原因可归纳为:1)水口与结晶器不对中而产生偏流冲刷凝固壳。2)保护渣熔化性能不良、液渣层过厚或过薄导致渣膜厚薄不均,使局部凝固壳过薄。液渣层<10mm,纵裂纹明显增加。3)结晶器液面波动。液面波动>10㎜,纵裂发生几率30%。4)钢中S+P含量。钢中S>0.02%,P>0.017%,钢的高温强度和塑性明显降低,发生纵裂趋向增大。5)钢中C 在0.12~0.17%,发生纵裂倾向增加。

连铸坯表面凹陷和纵裂分析_刘明华

连铸坯表面凹陷和纵裂分析 刘明华 刘 正 王海川(马鞍山钢铁股份有限公司) (华东冶金学院) 摘 要 从钢水成分、浇注条件、保护渣性能、工艺操作等方面分析了马钢连铸坯表面产生凹陷和纵裂的原因,并提出了防止该缺陷的有效措施。 关键词 连铸坯 凹陷 纵裂 措施 Analysis on Hollow and Longitudinal C rack on Concast Billet Surface Liu Minghua Liu Zheng (Ma Anshan Iron &Steel Co.Ltd) Wang Haichuan (East China University of Metallurgy) Abstract The reasons of hollo w and longitudinal crack e xisting on the surface of concast bi-l lets in Ma Anshan Iron &Steel Co.Ltd.have been analyzed from the composition of molten steel,casting conditions,performance of mould powder and technical process.Meanwhile some relative ef -fective measurements against these defects have been put forward. Keywords c oncast billet hollo w longitudinal crack measurement 联系人:王海川,副教授,安徽省马鞍山市(243002)华东冶金学院冶金系 1 前 言 马钢二钢厂现有3台MYF-614型和1台R5.25仿德马克全弧型小方坯连铸机,其中2台MYF-614型四机四流连铸机主要用来浇注普碳钢,浇注断面以150mm 180mm 为主。在生产过程中,常出现连铸坯表面向凹陷和纵向裂纹,且纵 裂缺陷已占总废品量的52.4%,今年有不断发展的趋势,2月份急剧上升到85.4%,严重影响连铸坯的质量。因此,正确认识该缺陷的形成机理及影响因素,并采取有效的控制方法,对提高连铸坯的表面质量是十分有益的。表1为自去年以来普碳钢表面纵裂发生情况。 表1 普碳钢表面纵裂发生情况 项目 1999年2000年1月 2月3月4月5月6月7月8月9月10月11月12月1月2月裂纹废品量/t 77.429.032.736.342.824.025.830.343.265.648.473.146.8163占总废品比例/%45.8 24.9 24.5 49.2 47.7 37.5 39.8 46.9 55.9 65.7 62.4 71.8 54.7 85.4 2 连铸坯表面凹陷及纵裂的状态 连铸坯上所形成的纵向凹陷经常出现在铸坯内弧侧表面,距横断面边长约1/4处。此缺陷宽窄不等,长短不一,有局部凹沟,也有贯穿整支铸 坯,多呈凹弧面状,内部有裂纹,剪切时有纵向裂纹产生,裂口粗糙不齐,长度一般在50~150mm,宽度1~3mm,深度30~50mm 。角部凹陷和纵裂在生产中出现过许多,不但影响连铸坯的表面质量,同样也影响铸坯的内部质量。铸坯表面凹陷 55 2000年 12月第16卷第6期 炼 钢Steelmaking Dec. 2000 Vol.16 No.6

混凝土裂缝控制技术

混凝土裂缝控制技术 混凝土裂缝控制与结构设计、材料选择和施工工艺等多个环节相关。结构设计主要涉及结构形式、配筋、构造措施及超长混凝土结构的裂缝控制技术等;材料方面主要涉及混凝土原材料控制和优选、配合比设计优化;施工方面主要涉及施工缝与后浇带、混凝土浇筑、水化热温升控制、综合养护技术等。 2..5.1技术内容 混凝土裂缝控制与结构设计、材料选择和施工工艺等多个环节相关。结构设计主要涉及结构形式、配筋、构造措施及超长混凝土结构的裂缝控制技术等;材料方面主要涉及混凝土原材料控制和 优选、配合比设计优化;施工方面主要涉及施工缝与后浇带、混凝土浇筑、水化热温升控制、综合 养护技术等。 (1)结构设计对超长结构混凝土的裂缝控制要求 超长混凝土结构如不在结构设计与工程施工阶段采取有效措施,将会引起不可控制的非结构性 裂缝,严重影响结构外观、使用功能和结构的耐久性。超长结构产生非结构性裂缝的主要原因是混 凝土收缩、环境温度变化在结构上引起的温差变形与下部竖向结构的水平约束刚度的影响。 为控制超长结构的裂缝,应在结构设计阶段采取有效的技术措施。主要应考虑以下几点: 1)对超长结构宜进行温度应力验算,温度应力验算时应考虑下部结构水平刚度对变形的约束作 用、结构合拢后的最大温升与温降及混凝土收缩带来的不利影响,并应考虑混凝土结构徐变对减少 结构裂缝的有利因素与混凝土开裂对结构截面刚度的折减影响。 2)为有效减少超长结构的裂缝,对大柱网公共建筑可考虑在楼盖结构与楼板中采用预应力技术,楼盖结构的框架梁应采用有粘接预应力技术,也可在楼板内配置构造无粘接预应力钢筋,建立预压 力,以减小由于温度降温引起的拉应力,对裂缝进行有效控制。除了施加预应力以外,还可适当加 强构造配筋、采用纤维混凝土等用于减小超长结构裂缝的技术措施。 3)设计时应对混凝土结构施工提出要求,如对大面积底板混凝土浇筑时采用分仓法施工、对超 长结构采用设置后浇带与加强带,以减少混凝土收缩对超长结构裂缝的影响。当大体积混凝土置于 岩石地基上时,宜在混凝土垫层上设置滑动层,以达到减少岩石地基对大体积混凝土的约束作用。 (2)原材料要求 1)水泥宜采用符合现行国家标准规定的普通硅酸盐水泥或硅酸盐水泥;大体积混凝土宜采用低 热矿渣硅酸盐水泥或中、低热硅酸盐水泥,也可使用硅酸盐水泥同时复合大掺量的矿物掺合料。水 2 泥比表面积宜小于350m/kg,水泥碱含量应小于0.6%;用于生产混凝土的水泥温度不宜高于60℃, 不应使用温度高于60℃的水泥拌制混凝土。

板坯粘结漏钢原因与预防措施

板坯粘结漏钢原因与预防措施 Doi :10.3969/j .issn .l 006-110X .2018.z l .005 板坯粘结漏钢原因与预防措施 孟阳 (天津钢铁集团有限公司炼钢厂,天津300301) [摘要]天津钢铁集团有限公司3号板坯连铸机短时间内多次发生的漏钢事故,作者通过排除法分析出漏钢 事故类型为粘结性漏钢。重点分析了发生粘结漏钢的原因,并对其他类型的漏钢机理进行简要介绍。针对3号板坯连 铸机的工艺操作和设备精度调整等方面制定了详细的改进措施,实施后,天钢3号板坯连铸机发生漏钢的几率大大降 低,降低了其对生产顺行的影响。 [关键词]漏钢;粘结;工艺;改进;板坯;连铸 Causes and Preventive Measures of Steel B1eed-out by Slab Bonding MENG Yang (Steel-making Plant , Tianjin Iron and Steel Group Co ., Ltd . Tianjin 300301, Ch 74$比"8+ In Tianjin Iron and Steel Group Co . Ltd . the bleed-out accident occurred many times in a short period of t ime on the No .3 slab continuous caster , and the author analyzed that the type of bleed-out accident by the method of exclusion was adhesive bleed -out . The cau were analyzed , and the mechanism of other types of bleed-out was brie process operation of No . 3 slab continuous casting machine and the adjustment of equ the detailed improvement measures were made . After the implementation , the probability of steel bleed-out in the No . 3 slab caster was greatly reduced , and the influence on production was reduced .Ke5 bleed -out , bonding , technology , improvement , slab , continuous casting o 引言 随着天钢板坯的连铸技术操作水平逐年提高, 漏钢率已经控制的很低。但是在2015年7月底至8 月初的5天时间内,天钢3#板坯连铸机出现两次漏 钢,经过仔细分析和逐一排除法,分析出这两次漏 钢均属于粘结漏钢。漏钢发生于板坯连铸生产环 节,造成设备损坏、产量降低、生产不稳定等严重后 果。本文分析了漏钢的原因,并提出解决漏钢问题 的方法,以预防漏钢事故的发生。 1连铸机基本情况 1.1 天钢炼钢厂3(板坯连铸机主要技术参数 (1) 机型:一机一流直结晶器弧形板坯连铸机, R =8.4m ; (2) 铸坯断面尺寸:180/200/250mm x 1050" 收稿日期:2018-06-02 作者简介:孟阳(1991一)男,天津人,主要从事板坯连铸工艺技 1600mm ; (3) 铸坯定尺:一切 6~9.9m ,二切 2"3.3m ;(4) 拉速范围:0.4~1.6m/min ;(5) 引锭杆插入方式:下装式;(6) 结晶器铜板长度:900mm ; (7) 振动装置:四偏心高频率小振幅振动系统;(8) 中间包容量:35~38t 。2 漏钢种类及原因 漏钢的种类大致可分为3种,开浇漏钢、尾坯 封顶漏钢和浇铸过程中漏钢。 2.1 开F 漏钢 指开浇过程中,不当的操作致使引锭头刚被拉 出结晶器,随机出现漏钢事故。2.2封顶漏钢 当浇注结束时,对尾坯进行尾坯封顶操作,封 顶前熔化的保护渣未捞干净,如二冷强度过大,出 结晶器的板坯收缩过大,使板坯鼓肚且又受到支撑 术管理工作。 tmmsmmmmm 你〈钢铁冶炼〉你 -15 -

房屋建筑工程结构裂缝控制及处理技术 嵇培培

房屋建筑工程结构裂缝控制及处理技术嵇培培 摘要:现阶段我国的建筑行业得到了蓬勃发展,房屋建筑工程施工的要求也随 之提高,在实际施工当中,受到诸多因素的影响难免存在一些施工质量问题,其 中的结构裂缝是比较突出的,解决这一质量问题就显得十分重要。本文主要就房 屋建筑工程结构裂缝和产生的原因详细分析,然后对工程结构裂缝控制以及处理 技术应用加以探究。 关键词:钢筋混凝土;裂缝;成因;控制 一、裂缝的基本概念 结构裂缝分结构性裂缝和非结构性裂缝。结构性裂缝是指构件的强度和刚度 不足,裂缝宽度失去控制而引起的较为规律的严重裂缝,这类裂缝危及房屋结构 安全,必须对之进行补强。非结构性裂缝是指构件的强度和刚度足够,由于施工、材料、温度等原因而引起的无规律的、不太严重的裂缝,如楼板、墙体裂缝等。 此类裂缝不影响结构安全,但会影响房屋的正常使用和混凝土寿命,亦必须加以 处理。 二、砌体裂缝 1砌体结构裂缝的主要类型及原因分析 ①温度裂缝。砌体结构的裂缝一般多产生于房屋的顶层,特别是房屋两端的纵横墙体,墙梁、墙柱交界处,裂缝沿屋顶圈梁与墙体交接面水平分布及墙体外 角斜向分布,这类裂缝的产生主要是结构温度收缩变形不协调所致。 ②地基沉降差异裂缝。地基沉降差异是引起砌体结构建筑物裂缝的一个主要的因素。由于地基沉降差异引起的裂缝多为斜裂缝,往往贯通到基础。在房屋纵 横墙地基不均匀沉降的情况下,将使墙体承受较大的剪切力,另外当房屋层数相 差较多而没有设置沉降缝时,容易在交接部位产生竖向裂缝,这类裂缝常伴有较 大的地基不均匀下沉。 ③受力裂缝。受力裂缝多出现在抗震设防区的房屋上,比如发生在房屋底层窗台处的竖向裂缝,多数是由于纵墙开窗较大,地基受荷载后变形不均匀,窗台 墙起到反梁的作用而引起的。 ④施工质量控制不严引起的裂缝。1)砌块龄期未到,即上墙砌筑;2)砌体灰缝不饱满;3)砌体灰缝未按要求错开;4)砌体拉结筋长度、根数、规格等未 按规定设置;5)构造柱钢筋未按规定设置;6)砌体错位、垂直度、表面平整度 偏差较大;7)门窗洞口等斜角处未按规定设置斜拉钢丝网。以上施工过程质量 控制不到位,均能引起裂缝。 2 砌体结构裂缝的控制 ①材料方面:保证砌块的出厂龄期和合格的含水率; ②设计方面:采取可靠措施,防止地基的差异沉降;保证构件的度; ③释放温度应力。如增加水平拉结筋,增加芯柱、构造柱等,屋盖处加一层构造柱,增加梁,改善屋面伸缩性。以配筋的方式来承受温度应力,减少由温度 应力所产生的裂缝; ④屋面、外墙外保温。各种围护结构保温隔热系统,源于保温层的品质,采用连续均匀闭孔式蜂窝结构FM外包体系是解决砌块建筑墙体裂缝较为有效的方案,FM外包可以减少外部热传导,因而彻底根除外墙面发生裂缝及由此产生的

连铸坯缺陷及对策

连铸坯在凝固过程中形成裂纹的原因 随着市场竞争的日趋激烈,产品的质量已经成为占有市场的主要砝码,连铸坯作为炼钢厂的终端产品,其质量直接影响着轧材单位的产量和轧材质量,据统计炼钢厂连铸坯质量缺陷中约70%为连铸坯裂纹,连铸坯裂纹成为影响连铸坯产量和质量的重要缺陷之一,下面将对铸坯在凝固过程中裂纹的形成做简要分析: 一、铸坯凝固过程的形成 铸坯在连铸机内的凝固可看成是一个液相穴很长的钢锭,而凝固是沿液相穴的固液界面在液固相温度区间把液体转变为固体把潜热释放出来的过程。在固液界面间刚凝固的晶体强度和塑性都非常小,当作用于凝固壳的热应力、鼓肚力、矫直力、摩擦力、机械力等外力超过所允许的外力值时,在固液界面就产生裂纹,这就形成了铸坯内部裂纹。而已凝固的坯壳在二冷区接受强制冷却,由于铸坯线收缩,温度的不均匀性,坯壳鼓肚、导向段对弧形不准,固相变引起质点如(AlN)在晶界的沉淀等,容易使外壳受到外力和热负荷间歇式的突变,从而产生裂纹就是表面裂纹。 二、连铸坯裂纹形态和影响因素 连铸坯裂纹形态分为表面裂纹和内部裂纹,表面裂纹有纵向、横向角部裂纹、表面横裂和纵裂、网状裂纹和凹陷等,内部裂纹有中间、中心和矫直裂纹等。 连铸坯裂纹的影响因素: 连铸坯表面裂纹主要决定于钢水在结晶器的凝固过程,它是受结晶器传热、振动、润滑、钢水流动和液面稳定性所制约的,铸坯内部裂纹主要决定于二冷区凝固冷却过程和铸坯支撑系统(导向段)的对弧准确性。铸坯凝固过程坯壳形成裂纹,从工艺设备和钢凝固特性来考虑影响裂纹形成的因素可分为: 1、连铸机设备状态方面有: 1)结晶器冷却不均匀 2)结晶器角部形状不当。 3)结晶器锥度不合适。 4)结晶器振动不良。 5)二冷水分布不均匀(如喷淋管变形、喷咀堵塞等)。 6)支承辊对弧不准和变形。

连铸板坯缺陷图谱及产生的原因分析

第二篇连铸板坯缺陷(AA)

第二篇连铸板坯缺陷(AA) (1) 2.1 表面纵向裂纹(AA01) (3) 2.2 表面横裂纹(AA02) (4) 2.3 星状裂纹(AA03) (5) 2.4 角部横裂纹(AA04) (6) 2.5 角部纵裂纹(AA05) (7) 2.6 气孔(AA06) (8) 2.7 结疤(AA07) (9) 2.8 表面夹渣(AA08) (10) 2.9 划伤(AA09) (11) 2.10 接痕(AA13) (12) 2.11 鼓肚(AA11) (13) 2.12 脱方(AA10) (14) 2.13 弯曲(AA12) (15) 2.14 凹陷(AA14) (16) 2.15 镰刀弯(AA15) (17) 2.16 锥形(AA16) (18) 2.17 中心线裂纹(AA17) (19) 2.18 中心疏松(AA18) (20) 2.19 三角区裂纹(AA19) (21) 2.20 中心偏析(AA20) (22) 2.21中间裂纹(AA21) (23)

2.1表面纵向裂纹(AA01) 图2-1-1 1、缺陷特征 表面纵向裂纹沿浇注方向分布在连铸板坯上下表面,裂纹深度一般为2mm~15mm,裂纹部位伴有轻微凹陷。在连铸浇注过程中,当连铸板坯坯壳在结晶器内所受到的应力超过了坯壳所能承受的抗拉强度时,即产生表面纵向裂纹。表面纵向裂纹缺陷在结晶器内产生,出结晶器后若二次冷却不良,裂纹将进一步加剧。 2、产生原因及危害 产生原因: ①钢中碳含量处于裂纹敏感区内; ②结晶器钢水液面异常波动。当结晶器钢水液面波动超过10mm时,表面纵向裂纹缺陷易于产生; ③结晶器保护渣性能不良。保护渣液渣层过厚、过薄或渣膜厚薄不均,使连铸板坯凝固壳局部过薄而产生表面纵向裂纹; ④中间包浸入式水口与结晶器对中不良,钢水产生偏流冲刷连铸板坯凝固壳,而产生表面纵向裂纹。 危害:轻微的表面纵裂纹经火焰清理后均能消除;表面纵向裂纹严重时可能会造成漏钢;表面纵 向裂纹若送热轧进行轧制可能导致热轧产品出现分层、开裂缺陷。 3、预防及消除方法 ①控制好钢中碳含量,使钢中碳含量不在裂纹敏感区; ②减少结晶器钢水液面异常波动,将结晶器钢水液面波动控制在±5mm 以内; ③选择合适的结晶器保护渣; ④保证中间包浸入式水口与结晶器对中,防止钢水出浸入式水口侧孔后出现偏流。 4、检查判断 肉眼检查,必要时用钢卷尺测量裂纹长度及其分布位置; 表面纵向裂纹一般通过火焰清理可以消除,火焰清理不合格的表面纵向裂纹缺陷坯判废。

连铸机漏钢的原因及防范措施

漏钢 连铸中遇到的主要操作故障之一是“漏钢”。当铸流坯壳破裂时,坯壳内静止的熔融钢水溢出,堵塞机器,需要付出昂贵的停机代价。为拉出漏钢坯壳,就要再延长漏钢引起的停机时间,因为它可能会堵塞导辊或足辊,需要用气割清理堵塞,拉出坯壳。当漏钢坯壳温度降低时,需要把它切成小块,用矫直机从机器中取出,而矫直机设计成能在稳定阶段逐步地矫直曲冷坯壳,上轧辊可提供足够的提升重力,弄出不太长的弯曲铸流。因此,漏钢对铸机的有效性有重大影响——影响生产率和生产成本。 漏钢的影响因素影响漏钢发生的因素有: 温度和拉速不一致——钢水过热度越高,坯壳厚度越薄。由于结晶器中钢水施加的静压力,导致坯壳发生膨胀。当坯壳强度不够时,容易发生漏钢。不一致和不均匀的温度对漏钢的产生有很大影响。当拉速增大时,较易发生漏钢,因为结晶器不够润滑,从弯月面到坯壳/结晶器壁面,结晶器保护渣流动性较差,而且增大拉速会导致总放热量减少。漏钢常常是由于拉速太高造成的,当坯壳没有足够时间凝固到需要厚度时,或者金属太热,这意味着最终凝固正好发生在矫直辊下方,因矫直时施加应力,坯壳撕裂。对于钢中碳含量一定时,温度高且拉速快容易发生漏钢。在振动设置上所作的任何改变都会促使漏钢发生,因为通过提高振动频率来减少振痕的做法会增加结晶器速率,从而增加交界面处的摩擦力。

结晶器和坯壳之间润滑不良——如果使用质量较差的保护渣,弯月面下方的钢水容易夹渣,导致结晶器和坯壳粘结,拉坯中断,造成悬挂漏钢。方坯连铸时,因润滑不良或不均,坯壳粘结到结晶器上,影响传热,造成粘结漏钢。 保护渣加入方式不正确——由于现场工人操作习惯,一次性加入过多,且主要集中在内弧,呈斜坡状,会造成液渣不均匀填充,影响结晶器与坯壳间的润滑与均匀传热。在正常浇注情况下,小渣条没必要捞出,且应禁止用捞渣棒试探结晶器内是否形成渣条,会破坏弯月面初始坯壳的均匀形成。 结晶器中无效水流——减少进入结晶器的水流会导致传热降低,致使形成薄坯壳,最终导致漏钢。进出口的水温、压力和流速的不同直接影响结晶器的冷却。结晶器冷却系统堵塞导致压力增加,流速减小,影响传热,易发生漏钢。因而进出口水温(高温) 的巨大差异导致结晶器与坯壳粘结,容易发生拉断漏钢。 结晶器几何形状不当——为增加钢水一结晶器接触面,调节结晶器锥度,以适应钢的凝固收缩,从而增加结晶器的传热,增加坯壳厚度。对于高速方坯连铸机上带线性锥度的传统结晶器而言,弯月面处的热传递迅速使铸流凝固成一固体外壳,随着外壳的收缩,角部脱离结晶器,停止热传递。因此,在结晶器底部,除了角部有再熔化之外,坯壳继续生长。当坯壳离开结晶器时,坯壳温度变化较大,此时增加拉速可能导致漏钢。如果调节的锥度不合要求,结晶器和坯壳之间就会产生气隙,当空气对结晶器中热量传递的阻力达到最大时,它将严

混凝土裂缝控制技术—建筑业10项新技术之2.6(2010)

建筑业10项新技术(2010) 2.6 混凝土裂缝控制技术 混凝土裂缝控制与结构设计、材料选择、施工工艺等多个环节相关,其中选择抗裂性较好的混凝土是控制裂缝的重要途径。本技术主要是从混凝土材料角度出发,通过原材料选择、配合比设计、试验比选等选择抗裂性较好的混凝土,并提及施工中需采取的一些技术措施等。 1.主要技术内容 (1)原材料要求 1)水泥必须采用符合现行国家标准规定的普通硅酸盐水泥或硅酸盐水泥,水泥比表面积宜小于350m2/kg;水泥碱含量应小于0.6%。水泥中不得掺加窑灰。水泥的进场温度不宜高于60℃;不应使用温度大于60℃的水泥拌制混凝土。 2)应采用二级或多级级配粗骨料,粗骨料的堆积密度宜大于1500kg/m3,紧密密度的空隙率宜小于40%。骨料不宜直接露天堆放、暴晒,宜分级堆放,堆场上方宜设罩栅。高温季节,骨料使用温度不宜大于28℃。 3)应采用聚羧酸系高性能减水剂,并根据不同季节、不同施工工艺分别选用标准型、缓凝型或防冻型产品。高性能减水剂引入混凝土中的碱含量(以Na2O+0.658K2O计)应小于0.3kg/m3;引入混凝土中的氯离子含量应小于0.02kg/m3;引入混凝土中的硫酸盐含量(以Na2SO4计)应小于0.2kg/m3。 4)采用的粉煤灰矿物掺合料,应符合现行国家标准《用于水泥和混凝土中的粉煤灰》GB 1596的规定。粉煤灰的级别不应低于Ⅱ级,

且粉煤灰的需水量比应不大于100%,烧失量应小于5%,严禁采用C 类粉煤灰和Ⅱ级以下级别的粉煤灰。 5)采用的矿渣粉矿物掺合料,应符合《用于水泥和混凝土中的粒化高炉矿渣粉》GB/T 18046的规定。矿渣粉的比表面积应小于450m2/kg,流动度比应大于95%,28d活性指数不宜小于95%。 (2)配合比要求 1)混凝土配合比应根据原材料品质、混凝土强度等级、混凝土耐久性以及施工工艺对工作性的要求,通过计算、试配、调整等步骤选定。 2)混凝土最小胶凝材料用量不应低于300kg/m3,其中最低水泥用量不应低于220kg/m3。配制防水混凝土时最低水泥用量不宜低于260kg/m3。混凝土最大水胶比不应大于0.45。 3)单独采用粉煤灰作为掺合料时,硅酸盐水泥混凝土中粉煤灰掺量不应超过胶凝材料总量的35%,普通硅酸盐水泥混凝土中粉煤灰掺量不应超过胶凝材料总量的30%。预应力混凝土中粉煤灰掺量不得超过胶凝材料总量的25%。 4)采用矿渣粉作为掺合料时,应采用矿渣粉和粉煤灰复合技术。混凝土中掺合料总量不应超过胶凝材料总量的50%,矿渣粉掺量不得大于掺合料总量的50%。 5)配制的混凝土除满足抗压强度、抗渗等级等常规设计指标外,还应考虑满足抗裂性指标要求。有条件时,使用温度-应力试验机进行抗裂混凝土配合比的优选。 (3)施工要求 1)大体积混凝土施工前,宜对施工阶段混凝土浇筑体的温度、温度应力及收缩应力进行试算,确定施工阶段混凝土浇筑体的温升峰

相关文档
相关文档 最新文档