文档库 最新最全的文档下载
当前位置:文档库 › 第十一章_智能材料与结构

第十一章_智能材料与结构

第十一章_智能材料与结构
第十一章_智能材料与结构

第十一章智能材料与结构

智能材料结构(Smart/Intelligent Materials and Structures)是一门新兴起的多学科交叉的综合科学。80年代后期,随着材料技术和大规模集成电路的进展,美国军方提出了智能材料与结构的设想和概念,并开展了大规模的研究。智能材料与智能结构系统是近年来飞速发展的一个领域,这一领域的研究也越来越受到人们的重视。自1998年美国弗吉尼亚大学召开了关于“智能材料结构和数学问题”专题学术讨论会以来,智能材料系统的研究成为材料科学与工程的热点之一,有人甚至称21世纪是智能材料的世纪,目前美国已有几十家公司经营智能材料结构的产品。人们之所以如此关注智能材料系统是因为它在建筑、桥梁、水坝、电站、飞行器、空间结构、潜艇等振动、噪声、形状自适应控制、损伤自愈合等方面具有良好的应用前景。

第一节智能材料的概念及分类

智能材料结构的诞生有着一定的背景。80年代末期,复合材料普遍使用,为解决它的强度和刚度变化等问题,使得驱动元件和传感件较为容易地融合进入材料,组成整体,从而具有多种用途,同时驱动元件和传感件材料的发展以及材料集成技术上的突破,也促进了智能材料结构的出现。材料科学的发展,使得人们对机械、电子、动作等材料的多方面性能耦合进行研究,微电子技术、总线技术及计算机技术的飞速发展,解决了信息处理和快速控制等方面的难题,这些都为智能材料结构的出现提供了有利条件。

1.1智能材料的概念及其特点

智能材料系统和结构的有关名称定义目前尚不统一,但一般智能材料系统都应该具有敏感、处理、执行三个主要部分。一般来说,智能材料是能够感知环境变化(传感或发现的功能),通过自我判断和自我结构(思考和处理的功能),实现自我指令和自我执行(执行功能)的新型材料。该材料具有模仿生物体的自增值性、自修复性、自诊断性、自学习性和环境适应性。将具有仿生命功能的材料融合于基体材料中,使制成的构件具有人们期望的智能功能,这种结构称为智能材料结构。它是一个类似于人体的神经、肌肉、大脑和骨骼组成的系统,而基体材料就相当于人体的骨骼。而智能材料是能够感知环境变化,通过自我判断和结论,实现和执行指令的新型材料。智能材料的研究就是将信息与控制融入材料本身的物性和功能之中,其研究成果波及了信息、电子、生命科学、宇宙、海洋科学技术等领域。它的研究开发孕育着新一代的技术革命。智能化将成为21世纪高分子材料的重要发展方向之一。

例如光导纤维、形状记忆合金和镓砷化合物半导体控制电路埋入复合材料中,光导纤维是传感元件,能检测出结构中的应变和温度,形状记忆合金能使结构动作,改变性状,控制电

路根据传感元件得到的信息驱动元件动作。因此融合于材料中的传感元件相当于人体的神经系统,具有感官功能,驱动元件相当于人体的肌肉,控制系统相当于人的大脑。智能材料与普通功能材料的区别如图11-1所示。

被动结构控制结构智能结构

动反应

图11-1 智能材料与普通功能材料的区别

1.2智能材料分类

智能材料的分类方法很多。根据材料的来源,智能材料包括金属智能材料无机非金属系、智能材料及高分子系智能材料。

金属系智能材料由于其强度比较大耐热性好且耐腐蚀性能好,常用在航空航天和原子能工业中作为结构材料。金属材料在使用过程中会产生疲劳龟裂及蠕变变形而损伤,所以期盼金属系智能材料不但可以检测自身的损伤,而且可将其抑制,具有自修复功能,从而确保使用过程中的稳定性。目前研究开发的金属系智能材料主要有形状记忆合金和形状记忆复合材料两大类。

无机非金属系智能材料的初步智能性是考虑局部可吸收外力以防止材料整体变坏。目前此类智能材料在电流变流体、压电陶瓷光质变色和电质变色材料等方面发展较快。

高分子系智能材料的范围很广泛。作为智能材料的刺激响应性高分子凝胶的研究和开发非常活跃,其次还有智能高分子膜材、智能高分子粘合剂、智能型药物释放体系和智能高分子基复合材料等。

根据结构来分,智能材料结构可以分成两种类型,分述如下:

(1)嵌入式智能材料

在基本材料中嵌入具有传感、动作和控制处理功能的三种原始材料,传感元件采集和检测外界给予的信息,控制处理器指挥驱动元件执行相应的动作。

(2)材料本身具有一定的智能功能

某些材料微结构本身具有智能功能,能够随着环境和时间改变自己的性能,例如自滤波玻璃和受辐射时能自衰减的InP半导体等。

目前智能材料结构在英语中采用两种写法:一为INTELLIGENT MATERIAL STRUC TURE;另一为SNART MATERIAL STRUCTURE。“INTELLEGENT”的中文翻译为“智能”,它的定义是具有智慧和智力,有思考和推理的本领;和具有敏捷的体会、解释和正确决定的本领。“SMART”的中文翻译为“机敏”,他的定义为具有和显示出思维的机灵和感受的敏捷性,即具有联想及计算能力,敏捷快速有效的能动性和有生气的活度。目前很多文章中也将“SMART”翻译成“智能”。严格讲,“INTELLGENT MATERIALSTRUCTURE”比“SMART MATERIAL STRUCTURE”要复杂,要高级,前者是仿生命功能的材料,具有识别、分辨、判断、动作等额外功能;后者只能敏捷识别和动作,不具有分析判断的能力。

第二节智能材料结构的信息处理方法

图11-2智能结构的动作流程图

图11-2是智能结构的动作流程图。首先识别外界参数,通过分析、判断,然后行动。其中行动是依靠埋入材料中的驱动元件来实现,它能够自适应的改变结构形状、刚度、位置、应力状态、固有频率、阻尼摩擦阻力等。

对驱动元件的要求是:

(1)驱动元件应能和结构基体材料很好结合,具有高的结合强度;

(2)驱动元件本身的静强度和疲劳强度要高;

(3)激励驱动元件动作的方法要简单和安全,对结构基体材料无影响,激励的能量要小;

(4)激励后的变形量要大,并能伴随着产生激励力,而且能够控制;

(5)驱动元件在反复激励下,保持性能稳定;

(6)驱动元件的频率响应要宽,响应速度快,并能控制。

正在研究和使用的驱动元件有形状记忆合金、压电元件、电流变材料、磁致伸缩材料、磁变流材料、胶体材料等。当前的驱动元件还不能全部满足上述要求,只能在几个方面具有特点,也就是每种驱动元件都有他们的特色,但也存在问题。

(1)提高驱动元件本身的性能,满足上述六条要求;

(2)改善驱动元件的激励方法;

(3)研究多种激励元件组合使用的方法,达到取长补短的目的;

(4)研究新型的复合驱动元件;

(5)研究驱动元件在材料中的布置方案。

传感器、致动器和控制器是智能结构的重要部分。传感器要求有高度感受结构力学状态的能力,在振动系统中即能把位移、速度或加速度等信号转换成电信号输出,它直接反应实时的振动状态,所以它必须有足够的可靠性、敏感性和较高的反应速度,以便能迅速、准确地得到振动信息;另外,还要求其具有体积小,易于集成的特点。致动器是执行信息处理单元发出的控制指令,并按照规定的方式对外界或内部状态和特性变化作合理的反应,直接将控制器输出的电信号转变为结构的应变或位移,具有改变智能结构形状、位置及其它机械特性的能力。控制器位于结构之中,由具有控制功能的硬件电路或电脑芯片与软件组成,是智能结构的神经中枢。

智能结构的设计中首先要明确应用目标,然后分析控制目标的具体要求,确定智能结构中复合材料的控制输入和输出的形式。最关键的问题是必须运用已知材料的特性、振动理论以及自动控制理论,建立合理的数学模型,构建控制系统,并选择有效的控制策略。

第三节智能材料结构中的驱动元件及形状记忆合金20世纪90 年代以来,研究方向倾向民用,特别是智能土建结构的研究与发展,加速了智能材料与结构的全面发展,这一时期国际上各种学术研讨会也特别多,在美国、日本、法国、德国、意大利等国都召开了学术会议或是专题学术研究会。

3.1智能材料结构中的驱动元件

目前研究投入较多的智能材料的驱动元件主要有作为执行器的开关记忆材料(含形状记忆合金、陶瓷、薄膜三个类型);压电材料(含压电陶瓷、压电聚合物)、电致流变体磁致流变体;作为敏感器的光钎传感器等。利用这些材料的功能,加上精细的复合设计和制作便得到聚传感、驱动和控制于一体的智能材料。

压电材料在受到应力作用时会产生电荷分布,同样在压电材料上外加电压时,会发生形变,成为逆压电效应,因此压电材料即可做传感材料又可做执行材料。压电材料分为陶瓷压电材料如石英、钛酸钡等和有机聚合物压电材料如片聚二氟乙烯树脂(PVDF)。在同样单位应力作用下,有机聚合物压电材料产生的电场强度要比陶瓷压电材料大若干倍。同时具有较优良的加工性能,制备智能材料不受形状的限制,因此有机聚合物压电材料更适合制备智能材料。

压电陶瓷还可以象制作玻璃纤维一样制作压电陶瓷纤维。这种压电陶瓷纤维可与聚氨脂复合制成热释电复合材料、电光复合材料以及半导体铁电纤维,压电纤维的主要应用就是制成压电复合材料,集传感与驱动于一体。

3.2形状记忆材料及性能

形状记忆合金是智能材料结构中最先应用的一种驱动元件,它集感知和驱动于一体。该元件在高温下定形后冷却到低温并施加变形,从而形成残余形变。当材料加热时,材料的残余形变消失,并回复到高温下所固有的形状。再进行加热或冷却时,形状保持不变,这就是所谓的形状记忆效应(Shape Memory Effect),就象合金记住了高温状态的形状一样。具有形状记忆效应的金属通常是两种以上金属的合金,称为形状记忆合金(Shape Me mory Alloys, SMA.)。

材料在高温下制成特定形状,在低温任意变形,加热时再恢复为高温形状,重新冷却还保持高温时的形状时,我们称之为单程记忆效应。例如目前国内商品化的NiTi形状记忆合金丝,在低温马氏体组织时,加外力使合金应变<8%后,对材料加热,温度超过马氏体相变点时,形状回复率可达100%。但随着循环次数的增加,形状记忆特性会衰减,存在一个疲劳寿命。当回复变形在2%以下时,疲劳寿命为105次,对于埋入构件基体材料中的形状记忆合金的初始变形很大,但回复量很小,因此它的疲劳寿命可达107次。

对材料进行特殊的处理,使材料能够记住高温和低温状态的两种形状,即加热时恢复高温形状,低温时恢复低温形状,我们称之为双程形状记忆效应或可逆形状记忆效应。例如对NiTi合金经过一定的热处理训练,不仅在马氏体逆相变过程中能完全回复到变形前的状态,而且在马氏体相变过程中也会自发地发生形状变化,回复到马氏体状态的形状,而且反复加热冷却都会出现上述现象。

此外还有一些合金称为全方位形状记忆合金,在冷却到更低的温度,可以出现与高温时取向相反,形状相同的现象。NiTi合金的全方位记忆薄片的模式图见图11-3。将试样在钢管中成型后,在400~500C进行时效处理,去除约束后的形状如图11-3(a)所示;

当试件冷却到Mf’时,形状接近直线状态,如图11-3(b);冷却到Mf以下时,试件的形状发生180C翻转,如11-3(c)所示;加热到Af和 A f’以上时,试件就反向变化成图11-3(d)和(e)的形状。高于Af’的形状(a)和低于M f的形状(f)之间是可逆的。

图11-3 NiTi合金的全方位记忆薄片的模式图

Mf’/Af’为中间相变态温度

图11-4(a)是一般金属材料的应力应变曲线,当应力超过弹性极限,卸除应力后,留下永久变形,不会回复原状;图11-4(b)是超弹性材料的应力应变曲线,超过弹性极限后应力诱发母相形成马氏体,当应力继续增加时,马氏体相变也继续进行,当应力降低时,相变按逆向进行,即从马氏体转向母相,永久变形消失这种现象叫超弹性记忆小效应(PME);图11-4(c)是合金母相在应力作用下诱发马氏体,并发生形状变化,去除应力后,除弹性部分外,形状并不回复原状,但通过加热产生逆变,便能恢复原形。这种现象叫作形状记忆效应(SME)。

图11-4 超弹性材料和形状记忆材料的应力-应变曲线

(a)一般金属(b)超弹性材料 (c)形状记忆合金

形状记忆效应是由于马氏体相变造成的。除钢铁外,大多数合金中的马氏体相变是可逆的,即冷却时由母相P转变为马氏体相M,即P M,加热时马氏体相M又逆向转变为母相P,即MP。根据热力学观点,母相与马氏体的化学自由能在T0温度时相等,不发生转变,

必须温度低于T0,母相才有转变为马氏体的趋势,同时还必须克服非化学自由能增量和相变时存在的相变阻力,即温度冷到M s马氏体相变才开始进行。随着温度下降,马氏体量会逐渐增多,直到M f温度时,马氏体转变才终止。同样理由,马氏体要可逆的转为母相,加热温度必须高于T0温度,而且要加热至As温度时,母相才开始形成,直至Af温度逆变才完成。通常称:

Ms马氏体相变(P M)开始温度;

Mf马氏体相变(P M)终了温度;

A s马氏体转变为母相(马氏体逆相变M P)的开始温度;

Af马氏体相变为母体(马氏体逆相变M P)的终了温度。

形状记忆材料分三类:形状记忆合金,形状记忆陶瓷和形状记忆薄膜。形状记忆合金已广泛用于医疗设备、航空、航天、仪器仪表、机器人、自动控制以及人造卫星、能量转换等领域。近年来在陶瓷材料、超导材料以及高分子材料中发现各具特色的形状记忆效应,引起了世界各国学者的广泛关注。

3.2.1形状记忆合金

形状记忆合金是研究最早的一种材料,它的操作功能主要分为5个方面。

①单程记忆效应:在低于Mf温度之下时,加压力样品变形,去掉压力时不能完全恢复,当加热到A f之上时残存的形变才能恢复。

②双程记忆合金效应,当温度冷却到Mf之下时自发的形变产生,当温度再升到Af之上时形变恢复。

③形变恢复应力,在Mf温度下样品受压变形,去掉压力,保持在位置上再加热,这时恢复应力产生。

④做功状态,在Mf温度之下样品受压变形,卸掉压力,再加上重量W,将样品加热到Af 之上,形变应力产生并且做功,称为功输出。

⑤超弹性或伪弹性效应,在Af温度之上时,加较大压力时样品变形从A到B,当压力卸载后样品的形变又完全恢复。

形状记忆合金这些特有的功能与外界温度和内部的马氏体相应密切相关。例如从高温到低温的滞回线,应力—温度的关系,应力—压力的关系,以及应力—压力—温度三者之间的关系。

目前虽然有许多形状记忆合金体系,但能够商品化的只有少数几个,如Ni—Ti、Ni—Ti—Cu、Cu—Zn—Al合金体系,接近商品化的Cu—Al—Ni和Fe—Mn—Si合金体系,

而具有潜在应用的体系有Ni—Al和Ni—Ti—Zi合金体系,目前在制备或性能上还有一些缺陷。在所有形状记忆合金体系中Ni—Ti合金是最具有使用价值的,有人做过数百万次实验,发现其恢复性能仍然保持。

1.TiNi形状记忆合金

等原子比的TiNi合金是应用的最早的形状记忆合金,其中Ni元素的质量分数为55~56%。根据使用目的不同可选用适当的合金成分。它性能优越,稳定性好,具有特殊的生物相容性,因而得到广泛的应用,特别在医学与生物上的应用是其他形状记忆合金所不能替代的。由于合金成分不同,相变可以有不同路径。

在材料使用过程中,表征材料记忆性能的主要参数包括记忆合金随温度变化所表现出的形状恢复程度,回复应力,使用中的疲劳寿命,即经历一定热循环或应力循环后记忆特性的衰减情况。此外,相变温度及正逆相变的温度滞后更是关键参数。而上述这些特性又与合金的成分成材工艺热处理(包括冷热加工)条件及其使用情况等密切有关。

TiNi记忆合金的相变温度对成分最敏感。Ni含量每增加0.1%,相变温度会降低10 C。第三元素对TiNi合金相变温度的影响也极为引人注目。Fe、Co等过渡族金属的加入均可引起Ms下降。其中Ni被Te置换后,扩大了R相稳定的温度范围,使R相变更为明显。用Cu置换Ni后,Ms变化不太大,但形状记忆效应却十分显著,因而可以节约合金成本。并且由于减少相变滞后,使该类合金具有一定的使用价值。

为获得记忆效应,一般将加工后的合金材料在室温加工成所需要的形状并加以固定,随后在400-500之间加热保温数分钟到数小时(定形处理)后空冷,就可获得较好的综合性能。

对于冷加工后成形困难的材料,可以在800以上进行高温退火,这样在室温极容易成形,随后于200-300保温使之定形.此种在较低温度处理的记忆元件及形状回复特性较差。

富Ni的TiNi合金需要进行时效处理,一则为了调节材料的相变温度,二则可以获得综合的记忆性能.处理工艺基本上是在800-1000固熔处理后淬入冰水,再经400-500时效处理若干时间(通常为500 1小时).随着时效温度的提高或时效时间的延长,相变温度Ms相应下降.此时的时效处理就是定型记忆过程。

为了使合金式样反复多次的在升温和降温中可逆的发生形状变化(即双向记忆),最常用的方法是进行记忆训练(又称锻炼)。首先如同单向记忆处理那样获得记忆效应,但此时仅可记忆高温相的形状。随后在低于Ms温度,根据所需的形状将试件进行一定限度的可以回复

的形状。加热到Af以上温度,试件回复到高温态形状后,降温到Ms以下,再变形试件使之成为前述的低温所需形状,如此反复多次后,就可获得双向记忆效应,在温度升降过程中,试件均可自动的反复记忆高低温时的二种形状。这种记忆训练实际上就是强制变形。

对于Ti-51%(原子分数)Ni合金不仅具有双向记忆性能,而且在高温与低温时,记忆的形状恰好是完全逆转的。这是由于与基体共格的Ti11Ni14析出相产生的某种固定的内应力所致。

无论上述何种记忆处理,为了保持良好的形状记忆特性,其变形的应变量不得超过一定值,该值与元件的形状、尺寸、热处理条件、循环使用次数等有关,一般为6%(不包括全方位记忆处理).同时在使用中,在形状记忆合金受约束状态下,要避免过热,也即记忆高温态的温度只需稍高于Af温度即可。

2. 铜基形状记忆合金

尽管形状记忆合金具有强度高、塑性大、耐腐蚀性好等优良性能,但由于成本约为铜基记忆合金的十倍而使之应用受到一定限制。因而近二十年来铜基形状记忆合金的应用较为活跃,但需要解决的主要问题是提高材料塑性改善对热循环和反复变形的稳定性及疲劳强度等。

铜基形状记忆合金的相变温度对合金成分和处理条件极敏感。例如Cu-14.1Al-4.0Ni合金在1000固熔后分别淬入温度为10与100介质中,其合金的Ms对应为-11与60。因此实际应用中,可以利用淬火速度来控制相变温度。

无论是CuZnAl还是CuAlNi合金,相变温度对Al含量都很敏感。下列经验公式可供合金设计时参考:

CuZnAlMs =2221 -52x (%Zn(质量分数)) -137x(%Al(质量分数))

CuAlNi Ms =2293-45x (%Ni(质量分数)) -134x(%Al(质量分数))

CuAlNi等铜基合金在反复使用中,较易出现试样断裂现象,其疲劳寿命比NiTi合金低2-3个数量级。其原因是铜基合金具有明显的各相异性。在晶体取向发生变化的晶界面上,为了保持应变的连续性,必会产生应力集中,而且晶粒越粗大,晶面上的位移更大,极易造成沿晶开裂。目前在生产中,已通过添加Ti、Zr、V、B等微量元素,或者采用急冷凝固法或粉末烧结等方法使合金晶粒细化,达到改善合金性能的目的。

3. 铁基形状记忆合金

早期发现的铁基形状记忆合金FePt和FePd等由于价格昂贵而未能得到应用。直到1982年有关FeMnSi记忆合金研究论文的发表,才引起材料研究工作者极大的兴趣。尤其

由于铁基形状记忆合金成本低廉、加工容易,如果能在回复应变量小、相变滞后大等问题上得到解决或突破,可望在未来的开发应用上有很大的进展。

铁基形状记忆合金的最大回复应变量为2%,超过此形变量将产生滑移变形,导致ε-马氏体与奥氏体界面的移动发生困难。

具有形状记忆效应的合金系已达二十多种,但其中得到实际应用的仅集中在TiNi合金与CuZnAl合金,CuAlNi及FeMnSi系记忆合金也在开发应用中。这些合金由于成分不同,生产和处理工艺的差异,其性能有较大的差别。即使同一合金系,成分的微小差别也会导致使用温度的较大起伏。在记忆元件的设计、制造及使用中,不仅关心材料的相变温度,还必须考虑其回复力、最大回复应变、使用中的疲劳寿命及耐腐性能等。一般来说,TiN i合金记忆特性好,但价格昂贵。铜基记忆合金成本低,有较好的记忆性能,但稳定性较差,而FeMnSi系合金虽然价格便宜、加工容易,但记忆特性稍差,特别是可回复应变量小。因此实际应用要综合考虑材料的用途、使用环境、使用方法及成本等各因素,以便选取合适的形状记忆合金。例如要求性能稳定,需要反复使用的较精密的元件,一般采用TiNi合金,而对于象火警警报器等只需一次动作的元件就往往选用CuZnAl合金。

3.2.2形状记忆陶瓷

近几年来人们又开发出形状记忆陶瓷,可在电场作用下发生形变。与形状记忆合金相比,这种材料由于电场改变速度和范围比温度大的多,因而影响速度快,使用范围宽,不足之处是应变范围还不够大(0.08—1%),但这也许适合某些特定的场合。

图11-5形状记忆陶瓷的结构图

形状记忆陶瓷的结构图如图11-5所示。它是典型的钙钛矿结构,点阵结构为E2型,空间群为O12,一般分子式为ABO3,A和B为金属离子,这里A是(Pb2+)B(Zr4+、Ti4+)离子。

智能材料及其发展

智能材料及其发展 1.材料的发展 材料是人类用于制造物品、器件、构件、机器或者其他产品的物质,是人类生活、生产的基础,是人类认识自然和改造自然的工具,与信息、能源并列为人类赖以生存、现代文明赖以发展的三大支柱。材料也是人类进化的标志之一,一种新材料的出现必将促进人类文明的发展和科技的进步,从人类出现,经历旧石器时代、新石器时代、青铜时代……,一直到21世纪,材料及材料科学的发展一直伴随着人类的文明的进步。在人类文明的进程中,材料大致经历了一下五个发展阶段。 1)利用纯天然材料的初级阶段:在远古时代人类只能利用纯天然材料(如石头、草木、野兽毛皮、甲骨、泥土等),也就是通常所说的旧石器时代。这一阶段人类只能对纯天然材料进行简单加工。 2)单纯利用火制造材料阶段:这一阶段跨越了新石器时代、青铜时代和铁器时代,它们风别已三大人造材料为象征,即陶、铜、铁。这一时期人类利用火来进行烧结、冶炼和加工,如利用天然陶土烧制陶、瓷、砖、瓦以及后来的玻璃、水泥等,从天然矿石中提炼铜、铁等金属。 3)利用物理和化学原理合成材料阶段:20世纪初,随着科学的发展和各种检测手段及仪器的出现,人类开始研究材料的化学组成、化学键、结构及合成方法,并以凝聚态物理、晶体物理、固体物理为基础研究材料组成、结构和性能之间的关系,并出现了材料科学。这一时期,人类利用一系列物理、化学原理、现象来创造新材料,这一时期出现的合成高分子材料与已有的金属材料、陶瓷材料(无机非金属材料)构成了现代材料的三大支柱。除此之外,人类还合成了一系列的合金材料和无机非金属材料,如超导材料、光纤材料、半导体材料等。 4)材料的复合化阶段:这一阶段以20世纪50年代金属陶瓷的出现为开端,人类开始使用新的物理、化学技术,根据需要制备出性能独特的材料。玻璃钢、铝塑薄膜、梯度功能材料以及抗菌材料都是这一阶段的杰出代表,它们都是为了适应高科技的发展和提高人类文明进步而产生的。 5)材料的智能化阶段:自然界的材料都具有自适应、自诊断、自修复的功能。如所有的动物和植物都能在没有受到毁灭性打击的情况下进行自诊断和修复。受大自然的启发,近三四十年的研发,一些人工材料已经具备了其中的部分功能,即我们所说的智能材料,如形状记忆合金、光致变色玻璃等。但是从严格意义上将,目前研制成功的智能材料离理想的智能材料还有一定的距离。 材料科学的发展主要集中在以下几个方面:超纯化(从天然材料到复合材料)、量子化

第一章 材料结构和晶体结构

第一章材料结构和晶体结构 考点一:结合键 决定了材料的性能。 结合键的分类 共价键、离子键和金属键的概念 对性能的影响 结合键的分类 一次键——通过电子的转移或共享使原子结合的键。结合力较强。离子键、共价键、金属键。二次键——通过偶极吸引力使原子结合的键。结合力较弱。氢键、范德瓦尔斯键 混合键 确定结合键类型的因素 电负性和两种元素电负性的差值是确定成键类型重要因素之一 EN↑金属元素与非金属元素之间倾向以离子键结合 △EN↓ 电负性相同或相近的非金属元素之间倾向以共价键结合 电负性相同或相近的金属元素之间以金属键结合 电负性(Electronegativity,EN):获得或吸引电子的相对倾向。离子键、共价键和金属键的概念 1.离子键———通过正负离子间静电作用所形成的结合键。(NaCl、MgO…)2.共价键———通过共用自旋相反的电子对使原子结合的结合键。(金刚石) 3.金属键———通过正离子与自由电子之间相互吸引力使原子结合的结合键。 例1:简答题简述原子分子间4种结合键各自的特点,并从结合键角度讨论力学性能性能 例2:简答题原子间有几种结合键?各自的特点如何?从结合键角度讨论金属的力学性能 例3:简答题试从结合键角度讨论一般情况下金属材料比陶瓷材料表现出更高塑性或延 展性的原因 考点二:晶体与非晶体 概念主要差别 概念 1.晶体———原子(分子或离子)在空间按照一定规律周期性重复排列的固体. 2.非晶体———内部原子的排列是无序的,或不存在长程有序排列的固体. 例1 名词解释:晶体

例2 填空:晶体宏观对称的要素是:(1)对称中心,(2)对称轴,(3)对称面,(4)旋转反伸轴,(5)旋转反映轴 晶体与非晶体性能的主要区别 晶体:有确定熔点单晶体各向异性多晶体各向同性 非晶体:无确定熔点各向同性 非晶体的本质是过冷液体 例3 判断:在熔化过程中,非晶态材料不同于晶态材料的最主要特点是其没有一个固定 的熔点 考点三:空间点阵和晶体结构 晶体结构、点阵、晶格、晶胞的概念 空间点阵的选取原则 晶胞选取原则 点阵和晶体结构的区别 概念 晶体结构:指的是晶体中原子(离子或分子)在三维空间的具体排列。在实际的晶体中,这种排列有无限多种。这给我们的研究带来麻烦。 怎样来研究晶体?———抽象 晶体→点阵→晶格→晶胞 空间点阵———晶体中的等同点在空间有规则的周期性重复排列的阵列。 晶格———连接晶体点阵中阵点的几组相交平行线构成的空间格架。 晶胞———构成晶格的最小单元。 结构基元的选择满足四个相同条件 化学成分相同、空间结构相同、排列取向相同、周围环境相同 (a)直线上等间距排列的原子。许多单质晶体中在某一方向上原子常按此排列。例如金属铜中原子密排列的方向就是这样排列 (b)为层型石墨中某些方向上碳原子排列的情况,两个原子组成一个基元 (c)硒晶体中链型硒分子按螺旋型周期排列情况,三个原子组成一个基元 硒的化学组成的基本单位为Se,而螺旋形排列的硒链的结构单元为三个硒原子 (d)NaCl晶体中一些晶棱上原子的排列,结构基元为相邻的一个Na+和一个Cl—晶体结构的一个显著特点:周期性 可简单地将晶体结构示意表示为晶体结构=点阵+结构基元 晶胞:构成晶格的最基本单元称为晶胞。 显示系统所有特征的体积单元 晶胞选取的一般原则: (1)尽可能高的对称性 (2)尽可能多的直角 (3)尽可能小的体积 晶胞的选取不是唯一的 表征晶胞形状和大小的六个参量abc

第十一章_智能材料与结构

第十一章智能材料和结构 智能材料结构(Smart/Intelligent Materials and Structures)是一门新兴起的多学科交叉的综合科学。80年代后期,随着材料技术和大规模集成电路的进展,美国军方提出了智能材料和结构的设想和概念,并开展了大规模的研究。智能材料和智能结构系统是近年来飞速发展的一个领域,这一领域的研究也越来越受到人们的重视。自1998年美国弗吉尼亚大学召开了关于“智能材料结构和数学问题”专题学术讨论会以来,智能材料系统的研究成为材料科学和工程的热点之一,有人甚至称21世纪是智能材料的世纪,目前美国已有几十家公司经营智能材料结构的产品。人们之所以如此关注智能材料系统是因为它在建筑、桥梁、水坝、电站、飞行器、空间结构、潜艇等振动、噪声、形状自适应控制、损伤自愈合等方面具有良好的使用前景。 第一节智能材料的概念及分类 智能材料结构的诞生有着一定的背景。80年代末期,复合材料普遍使用,为解决它的强度和刚度变化等问题,使得驱动元件和传感件较为容易地融合进入材料,组成整体,从而具有多种用途,同时驱动元件和传感件材料的发展以及材料集成技术上的突破,也促进了智能材料结构的出现。材料科学的发展,使得人们对机械、电子、动作等材料的多方面性能耦合进行研究,微电子技术、总线技术及计算机技术的飞速发展,解决了信息处理和快速控制等方面的难题,这些都为智能材料结构的出现提供了有利条件。 1.1智能材料的概念及其特点 智能材料系统和结构的有关名称定义目前尚不统一,但一般智能材料系统都应该具有敏感、处理、执行三个主要部分。一般来说,智能材料是能够感知环境变化(传感或发现的功能),通过自我判断和自我结构(思考和处理的功能),实现自我指令和自我执行(执行功能)的新型材料。该材料具有模仿生物体的自增值性、自修复性、自诊断性、自学习性和环境适应性。将具有仿生命功能的材料融合于基体材料中,使制成的构件具有人们期望的智能功能,这种结构称为智能材料结构。它是一个类似于人体的神经、肌肉、大脑和骨骼组成的系统,而基体材料就相当于人体的骨骼。而智能材料是能够感知环境变化,通过自我判断和结论,实现和执行指令的新型材料。智能材料的研究就是将信息和控制融入材料本身的物性和功能之中,其研究成果波及了信息、电子、生命科学、宇宙、海洋科学技术等领域。它的研究开发孕育着新一代的技术革命。智能化将成为21世纪高分子材料的重要发展方向之一。 例如光导纤维、形状记忆合金和镓砷化合物半导体控制电路埋入复合材料中,光导纤维是传感元件,能检测出结构中的应变和温度,形状记忆合金能使结构动作,改变性状,控制

第一章 材料的结构 习题

第一章材料的结构习题

第一章 材料的结构 习题 1 解释以下基本概念 空间点阵、晶体结构、晶胞、配位数、致密度、金属键、缺位固溶体、电子化合物、间隙相、间隙化合物、超结构、拓扑密堆相、固溶体、间隙固溶体、置换固溶体。 2 氧化钠与金刚石各属于哪种空间点阵?试计算其配位数与致密度。 3 在立方系中绘出{110},{111}晶面族所包括的晶面及(112),(021)晶面。 4 作图表示出<0112>晶向族所包括的晶向。确定(1211),(021)晶面。 5 求金刚石结构中通过(0,0,0)和(414343 ,,)两 碳原子的晶向,及与该晶向垂直的晶面。 6 求(121)与(100)决定的晶带轴与(001)和(111)所决定的晶带轴所构成的晶面的晶面指数。 7 试证明等径刚球最紧密堆积时所形成的密排六方结构的633.1/ a c 。 8 绘图说明面心立方点阵可表示为体心正方点阵。 9 计算面心立方结构的(111),(110),(100)

晶面的面间距及原子密度(原子个数/单位面积)。 10 计算面心立方八面体间隙与四面体间隙半径。 11 计算立方系[321]与[120]夹角,(111)与(111)之间的夹角。 12 FeAl是电子化合物,具有体心立方点阵,试画出其晶胞,计算电子浓度,画出(112)面原子排列图。 13 合金相VC,Fe3C,CuZn,ZrFe2属于何种类型,指出其结构特点。 例题 1. 何谓同位素?为什么元素的相对原子质量不总为正整数? 答案在元素周期表中占据同一位置,尽管它们的质量不同,然它们的化学性质相同的物质称为同位素。由于各同位素的含中子量不同(质子数相同),故具有不同含量同位素的元素总的相对原子质量不为正整数。 2. 已知Si的相对原子质量为28.09,若100g的Si中有5×1010个电子能自由运动,试计算:(a)能自由运动的电子占价电子总数的比例为多少?(b)必须破坏的共价键之比例为多少? 答案原子数=个 价电子数=4×原子数=4×2.144×1024=8.576×1024个 a) b) 共价键,共有2.144×1024个;需破坏之共价键数为5×1010/2=2.5×1010个;所以,

几种智能材料在一些领域中有应用1

上课班级:2班学院:艺术学院姓名:王定波专业:雕塑学号:1016040104 几种智能材料在一些领域中的应用 智能复合材料成型工艺的在线监控技术 智能结构健康监控系统的研究 智能结构振动主动控制系统的研究 形状自适应改变智能结构的研究 智能蒙皮的研究 1、建筑和结构工程领域 将建筑和结构传感元件、微型计算机芯片、形状记忆合金’电流变体及压电材料等经设计后复合在结构体中,可研制出带有感知用判断能力,可自动加固用防护的自适应性智能结构,实现在线监测、自诊断、自预警、自修复,防止灾难性事故的发生。 ●自诊断混凝土 ●自愈合混凝土 2、航空航天领域 能经受恶劣环境,同时能对自己的状况进行自我诊断,并能阻止损坏和退化,能自动加固或自动修补裂纹,从而防止灾难性事故的发生。

a.机翼用智能材料:在高性能复合材料中嵌入细小的光纤,光纤象神经那样 感受机翼上承受的不同压力,光纤断裂时,光传输中断,发出事故警告。 b.自动加固的直升飞机水平旋转叶片:当叶片在飞行中遇到疾风作用而猛烈 振动时,分布在叶片中微小液滴会变成固体自动加固叶片。 c.智能蒙皮:对于飞行器如飞机、火箭、卫星及潜水艇等,具有随外界条件 变化而变化以及探测周围环境的能力的表皮(蒙皮)。 d.检测飞行速度、温度、湿度等各种条件,并能对变化的环境做出反应,如 抑制噪声和振动、维持飞行器座舱的通风、温度恒定、改变机翼形状等。 e.对于材料内部的缺陷和损伤,能进行自诊断,确定缺陷和损伤的部位并进 行自我修复、自适应。 3、抑制振动和噪声 传感元件对结构的振动进行监测,驱动元件在微电子的控制下准确地动作以改变结构的振动状态 ——具有振动和噪声主动控制功能的智能结构。 成功应用:减轻交通工具如汽车、飞机振动和噪声。 ●压电材料 将压电材料置于结构表面或内部用来感测振动,利用经过放大的输出功率去驱动另一个粘贴于下同区域的压电材料,为减小振动反应。这种方法已经成功地应用在降低圆柱型卫星天线桅杆的振动。 ●电(磁)流变体 在复合材料悬臂梁的空腔内注入电流变体,通过外电场改变电流变体的状态,从而实时控制梁的刚度、阻尼,实现了对结构整体振动的主动控件。 4、用于机器人 ●形状记忆合金能够感知温度或位移的变化,可将热能转换为机械能。如果 控制加热或冷却,可获得重复性很好的驱动动作。 ●刺激响应性高分子凝胶 在机器人中应用:触觉传感器、机器人手足和筋骨动作部分等。 5、在医学领域的应用 ●智能药物释放体系——以智能材料为载体材料,根据病情所引起的化学物

复合材料结构

复合材料结构设计的特点 (1) 复合材料既是一种材料又是一种结构 (2) 复合材料具有可设计性 (3) 复合材料结构设计包含材料设计 复合材料区别于传统材料的根本特点之一可设计性好(设计人员可根据所需制品对力学及其它性能的要求,对结构设计的同时对材料本身进行设计) 具体体现在两个方面1力学设计——给制品一定的强度和刚度、2功能设计——给制品除力学性能外的其他性能 复合材料力学性能的特点 (1) 各向异性性能材料弹性主方向:模量较大的一个主方向称为纵向,用字母L表示,与其垂直的另一主方向称为横向,用字母T表示。通常的各向同性材料中,表达材料弹 )和ν(泊松比)或剪切弹性模量G。 对于复合材料中的每个单层,纵向弹性模量E L、横向弹性模量E T、纵向泊松比νL (或横向泊松比νT)、面内剪切弹性模量G LT。 耦合现象:拉剪耦合与剪拉耦合、弯扭耦合与扭弯耦合 (2) 非均质性 耦合变形:层合结构复合材料在一种外力作用下,除了引起本身的基本变形外,还可能引起其他基本变形。 (3)层间强度低 在结构设计时,应尽量减小层间应力,或采取某些构造措施,以避免层间分层破坏。 研究复合材料的刚度和强度时,基本假设: (1) 假设层合板是连续的。由于连续性假设,使数学分析中的一些连续性概念、极限概念以及微积分等数学工具都能应用于力学分析中。 (2)假设单向层合板是均匀的,多向层合板是分段均匀的。 (3) 假设限于单向层合板是正交各向异性的:即认为单向层合板具有两个相互垂直的弹性对称面。 (4) 假设限于层合板是线弹性的:即认为层合板在外力作用下产生的变形与外力成正比关系,且当外力移去后,层合板能够完全恢复其原来形状。 (5) 假设层合板的变形是很小的。 上述五个基本假设,只有多向层合板的分段均匀性假设和单向层合板的正交各向异性假设,与材料力学中的均匀性假设和各向同性假设有区别。 平面应力状态与平面应变状态 平面应力状态:单元体有一对平面上的应力等于0。(σz=0,τzx=0,τzy =0) 平面应变状态(平面位移):εz=0(即ω=0),τzx=0(γ31=0),τzy =0(γ32=0 ), σz一般不等于0。 复合材料连接方式 复合材料连接方式主要分为两大类:胶接连接与机械连接。胶接连接:受力不大的薄壁结构,尤其是复合材料结构;机械连接:连接构件较厚、受力大的结构。

智能材料系统结构与应用

智能材料系统结构与应用期末设计设计项目:压力触发式电灯开关 学院:电子信息与电器工程学院 专业:自动化 班级:F1503005 学号:515030910127 学生姓名:闻昊 2015年12月28日

压力触发式电灯开关 作者:闻昊 内容摘要:针对如何提高用户进入家庭时,电灯如何快捷方便的打开,从而采 用一种全新的连通电路的方式,采用压电材料,对外力的机械信号进行转换放大从而控制家用电路的连通。 关键词:传感、压电材料、放大电路、控制元件、转换 一、研究背景: 在生活在中经常出现这样的情况,有时当你进入了家门或者宿舍之后,会发现两只手都拿着东西,很不方便去打开电灯的开关,或者电灯的开关并不在门口触手可及的地方,得抹黑向前走一小段路才能打开电灯。难免会有一些不方便之处。如果我们可以转换一种打开灯的方式,这个问题就可以解决。所以急待需要一种新的电灯开关,来改变传统声控和手触的方式。那么可采用压力触发式,将开关隐藏于门口的脚垫之中,当我们一进门踩到脚垫上的时候,房间的灯就会亮起来,岂不是方便很多。 二、研究压力触发式开关的可行性与实现方案: 首先考虑压力触发的可行性,通过所学知识,压电材料可以将外力转换为电信号。压电传感器种类繁多,但传感器用压电材料主要有压电晶体、压电陶瓷和高分子材料三种。压电晶体性能稳定,居里点和机械强度高,绝缘性好,动态响应快,线性范围宽,迟滞小等,在精密测量系统和高温测量系统中常被选用;缺点是压电系数小,灵敏度低,价格昂贵。压电陶瓷是人造多晶体压电材料,其压电系数高,制造成本低,但性能不够稳定,在一般测量系统中广泛采用,高分子压电材料具有很高的压电敏感度,可以制成大面积的压电薄膜或阵列原件。那么采用高分子压电材料就可解决接收信号的问题,加上基本每家都会使用脚垫,所以可以将高分子压电材料制成压电薄膜置于脚垫之中。 接着分析如何将压电薄膜产生的信号放大从而可以控制家用电路使得灯泡亮起来。尽管压电传感器输出的电压很高,但是电流很小(最简单的一个例子就是打火机中的压电陶瓷能产生上万伏的电压,但是电流极小)。通过施加一个机械压力,压电材料产生的电荷就很少。此时的电流不足以触发一个原件。但是可以进过适当的放大,使其足够触发一个原件。 接下来最后的问题就是,需要设计出一个足够小的原件,因此不会对整体屋子装修的美观程度有影响,且在受到一定的(不是很大的)电流后,便可以触发,控制家庭电灯电路的连通,电灯可以亮起来,且这个原件也能被手动关闭,从而将电灯关上。 三、研究流程图

结构设计原理 第一章 材料的力学性能 习题及答案

第一章材料的力学性能 一、填空题 1、钢筋混凝土及预应力混凝土中所用的钢筋可分为两类:有明显屈服点的钢筋和无明显屈服点的钢筋,通常分别称它们为____________ 和。 2、对无明显屈服点的钢筋,通常取相当于残余应变为时的应力作为假定的屈服点,即。 3、碳素钢可分为、和。随着含碳量的增加,钢筋的强度、塑性。在低碳钢中加入少量锰、硅、钛、铬等合金元素,变成为。 4、钢筋混凝土结构对钢筋性能的要求主要是、、 、。 5、钢筋和混凝土是不同的材料,两者能够共同工作是因为 、、 6、光面钢筋的粘结力由、、三个部分组成。 7、钢筋在混凝土中应有足够的锚固长度,钢筋的强度越、直径越、混凝土强度越,则钢筋的锚固长度就越长。 8、混凝土的极限压应变包括和两部分。 部分越大,表明变形能力越,越好。 9、混凝土的延性随强度等级的提高而。同一强度等级的混凝土,随着加荷速度的减小,延性有所,最大压应力值随加荷速度的减小而。 10、钢筋混凝土轴心受压构件,混凝土收缩,则混凝土的应力,钢筋的应力。 11、混凝土轴心受拉构件,混凝土徐变,则混凝土的应力,钢筋的应力。 12、混凝土轴心受拉构件,混凝土收缩,则混凝土的应力,钢筋的应力。 二、判断题 1、混凝土强度等级是由一组立方体试块抗压后的平均强度确定的。 2、采用边长为100mm的非标准立方体试块做抗压试验时,其换算系数是0.95。 3、混凝土双向受压时强度比其单向受压时强度降低。 4、线性徐变是指徐变与荷载持续时间之间为线性关系。 5、对无明显屈服点的钢筋,设计时其强度标准值取值依据是条件屈服强度。 6、强度与应力的概念完全一样。 7、含碳量越高的钢筋,屈服台阶越短、伸长率越小、塑性性能越差。 8、钢筋应力应变曲线下降段的应力是此阶段拉力除以实际颈缩的断面积。 9、有明显流幅钢筋的屈服强度是以屈服下限为依据的。 10、钢筋极限应变值与屈服点所对应的应变值之差反映了钢筋的延性。 11、钢筋的弹性模量与钢筋级别、品种无关。 12、钢筋的弹性模量指的是应力应变曲线上任何一点切线倾角的正切。

智能材料

智能材料及其在医学领域的应用 目录 1、智能材料的概述 1.1智能材料的定义和基本特征........................................................ 1.2智能材料的构成............................................................................ 1.3智能材料的分类............................................................................ 1.4智能材料的制备............................................................................ 2、智能材料的应用领域 2.1智能材料的研究方向................................................................... 2.2智能材料在医学上的应用............................................................ 2.3智能材料在医疗方法中的应用....................................................

2.4智能材料在医学器械方面的应用................................................. 3、结束语.................................................................... 4、参考文献................................................................ 摘要本文综合评述了智能材料的研究、应用和进展。对智能材料与结构的概念进行了描述,全面总结了智能材料智能材料生物医药方面的应用, 探讨了智能材料光明的应用前景和发展趋势。 关键词智能材料;医学应用;发展 1智能材料的概述 1.1定义:智能材料(Intelligent material),是一种能感知外部刺激,能够判断并适当处理且本身可执行的新型功能材料。智能材料是继天然材料、合成高分子材料、人工设计材料之后的第四代材料,是现代高技术新材料发展的重要方向之一,将支撑未来高技术的发展,使传统意义下的功能材料和结构材料之间的界线逐渐消失,实现结构功能化、功能多样化。科学家预言,智能材料的研制和大规模应用将导致材料科学发展的重大革命。 基本特征:因为设计智能材料的两个指导思想是材料的多功能复合和材料的仿生设计,所以智能材料系统具有或部分具有如下的智能功能和生命特征: (1)传感功能(Sensor)

浅谈智能材料

浅谈智能材料 智能材料的构想来源于仿生(仿生就是模仿大自然中生物的一些独特功能制造人类使用的工具,如模仿蜻蜓制造飞机等等),它的目标就是想研制出一种材料,使它成为具有类似于生物的各种功能的“活”的材料。因此智能材料必须具备感知、驱动和控制这三个基本要素。但是现有的材料一般比较单一,难以满足智能材料的要求,所以智能材料一般由两种或两种以上的材料复合构成一个智能材料系统。这就使得智能材料的设计、制造、加工和性能结构特征均涉及到了材料学的最前沿领域,使智能材料代表了材料科学的最活跃方面和最先进的发展方向。 具体来说智能材料需具备以下内涵: (1)具有感知功能,能够检测并且可以识别外界(或者内部)的刺激强度,如电、光、热、应力、应变、化学、核辐射等; (2)具有驱动功能,能够响应外界变化; (3)能够按照设定的方式选择和控制响应; (4)反应比较灵敏、及时和恰当。 (5)当外部刺激消除后,能够迅速恢复到原始状态。 智能材料又可以称为敏感材料,其英文翻译也有若干种,常用的有Intelligent material、Intelligent material and structure、Smart material、Smart material and structure、Adaptive material and structure等。 为增加感性认识,现举一个简单的应用了智能材料的例子:某些太阳镜的镜片当中含有智能材料,这种智能材料能感知周围的光,并能够对光的强弱进行判断,当光强时,它就变暗,当光弱时,它就会变的透明。 作为一种新型材料,一般认为,智能材料由传感器或敏感元件等与传统材料结合而成。这种材料可以自我发现故障,自我修复,并根据实际情况作出优化反应,发挥控制功能。智能材料可分为两大类: (1)嵌入式智能材料,又称智能材料结构或智能材料系统。在基体材料中,嵌入具有传感、动作和处理功能的三种原始材料。传感元件采集和检测外界环境给予的信息,控制处理器指挥和激励驱动元件,执行相应的动作。 (2)有些材料微观结构本身就具有智能功能,能够随着环境和时间的变化改变自己的性能,如自滤玻璃、受辐射时性能自衰减的Inp半导体等。

复合材料教学大纲

《复合材料》教学大纲 一、课程名称:复合材料 二、学分、学时:2学分、32学时 三、教学对象:06级应用化学本科 四、课程性质、教学目标 《复合材料》是应用化学专业的一门学科基础课程,选修。复合材料是包括多学科、多领域的一门综合性学科。 本课程以恰当的比例分别对复合材料的各种增强材料、复合材料的各种基体材料以及聚合物基复合材料、陶瓷基复合材料等的性能、制备、应用和发展动态进行了较为系统的讨论。使学生在已有的材料科学的基础上,较为系统地学习复合材料的各种基体材料和增强材料,以及各种复合材料的性能、制备方法与应用,了解材料的复合原理,以及复合材料的发展方向。从而丰富和拓宽学生在材料及材料学方面的知识。 五、课堂要求 要求认真随堂听课,认真阅读指定教材,广泛查阅有关复合材料方面的最新资料。按教学要求完成专题综述论文的撰写,并进行课堂交流。 六、教学内容与基本要求 (一)绪论(2学时) 复合材料的国内外发展状况及今后的发展方向;复合材料的分类;复合材料的基本性能;复合材料的增韧增强原理;复合材料的特性;复合材料的应用。 基本要求:掌握复合材料的基本性能及分类,了解复合材料的应用。 (二)材料的基体材料 (6学时) 金属材料:金属的结构与性能、各种合金材料; 陶瓷材料:包括水泥、氧化物陶瓷、碳化物陶瓷、氮化物陶瓷; 聚合物材料:聚合物的种类、结构与性能,复合材料选用聚合物的原则。 基本要求:掌握常用基体材料的种类、结构性能及其选用的原则。 (三)材料的增强材料 (6学时) 玻璃纤维及其制品的分类、制备、性能与应用; 碳纤维的分类、制备、性能与应用; 陶瓷纤维、芳纶纤维、晶须的制备、性能与应用; 填料(高岭土、石墨、烹饪土、烹饪土、碳酸钙、化石粉等)的性能与应用。 基本要求:掌握常用增强材料的种类、性能及其选用的原则。 (四)传统复合材料的新发展 (4学时) 航空用先进树脂基复合材料的发展:先进复合材料在飞机上的应用、材料技术的进展、低成本复合制造技术的进展; 热塑性片材与热塑性树脂基复合材料:由片材制造成品的成型工艺、GMT片材在汽车工业中的应用; 熔体自发浸渗制备金属基复合材料:熔体自发浸渗制备金属基复合材料的原理及方法及研究现状; 陶瓷基层状复合材料:陶瓷制品的仿生结构构思、材料体系和制备技术、陶瓷基层状复合材料的结构性能及其强韧化机制、陶瓷基层状复合材料的发展方向。 基本要求:掌握常见几种传统复合材料的新应用、制备工艺与性能的基本知识,了解传统复合材料的发展方向。 (五)功能复合材料(4学时)

智能材料与智能结构分类

智能材料(Smart Materils 或者Intelligent Material System) 是20 世纪80 年代中期提出的概念。智能材料是模仿生命系统,能感知环境变化并能实时地改变自身的一种或多种性能参数,作出所期望的能与变化后的环境相适应的复合材料或材料的复合。智能材料是一种集材料与结构、智能处理、执行系统、控制系统和传感系统于一体的复杂的材料体系。它的设计与合成几乎横跨所有的高技术学科领域。 磁流变液 电流变体 压电材料、 形状记忆合金 磁致伸缩材料 电致伸缩材料 光纤材料 聚合物胶体 形状记忆聚合物(SMP) 疲劳寿命丝(箔) 磁流变体:通常由以下三种成分组成: (1)具有高磁导率、低矫顽力的微小磁性微粒,如铁钴合金、铁镍合金、羰基铁等软磁材料。由Jolly 和Ginder等人[4]建立的磁流变液理论剪切屈服强度的计算公式可知,磁流变液的极限剪切屈服强度与磁性颗粒的饱和磁化强度的平方成正比。 (2)母液,又称溶媒,是磁性微粒悬浮的载体。为了保证磁流变液具有稳定的理化特性,母液应具有低粘度、高沸点、低凝固点、较高密度和极高“击穿磁场”等特性。目前,较为常用的母液是硅油。另外,一些高沸点的合成油、水以及优质煤油等也可作为磁流变液的母液; (3)表面活性剂,其主要作用是包覆磁性微粒并阻止其相互聚集而产生凝聚,减少或消除沉降。 功能: 这种材料具有4种主要功能:(1)对环境参数的敏感;(2)对敏感信息的传输;(3)对敏感信息的分析、判断;(4)智能反应。 具体的有: 传感功能 反馈功能 信息识别与积累功能 相应功能 自诊断功能 自修复功能 自调节功能 智能结构( Intelligent Construction)是将驱动器、传感器、乃至处理器等微电子元器件集成在复合材料之中而成型的结构它对所处环境,具有主动感知和主动响应的功能。智能结构是在智能材料的基础上提出的,是当前结构设计与结构力学方面正在迅速发展的一种崭新领域,也称为自适应结构。智能结构就是可以根据外部条件和内部条件主动地改变结构

智能复合材料

智能复合材料课程论文 智能复合材料的研究现状与发展趋势(Research status and development trend of intelligent composite materials) 学院名称:材料科学与工程学院 专业班级:复合材料1102 学生姓名:不知道 学号:31107056541 指导教师:陈贝贝

智能复合材料的研究现状与发展趋势 摘要:智能复合材料是一类基于仿生学概念发展起来的高新技术材料,它实际上是集成了传感器、信息处理器和功能驱动器的新型复合材料。本文介绍了几种常见的智能复合材料及其研究现状。 关键词:智能复合材料;形状记忆合金;压电智能复合材料;电/磁流变体智能复合材料;纤维素智能复合材料;光导纤维智能复合材料 Research status and development trend of intelligent composite materials Abstract: the intelligent composite material is a kind of high-tech materials based on bionics concept developed, it is actually integrated model composite sensor, information processor and the function driver. This paper introduces several common intelligent composite material and its research status. Keywords:intelligent composite material; shape memory alloy; piezoelectric smart composite materials; electric / magnetic fluids of intelligent composite materials; cellulose smart composite materials; optical fiber intelligent composite material 1 前言 智能材料的兴起在材料科学引发了一个新的革命,智能材料就是指具有感知环境(包括内环境和外环境)刺激,对之进行分析、处理、判断,并采取一定的措施进行适度响应的智能特征的材料。智能材料特别之处,就是它拥有像生物一样能感应附近的环境并做出适当的反应的特性[1,2]。换句话说,智能材料能因应外界的刺激而改变自己,或者会产生某种讯息。如能运用适宜,以智能材料所做的一个零件可以取代一些复杂系统的几个环节(例如负责感觉及反应的部分),从而大大减低了系统的大小及复杂性[3-9]。智能材料可以简单分成被动和主动两种。被动智能材料在没有经过讯息分析的情况下或想也不想便会自动作出反应;而主动智能材料会分析接收到的讯息后才决定做出什么反应。智能材料的构想来源

第十一章_智能材料与结构

第十一章智能材料与结构 智能材料结构(Smart/Intelligent Materials and Structures)是一门新兴起的多学科交叉的综合科学。80年代后期,随着材料技术和大规模集成电路的进展,美国军方提出了智能材料与结构的设想和概念,并开展了大规模的研究。智能材料与智能结构系统是近年来飞速发展的一个领域,这一领域的研究也越来越受到人们的重视。自1998年美国弗吉尼亚大学召开了关于“智能材料结构和数学问题”专题学术讨论会以来,智能材料系统的研究成为材料科学与工程的热点之一,有人甚至称21世纪是智能材料的世纪,目前美国已有几十家公司经营智能材料结构的产品。人们之所以如此关注智能材料系统是因为它在建筑、桥梁、水坝、电站、飞行器、空间结构、潜艇等振动、噪声、形状自适应控制、损伤自愈合等方面具有良好的应用前景。 第一节智能材料的概念及分类 智能材料结构的诞生有着一定的背景。80年代末期,复合材料普遍使用,为解决它的强度和刚度变化等问题,使得驱动元件和传感件较为容易地融合进入材料,组成整体,从而具有多种用途,同时驱动元件和传感件材料的发展以及材料集成技术上的突破,也促进了智能材料结构的出现。材料科学的发展,使得人们对机械、电子、动作等材料的多方面性能耦合进行研究,微电子技术、总线技术及计算机技术的飞速发展,解决了信息处理和快速控制等方面的难题,这些都为智能材料结构的出现提供了有利条件。 1.1智能材料的概念及其特点 智能材料系统和结构的有关名称定义目前尚不统一,但一般智能材料系统都应该具有敏感、处理、执行三个主要部分。一般来说,智能材料是能够感知环境变化(传感或发现的功能),通过自我判断和自我结构(思考和处理的功能),实现自我指令和自我执行(执行功能)的新型材料。该材料具有模仿生物体的自增值性、自修复性、自诊断性、自学习性和环境适应性。将具有仿生命功能的材料融合于基体材料中,使制成的构件具有人们期望的智能功能,这种结构称为智能材料结构。它是一个类似于人体的神经、肌肉、大脑和骨骼组成的系统,而基体材料就相当于人体的骨骼。而智能材料是能够感知环境变化,通过自我判断和结论,实现和执行指令的新型材料。智能材料的研究就是将信息与控制融入材料本身的物性和功能之中,其研究成果波及了信息、电子、生命科学、宇宙、海洋科学技术等领域。它的研究开发孕育着新一代的技术革命。智能化将成为21世纪高分子材料的重要发展方向之一。 例如光导纤维、形状记忆合金和镓砷化合物半导体控制电路埋入复合材料中,光导纤维是传感元件,能检测出结构中的应变和温度,形状记忆合金能使结构动作,改变性状,控制电

复合材料结构及其成型原理

碳纤维复合材料 (西北工业大学机电学院, 陕西西安710072) 摘要:碳纤维复合材料与金属材料相比,其密度小、比强度、比模量高,具有优越的成型性和其他特性,具有极大的发展潜力。本文介绍了碳纤维复合材料的特点及其应用,总结了碳纤维复合材料的成型工艺及每种成型工艺的特点,并从材料和成型两个方面指出了它的发展方向。 关键词:复合材料;碳纤维;成型工艺;工艺流程 Carbon Fiber Reinforce Plastic (School of Mechatronics, Northwes tern Polytechnical University, Xi’an 710072, China) Abstract: Compared to metals, carbon fiber reinforce plastic has great potential for development with lower density, higher specific strength and modulus, and excellent moldability and other characteristics. This article describes the characteristics and applications of carbon fiber reinforce plastic and sum up the manufacturing process of carbon fiber reinforce plastic and their characteristics. Finally, this article points out the development of carbon fiber reinforce plastic from two aspects: material and manufacturing process. Key words: composites; carbon fiber; manufacturing process; process

智能材料教学大纲

《智能材料》课程教学大纲 【课程编号】 【课程名称】智能材料 Intelligent materials 【学时学分】24学时;1.5学分【实验和上机学时】0学时【课程类别】专业与专业方向课【开课模式】选修 【先修课程】大学物理、高分子物理 【开课单位】辽宁省通用航空重点实验室【开课学期】第7学期 【授课对象】复合材料与工程专业本科学生 【考核方式】考查 一、课程的性质、目的与任务 智能材料这门课是为了拓展复合材料与工程专业学生的应用新型材料的能力,了解、应用、研发新材料的性能的一门选修课程,对学生认识交叉学科在材料与结构设计领域的应用具有启发意义。 本课程利用材料具有的一些生物体才具有的功能,如传感、判断、处理、执行、自预警、自修复、应激响应等,通过自适应材料与结构、智能超分子和膜、智能凝胶、微机械智能光电子、纳米机械等应用在航空航天飞行器以及土木建筑等方面。 本课程以大学物理和高分子物理等课程为基础,是学生毕业从事相关技术工作的重要理论基础。 二、课程的教学内容、基本要求和学时分配 1.绪论(2学时) 了解智能材料与智能结构的发展;智能材料的内涵和定义;智能材料与智能结构的应用前景与发展趋势。 2.典型智能材料介绍(16学时) 分别介绍几种典型的智能材料, ①形状记忆合金;

②压电复合材料; ③电磁流变体; ④智能纤维材料; ⑤智能高分子材料; ⑥智能橡胶与智能弹性体。 3.智能结构与智能控制(4学时) ①智能结构控制概念; ②隔振器与消能器; ③传感器; ④作动器。 4.其他传感元件(2学时) ①电阻应变丝; ②碳纤维复合材料; ③智能无机高分子复合材料与应用 ④二氧化钒智能窗; ⑤半导体材料; ⑥疲劳寿命丝(箔)。 三、教材及主要参考书(第1条填写主选教材) 著者书名出版社出版日期 1 陈英杰等《智能材料》机械工业出版社2013.07 2 傅秦生等《智能材料与结构系统》北京大学出版社2010.08 四、其它必要说明

复合材料损伤研究现状

复合材料损伤研究现状 复合材料是一种新型材料,由于其具有比强度、比模量高等优点,使其在众多领域都具有潜在的应用可能性。然而复合材料是由纤维、基体、界面等组成,其细观构造是一个复杂的多相体系,而且是不均匀和多向异性的,这使其结构内部的损伤与普通材料结构不同,在结构表面可能完全看不出损伤迹象,甚至用X 光和超声分层扫描也探测不到。现有的各种无损检测方法很难对复合材料结构损伤进行准确的探测与损伤程度评估,更无法对使用中的复合材料结构实现在线实时监测。将智能传感器敏感网络埋入复合材料内部,并配合适当的现代信号处理技术,构成智能复合材料结构系统,从而实现对复合材料内部状态的在线实时监测,及时发现并确定材料结构内部损伤的位置和程度,监视损伤区域的扩展,从而为材料结构的损伤检测、维修及自我修复提供准确信息,避免因复合材料结构损伤而带来巨大的损失。由于智能复合材料内部传感网络信号具有高度非线形、大数量、并行等特点,故使用传统的分析方法进行处理往往十分耗时、困难,甚至完全不可能。而现代模式识别方法(包括人工神经网络)、小波分析技术、时间有限元模型理论以及光时域反射计检测技术等就成为实现实时、在线、智能化处理分布式信号的理想工具。 结构损伤诊断,即对结构进行检测与评估,确定结构是否有损伤存在,进而判别结构损伤的程度和方位,一级结构目前的状况、使用功能和结构损伤的变化趋势等。 结构损伤诊断是近40年来发展起来的一门新学科,是一门适应工程实际需要而形成的交叉学科。结构损伤诊断概念的提出和发展,机械故障诊断问题开始引起各国政府的重视。美国国家宇航局(NASA)成立了机械故障预防小组(MFPG),英国成立了机器保健中心(MHMC),这些机构专门从事故障机理、检测、诊断和预报的技术研究,以及可靠性分析及耐久性评价,至此大型旋转机械的状态监测与故障诊断技术开始进入实用化阶段。20世纪80年代,以微型计算机为核心的现代故障诊断技术得到了迅速发展,涌现出许多商业化得计算机辅助监测和故障诊断系统,如美国SCIENTIFIC公司的PM系统、我国研制的大型旋转机械计算机状态检测与故障诊断系统等。在这一阶段,由于传感技术的飞速发展,使得诊断可以利用振动、噪声、温度、力、电、磁、光、射线等多种信号作为信息源,从而发展了振动诊断技术、声发射诊断技术、光谱诊断技术和热成像监测诊断技术等。与此同时,信号处理技术和模式识别、模糊数学、灰色系统理论等新的信息处理方法迅速发展,并在故障诊断技术中得到应用。 结构损伤诊断技术方面的工作在国外大体分为三个发展阶段: (1)20世纪40年代到50年代为探索阶段,注重对建筑结构缺陷原因的分析和补修方法的研究,检测工作大多数以目测方法为主。

复合材料的结构及作用

复合材料的结构及作用 一、复合材料的结构及作用 是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。 复合包装材料一般由基层、功能层和热封层组成。 a.基层也是材料的外层,从商品对包装性能的要求出发,外层应具有良好的光学性能、良好的印刷适性、耐磨、耐热、一定的强度和刚度,这样使包装外观具有极佳的表现力,增加了对消费者的吸引力; b.功能层也是材料的中间层,从商品对包装性能的要求出发,应具有很高的阻隔性以及特殊性能,如防潮性、阻气性、阻氧性、保香性、耐化学性、防紫外线、防静电、防锈等,使内装物得到保护,延长其货架寿命,这是包装功能性的体现; c.热封层也是材料的内层,从商品对包装性能的要求出发,内层与内装物直接接触,起适应性、耐渗透性要好,特别的包装食品的复合材料,内层还应符合食品安全的要求,卫生、无毒、无味,要对其进行封合,因此还要有良好的热封性和粘合性。 复合包装一般要满足以下性能: a.强度性能,包括抗张(拉伸)强度,范围一般在40-100MPa,撕裂强度,范围一般在 0.3-3N,破裂强度范围一般在30-50MPa,热封强度范围一般在20-80N/20mm,另外根据不同使用场合,还要求刚性、耐磨性、断裂伸长率; b.阻隔性能,包括透气性能(透空气、O2、CO2、N2)、防潮性能、透湿性能、透光性能(尤其对特定波长的光线)、保香性能; c.耐候与稳定性能,包括抗油性能、抗化学介质、耐温性能、耐候性能、抗降解性能; d.加工性能,包括自动化包装适性、印刷适性、防静电性能、热收缩与尺寸稳定性; e.安全卫生性能,包括材料成分是否安全,细菌微生物的种类和含量多少,其它一些影响安全卫生的成分; f.其它性能,包括光学性能、透明度、白度、光泽度、废弃物处理的难易、展示性等。 被包物不同,对复合包装材料性能的要求也不同,应从被包物对包装功能的要求出发,选择和设计复合包装材料,使用最少的材料,达到保护内装物的目的,节约成本和资源。二、举例说明 聚乳酸/纳米碳管防静电复合材料。此材料是以纳米碳管为导电料通过球磨和密炼2种方法添加到聚乳酸基体中制备的防静电复合材料。具体工艺流程如下:纳米碳管的纯化处理(p-CNT)——纳米碳管功能化(f-CNT)——球磨法或密炼法混合——热压——成型。 聚乳酸可以看做复合材料的基层,是复合材料的基材框架。PLA是一种新型的生物可降解材料,有较好的生物相容性,属于环境友好型材料,符合绿色环保的要求,并且具有良好的透气性及拉伸强度,但抗冲击性能差,对热不稳定。

相关文档