文档库 最新最全的文档下载
当前位置:文档库 › 基于内容理解的感知计算GPS

基于内容理解的感知计算GPS

Improve GPS Positioning Accuracy with Context Awareness

Jiung-yao Huang 1, Chung-Hsien Tsai 2

E-mail: 1jyhuang@https://www.wendangku.net/doc/367555530.html,.tw, 2comple@https://www.wendangku.net/doc/367555530.html,.tw

1

Dept. of Computer Science and Information Engineering, National Taipei University 2

Dept. of Computer Science and Information Engineering, National Central University

This paper presents an approach to calibrate GPS position by using the context awareness technique from the Pervasive Computing.Previous researches on GPS calibration mostly focus on the methods of integrating auxiliary hardware so that the user’s context information and the basic demand of the user are ignored. From the inspiration of the pervasive computing research, this paper proposes a novel approach, called PGPS (Perceptive GPS ), to directly improve GPS positioning accuracy from the contextual information of received GPS data. PGPS is started with sampling received GPS data to learning carrier’s behavior and building a transition probability matrix based upon HMM (Hidden Markov Model) model and Newton’s Laws. After constructing the required matrix, PGPS then can interactively rectify received GPS data in real time. That is, based on the transition matrix and received online GPS data, PGPS infers the behavior of GPS carrier to verify the rationality of received GPS data. If the received GPS data deviate from the inferred position, the received GPS data is then dropped. Finally, an experiment was conducted and its preliminary result shows that the proposed approach can effectively improve the accuracy of GPS position.

Index Terms —Context awareness, Pervasive Computing, GPS, Newton’s Laws, Markov Model, Maximum Likelihood Function.

I.I NTRODUCTION

HE

GPS[1] has become the major outdoor positioning system since Bill Clinton announced to release the restriction on accuracy of GPS positioning on May, 2000. Since then, the applications of GPS has become more and more popular nowadays in many aspects, such as rescue response [2], mobile gaming [3], medical applications [4], etc. Even FCC draws up the E911 (Enhanced 911) regulation to enforce cellular phone manufactures ?to embed GPS chip in their handsets.[5] All of these applications depend heavily upon the accuracy of GPS positioning. However, the accuracy of GPS position is primarily dependent on the satellite position, signal delay, and various environment noises such as ionospheric delay effects, ephemeris errors, satellite clock errors, multi-path distortion, tropospheric delay effects, and numerical errors. [1]

Previous researches on improving GPS accuracy can be classified into three categories. The first category uses a network of fixed ground based reference stations to calculate the difference between the positions indicated by the satellite systems and the known fixed positions. These reference stations broadcast the difference between the measured satellite pseudoranges and actual pseudoranges to the GPS receiver to increase its accuracy. If such discrepancy is directly broadcast from ground-based station to GPS receiver, it is called DGPS (Differential GPS).[6] On the contrary, WAAS (Wide Area Augmentation System)[7] transmits this correction through orbiting satellites instead of the ground-based transmitter. The second category adds auxiliary hardware, such as inertia measurement unit[8], to the GPS receiver to assist the positioning calculation. The last category uses software algorithms, including Kalman Filter [9], and map-matching [10], to recursively calibrate received GPS raw

data.

All of these approaches rely on costly auxiliary hardware support and ignore the behavior information of the user. In fact, there is lots of implicit information available when a human being is interacting with the surrounding environment.[11] For example, a person’s subconscious hand gesture can sometimes reveal his true intension which is beyond his verbal subject. With the help of external devices, such implicit information can be captured. Although the device itself is not as good at abstracting context information as human, however, the raw data captured by the device can give us some clue of human’s intension. With proper modeling of the sensed data, we can formulate human’s behavior and let the device become contextual awareness. That is, by adopting the context-awareness technique, the research presented in this paper attempts to make GPS receiver “smart” enough to “understand” carrier’s behavior and calibrate received position information accordingly.

This paper presents a context-driven approach to improve GPS positioning accuracy. This approach is called PGPS (Perceptive GPS) and it is inspired from the Pervasive Computing research to perceive the receiver’s behavior by analyzing received GPS data and correcting positioning accuracy accordingly. This PGPS approach follows the context-awareness architecture proposed by MIThril Real Time Context Engine [12][13] to model user’s behavior and calibrate positioning data. MIT Real-time Context Engine includes four steps which are sensing, feature extracting, modeling, and inferencing[13]. Among these four steps, the modeling is the key step to perceive the behavior from sensing data, but unfortunately, is not fully elaborated in [12][13].

The rest of paper is organized as the follows. Section 2 describes GPS errors and the related GPS rectification methods along with their respective drawback. In addition, the overview of context-awareness computing will also be discussed. Section 3 presents the rationale and technology of PGPS methodology. PGPS applies Newton’s Law to model

T

—————————

Digital Object Identifier inserted by IEEE

_____________________________________ 978 -1-4244-1866-4/08/$25.00 ? 2008IEEE

and calibrate the GPS receiver’s behavior and it is consisted of two phases: training phase and rectification phase. Section 4 elaborates the implementation and experiences of PGPS. Finally, discussions of the related work and concluding remarks are given in Section 5.

II.R ELATED R ESEARCHES

The PGPS approach proposed in this paper employs the

context-awareness technique to get aware of GPS receiver’s

behavior and calibrate position data accordingly. H ence, in

this section, the related researches on improving GPS

positioning data are given first. The concept and related works

on context-awareness then follow.

A.GPS receiving errors and previous solutions

In the past, Defense of Department of United States encrypted GPS signal in order to guarantee the advantage of

U.S. force which significantly reduces the accuracy of the received GPS data. Since US has removed partial encryption in May 2000, GPS applications have become popular. The GPS receiver periodically receives messages from each satellite. After receiving data from more than three satellites, the GPS receiver can compute its position by using trilateration technique.[1] H

owever, due to various environmental factors, it is difficult to guarantee a precise transmission time on each reception which in turn affects the accuracy of the computed GPS positioning. These factors

include time and clock discrepancies, ephemeris uncertainties [1], ionospheric and tropospheric propagation delay, receiver noise and hardware computation numerical errors.

To increase the accuracy of GPS positioning, different approaches were proposed in the past. We can classify these methods into three categories. The first one uses standalone reference station to align the computed GPS data such as WAAS [7], DGPS [6], and AGPS [14]. The Wide Area Augmentation System (WAAS) can reduce position errors from 100 meters down to 3 meters. However, WAAS is only available within North America. DGPS is another hardware approach to improve GPS positioning. DGPS can increases

the location accuracy of conventional GPS, but does not increase the sensitivity of GPS receivers. AGPS utilizes cellular phone network to obtain correct ephemeris extension. The second category adds auxiliary peripheral to assist the GPS computation such as inertia measurement unit (IMU) [8]. The last one employs software algorithm to constrain

computed GPS data such as Kalman Filter [9] and map matching method [10].The Kalman Filter is a recursive estimator that uses previous state to probabilistically estimate current position and velocity. In other words, Kalman Filter assumes the previous state is correct and uses it to predicate the position of next time phase. The algorithm only applies in

steady state machine. It doesn’t have any capability of self-correction. Another popular software approach is Map Matching [10] technique. Based upon given map data, it correlates GIS positioning errors with roads on the map. This Map Matching approach uses three algorithms to calculate position errors with respect to the road on the map. These three algorithms include the distance of point-to-curve, the distance of curve-to-curve, and the angle of curve-to-curve computation to predict which lane the GPS data is located. The drawback of Map matching approach is that it requires a large GIS database to support GPS positioning.

B.Context-awareness technology

A more effective and humanistic approach for GPS

positioning calibration is required. Pervasive computing

technique emphasizes on human-centric applications, and

context-awareness is the key ingredient for the pervasive

environment. To be more specifically, the pervasive

computing is the research of providing a seamless human-computer interaction which depends on the utilization of “context” information.

The context-awareness is the human-centric research to perceive user’s intension from sensor data embedded in the environment. The context is the state information of a subject

in the form of spatial and/or temporal data. The context information includes device’s identity, time, temperature, location, environmental and any other related physical phenomena. For the researches on the context-awareness, there are four applications that are widely discussed: office and meeting tools, tourist’s guides, fieldwork tools, and memory aids [11].

The ParcTab system [15] is the first well-known office and meeting tools that was developed by Xerox Palo Alto Research Center in 1993. The ParcTab uses contexts which

include time, location, the appearance of other machines and the state of network file system to provide service. The Cybeguide [16] is a tourist guide tool that was mainly applied to the tourist’s position and orientation information for tourists in the Graphics, Visualization and Usability Center information in Georgia Tech.Kent University developed several types of context-awareness fieldwork tools [17] for different purposes, such as archeology research, giraffe observation, and bill recognition.

In 2003, MIT Media Lab proposed a milestone research called MIThril wearable computer platform and designed a Real-time Context Engine as the motion classification [12] for it. The MIT Real-time Context Engine architecture is composed of four steps: sensing, feature extraction, modeling, and inference [13].

Inspired by the Real-time Context Engine, this paper propose a context-awareness approach, called Perceptive GPS (PGPS), to perceive GPS data and calibrate its positioning accordingly. PGPS uses Newton’s law to analyze GPS data to perceive user’s behavior. Based upon the perceived GPS data, PGPS rectifies GPS data accordingly.

III.T HE P ERCEPTIVE GPS The basic idea of PGPS research is to be aware carrier’s

behavior from received GPS data. This awareness is based upon Newton’s three laws. According to Newton’s laws, PGPS classifies received GPS data into predefined states that

represents carrier’s behavior. This classification result is then employed to calibrate on-line GPS positioning data. In the following subsections, the infrastructure of PGPS is given first. The awareness technique by Newton’s laws then follows. Detailed steps of PGPS are given last.

A.The Infrastructure

Following the workflow of MIT Real-time Context Engine, the infrastructure of PGPS consists of two phases: training phase and rectification phase, as illustrated in Figure 1. The training phase uses the following three steps to learn carrier’s behavior from the received GPS raw data. Step 1. Data Collection : Received GPS raw data is parsed into NMEA sentences. Data of carrier’s behavior is then extracted from resulted NMEA sentences.

Step 2. Noise S creening : Due to various environmental

effects, the received GPS data, and, as a result,

extracted feature data on step 1 may be disordered and inaccurate. This step will attempt to sift out those “noise” data from feature data.

Step 3. Behavior learning : After screening out “noise” data, this step adopts learning algorithm from HMM to perceive carrier’s behavior and generate a

transition matrix for the rectification phase.

Figure 1. Two execution phases of PGPS The goal of the rectification phase is to use the transition matrix from the training phase to be aware of carrier’s behavior and calibrate the position data in real-time. It consists of the following four steps.

Step 1. Data Collection : Similar to step 1 in the training phase, this step parses received GPS raw data into NMEA sentences first. Feature data is then extracted from resulted NMEA sentences.

Step 2. Noise S creening : Similar to step 2 in the training

phase, this step will attempt to sieve out “noise”

data from feature data.

Step 3. Motion Awareness : Different from the training phase, this step will use the transition matrix from training phase to be aware of carrier’s behavior by classifying them into groups. Notice that the awareness will also verify the rationality of GPS data and cull outlying data.

Step 4. Data Rectification : Based upon the result of

classification from step 3, this step calibrates

position data and inserts dead reckoning data if necessarily.H ence, as illustrated in Figure 1, PGPS starts with the Training phase to learn carrier’s behavior from received GPS data and construct a transition matrix for the Rectification phase. After the matrix is successfully built, the PGPS system

can then rectify received GPS data in real-time. B.The Perception Model The perception capability of PGPS system is based upon Newton’s three Laws, which are Law of Inertia ,Law of Acceleration and Law of Reciprocal Actions . Since a GPS

receiver is a single receiving point, we can effectively assume that GPS carrier is a rigid body. We further assume the mass

of carrier is unchangeable and the velocity of the carrier is lower than the speed of light. Hence, based upon Newton’s

Law, we can classify the motion of a GPS carrier into the following seven states: stationary state, linear acceleration state, linear cruise state, linear deceleration state, veering cruise state, veering accelerating state, and veering

deceleration state. The stationary state, S s , refers to the state that the PGPS carrier is standstill in its original position. The linear cruise state, S lc , implies that PGPS carrier is moving at a constant speed in a straight-line motion. Similarly, the linear acceleration state, S la , denotes that PGPS carrier acts upon a constant force to increase its speed in a straight line. Whereas, the linear deceleration sate, S ld , represents the case of a constant reciprocal force to decrease its speed linearly. The veering cruise state, S vc , implies that PGPS carrier is moving at a constant speed while changing its direction. The veering acceleration state, S va , denotes the case when PGPS carrier is acts upon a force to increase its speed and changing its

direction simultaneously. Similarly, the veering deceleration sate, S vd , indicates the case of a reciprocal force to decrease its speed and direction at the same time. Hence, the set of states considered by PGPS is S = {S s , S la , S lc , S ld , S va , S vc , S vd }.

PGPS employs Newton’s three laws to perceive and predict

PGPS behavior among these states. Table 1 shows the state transition of PGPS from its current state as a result of Newton’s laws. The top row of Table 1 denotes the current

state of GPS and the left-most column represents three Newton’s laws that are acting on its current state. On the left-most column, N1 is the abbreviation of Newton’s first law, i.e. Law of Inertia. Similarly, N2 and N3 denote Newton’s second,

i.e. Law of Acceleration, and third law, i.e. Law of Reciprocal Actions, respectively. Each field of Table 1 is achievable next

state(s) of PGPS upon Newton’s laws. For example, when the

current state of PGPS is the stationary state, S s , its next state

does not exist, as denoted by X, when considering Newton’s

third law. On the other hand, when PGPS is at the linear acceleration state, S la , and is influenced by Newton’s third law, its next state can be linearly deceleration, S ld , deceleration and change direction, S vd , linearly cruise, S lc , or cruise with veering, S vc .

T ABLE 1. T HE S TATE TRANSITIONS OF PGPS

S s S la S lc S ld S va S vc S vd N1

S s

X

S lc X X S vc X N2S la , S va S la , S va S la , S va ,S vc S la , S va ,S lc , S vc S la , S va S la , S va ,S lc S la , S va

,

S lc , S vc

N3

X

S ld , S vd ,S lc , S vc S ld , S vd ,S vc S ld , S vd ,S s S ld , S vd ,S lc , S vc S ld , S vd ,S lc S ld , S vd ,S s

H ence, the overall transitions among states considered by

PGPS can be shown as Figure 2. The state transition diagram is referred as PGPS Perception Model thereafter.

Linear motion

Veering motion Figure 2. The PGPS Perception Model

C.The Training phase

After receiving GPS data from GPS receiver on step 1, Training phase performs preliminary noise screening to remove noise data at step 2. The Baum-Welch algorithm [18] then follows at step 3 to classify filtered GPS data into six groups (or states) and fill the transition matrix according to the state transition discussed in the previous section. Step 1: Data Collecting:

This step is to extract required data from received GPS raw data. Among received GPS raw data, the contextual data required by PGPS is as follows: (i) Dilution of Precision (DOP): It describes the geometric strength of satellite configuration on GPS accuracy. A low DOP value represents a better GPS positional accuracy due to the wider angular separation between the satellites used to calculate a GPS unit's position (ii) Signal to Noise Ratio (SNR): It refers to the signal strength of received GPS data. H igher value of SNR

represents better credibility of corresponded GPS data. (iii) Velocity and position information: The speed, latitude, and longitude information of a GPS receiver. The training phase starts with collecting and extracting GPS data. The GPS data received from GPS receiver is called GPS sentences which follows NMEA 0183 [19] format. NMEA 0183 is a combined electrical and data specification for communication between marine electronic devices such as echo sounder, sonar, anemometer (winds speed and direction), gyrocompass, autopilot, GPS receivers and many other types of instruments. H ence, the output format of NMEA has different types, but this research only needs format for GPS receiver instrument. [20] It contains the following sentences: a. GPRMC (Recommended Minimum Navigation Information): It describes GPS basic navigation data, which includes UTC time, position, orientation, and velocity information. b. GPGGA (Global Positioning System Fix Data): This sentence contains the GPS UTC time, position information.

c. GPGSA (GNSS DOP and Active satellites): It represents the mode of GPS, the number of active satellite, and DOP values.

d. GPGSV (Satellites in view): It offers satellite information, such as the number of GPS satellites in view, satellite ID, elevation, azimuth, and SNR values.

e. GPGLL (Geographic Position - Latitude/Longitude): This sentence is a holdover from Loran data and some old units. It contains Latitude, longitude, UTC time of the satellite, and data valid field.

f. GPVTG (Course over Ground and Ground Speed): It describe course and speed information relative to the ground.

Among the above sentences, only four sentences, namely GPRMC, GPGGA, GPGSA, and GPGSV, contain information required for PGPS to analyze carrier’s behavior. To be more specifically, this step extracts following information

from received GPS raw data: z Latitude, longitude, velocity, data valid field and orientation information from GPRMC string; z Satellite numbers, height information from GPGGA string;z Mapping between channel number and available satellite IDs along with PDOP information from GPGSA string; z Available satellite ID and their respective SNR information from GPGSV string. Step 2: Noise Screening

This step will classify extracted GPS data into two types: acceptable data and unreliable data. Since the accuracy of GPS receiver relies on the distribution and received signal strength of satellites related to the GPS receiver. In order to decide that the GPS receiver signal is reliable, Lin et al. [21] proposed a Fuzzy Logic approach to determine the accuracy of GPS receiver position. The proposed Fuzzy Logic can select more accurate position according to preset rules of Position Dilution of Precision (PDOP) and SNR. They set up twelve rules to determine the reliability of received GPS data. In addition, they define the position error equal to range error multiplying DOP. However, [21] didn’t explicitly point out the exact range of PDOP and SNR values.

This paper integrates some experimental results [22] [23] [24] [25] and the Fuzzy Logic by [21] to design a precise filtering scheme to check the reliability of GPS data. This scheme starts with checking the numbers of satellites that the GPS can receive their signal. For 2D positioning, signal from at least three satellites is required for the received GPS data to be reliable. In addition, James et al. [22] suggested that at least five satellites’ signal be required to compute a reliable 3D position. Hence, PGPS adopts three satellites as the first minimal criteria to determine if the received GPS data is reliable.

Furthermore, the summation of SNR dB values and PDOP are another two conditions to decide the reliability of received data. Smaller DOP value and larger SNR value will increase positioning accuracy. However, since a small DOP value will derive a small SNR value, these two values are mutually exclusive. As pointed out by [23] [24], SNR of each satellite must exceed to 30 dB for the received GPS data to be reliable. Under such assumption, if a GPS receiver detects signals from five satellites, the sum of SNR value should be greater than 150 dB. Finally, the GPS receivers manufactured by different companies have different PDOP range value to diagnose if the receiver synchronizes with satellites.[25] For example, PDOP value over 50 by RIMTAI GPS receiver represents that it is not synchronized with satellites. Furthermore, under the 2D positioning condition, PDOP must be less than 20, which means when PDOP value is over 20, the received data is unreliable.

Step 3: Behavior Learning

Finally, the third step is to learn the motion behavior according to the state transition discussed in the pervious section. That is, this step attempts to learn carrier’s behavior from observable GPS character data. Significantly, this problem is very similar to the speech recognition research.[26] Since the spoken voice can be viewed as observable output, the syntax of dialogue can be parsed, characterized and analyzed by the signal processing model. The meaning of the speaking can then be recognized by the statistical approach. The underlying assumption of the statistical models is that the signal can be well determined in a precise, well-defined manner.

PGPS adopts a well known stochastic signal model, namely hidden Markov model (HMM), to perform behavior learning. PGPS extends the speech recognition concept to perform sampling procedure. Navigation recognition unit (NRU) sequence is then generated. The Baum-Welch method from HMM [27] is then adopted as the learning engine to train PGPS from a given temporal sequences of GPS data. This training process is based upon the state transition diagram given in Figure 2.

H MM is composed of several essential elements and its probability of transition is often modeled as ? = (A,B,?) where A is the state transition probability matrix, B is the observation probability distribution and ? is the initial state distribution. The purpose of learning algorithm is to train the system by a given sequence of data so that the system can recognize a similar sequence in the future. This learning process will eventually produce a state transition probability matrix A for the Motion Awareness step of the Rectification phase.

D.The Rectification phase

After the transition probability matrix A is successfully built, the rectification phase contains four steps to rectify received GPS data online. As illustrated in Figure 1, after receiving GPS data in step 1, it will then check if this data is a noise data at step 2. If not, this data will then be classified at step 3 according to the transition probability matrix A. The classification method is adopted from maximum likelihood function.[28] The maximum likelihood function is used to determine if an unknown data is closest to an adaptive set. Finally, this classified data will be rectified by cross-verifying with received data and predicated data. The detailed operations are described as follows.

Step 1: Data collecting

Same as the data collection step in the training phase.

Step 2: Noise screening

Same as the noise screen step in the training phase.

Step 3: Motion Awareness

After sifting out noise (unreliable) data, the maximum likelihood function then follows to perceive carrier’s motion. The maximum likelihood function employs the transition probability matrix derived from the training phase to learn the carrier’s behavior. Since PGPS only considers carrier behavior is one of the following seven states: stationary state, linear acceleration state, linear cruise state, linear deceleration state, veering cruise state, veering accelerating state, and veering deceleration state, the likelihood function is responsible for classifying current data into one of these states.

Step 4: Data Rectification

This final step is to rectify received data from perceived carrier’s motion. The rectification stage uses Newton Motion model to further inspect acceptable data from step 2 and cull data that disordered from Newton's Laws. The deleted data is then replaced with a dead reckon data.

IV.I MPLEMENT AND EXPERIMENT

To verify the effectiveness of the proposed PGPS model, an experiment was conducted by first collecting a series of GPS data as the training data and then computing its transition matrix accordingly. The experiment is conducted in the main campus of National Taipei University, Taiwan, as shown in Figure 3. The yellow dots with serial numbers in Figure 3 mark positions of collected GPS data. Figure 4 is the resulted state transition probability matrix A that is

computed for the training data.

Figure 3. Illustration of collected training data

11121314151617

21222324252627

31323334353637

41424344454647

51525354555657

61626364656667

71727374757677

0000001

23441

00

33333333

3

2

a a a a a a a

a a a a a a a

a a a a a a a

A a a a a a a a

a a a a a a a

a a a a a a a

a a a a a a a

ao

??

??

??

??

??

??

??

??

??

??

u v

58

000

62613

6155

00

292929

111

0000

333

111

0000

442

0000010

ao

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

??

00 Figure 4. The state transition probability matrix A

V.D ISCUSSION AND CONCLUSIONS

In this paper, the human-centric approach of GPS calibration technique, called PGPS, is proposed. Based upon Newton's three Laws, PGPS approach uses GPS data as navigation reference units to

infer the motion of the carrier and to improve GPS positioning accuracy accordingly. From the statistical perspective, PGPS learns carrier’s behavior from received GPS data in the training phase to construct transition probability matrix for the rectification phase. The

main advantage of this approach is that it is sensitive to the carrier’s behavior and do not require auxiliary hardware support.

One interesting application of PGPS is in the networked mobile augmented reality, which needs exact behavior information and position to provide interaction service between a user in the real-

world and an avatar in the virtual-world. PGPS uses Newton Motion model to perceive user’s behavior without any extra cost. Although PGPS is a cost-effective technique for GPS calibration, more studies

are required to improve the efficiency of this technique which will be further investigated.

R EFERENCES

[1] R. Bajaj, S. L. Ranaweera and D. P. Agrawal, “GPS: Location-Tracking

Technology”, IEEE Computer, Vol.35, No.4, 2002, pp. 92–94.

[2] J. Casper and R. Murphy, “H uman-robot interactions during the

robotassisted urban search and rescue response at the World Trade

Center,” IEEE Trans. on Systems, Man, and Cybernetics, Part B, June

2003, vol. 33, pp. 367-385.

[3] P. Ferreira, J. Orvalho and F. Boavida, “A middleware architecture for

Mobile and Pervasive Large Scale Augmented Reality Games”, In the

Proceedings of the Conference on Networks and Services Research

(CSNR) 2007, 2007.

[4] S. H ong, M. H. Lee, H. H. Chun, S. H. Kwon, and J. L. Speyer,

“Observability of error states in GPS/INS integration,” IEEE Trans.

Veh. Technol., vol. 54, no. 2, 2005, pp. 731–743.

[5]

Enhanced 911 – Wireless Services https://www.wendangku.net/doc/367555530.html,/pshs/services/911-

services/enhanced911/Welcome.html [Accessed online at 01/01/2008]

[6] G. W¨ubbena, A. Bagge, G. Seeber, V. Boder, and P. H ankemeier,

“Reducing Distance Dependant Errors for Real-Time Precise DGPS

Applications by Establishing Reference Station Networks”, In

Proceedings of the 9th International Technical Meeting of the Satellite

Division of the Institute of Navigation (ION GPS-96), 1996.

[7] P. Enge, T. Walter, S. Pullen, C. Kee, Y. Chao, and Y. Tsai,“Wide area

augmentation of the global positioning system,” Proc. IEEE, vol. 84

Aug. 1996, pp. 1063–1088,.

[8] H. Qi and J. B. Moore, “Direct Kalman filtering approach for GPS/INS

integration,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 2, 2002,

pp.687–693.

[9] A.

Kelly,

A 3D state space formulation of a navigation kalman filter for

autonomous vehicles, Technical report, CMU, CMU-RI-TR-94-19.

[10] C.E. White, D. Bernstein, A.L. Kornhauser, "Some map matching

algorithms for personal navigation assistants", Transportation Research

Part C, 8, 2000, pp 91-108.

[11] M. Korkeaaho, Context-Aware Applications Survey, Department of

Computer Science, H elsinki University of Technology, April 2000,

http://www.hut.fi/~mkorkeaa/doc/context-aware.html. [Accessed online

at 01/01/2008]

[12] R. DeVaul, M. Sung, J. Gips, and A. Pentland, “MIThril 2003:

Applications and Architecture,” Proc. Seventh Int’l Symp. Wearable

Computers, 2003.

[13] R. W. DeVaul and S. Pentland, The MIThril Real-Time Context Engine

and Activity Classification, Technical Report, MIT Media Lab, 2003.

[14] G.M. Djuknic and R.E. Richton, “Geolocation and assisted GPS,” IEEE

Computer, vol. 2, Feb. 2001, pp. 123-125.

[15] R. Want, et. al., The PARCTAB Ubiquitous Computing Experiment,

Technical Report CSL-95- 1, Xerox Palo Alto Research Center, 1995.

[16] S. Long, R. Kooper, G. D. Abowd, and C. G. Atkeson, “Rapid

Prototyping of Mobile Context-Aware Applications: The Cyberguide Case Study,” Proc. 2nd Ann. Int’l Conf. Mobile Computing and Networking (Mobicom 96), ACM Press, New York, 1996, pp. 97-107.

[17] J. Pascoe, Ryan, N.N. and Morse, D.R., “Issues in Developing Context-

Aware Computing,”Handheld and Ubiquitous Computing, LNCS 1707, Springer, 1999, pp. 208-221.

[18] H idden Markov Models and the Baum-Welch Algorithm, IEEE

Information Theory Society Newsletter, Vol. 53, No.4, Dec. 2003. [19] NMEA 0183 Standard, https://www.wendangku.net/doc/367555530.html,/pub/0183/ [Accessed

online at 01/01/2008]

[20] NMEA Reference Manual, SiRF Technology, Inc. January 2005,

Revision 1.3

[21] C. J. Lin, Y. Y. Chen and F. R. Chang, Fuzzy Processing on GPS Data

to Improve the Position Accuracy, IEEE Asian Fuzzy Systems Symposium, Taiwan, Dec. 1996, pp. 557-562.

[22] J. B. Tsui, Fundamentals of Global Positioning System Receivers: A

Software Approach, John Wiley & Sons, New York, 2000.

[23] P. Collins and P. Stewart, “GPS SNR Observation”, Geodetic Research

Laboratory, 2000.

[24] S.W. Ellingson, Spectral Detection of GPS and H-I Using a Single

Omnidirectional Antenna, Informal Memo, Jan 2002.

[25] A. Shouzhong, GPS localization principle and application, Entire

Chinese science and technology books Limited Liability Company. [26] L. R. Rabiner, “A tutorial on hidden Markov models and selected

applications in speech recognition,” Proc. of IEEE, vol. 77, no. 2, pp.

257–286, Feb. 1989.

[27] R. W. Lloyd, “H idden Markov Models and the Baum-Welch

Algorithm,” IEEE Information Theory Society Newsletter, Vol. 53, No.4, Dec. 2003.

[28] A. Howard, M.J. Matark and G.S. Sukhatme, “Localization for mobile

robot teams using maximum likelihood estimation, Intelligent Robots and System”, IEEE/RSJ International Conference, vol.1, 2002, pp. 434- 439.

北斗、Galileo、GLONASS、GPS定位导航系统对比

北斗、Galileo、GLONASS、GPS定位导航系统对比 世界有四大定位导航系统,分别是中国的北斗卫星定位系统、欧盟的Galieo、俄罗斯的GLONASS、美国人的GPS定位系统。 1.GPS 2.GLONASS全球导航卫星系统 GLONASS的起步晚于GPS9年。从前苏联 1982年10月12日发射第一颗GLONASS卫星开始,到1996年,13年时间内历经周折,虽然遭遇了苏联的解体,由俄罗斯接替部署,但始终没有终止或中断GLONASS卫星的发射。1995年初只有16颗GLONASS卫星在轨工作,1995年进行了三次成功发射,将9颗卫星送入轨道,完成了24颗工作卫星加1颗备用卫星的布局。经过数据加载、调整和检验,已于 1996年1月18日.整个系统正常运行。 1卫星星座 GLONASS卫星星座的轨道为三个等间隔椭圆轨道,轨道面间的夹角为120度,轨道倾角 64.8度,轨道的偏心率为o.01,每个轨道上等间隔地分布8颗卫星。卫星离地面高度19100km,绕地运行周期约11小时15分,地迹重复周期8天,轨道同步周期17困。 由于GLONASS卫星的轨道倾角大于GPS卫星的轨道倾角,所以在高纬度(50度以上)地区的可视性较好。 每颗GLONASS卫星上装有艳原子钟以产生卫星上高稳定时标,并向所有星载设备的处理提供同步信号。星载计算机将从地面控制站接收到的专用信息进行处理,生成导航电文向用户广播。导航电文包括:

①星历参数;②星钟相对于GLONASS时的偏移值;③时间标记; ④GLONA SS历书。 GLONASS卫星向空间发射两种载波信号。L1频率为 1.602— 1.616MHz.L2频率为 1.246— 1.256MHz为民用,L2供军用。 2.地面探制系统 地面控制站组包括一个系统控制中心,一个指令跟踪站,网络分布于俄罗斯境内。 CTS跟踪着GLoNAs5可视卫星,它遥测所有卫星,进行测距数据的采集和处理,并向各卫星发送控制指令和导航信息。 3用户设备 接收GUNASS卫星信号并测量其伪距和速度,同时从卫星信号中选出并处理导航电文。 接收机中的计算机对所有输入数据处理并算出位置坐标的三个分旦、速度矢量的三个分量和时间。利用两个独立的卫星定位系统进行导航和定位测量,可有效地削弱美俄两国对各自定位系统的可能控制,提高定位的可靠性和安全性。 4伐罗斯联邦政府对GLONA5S系统的使用政策 早在1991年俄罗斯首先宣称;GLoNAs5系统可供国防民间使用、不带任何限制,也不计划对用户收费.该系统将在完全布满星座后遵照已公布的性能运行至少15年。民用的标准精度通道(csA)精度数据为:

全球定位系统(GPS)术语及定义

全球定位系统(GPS)术语及定义 全球定位系统(GPS)术语及定义 【中华人民共和国国家标准GB/T 19391-2003 】2004-12-24 5:55:15 1范围 本标准规定了全球定位系统(GPS)常用术语及定义。 本标准适用于GPS专业范围内的各种标准的制定、各类技术文件的编制,也适用于科研、教学等方面。 2通用术语 2.1 全球定位系统global positioning system(GPS) 导航星navigation by satellite timing and ranging(NA VSTAR) 一种卫星导航定位系统。由空间段、地面控制段和用户段三部分组成.为伞球用户提供实时的三维位置、速度和时间信息。包括主要为军用的精密定位服务(PPS)和民用的标准定位服务(SPS)。 2.2 全球导航卫星系统global navigation satellite system(GLONASS) 一种全球卫星导航定位系统:为全球用户提供实时的三维位置、速度和时间信息。包括军用和民用两种服务。 2.3 伽利略系统Galileo system 一种民用全球卫星导航系统; 2.4 全球导航卫星系统global navigation satellite system(GNSS) 由国际民航组织提出的概念。GNSS的最终目标是由多种民用卫星导航系统组成,向全球民间提供服务。并将由多国民间参与运行和控制的卫星导航系统。GNSS也已经为国际海事组织(IMO)所接受。欧洲的GNSS计划分为两个阶段,即GNSS-1和GNSS-2。GNSS-1为EGNOS(欧洲地球静止轨道卫星导航重叠服务)系统,GNSS-2为Galileo(伽利略)系统。 2.5 静地星/定位星系统Geostar/Locstar system 一种卫星定位系统,利用两颗地球轨道静止卫星双程测距而实现定位功能,兼有简短报文通信能力。 2.6 海军导航卫星系统navy navigation satellite system(NNSS) 子午仪Transit 是1960年由美国研制的卫星导航系统,为固定用户或低动态用户提供不连续定位信息。 注:已于l997年12月31日关闭。 2.7 国际GPS动力学服务international GPS geodynamics service(IGS) 国际大地测量协会于1994年创立的国际GPS研究服务机构。它负责向世界各国的GPS 用户提供精密的星历、地球旋转参数、全球GPS跟踪网数据等多种信息。

全球卫星导航定位行业分析报告

全球卫星导航定位行业分析报告 一、全球卫星发展概况 卫星导航定位技术指利用全球卫星导航定位系统所提供的位置、速度及时间信息对各种目标进行定位、导航及监管的一项新兴技术。与传统的导航定位技术相比,由于卫星导航定位技术具有全时空、全天候、连续实时地提供导航、定位和定时的特点,已成为人类活动中普遍采用的导航定位技术。因此,全球卫星导航定位系统一经问世,在市场需求的牵动下很快就深入到各国军事、安全、经济领域的方方面面,使航空、航海、测绘、机械控制等传统产业的工作方式发生了根本的改变,开拓了移动位置服务等全新的信息服务领域,并迅速发展成为一个新兴的产业——卫星导航定位产业。 以美国GPS为代表的卫星导航定位产业已经成为当今国际公认的八大无线电产业之一。在人类信息社会中,有80%以上的信息与“位置”和“时间”有关,在卫星导航定位技术出现以后,它可以迅速将位置、时间信息数字化,进入互联网和各行各业的信息应用系统,被人们所使用。 目前世界上投入正式运行的卫星导航定位系统有美国的GPS系统、俄罗斯的Glonass系统和我国的北斗卫星导航定位系统。其中GPS的应用最为广泛,占到全球应用的95%以上。鉴于民用需求的巨大与旺盛,为了摆脱对美国GPS系统的依赖,打破美国对全球卫星导航产业的垄断,欧盟在2002年提出建设Galileo 系统,俄罗斯则计划在2010年全面恢复Glonass系统,我国在2006年对外公布建设我国新一代北斗卫星导航定位系统,卫星导航定位产业步入了一个多系统并存、多技术融合的发展新阶段。 我国的卫星导航定位应用是在全球卫星导航定位系统逐步开放、透明的大环境下,通过学习、引进、消化、吸收再创新的方式发展起来的。美国的GPS系统在20世纪80年代建设初期是一个严加保密的纯军事系统。随着全球政治格局和经济一体化的发展,其已从最初的“军用为主、民用为辅”发展到“强军护民、以民养军”的新阶段。美国GPS政策的每一次开放调整,都有力地推动了本国及全球卫星导航定位产业的市场发展。随着卫星导航定位在我国应用领域的不断拓展和深入以及自主的北斗卫星导航定位系统的建设,使我国在卫星导航定位系统技术和导航信号处理技术、卫星导航定位芯片技术和板卡、高精度接收机产品等方面取得重大突破,积累了应用经验,卫星导航定位技术与产品已呈现自主创新,集成创新,引进、消化、吸收再创新的多元并举发展的格局。 二、全球卫星导航系统发展历程 GPS可以说是最早也是目前最为完善成熟的全球卫星导航定位系统,最为当今最完善、覆盖率最高卫星导航定位,GPS的发展历程就代表了全球卫星导航定位行业的发展。 1、50年代末至60年代末是GPS研发的初级积累阶段 1958年底,美国海军武器实验室委托霍布金斯大学应用物理实验室,研究为美国军用舰艇导航服务的卫星系统,即海军导航卫星系统。60年代末,美国在此基础上着手研制新的卫星导航系统,以满足海陆空三军和民用部门对导航越来越高的要求。

全球卫星导航系统的发展现状

0.引言 GPS的投入运行对当今社会经济、军事产生了革命性影响,各个国家对它的依赖性不断加大。同时,为了避免受制于人,各国纷纷研制自己的全球卫星导航系统。紧随美国之后,俄罗斯建成了GLONASS 系统,但由于资金长期短缺以及其他种种原因,导致在轨工作卫星曾大量空缺,不能提供全天候、全球性的定位服务。而欧盟正在开发的伽利略(GALILEO)卫星导航系统是一个独立的,性能优于GPS,与现有全球卫星导航系统具有互用性的民用全球卫星导航系统。争奇斗艳的全球卫星导航定位系统将会给当今的信息社会带来深远的影响。 1.美国GPS的发展现状 1.1GPS导航定位原理GPS是在美国海军导航卫星系统的基础上发展起来的以卫星为基础的无线电导航定位系统。它具有全能性、全球性、全天候、连续性和实时性的导航、定位和定时功能,能为用户提供精密的三维坐标、速度和时间。 GPS系统由空间卫星星座、地面监控系统及用户设备组成。GPS 空间星座部分由24颗GPS卫星(含3颗备用卫星)组成,卫星均匀分布于倾角为55°的6个轨道面上,轨道平均高度约为20200km。每颗GPS卫星发射两个载波(1575.42MHz/L1和1227.60MHz/L2)信号,在其上用相位调制技术加载了测距码和导航电文,供用户接收机使用。地面监控系统由一个主控站、3个注入站和5个监控站组成,其主要功能是采集数据、编算GPS导航电文及系统维护等。用户设备是实现GPS卫星导航定位的终端设备,由GPS接收机硬件和数据处理软件组成,它通过接收并处理GPS卫星信号,可得到用户的时间、位置、速度等参数[1][2]。 1.2GPS自身的缺陷 现行的GPS系统存在如下的缺陷:BlockⅡ(BlockⅡA)GPS卫星信号的强度极其微弱(天顶运行的GPS卫星的信号强度仅有3.5E-16W),几乎淹没于背景噪音之下,并能被建筑物等阻挡物反射,产生多路径效应。 调制于L1载波上的C/A码和P码都位于L1的中心频带,易于受到人为干扰。通常情况下,对P码的捕获和跟踪是通过先捕获C/A码和巧用Z计数的方法实现的。这样,如果人为地干扰C/A码的接收,也就等效于P码受到干扰。 民间用户难以同时获得L1-P码伪距和L2-P码伪距,无法实现GPS双频观测的电离层效应距离偏差改正,限制了GPS单点定位精度的提高。 GPS的系统组成和信号结构都不能满足当前的需要。例如:在高纬度地区,严重影响导航和定位,在中、低纬度地区,每天总有两次盲区、每次盲区历时20~30分钟,盲区时,PDOP值远大于20,给导航和定位带来很大的误差。 为确保导航定位的精度,GPS的卫星导航电文必须每天更新一次,地面监控系统担负着编算和注入导航电文的重要任务,一旦地面监控系统受到破坏,军用和民用用户都不能得到高精度的GPS导航定位服务。 1.3GPS现代化的举措[3] 针对上述情况,GPS执行委员会(IGEB)、GPS顾问委员会(GIAC)和导航学会(ION)召开多次国际会议,讨论GPS现代化的问题。根据GPS 执行委员会有关资料,GPS现代化的主要措施主要有: 取消了GPS SA政策,给民用用户带来了明显的效益。 发射BlockⅡR卫星更换BlockⅡ/ⅡA卫星。与BlockⅡ/ⅡA卫星相比,BlockⅡR卫星在功能上有如下扩充:在L2载波上增设C/A码(或L2C码);在L1和L2载波上各增设一个军用伪噪声码(M码);可根据指令增强L2载波上的P(Y)码、L1载波上的P(Y)码和C/A的功率。BlockⅡR-M卫星的功能更进一步加强:能作卫星之间的距离测量;能在轨自主更新和精化GPS卫星的广播星历和星钟A系数;能进行星间在轨数据通讯,在无地面监控系统干预的情况下,可进行自主导航。 发射BlockⅡF卫星。BlockⅡF卫星除具有BlockⅡR卫星的全部功能外,还在保护波段增加第三民用信号L5(1176.45MHz),并增加了卫星间的数据通道。到2008年6月,GPS在轨卫星共有31颗,其中BlockⅡA卫星13颗,BlockⅡR卫星12颗,BlockⅡR-M卫星6颗。 发射BlockⅢ(GPSⅢ)卫星。目前正在研究未来GPS卫星导航的需求,讨论制定GPSⅢ型卫星系统结构,系统安全性、可靠程度和各种可能的风险。计划在2009年发射GPSⅢ的第一颗实验卫星,2030年完成整个星座的更新。 地面监控系统现代化的措施主要有:给监测站装备数字式GPS 信号接收机和计算机;用分布式结构计算设备替换现有的主计算机;采用精度改善技术建立卫星控制集成网络,完善BlockⅡR卫星的全运行能力;在美国本土(卡纳维拉尔角)增建一个监控站(使监控站增至6个);在范登堡空军基地建立一个备用主控站;增强BlockⅡR卫星的指令和控制能力。 2.俄罗斯GLONASS的发展现状 2.1GLONASS简介 为了应对美国的全球卫星定位系统GPS,前苏联从上世纪80年代初开始建设与美国GPS系统相类似的卫星定位系统GLONASS (Global Orbiting Navigation Satellite System),于1995年12月将其发展成为由24颗GLONASS卫星组成的工作星座。该系统也由空间卫星星座、地面监测控制站和用户设备三部分组成。空间卫星星座为21颗卫星分布在夹角为120°的3个倾角为64.8°轨道面上,另外3颗卫星备用。GLONASS通过两个频率发射导航信号,但它的每颗卫星的频率都不相同。 GLONASS可供国防、民间使用,不带任何限制,也不计划对用户收费,并声明不引入选择可用性(SA)。但由于俄罗斯经济困难,卫星的补充和维护得不到保证,GLONASS在轨卫星曾大量空缺(2000年情况最严重时只剩下6颗卫星),破坏了其星座完整程度,致使该系统的可用性大大下降。 2.2GLONASS的恢复和现代化 GLONASS的危机引起了俄方的重视,俄罗斯认识到“出于国家安全战略的考虑,俄罗斯应该使用本国的GLONASS系统,而非美国的GPS或者是欧洲的GALILEO导航系统”。随着经济复苏,俄政府在本世纪初制定了“拯救GLONASS”的补星计划,并决定启动逐步改善和提高GLONASS性能的现代化改造。 补星和现代化计划共分三个阶段:第一阶段为补充新的卫星以满足GLONASS系统正常运行的最低要求。第二阶段为GLONASS-M计划,即研制新的GLONASS-M卫星。新的GLONASS-M卫星搭载了铯钟,增强了信号的稳定性;改善了信号结构,增加了附加信息;安装了滤波器,消除了1601.6MHz~1613.8MHz以及1660.0MHz~ 1670.0MHz频段的信号干扰;与此同时,其寿命也由原来的3年延长至7~8年;该阶段计划达到18颗在轨运行卫星(包括GLONASS卫星 全球卫星导航系统的发展现状 项鑫1刘红旗2李军杰3 (1.中国地质大学<武汉>地空学院湖北武汉430074;2.平顶山煤业集团土建公司河南平顶山467000; 3.河南城建学院河南平顶山467000) 【摘要】GPS现代化计划提出了更新星座和地面系统、增加第三民用信号L5、增加卫星间的数据通道、发射BlockⅢ(GPSⅢ)卫星等措施,GLONASS正在逐步实施补星和现代化计划,GALILEO可望提供六项更优的服务。分析了全球导航定位系统的发展与应用状况,讨论了导航定位信息的融合情况与应用前景。 【关键词】GPS;GLONASS;Galileo;CNSS;信息融合 66

我国及世界各国导航卫星发展状况综述

我国及世界各国导航卫星发展状况综述 China and the world of the development of navigation satellite 摘要随着卫星导航技术的飞速发展,卫星导航已基本取代了无线电导航、天文导航等传统导航技术,成为一种普遍采用的导航定位技术,并在精度、实时性、全天候等方面取得了较大提高。目前世界上采用的定位系统主要为美国的全球定位系统(GPS ),俄罗斯的全球卫星导航系统(GLONASS),欧洲的伽利略系统(GALILEO ),中国的“北斗一号”导航系统以及日本的准天顶卫星系。 关键词GPS GLONASS 伽利略全球卫星导航定位系统“北斗一号”导航系统准天顶卫星系统 一、GPS全球定位系统 GPS是“Global Positioning System”即“全球定位系统”的简称。该系统原是美国国防部为其星球大战计划投资10多亿美元而建立的。其作用是为美军方在全球的舰船、飞机导航并指挥陆军作战。GPS系统的研制计划分为三个阶段。第一阶段(1973-1978)是方案论证阶段。第二阶段(1979-1985)是工程研制和系统试验阶段,测试结果令人满意,系统达到了预定设计目标,当时有7颗实验卫星在轨道上飞行,已提供了有限的导航能力。第三阶段为改善系统性能,为整个系统投人使用阶段。原计划从1986年起,由航天飞机分批把工作型卫星送入轨道,1989年系统全面组网实用,达到三维定位能力。由于航天飞机失事,GPS 系统的第三阶段计划被推迟到1989年2月才开始执行。1990年左右,轨道上已有12颗卫星,实现二维定位能力;1992年左右,GPS系统已全面组网进人实用阶段。1993年GPS太空卫星网完全建成。 GPS是24颗卫星组成的全球定位、导航及授时系统。这24颗卫星分布在高度为2万公里的6个轨道上绕地球飞行。每条轨道上拥有4颗卫星,在地球上任何一点,任何时刻都可以同时接受到来自4颗以上卫星的信号。也就是说GPS 的卫星所发射的信息覆盖着整个地球表面。 目前GPS的发展主要分为以下几个阶段: 1、GPS现代化第一阶段:发射12颗改进型的GPS BLOCKⅡR型卫星,它们具有一些新的功能。既能发射第二民用码,即在L2上加载CA码;在L1和L2上播发P( y)码的同时,在这两个频率上还试验性的同时加载新的军码(M码); ⅡR 型的信号发射功率,不论在民用通道还是军用通道上都有很大提高。 2、GPS现代化第二阶段:发射6颗GPS BLOCKⅡF (“ⅡF Lite" )。GPS BLOCK ⅡF 型卫星除了有上面提到的GPS BLOCK ⅡR型卫星的功能外,还进一步强化发射M码的功率和增加发射第三民用频率,即L5频道。GPSⅡF型卫星的第一颗的发射不迟于2005年。到2008年在空中运行的GPS卫星中,至少有18颗ⅡF型卫星,以保证M码的全球覆盖。到2016年GPS卫星系统应全部以ⅡF卫星运行,共计24+3颗。 3、GPS现代化计划的第三阶段:发射的GPS BLOCK Ⅲ型卫星,在2003年

北斗、Galileo、GLONASS、GPS定位导航系统对比

世界有四大定位导航系统,分别是中国的北斗卫星定位系统、欧盟的Galieo、俄罗斯的GLONASS、美国人的GPS定位系统。 目前在世界上运用最广泛的是GPS定位导航系统()。 全球导航卫星系统 GLONASS的起步晚于GPS 9年。从前苏联1982年10月12日发射第一颗GLONASS卫星开始,到1996年,13年时间内历经周折,虽然遭遇了苏联的解体,由俄罗斯接替部署,但始终没有终止或中断GLONASS卫星的发射。1995年初只有16颗GLONASS卫星在轨工作,19 95年进行了三次成功发射,将9颗卫星送入轨道,完成了24颗工作卫星加1颗备用卫星的布局。经过数据加载、调整和检验,已于1996年1月18日.整个系统正常运行。 1卫星星座 GLONASS卫星星座的轨道为三个等间隔椭圆轨道,轨道面间的夹角为120度,轨道倾角64.8度,轨道的偏心率为o.01,每个轨道上等间隔地分布8颗卫星。卫星离地面高度19 100km,绕地运行周期约11小时15分,地迹重复周期8天,轨道同步周期17困。 由于GLONASS卫星的轨道倾角大于GPS卫星的轨道倾角,所以在高纬度(50度以上)地区的可视性较好。 每颗GLONASS卫星上装有艳原子钟以产生卫星上高稳定时标,并向所有星载设备的处理提供同步信号。星载计算机将从地面控制站接收到的专用信息进行处理,生成导航电文向用户广播。导航电文包括:①星历参数;②星钟相对于GLONASS时的偏移值;③时间标记; ④GLONASS历书。 GLONASS卫星向空间发射两种载波信号。L1频率为—.L2频率为1.246—1.256MHz 为民用,L2供军用。 2.地面探制系统

卫星定位系统原理及各国发展的历史

简述:卫星定位系统原理及各国发展的历史 1、子午卫星导航系统(NNSS) 该系统又称多普勒卫星定位系统,它是58年底由美国海军武器实验室开始研制,于6 4年建成的“海军导航卫星系统”(Navy Navigation Satellite System)。这是人类历史上诞生的第一代卫星导航系统。 1957年10月前苏联成功发射了第一颗人造卫星后,美国霍普金斯大学应用物理实验室的吉尔博士和魏分巴哈博士对卫星遥测信号的多普勒频移产生了浓厚的兴趣。经研究他们认为:利用卫星遥测信号的多普勒效应可对卫星精确定轨;而该实验室的克什纳博士和麦克卢尔博士则认为已知卫星轨道,利用卫星信号的多普勒效应可确定观测点的位置。霍普金斯大学应用物理实验室研究人员的工作,为多普勒卫星定位系统的诞生奠定了坚实的基础。而当时美国海军正在寻求一种可以对北极星潜艇中的惯性导航系统进行间断精确修正方法,于是美国军方便积极资助霍普金斯大学应用物理实验室开展进一步的深入研究。1958年12月在克什纳博士的领导下开展了三项研究工作:①研制卫星;②建立地球重力场模型以便卫星的精确定轨和准确预报卫星的空间位置;③研制多普勒接收机。经过众人的努力子午卫星导航系统于1964年1月正式建成并投入军方使用,直至1967年7月该系统才由军方解密供民间使用。此后用户数量迅速增长,最多达9.5万户,而军方用户最多时只有650个,不足总数的1%,可见因生产的需要民间用户远远大于军方。 1.1 子午卫星导航系统的组成 (1)卫星星座:子午卫星星座,由六颗独立轨道的极轨卫星组成。 在设计上要求卫星的轨道的偏心率为零,轨道倾角i =90°;卫星运行周期为T=107 m;卫星高度约为H=1075km;按理论上的设计,六颗卫星应当均匀分布在相互间隔为3 0度轨道平面上。但由于早期卫星入轨精度不高,各卫星周期、倾角、偏心率都存在不同程度的误差,故各卫星轨道进动的大小和方向也都不尽相同,这样经过一段时间后各卫星轨道间的间距就变得疏密不一。因而地面可观测卫星的时间分布就变得更加没有规律,中纬度地区的用户平均1.5小时左右可以观测到一颗卫星,有时在高纬上空可出现多颗卫星造成信号的互相干扰(此时必须将信噪比差的卫星关闭避免干扰);但在低纬度地区最不利时要等待10小时才能观测到卫星。

(完整版)北斗卫星导航系统常识简介

北斗卫星导航系统常识简介 一、北斗卫星导航系统现状 中国北斗卫星导航系统(BeiDou Navigation Satellite System,BDS)是中国自行研制的全球卫星导航系统。是继美国全球定位系统(GPS)、俄罗斯格洛纳斯卫星导航系统(GLONASS)之后第三个成熟的卫星导航系统。北斗卫星导航系统(BDS)和美国GPS、俄罗斯GLONASS、欧盟GALILEO,是联合国卫星导航委员会已认定的供应商。 北斗卫星导航系统由空间段、地面段和用户段三部分组成,可在全球范围内全天候、全天时为各类用户提供高精度、高可靠定位、导航、授时服务,并具短报文通信能力,已经初步具备区域导航、定位和授时能力,定位精度10米,测速精度0.2米/秒,授时精度10纳秒。 北斗卫星导航系统空间段由5颗静止轨道卫星(又称24小时轨道,指轨道平面与赤道平面重合,卫星的轨道周期等于地球在惯性空间中的自转周期,且方向亦与之一致,即卫星与地面的位置相对保持不变,故这种轨道又称为静止卫星轨道。一般用作通讯、气象等方面)和30颗非静止轨道卫星组成,2012年左右,“北斗”系统将覆盖亚太地区,2020年左右覆盖全球。中国正在实施北斗卫星导航系统建设,截止2016年10月已成功发射16颗北斗导航卫星。 2000年,首先建成北斗导航试验系统,使我国成为继美、俄之后的世界上第三个拥有自主卫星导航系统的国家。北斗导航系统是覆

盖中国本土的区域导航系统,覆盖范围东经约70°-140°,北纬5°-55°。北斗卫星系统已经对东南亚实现全覆盖。该系统已成功应用于测绘、电信、水利、渔业、交通运输、森林防火、减灾救灾和公共安全等诸多领域,产生显著的经济效益和社会效益。特别是在2008年北京奥运会、汶川抗震救灾中发挥了重要作用。 北斗产业应用前景广阔,预计到2020年,仅北斗卫星导航市场将达到年产值4000亿元人民币,年复合增长率达到40%以上。”中国科学院院士、中国工程院院士、著名测量与遥感学家李德仁介绍说 二、卫星定位原理 北斗卫星导航系统35颗卫星在离地面2万多千米的高空上,以固定的周期环绕地球运行,使得在任意时刻,在地面上的任意一点都可以同时观测到4颗以上的卫星。 由于卫星的位置精确可知,在接收机对卫星观测中,我们可得到卫星到接收机的距离,利用三维坐标中的距离公式,利用3颗卫星,就可以组成3个方程式,解出观测点的位置(X,Y,Z)。考虑到卫星的时钟与接收机时钟之间的误差,实际上有4个未知数,X、Y、Z和钟差,因而需要引入第4颗卫星,形成4个方程式进行求解,从而得到观测点的经纬度和高程。事实上,接收机往往可以锁住4颗以上的卫星,这时,接收机可按卫星的星座分布分成若干组,每组4颗,然后通过算法挑选出误差最小的一组用作定位,从而提高精度。

全球卫星定位系统GPS综述

全球卫星定位系统(GPS)综述 GPS是“Global Positioning System”即“全球定位系统”的简称。该系统原是美国国防部为其星球大战计划投资100多亿美元而建立的。其作用是为美军方在全球的舰船、飞机导航并指挥陆军作战。在海湾战争中,涌现了大量高科技装备,而GPS全球卫星定位系统则是使用最广泛的一种。人们普遍认为是GPS技术在整个海湾战争中充分显示了威力,起了至关重要的作用,从而赢得了战争的胜利。 GPS全球定位系统是一项工程浩繁、耗资巨大的工程,被称为继阿波罗飞船登月、航天飞机之后的第三大空间工程。海湾战争期间,GPS系统尚未完全建成,初步使用已显神威。随着1993年GPS太空卫星网的完全建成,其应用领域不断扩大。而且美国1994年宣布在10年内向全世界免费提供GPS全球定位系统的使用权。使世界各国都在争相利用这一系统。 前苏联早在1982年就开始建立自己的全球卫星定位系统。后来,俄罗斯继续执行这一系统工程计划,到1995年已完成建成。目前这套全球卫星导航系统只由俄罗斯控制使用,未向全世界提供服务。欧洲联盟考虑到全球卫星定位导航系统的应用前景,也打算建立他们自己的全球卫星定位导航系统。目前德俄已联合生产了可以同时接收美国GPS和俄国Glonass信号的卫星定位接收器。当前世界各国对全球卫星定位导航这一高新技术都非常重视,认为其对导航定位和大地勘测技术是一场革命,其民用潜力相当巨大,经济效益相当可观。 GPS是美国国防部发射的24颗卫星组成的全球定位、导航及授时系统。这24 颗卫星分布在高度为2万公里的6个轨道上绕地球飞行。每条轨道上拥有4颗卫星,在地球上任何一点,任何时刻都可以同时接受到来自4颗卫星的信号。也就是说GPS的卫星所发射的空间轨道信息覆盖着整个地球表面。 GPS卫星定位系统由地面控制站、GPS卫星网和GPS接收机三部分组成。地面主控站实施对GPS卫星的轨道控制及参数修正。GPS卫星网向地面发射两个频率的定位导航信息,其中包括两个定位码信号:即C/A码(供世界范围内的民用)及P码( 只供美国军方使用)。GPS接收机接收GPS卫星信号进行解算,即可确定GPS接收机的位置。 GPS岂所以能够定位导航,是因为每台GPS接收机无论在任何时刻、在地球上任何位置都可以同时接收到最少4颗GPS卫星发送的空间轨道信息。接收机通过对接收到的每颗卫星的定位信息的解算,便可确定该接收机的位置,从而提供高精度的三维(经度、纬度、高度)定位导航及授时系统。而且和以前各种定位系统大不一样的是,GPS接收机简单,小型的只有香烟盒大小,重量约500克,价格仅几百美元。任何人拿着这种接收机,都可以准确地知道自己在地球上的哪一点。GPS 接收机是被动式全天候系统,只收不发信号,故不受卫星系统和地面控制系统的控制。用户数量也不受限制。 GPS接收机的性能因机种不同而有差异。接收机根据用户不同的使用需要又可分为大地型GPS接收机和导航型GPS接收机两类。但接收机都具有国际通用的标准仪器接口,可以和自动驾驶仪、电台、话音通道及计算机等仪器对接,以便迅速地将导航定位信息传送到交联的相应系统。 GPS的定位方式有两种,即单点定位方式和相对定位方式。 单点定位方式就是用一台GPS接收机接收三颗或四颗卫星的信号,来确定接收点的位置。单点定位方式测定的位置其误差较大。在移动性一次观测定位中,其误差在使用P码时约10~25米,使用C/A码时约100米。若固定点定位测量时,用两种码的相应误差分别

GPS全球卫星定位系统论文

GPS全球卫星定位系统论文 摘要:本文主要介绍了GPS导航定位系统的组成、基本工作原理、特点以及在各领域中的应用等,力求让测绘同行和有兴趣的朋友对GPS全球导航定位系统有一个全面基本的了解和认识。关键词:GPS GPS卫星导航定位系统 GPS接收机 GPS卫星信号导航与定位 RTK 一、概述:自从五七年第一颗人造卫星上天,六十年代的人造卫星导航定位技术,七十年代美国军方开始发展GPS(Global Po sitioning System)卫星导航定位系统,直至1995年4月27日美国国防部宣部“G PS系统已具备全部运作能力”。GPS计划的实现历时23年,耗资200多亿美元,前后共发射35颗卫星,目前仍在轨道上正常工作的有二25颗卫星,其中1颗为实验卫星,24颗为工作卫星。它具有海、陆、空全方位实时三维导航与定位能力,是美国第二代卫星导航系统,其特点是全天候、高精度、应用广,是迄今最好的导航定位系统。它广泛的应用价值,引起了各国科学家的关注和研究,前苏联和西欧各国的科学家在积极开发利用GPS信号资源的同时,还致力于研究开发各自的卫星导航定位系统,如前苏联建成的GLONASS卫星导航系统,我国也在致力于发展自已的卫星导航定位系统。同时,它的出现也导致了测绘行业一场深刻的技术变革。 二、GPS系统的组成:由三大部分组成,即空间部分、地面监控部分、用户设备部分。空间部分:GPS系统的空间部分是指

GPS工作卫星星座,其由24颗卫星组成,其中21颗工作卫星,3颗备用卫星,均匀分布在6个轨道上。卫星轨道平面与地球赤道面倾角为55°,各个轨道平面的升交点赤经相差60°,轨道平均高度为20200km.卫星运行周期为11小时58分(恒星时),同一轨道上的各卫星的升交角距为90°,GPS卫星的上述时空配置,基本保证了地球上任何地点,在任何时刻均至少可以同时观测到4颗卫星,以满足地面用户实时全天候精密导航和定位。G PS卫星的主体呈圆柱形,直径约为1.5m,重约774kg,两侧各安装两块双叶太阳能电池板,能自动对日定向,以保证卫星正常工作用电。每颗卫星带有四台高精度原子钟,其中2台为铷钟,2台为铯钟。GPS卫星上设有微处理机,可以进行必要的数据处理工作,它主要的3个基本功能:根据地面监控指令接收和储存由地面监控站发来的导航信息,调整卫星姿态、启动备用卫星;向GPS用户播送导航电文,提供导航和定位信息;通过高精度卫星钟向用户提供精密的时间标准。 2、地面监控部分:由5个地面站组成。1个主控站,其位于美国本土科罗拉多斯平土(Colorado Spings)的联合空间执行中心CSOC,3个注入站,其分别设在印度洋的迭哥加西、南大西洋的阿松森岛和南太平洋的卡瓦加兰。5个监控站,其中4个与主控站、注入站重叠,另外一个设在夏威夷。主控站的主要任务为:根据各监控站提供的观测资料推算编制各颗卫星的星历、卫星钟差、和大气层修正参数并把这些数据传送到注入站;提供G

全球四大卫星定位系统

全球四大卫星定位系统 说起卫星定位导航系统,人们就会想到GPS,但是现在,伴随着众多卫星定位导航系统的兴起,全球卫星定位导航系统有了一个全新的称呼:GNSS(Global Navigation Satellite System)。当前,在这一领域最吸引人眼球的要数美国的GPS卫星导航系统;此外,还有俄罗斯的“格洛纳斯”导航卫星系统,欧盟的“伽利略”导航卫星系统,以及我国自主开发的“北斗”导航卫星系统。 一、美国GPS系统 GPS(Global Position System)全球定位系统是目前最成熟的卫星定位导航系统。它是美国从上世纪70年代开始研制,历时20年,耗资近200亿美元,于1994年全面建成的新一代卫星导航与定位系统。GPS利用导航卫星进行测时和测距,具有在海、陆、空全方位实时三维导航与定位能力。它是继阿波罗登月计划、航天飞机后的美国第三大航天工程。如今,GPS已经成为当今世界上最实用,也是应用最广泛的全球精密导航、指挥和调度系统。 GPS全球定位系统由空间系统、地面控制系统和用户系统三大部分组成。其空间系统由21颗工作卫星和3颗备份卫星组成,分布在20200千米高的6个轨道平面上,运行周期12小时。地球上任何地

方任一时刻都能同时观测到4颗以上的卫星。地面控制系统负责卫星的测轨和运行控制。用户系统为各种用途的GPS 接收机,通过接收卫星广播信号来获取位置信息,该系统用户数量可以是无限的。 GPS全球定位系统是美国为军事目的而建立的。1983年一架民用飞机在空中因被误以为是敌军飞机而遭击落后,美国承诺GPS免费开放供民间使用。美国为军用和民用安排了不同的频段,并分别广播了P码和C/A码两种不同精度的位置信息。目前美国军用GPS精度可达1米,而民用GPS理论精度只有10米左右。特别地,美国在90代中期为了自身的安全考虑,在民用卫星信号上加入了SA (Selective Availability),进行人为扰码,这使得一般民用GPS接收机的精度只有100米左右。2000年5月2日,SA干扰被取消,全球的民用GPS 接收机的定位精度在一夜之间提高了许多,大部分的情况下可以获得10米左右的定位精度。美国之所以停止执行SA政策,是由于美国军方现已开发出新技术,可以随时降低对美国存在威胁地区的民用GPS 精度,所以现在这种高精度的GPS技术才得以向全球免费开放使用。 受应用需求的刺激,民用GPS技术蓬勃发展,出现了DGPS(差分GPS)、WAAS(地面广播站型态的修正技术)等技术,进一步提高民用GPS的应用精度。2005年,美国开始发射新一代GPS卫星,开始提供第二个民用波段。未来还将提供第三,第四民用波段。随着可用波段的增加,新卫星陆续使用,GPS定位系统的精度和稳定性都比

全球四大导航系统

全球四大卫星定位系统 目前,世界上只有少数几个国家能够自主研制生产卫星导航系统。当前全球有四大卫星定位系统,分别是美国的全球卫星导航定位系统GPS、俄罗斯的格罗纳斯GLONASS系统、欧洲在建的“伽利略”系统、和中国的北斗卫星导航系统。 一、美国GPS长期垄断 美国国防部从1973年开始实施的GPS系统,这是世界上第一个全球卫星导航系统,在相当长的一段时间内垄断了全球军用和民用卫星导航市场。GPS全球定位系统计划自1973年至今,先后共发射了41颗卫星,总共耗资190亿美元。GPS 原来是专门用于为洲际导弹导航的秘密军事系统,在1991年的海湾战争中首次得到实战应用。随后,在科索沃战争、阿富汗战争和伊拉克战争中大显身手。从克林顿时代起,该系统开始应用在了民用方面。现运行的GPS系统由24颗工作卫星和4颗备用卫星组成。美国利用GPS获得了巨大的经济利益,多年来在出售信号接收设备方面赚取了巨额利润。以1986年为例,当时一台一般精度的GPS定位仪价格5万美元,高精度的则达到10万美元。现在价格虽然有所下降,但也可推算出20年来GPS“收获颇丰”。以GPS为代表的卫星导航定位应用产业,已成为八大无线产业之一。据美国国家公共管理研究院进行的调查评估表明,GPS的全球销售额将以每年38%的速度增长,2005年全球GPS市场已达到310亿美元。长期以来,美国对本国军方提供的是精确定位信号,对其他用户提供的则是加了干扰的低精度信号——也就是说,地球上任何一个目标的准确位置,只有美国人掌握,其他国家只知道个“大概”。在海湾战争时,美国还曾置欧盟各国利益不顾,一度关闭对欧洲GPS服务。 2003年3月20日,伊拉克战争爆发。大批轰炸机、战斗机猛扑向伊拉克首都巴格达,用炸弹准确地将一座建筑彻底摧毁,行动代号:“斩首行动”;4月,一架B-1B“枪骑兵”轰炸机临时接到任务,用炸弹摧毁了另一座建筑。他们的目标都是一个人:萨达姆侯赛因,他们所使用的炸弹都是一种:联合攻击炸弹(JDAM),这些炸弹之所以都能够精确的打击目标,是因为他们都是通过卫星定位来实现定位,提供这种定位服务的正是由24颗美国卫星组成的全球定位系统--GPS。 由于GPS技术所具有的全天候、高精度和自动测量的特点,作为先进的测

GPS、GALILEO、BDS、GLONASS四大卫星定位系统的论述

GPS、GALILEO、BDS、GLONASS四大卫星定位系统得论述 一、基本介绍 ?GPS 数量:由24颗卫星组成。 轨道:高度约20200公里,分布在6条交点互隔60度得轨道面上。 精度:约为10米、 用途:军民两用。 进展:1993年全部建成,正在实验第二代卫星系统,计划发射20颗。 ?GLONASS 数量:24颗卫星组成; 精度:10米左右; 用途:军民两用; 进展:目前已有17颗卫星在轨运行,计划2008年全部部署到位、 ?GALILEO 数量:30颗中高度圆轨道卫星组成,27颗为工作卫星,3颗为候补; 轨道:高度为24126公里,位于3个倾角为56度得轨道平面内; 精度:最高精度小于1米; 用途:主要为民用; 进展:2005年12月28日首颗实验卫星已成功发射,预计2008年前可开通定位服务。 ?BDS 数量:3颗卫星组成,2颗为工作卫星,1颗为备用卫星; 用途:军民两用; 进展:前两颗分别于2000年与2003年发射成功。 二、系统组成 ?空间部分 ?GPS:GPS得空间部分就是由24颗卫星组成(21颗工作卫星;3颗备用卫星),它位于距地表20200km得上空,均匀分布在6个轨道面上(每个轨道面4 颗),轨道倾角为55°。 卫星得分布使得在全球任何地方、任何时间都可观测到4颗以上得卫星,并能在卫星中预存导航信息,GPS得卫星因为大气摩擦等问题;随着时间得推移,导航精度会逐渐降低?GLONASS:GLONASS系统采用中高轨道得24颗卫星星座,有21颗工作星与3颗备份星,均匀分布在3个圆形轨道平面上,每轨道面有8颗,轨道高度H=19000km,运行周期T=11h15min,倾角i=64。8°。 ?GALILEO:如下图所示,30颗中轨道卫星(MEO)组成Galileo得空间卫星星座。卫星均匀地分布在高度约为23616km得3个轨道面上,每个轨道上有10颗,其中包括一颗备用卫星,轨道倾角为56°,卫星绕地球一周约14h22min,这样得布设可以满足全球无缝隙导航定位、卫星得设计寿命为20年,每颗卫星都将搭载导航载荷与一台搜救转发器。 卫星发射采用一箭多星得发射方式,每次发射可以把5颗或6颗卫星同时送入轨道。可以满足发射任务得运载火箭有Ariane—5、Soyue等。 ?BDS:由3颗地球静止轨道卫星组成,两颗工作卫星定位于东经80°与140°赤道上空,另有一颗位于东经110.5°得备份卫星,可在某工作卫星失效时予以接替。 ?地面部分

各国卫星导航系统比较(北斗、伽利略、GLONASS、GPS)-推荐下载

北斗卫星导航系统简介 卫星导航系统是重要的空间基础设施,为人类带来了巨大的社会经济效益。中国作为发展中国家,拥有广阔的领土和海域,高度重视卫星导航系统的建设,努力探索和发展拥有自主知识产权的卫星导航定位系统。 2000年以来,中国已成功发射了4颗“北斗导航试验卫星”,建成北斗导航试验系统(第一代系统)。这个系统具备在中国及其周边地区范围内的定位、授时、报文和GPS广域差分功能,并已在测绘、电信、水利、交通运输、渔业、勘探、森林防火和国家安全等诸多领域逐步发挥重要作用。 中国正在建设的北斗卫星导航系统空间段由5颗静止轨道卫星和30颗非静止轨道卫星组成,提供两种服务方式,即开放服务和授权服务(属于第二代系统)。开放服务是在服务区免费提供定位、测速和授时服务,定位精度为10米,授时精度为50纳秒,测速精度0.2米/秒。授权服务是向授权用户提供更安全的定位、测速、授时和通信服务以及系统完好性信息。 中国计划2007年初发射两颗北斗导航卫星,2008年左右满足中国及周边地区用户对卫星导航系统的需求,并进行系统组网和试验,逐步扩展为全球卫星导航系统。 伽利略卫星导航系统简介 数量:30颗中高度圆轨道卫星组成,27颗为工作卫星,3颗为候补; 轨道:高度为24126公里,位于3个倾角为56度的轨道平面内; 精度:最高精度小于1米; 用途:主要为民用;

1999年2月10日,欧盟执行机构欧洲委员会(EC)公布了欧洲导航卫星系统“伽利略”计划,该系统是与美国全球导航定位系统(GPS)和俄罗斯的GLONASS系统兼容的民用全球 定位卫星系统。欧盟之所以进行“伽利略”计划,主要是为了摆脱对美国GPS系统的依赖,打破美国对全球卫星导航定位产业的垄断,在使欧洲获得工业和商业效益的同时,赢得建 立欧洲共同安全防务体系的条件。 其实,欧空局(ESA)早在1990年就决定研制“全球导航卫星系统(GNSS)”,GNSS分为两个阶段,第一阶段是建立一个与美国GPS系统、俄罗斯GLONASS系统、以及三种区域增强系统均能相容的第一代全球导航卫星系统(GNSS-1),第二阶段是建立一个完全独立于GPS 系统和GLONASS系统之外的第二代全球导航卫星系统(GNSS-2)。由于GNSS-1主要是利用GPS等已经建成的系统,因此其主要工作是在欧洲建立30座地面站和4个主控制中心,系统将在2002年部署完毕,2004年完成运营试验。欧洲的长远目标是拥有自己的独立的全 球导航卫星系统,即GNSS-2,也就是现在的“伽利略”系统。 “伽利略”计划由欧洲委员会和欧空局共同负责。欧洲委员会负责政治领域和高层次 的任务需求,其中包括对系统总体结构、经济收益和用户需求的研究。欧空局负责空间分 系统及相关地面系统的确定、发展和在轨鉴定。 “伽利略”系统的批准实施,使得欧洲继“空中客车”和“阿里安”火箭之后,又将 拥有自己独立的导航卫星系统,这是欧洲力图独立于美国的又一个重大决定,具有重大政 治意义。 欧盟称,“伽利略”计划是在“技术、经济和政治上的挑战”。小心翼翼地将“政治” 放在最后,自然是要减少“伽利略”的政治色彩。欧盟还表示,“伽利略”系统是纯民用的,不用于军事,也不干涉美国的GPS,甚至是GPS的有效补充,也是为了避免美国的反感。 但是“伽利略”计划既已启动,其政治意义也就不言自明。 在“伽利略”系统的筹建过程中,曾一再受到美国的阻挠,欧洲内部的意见也一度产生严 重分歧,系统计划几乎流产。但欧盟委员会及欧洲航天局非常明确地向成员国指出,早在20世纪60年代,美国就曾阻止欧洲拥有自己的航天发射能力,许诺免费为欧洲发射卫星,但欧洲顶住了诱惑和干扰,开发了自己的“阿里安”火箭,使欧洲今天不但拥有了完全独 立的卫星发射系统,而且在国际航天发射市场上占有了绝对的优势。欧盟委员会指出,现

相关文档
相关文档 最新文档