文档库 最新最全的文档下载
当前位置:文档库 › 北大附中高考数学专题复习简单几何体

北大附中高考数学专题复习简单几何体

北大附中高考数学专题复习简单几何体
北大附中高考数学专题复习简单几何体

学科:数学

教学内容:简单几何体

【考点梳理】 一、考试内容

1.棱柱(包括平行六面体)。棱锥。多面体。 2.球。

3.体积的概念与体积公理。棱柱、棱锥的体积。球的体积。 二、考试要求

1.理解棱柱、棱锥、球及其有关概念和性质。

掌握直棱柱、正棱锥、球的表面积和体积公式,并能运用这些公式进行计算。 3.了解多面体的概念,能正确画出棱柱、正棱锥的直观图。 对于截面问题,只要求会解决与几种特殊的截面(棱柱、棱锥的对角面,棱柱的直截面,球的截面)以及已给出图形或它的全部顶点的其他截面的有关问题。

三、考点简析 1.棱柱

2.棱锥

正棱锥是底面正多边形的中心

顶点在底面上的射影

棱锥-

---

--

3.棱柱、棱锥的侧面积与体积

S 正棱柱侧=C h ′ S 正棱锥侧=

21C h ′ V 柱体=S h ′ V 锥体=3

1

S h ′ 4.球

S 球=4πR 2 V 球=

3

4

πR 3

四、思想方法

1.割补法。它是通过“割”与“补”等手段,将不规则的几何体转化为规则的几何体,是一种常用的转化方法。

2.正棱锥的计算问题。应抓住四个直角三角形和两个角。四个直角三角形,即正棱锥的高、侧棱及其在底面上的射影、斜高及其在底面上的射影、底面边长的一半组成的四个直角三角形。两个角,即侧棱与底面所成的线面角,侧面与底面所成的二面角。四个直角三角形所围成的几何体称之为“四直角四面体”,它是解决棱锥计算问题的基本依据,必须牢固掌握。

3.正棱锥的侧面积与底面积的关系。 正棱锥:S 底=S 侧cos α

4.多面体中表面上两点的最短距离。

多面体中表面上两点的最短距离,就是其平面展开图中,连结这两点的线段长度,这是立体几何中求最短距离的基本依据(球面上两点间的距离除外)。

5.关于组合体体积的计算问题。

有很多的几何体,都由一些简单几何体所组成,这样的几何体叫做组合体。 构成组合体的方式一般有两种:其一是由几个简单几何体堆积而成,其体积就等于这几个简单几何体体积之和;其二是从一个简单几何体中挖去几个简单几何体而成,其体积就等于这个几何体的体积减去被挖去的几个几何体的体积。

因此,组合体体积的求法,即为“加、减”法,关键是合理的分割,可使计算简化。 6.关于等积变换问题。

等积变换的依据是等底等高的棱锥体积相等。 等积变换求体积或求点到平面的距离,都是在基本几何体——四面体和平行六面体中进行的。这是因为这些几何体变换底面后,计算体积的方法不变,几何体仍为四面体和平行六面体,这样,我们就可以选择适当的面为底面,使计算简单、易行。

若几何体本身不是四面体或平行六面体,则需先将其分成几个四面体或平行六面体之后,再施行等积变换。

用等积变换求点到平面的距离,是用两种不同的体积计算方法,来建立所求距离的方程,使问题得解。

异面直线间的距离,可转化为点到平面的距离,因此也可用等积变换求解。 用等积变换求距离,可绕过距离的作图,从而降低了题目的难度。

【例题解析】

例1 如图8-1,已知斜三棱柱ABC —A 1B 1C 1的底面是直角三角形,AC ⊥CB ,∠ABC=30°,侧面A 1ABB 1是边长为a 的菱形,且垂直于底面,∠A 1AB=60°,E 、F 分别是AB 1、BC 的中点。

(1)求证:EF ∥侧面A 1ACC 1;

(2)求四棱锥A ——B 1BCC 1的体积;

(3)求EF 与侧面A 1ABB 1所成角的大小。

(1)连结A 1B 、A 1C

∵A 1ABB 1是菱形,且E 是AB 1的中点, ∴E 是A 1B 的中点。 又F 是BC 的中点, ∴EF ∥A 1C 。

又A 1C 平面A 1ACC 1,

EF ?平面A 1ACC 1, ∴EF ∥面A 1ACC 1。

(2)∵平面A 1ABB 1⊥平面ABC ,交线为AB ,

∴在平面A 1ABB 1内,过A 1作A 1O ⊥AB 于O ,则A 1O ⊥平面ABC ,且h =A 1O=

2

3a , 又∵AC ⊥CB ,∠ABC=30°,∴a a,AC C,BC B AC S S C B ΔA 2

12321111==??==, ∴V A —C 1CBB 1 =V 柱-V A —A 1B 1C 1 =S h -

31S h =32S h =32·2

1

·AC ·BC ·A 1O =

32·21·21a ·23 a ·2

3a =81a 3 (3)在平面ABC 内,过F 作FH ⊥AB 于H ,则FH ⊥侧面A 1ABB 1。 连结EH ,则∠HEF 为EF 与侧面A 1ABB 1所成的角。 ∵在Rt △FHB 中,FH=

21BF=8

3a ,BH=83a ; 在△HEB 中,HE=BA A BH BE BH BE 12

2cos 2)()(∠???-+

=????

-+60cos 8

3

212)8

3()2

1(2

2

a a a a

=

8

13a , ∴在Rt △EHF 中,tan ∠HEF=

HE HF =13

39

, ∴∠HEF=arctan

13

39。

例2 如图8-3,三棱锥P —ABC 中,△ABC 是正三角形,∠PCA=90°,D 为PA 的中点,二面角P —AC —B 为120°,PC=2,AB=23。

(1)求证:AC ⊥BD ;

(2)求BD 与底面ABC 所成的角(用反正弦表示); (3)求三棱锥P —ABC 的体积。

解 (1)如图8-4,取AC 中点E ,连DE 、BE ,则DE ∥PC ,∵PC ⊥AC ,∴DE ⊥AC 。

∵△ABC 是正三角形,∴BE ⊥AC 。

又DE 平面DEB ,BE 平面DEB ,DE ∩BE=E ,∴AC ⊥平面DEB 。 ∵DB 平面DEB ,∴AC ⊥DB 。

(2)法一:∵AC ⊥平面DEB ,AC 底面ABC ,∴平面DEB ⊥底面ABC ,∴EB 是DB 在底面ABC 内的射影,∠DBE 是BD 与底面ABC 所成的角。

又∵DE ⊥AC ,BE ⊥AC ,∴∠DEB 即为二面角P —AC —B 的平面角。

在△DEB 中,∵DE=

21PC=1,BE=2

3AB=3, ∴由余弦定理,得 BD 2=12+32 – 2×1×3cos120°=13,BD=13,

∴由正弦定理,得

DBE ∠sin 1=?

120sin 13

解得sin ∠DBE=

2639,即BD 与底面ABC 所成的角为arcsin 26

39。 法二:∵AC ⊥平面DEB ,AC 平面ABC 。∴平面DEB ⊥平面ABC ,作DF ⊥平面ABC ,F 为垂足,则F 在BE 的延长线上,∠DBF 是BD 与平面ABC 所成的角。∵DE ⊥AC ,BE ⊥AC ,∴∠DEB 是二面角P —AC —B 的平面角。在Rt △DBF 中,DE=

21PC=1,BE=2

3

AB=3, ∠DEB=120°,∠DEF=60°,DF=

2

3

。 ∴在△DEB 中,由余弦定理得BD=13,

∴sin ∠DBF=

DB DF =2639,故BD 与底面ABC 所成的角为arcsin 26

39

。 (3)∵AC ⊥平面DEB ,AC 平面PAC ,

∴平面DEB ⊥平面PAC ,∴过点B 作平面PAC 的垂线段BG ,垂足G 在DE 的延长线

上。

∵在Rt △BEG 中,∠BEG=60°,BE=3,∴BG=

2

3

3, ∴V P —ABC =V B —PAC =

31S △PAC ×BG=31×2322 ×2

33=3。

例3 如图8-5,三棱锥P —ABC 中,已知PA ⊥BC ,PA=BC=l ,PA 、BC 的公垂线DE=h ,求三棱锥P —ABC 的体积。

分析:思路一直接求三棱锥P —ABC 的体积比较困难。考虑到DE 是棱PA 和BC 的公垂线,可把原棱锥分割成两个三棱锥P —EBC 和A —EBC ,利用PA ⊥截面EBC ,且△EBC 的面积易求,从而体积可求。

解 如图8—5—1,连结BE ,CE 。∵DE 是PA 、BC 的公垂线,∴PA ⊥DE 。又PA ⊥

BC ,∴PA ⊥截面EBC 。∴V P —EBC =

31S △EBC ·PE ,V A —EBC =3

1

S △EBC ·AE 。∵DE ⊥BC ,∴S △EBC =21BC ·DE=21lh ,∴V P —ABC =V P —EBC +V A —EBC =31S △EBC ·(PE+AE )=31PA ·S △EBC =6

1l 2h 。

注 本例的解法称为分割法,把原三棱锥分割为两个三棱锥,它们有公共的底面△EBC ,而高的和恰为PA ,因而计算简便。

思路二 本题也可用补形法求解。

解 如图8-5-2,将△ABC 补成平行四边形ABCD ,连结PD ,则PA ⊥AD ,且BC ∥平面PAD ,故C 到平面PAD 的距离即为BC 和平面PAD 的距离。

∵MN ⊥PA ,又MN ⊥BC ,BC ∥AD ,∴MN ⊥AD , MN ⊥平面PAD 。

故 V P —ABC =V P —ADC =V C —PAD =

31S △PAD ·MN=31(21·PA ·AD )·MN=6

1l 2h 。 注 本题的解法称为补形法,将原三棱锥补形成四棱锥,利用体积互等的技巧进行转换,

以达到求体积的目的。

本题也可将三棱锥补成三棱柱求积。想一想,怎样做?

例4 如图8-6,在四棱锥P —ABCD 中,底面ABCD 是边长为a 的正方形,并且PD=a , PA=PC=2a 。

(1)求证:PD ⊥平面ABCD ;

(2)求异面直线PB 与AC 所成的角; (3)求二面角A —PB —D 的大小;

(4)在这个四棱锥中放入一个球,求球的最大半径。

解 (1)PC=2a ,PD=DC=a ,

∴△PDC 是Rt △, 且PD ⊥DC 。 同理,PD ⊥AD 。

而AD ∩DC=D ,∴PD ⊥平面ABCD 。

(2)如图8-7,连BD ,∵ABCD 是正方形,

∴BD ⊥AC 。

又∵PD ⊥平面ABCD 。

∴BD 是PB 在平面ABCD 上的射影。 由三垂线定理,得PB ⊥AC 。 ∴PB 与AC 成90°角。

(3)设AC ∩BD=O ,作AE ⊥PB 于E ,连OE 。 ∵AC ⊥BD ,又PD ⊥平面ABCD ,AC 平面ABCD 。 ∴PD ⊥AC 。

而PD ∩BD=D ,∴AC ⊥平面PDB , 则OE 是AE 在平面PDB 上的射影。 由三垂线定理逆定理知OE ⊥PB ,

∴∠AEO 是二面角A —PB —D 的平面角。 ∵PD ⊥平面ABCD ,DA ⊥AB 。∴PA ⊥AB 。 在

Rt △PAB

中,AE ·PB=PA ·AB 。又

AB= a ,AP=

2a ,

PB=222AB AD PD ++=3a ,

∴AE=

3

2a 。 又AO=

2

2a ∴sin ∠AEO=

AE AO =2

3

,∠AEO=60° ∴二面角A —PB —D 的大小为60°。

(4)设此球半径为R ,最大的球应与四棱锥各个面相切,球心为S ,连SA 、SB 、SC 、SD 、SP ,则把此四棱锥分为五个小棱锥,它们的高均为R 。

由体积关系,得

V P —ABCD =

3

1

R (S △PDC + S △PDA + S △PBC + S △PAB + S 正方形ABCD ) =31R (22a +22a +22a 2+2

2a 2 + a 2)。 又∵3

3

1a V ABCD P =-, ∴31R(2a 2+2a 2)= 3

1a 3 ∴R=

2

2+a =

a 2

2

2-。 例5 如图8-8,已知长方体ABCD —A 1B 1C 1D 1中,AB=BC=4,AA 1=8,E 、F 分别为AD 和CC 1的中点,O 1为下底面正方形的中心。求:

(1)二面角C —EB —O 1的正切值;

(2)异面直线EB 与O 1F 所成角的余弦值; (3)三棱锥O 1—BEF 的体积。

解 如图8—9,(1)取上底面的中心O , OG ⊥EB 于G ,连OO 1和GO 1。由长方体的性质得OO 1⊥平面ABCD ,则由三垂线定理得O 1G ⊥EB ,

则∠OGO 1为二面角C —EB —O 1的平面角。由已知可求得EB=2242+=25。 利用△ABE ∽△GEO (图8-10),可求得OG=

5

2。

在Rt △O 1OG 中,tan ∠O 1GO=

OG

OO 1

=45。 (2)在B 1C 1上取点H ,使B 1H=1,连O 1H 和FH 。 易证明O 1H ∥EB ,则∠FO 1H 为异面直线EB 与1O 所成角。 又O 1H=

2

1

BE=5,HF=2243+=5, O 1F=222422++=26, ∴在△O 1HF 中,由余弦定理,得 cos ∠FO 1H=

6

25225524??-+=

30

30

(3)连HB ,HE ,由O 1H ∥EB ,得O 1H ∥平面BEF 。 ∴V O

1

——BEF

=V H —BEF = V E —BHF =

3

1

·S △BHF ·AB ∵S △BHF =32-

21

(1×8+3×4+4×4)=14 1O V ∴——BEF =31×14×4=

3

56

例6 如图8-12,球面上有四个点P 、A 、B 、C ,如果PA ,PB ,PC 两两互相垂直,且PA=PB=PC=a ,求这个球的表面积。

解 如图8-12,设过A 、B 、C 三点的球的截面圆半径为r ,圆心为O ′,球心到该圆面的距离为d 。在三棱锥P —ABC 中,

∵PA ,PB ,PC 两两互相垂直,且PA=PB=PC=a ,

∴AB=BC=CA=2a ,且P 在△ABC 内的射影即是△ABC 的中心O ′。

由正弦定理,得

?60sin 2a =2r,∴r=3

6

a 。

又根据球的截面的性质,有OO ′⊥平面ABC ,而PO ′⊥平面ABC , ∴P 、O 、O ′共线,球的半径R=22d r +。又PO ′=22r PA -=2

2

32a a -

=

3

3a , ∴OO ′=R -

3

3a =d=22r R -,(R -

3

3a )2=R 2 – (

36a )2,解得R=2

3

a , ∴S 球=4πR 2=3πa 2。

注 本题也可用补形法求解。将P —ABC 补成一个正方体,由对称性可知,正方体内接于球,则球的直径就是正方体的对角线,易得球半径R=

2

3

a ,下略。

例7 如图8-13所示,四面体ABCD 中,AB 、BC 、BD 两两互相垂直,且AB=BC=2,E 是AC 的中点,异面直线AD 与BE 所成的角为arccos

10

10

,求四面体ABCD 的体积。

解 如图8-14,过A 引BE 的平行线,交CB 的延长线于F ,则∠DAF 是异面直线BE 与AD 所成的角。

∴∠DAF=arccos

10

10 ∵E 是AC 的中点,∴B 是CF 的中点,且BF=AB=2。∵AB ⊥BC=2 2=BE

∴AF=2BE=22

∴DF=DA ,∵DB ⊥BA ,DB ⊥BF ,BF=BA , 则三角形ADF 是等腰三角形, AD=

2AF ·DAF

∠cos 1

=20,BD=22AB AD -=4

故四面体V ABCD =

61AB ×BC ×BD=38,因此四面体ABCD 的体积是3

8。

例8 如图8-15,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD=

3

π。 (1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的体积。

解 (1)如图8-16,连结A 1O ,则A 1O ⊥底面ABCD 。作OM ⊥AB 交AB 于M ,作ON ⊥AD 交AD 于N ,连结A 1M ,A 1N 。由三垂线定得得A 1M ⊥AB ,A 1N ⊥AD 。∵∠A 1AM=∠A 1AN ,

∴Rt △A 1NA ≌Rt △A 1MA,∴A 1M=A 1N ,

从而OM=ON 。 ∴点O 在∠BAD 的平分线上。

(2)∵AM=AA 1cos 3

π=3×21=23

∴AO=AMsec

4π=

22

3

。又在Rt △AOA 1中, A 1O 2=AA 12 – AO 2=9 -

29=29,∴A 1O=2

23, ∴平行六面体的体积V=5×4×

2

2

3=302。

例9 如图8-17,已知正四棱柱ABCD —A 1B 1C 1D 1,点E 在棱D 1D 上,截面EAC ∥D 1B ,且面EAC 与底面ABCD 所成角为45°,AB=a 。

(1)求截面EAC 的面积;

(2)求异面直线A 1B 1与AC 之间的距离; (3)求三棱锥B 1—EAC 的体积。

(1999年全国高考试题)

解 (1)如图8-18,连结DB 交AC 于O ,连结EO 。

∵底面ABCD 是正方形,∴DO ⊥AC 。又∵ED ⊥底面AC ,∴EO ⊥AC 。∴∠EOD 就是面EAC 与底面AC 所成的二面角的平面角,∠EOD=45°。

又DO=

22a , AC=2a , EO=22a sec45°=a ,故S △EAC =2

2a 2。 (2)由题设ABCD —A 1B 1C 1D 1是正四棱柱,得A 1A ⊥底面AC ,A 1A ⊥AC 。又A 1A ⊥

A 1

B 1,∴A 1A 是异面直线A 1B 1与A

C 之间的公垂线。∵

D 1B ∥面EAC ,且面D 1BD 与面EAC 交线为EO ,∴D 1B ∥EO 。又O 是DB 的中点,∴

E 是D 1D 的中点,D 1B=2EO=2a 。∴

D 1D=2

21DB B D -=2a ,即异面直线A 1B 1与AC 之间的距离为2a 。

(3)法一:如图8-18,连结D 1B ,∵D 1D=DB=2a ,∴四边形BDD 1B 1是正方形。连结B 1D 交D 1B 于P ,交EO 于Q 。∵B 1D ⊥D 1B ,EO ∥D 1B ,∴B 1D ⊥EO 。又AC ⊥EO ,AC ⊥ED ,∴AC ⊥面BDD 1B 1,∴B 1D ⊥AC ,∴B 1D ⊥面EAC 。则B 1Q 是三棱锥B 1—EAC 的高。由DQ=PQ 得B 1Q=

43 B 1D=23a ,∴EAC B V -1=31·22a 2·23a =4

2a 3。 所以三棱锥B 1—EAC 的体积是

4

2a 3

法二:连结B 1O ,则112EO B A EAC B V V --=∵AO ⊥面BDD 1B 1,∴AO 是三棱锥A —EOB 1

的高,且AO=

2

2

a 。在正方形BDD 1B 1中,E 、O 分别是D 1D 、DB 的中点(如图8-19),则1

EOB S △=

43a 2。EAC -1B V =2×31×43 a 2×22a =4

2a 3。所以三棱锥B 1—EAC 的体积是

4

2a 3

例10 如图8-20,在正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是BB 1、CD 的中点。 (1)证明AD ⊥D 1F ;

(2)求AE 与D 1F 所成的角; (3)证明面AED ⊥面A 1FD 1;

(4)设AA 1=2,求三棱锥F —A 1ED 1的体积1

1ED A F V -。

(1997年全国高考数学试题)

解 (1)∵多面体AC 1是正方体,∴AD ⊥面DC 1。又D 1F 面DC 1,∴AD ⊥D 1F 。 (2)如图8-21,取AB 的中点G ,连结A 1G ,FG 。因为F 是CD 的中点,所以GF 、AD 平行且相等,又A 1D 1、AD 平行且相等,所以GF 、A 1D 1平行且相等,故GFD 1A 1是平行四边形,A 1G ∥D 1F 。设A 1G 与AE 相交于点H ,则∠AHA 1是 AE 与D 1F 所成的角。因为E 是BB 1的中点,所以Rt △A 1AG ≌Rt △ABE,∠GA 1A=∠GAH ,从而∠AHA 1=90°,即直线AE 与D 1F 所成角为直角。

(3)由(1)知AD ⊥D 1F ,由(2)知AE ⊥D 1F ,又AD ∩AE=A ,所以D 1F ⊥面AED 。又因为D 1F 面A 1FD 1,所以面AED ⊥面A 1FD 1。

(4)连结EG ,GD 1,∵FG ∥A 1D 1,∴FG ∥面A 1ED 1,∴体积

,1

1

1

1

1

1

G E A D ED A G ED A F V V V ---==

∵AA 1=2,∴GE A S 1?=23。∴G E A D ED A F V V 111--==31×A 1D 1×GE A S 1?=31×2×2

3

=1。

2020高考数学专题复习----立体几何专题

空间图形的计算与证明 一、近几年高考试卷部分立几试题 1、(全国 8)正六棱柱 ABCDEF -A 1B 1C 1D 1E 1F 1 底面边长为 1, 侧棱长为 2 ,则这个棱柱的侧面对角线 E 1D 与 BC 1 所成的角是 ( ) A 、90° B 、60° C 、45° D 、30° [评注]主要考查正六棱柱的性质,以及异面直线所成角的求法。 2、(全国 18)如图,正方形ABCD 、ABEF 的边长都是 1,而且 平面 ABCD 、ABEF 互相垂直,点 M 在 AC 上移动,点 N 在 BF C 上移动,若 CM=NB=a(0

的底面是边长为a的正方形,PB⊥面ABCD。 (1)若面PAD与面ABCD所成的二面角为60°, 求这个四棱锥的体积; (2)证明无论四棱锥的高怎样变化,面PAD与面 PCD所成的二面角恒大于90°。 [评注]考查线面关系和二面角概念,以及空间想象力和逻辑推理能力。 4、(02全国文22)(一)给出两块面积相同的正三角形纸片,要求用其中一块剪拼成一个正三棱锥模型,使它们的全面积都与原三角形面积相等,请设计一种剪拼法,分别用虚线标示在图(1)(2)中,并作简要说明。 (3) (1)(2) (二)试比较你剪拼的正三棱锥与正三棱柱的体积的大小。(三)如果给出的是一块任意三角形的纸片,如图(3)要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形面积相等,请设计一种剪拼方法,用虚线标出在图3中,并作简要说明。

2018年高考数学试题分类汇编-向量

1 2018高考数学试题分类汇编—向量 一、填空题 1.(北京理6改)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的_________条件(从“充分而不必要”、“必要而不充分条件”、“充分必要”、“既不充分也不必要”中选择) 1.充分必要 2.(北京文9)设向量a =(1,0),b =(?1,m ),若()m ⊥-a a b ,则m =_________. 2.-1 3.(全国卷I 理6改)在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = _________. (用,AB AC 表示) 3.3144 AB AC - 4.(全国卷II 理4)已知向量a ,b 满足||1=a ,1?=-a b ,则(2)?-=a a b _________. 4.3 5.(全国卷III 理13.已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a+b ,则λ=________. 5. 12 6.(天津理8)如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=?,1AB AD ==. 若点E 为边CD 上的动点,则AE BE ?uu u r uu u r 的最小值为_________. 6. 2116 7.(天津文8)在如图的平面图形中,已知 1.2,120OM ON MON ==∠= ,2,2,BM MA CN NA == 则· BC OM 的值为_________. 7.6- 8.(浙江9)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π 3,向量b 满足b 2?4e · b +3=0,则|a ?b |的最小值是_________. 8.3?1 9.(上海8).在平面直角坐标系中,已知点(1,0)A -,(2,0)B ,E 、F 是y 轴上的两个动点,且2EF = ,则AE BF ? 的最小值为_________. 9.-3

最新高考数学压轴题专题训练(共20题)[1]

1.已知点)1,0(F ,一动圆过点F 且与圆8)1(2 2 =++y x 内切. (1)求动圆圆心的轨迹C 的方程; (2)设点)0,(a A ,点P 为曲线C 上任一点,求点A 到点P 距离的最大值)(a d ; (3)在10<

3.已知点A (-1,0),B (1,0),C (- 5712,0),D (5712 ,0),动点P (x , y )满足AP →·BP → =0,动点Q (x , y )满足|QC →|+|QD →|=10 3 ⑴求动点P 的轨迹方程C 0和动点Q 的轨迹方程C 1; ⑵是否存在与曲线C 0外切且与曲线C 1内接的平行四边形,若存在,请求出一个这样的平行四边形,若不存在,请说明理由; ⑶固定曲线C 0,在⑵的基础上提出一个一般性问题,使⑵成为⑶的特例,探究能得出相应结论(或加强结论)需满足的条件,并说明理由。 4.已知函数f (x )=m x 2+(m -3)x +1的图像与x 轴的交点至少有一个在原点右侧, ⑴求实数m 的取值范围; ⑵令t =-m +2,求[1 t ];(其中[t ]表示不超过t 的最大整数,例如:[1]=1, [2.5]=2, [-2.5]=-3) ⑶对⑵中的t ,求函数g (t )=t +1t [t ][1t ]+[t ]+[1t ]+1的值域。

2021年高考数学第一轮专题复习- 直线、平面、简单几何体——空间向量及其运算

第76课时:第九章 直线、平面、简单几何体——空间向量及其运算 课题:空间向量及其运算 一.复习目标:理解空间向量的概念、掌握空间向量的有关运算及其性质. 二.主要知识: 1.,a b 向量共线的充要条件: ; 2.三点共线: ; 3.三向量共面: ; 4.四点共面: ; 5.两向量夹角的范围 ; 三.课前预习: 1.如图:在平行六面体1111D C B A ABCD -中,M 为11C A 与11D B 的交点。若AB a =, AD b =,1AA c =,则下列向量中与BM 等的向量是 ( ) ()A 1122a b c -++ ()B 1122 a b c ++ ()C 1122 a b c - -+ ()D c b a +-21 21 2.有以下命题: ①如果向量,a b 与任何向量不能构成空间向量的一组基底,那么,a b 的关系是不共线; ②,,,O A B C 为空间四点,且向量,,OA OB OC 不构成空间的一个基底,那么点,,,O A B C 一定共面; C1

③已知向量,,a b c 是空间的一个基底,则向量,,a b a b c +-,也是空间的一个基底。 其中正确的命题是 ( ) ()A ①② ()B ①③ ()C ②③ ()D ①②③ 3.下列命题正确的是 ( ) ()A 若a 与b 共线,b 与c 共线,则a 与c 共线;()B 向量,,a b c 共面就是它们所在的 直线共面; ()C 零向量没有确定的方向; ()D 若//a b ,则存在唯一的实数λ使得a b λ=; 4.已知A 、B 、C 三点不共线,O 是平面ABC 外的任一点,下列条件中能确定点M 与点A 、B 、C 一定共面的是 ( ) ()A OM ++= ()B OM --=2 ()C OC OB OA OM 3121++= ()D OC OB OA OM 3 1 3131++= 四.例题分析: 例1.已知在正三棱锥ABC P -中,N M ,分别为BC PA ,中点,G 为MN 中点,求证: BC PG ⊥ G N A B C P M

高考数学大题练习

高考数学大题 1.(12分)已知向量a =(sin θ,cos θ-2sin θ),b =(1,2) (1)若a ⊥b ,求tan θ的值; (2)若a ∥b ,且θ为第Ⅲ象限角,求sin θ和cos θ的值。 2.(12分)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC ⊥BC ,且AC=BC=BD=2AE ,M 是AB 的中点. (I)求证:CM ⊥EM: (Ⅱ)求DE 与平面EMC 所成角的正切值. 3.(13分)某地区为下岗人员免费提供财会和计算机培训,以提高 下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加 两项培训或不参加培训.已知参加过财会培训的有60%,参加过计算机培训的 有75%.假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响. (Ⅰ)任选1名下岗人员,求该人参加过培训的概率; (Ⅱ)任选3名下岗人员,求这3人中至少有2人参加过培训的概率. 4.(12分) 在△ABC 中,∠A .∠B .∠C 所对的边分别为a .b .c 。 若B A cos cos =a b 且sinC=cosA (1)求角A .B .C 的大小; (2)设函数f(x)=sin (2x+A )+cos (2x- 2C ),求函数f(x)的单调递增区间,并指出它相邻两对称轴间的距离。 5.(13分)已知函数f(x)=x+x a 的定义域为(0,+∞)且f(2)=2+22,设点P 是函数图象上的任意一点,过点P 分别作直线y=x 和y 轴的垂线,垂足分别为M ,N. (1)求a 的值; (2)问:|PM|·|PN|是否为定值?若是,则求出该定值, 若不是,则说明理由: (3)设O 为坐标原点,求四边形OMPN 面积的最小值。 6.(13分)设函数f(x)=p(x-x 1)-2lnx,g(x)=x e 2(p 是实数,e 为自然对数的底数) (1)若f(x)在其定义域内为单调函数,求p 的取值范围; (2)若直线l 与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于点(1,0),求p 的值; (3)若在[1,e]上至少存在一点x 0,使得f(x 0)>g(x 0)成立,求p 的取值范围.

高考数学19个专题分章节大汇编

高考理科数学试题分类汇编:1集合 一、选择题 1 . (普通高等学校招生统一考试重庆数学(理)试题(含答案))已知全集{}1,2,3,4U =, 集合{}=12A , ,{}=23B ,,则()=U A B e( ) A. {}134, , B. {}34, C. {}3 D. {}4 【答案】D 2 . (普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知集合 {}{}4|0log 1,|2A x x B x x A B =<<=≤= ,则 A. ()01, B. (]02, C. ()1,2 D. (]12, 【答案】D 3 . (普通高等学校招生统一考试天津数学(理)试题(含答案))已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ?= (A) (,2]-∞ (B) [1,2] (C) [2,2] (D) [-2,1] 【答案】D 4 . (普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))设S,T,是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足:(){()|};()i T f x x S ii =∈ 对任意 12,,x x S ∈当12x x <时,恒有12()()f x f x <,那么称这两个集合“保序同构”. 以下集合 对不是“保序同构”的是( ) A. *,A N B N == B. {|13},{|8010}A x x B x x x =-≤≤==-<≤或 C. {|01},A x x B R =<<= D. ,A Z B Q == 【答案】D 5 . (高考上海卷(理))设常数a R ∈,集合{|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ?=,则a 的取值范围为( ) (A) (,2)-∞ (B) (,2]-∞ (C) (2,)+∞ (D) [2,)+∞ 【答案】B. 6 . (普通高等学校招生统一考试山东数学(理)试题(含答案))已知集合A ={0,1,2},则集合B ={} ,x y x A y A -∈∈中元素的个数是

【2020最新】人教版最新高考数学总复习(各种专题训练)Word版

教学资料范本 【2020最新】人教版最新高考数学总复习(各种专题训练)W ord版 编辑:__________________ 时间:__________________

一.课标要求: 1.集合的含义与表示 (1)通过实例,了解集合的含义,体会元素与集合的“属于”关系; (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用; 2.集合间的基本关系 (1)理解集合之间包含与相等的含义,能识别给定集合的子集; (2)在具体情境中,了解全集与空集的含义; 3.集合的基本运算 (1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集; (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集; (3)能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。 二.命题走向 有关集合的高考试题,考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用Venn 图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练。考试形式多以一道选择题为主,分值5分。 预测20xx 年高考将继续体现本章知识的工具作用,多以小题形式出现,也会渗透在解答题的表达之中,相对独立。具体题型估计为: (1)题型是1个选择题或1个填空题; (2)热点是集合的基本概念、运算和工具作用。 三.要点精讲 1.集合:某些指定的对象集在一起成为集合。 (1)集合中的对象称元素,若a 是集合A 的元素,记作;若b 不是集合A 的元素,记作;A a ∈A b ? (2)集合中的元素必须满足:确定性、互异性与无序性;

高考数学数列大题专题

高考数学数列大题专题 1. 已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比 (Ⅰ)求n a ;(Ⅱ)设n n a b 2log =,求数列.|}{|n n T n b 项和的前 2.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a (Ⅰ)求321,,a a a ; (Ⅱ)求数列}{n a 的通项公式; (Ⅲ)求数列}{n a 的前n 项和n S 3.已知数列{}n a 的前n 项和为n S ,且有12a =,11353n n n n S a a S --=-+(2)n ≥ (1)求数列n a 的通项公式; (2)若(21)n n b n a =-,求数列n a 的前n 项的和n T 。 4.已知数列{n a }满足11=a ,且),2(22*1N n n a a n n n ∈≥+=-且. (Ⅰ)求2a ,3a ;(Ⅱ)证明数列{n n a 2}是等差数列; (Ⅲ)求数列{n a }的前n 项之和n S

5.已知数列{}n a 满足31=a ,1211-=--n n n a a a . (1)求2a ,3a ,4a ; (2)求证:数列11n a ??? ?-?? 是等差数列,并写出{}n a 的一个通项。 622,,4,21121+=-===++n n n n n b b a a b a a . 求证: ⑴数列{b n +2}是公比为2的等比数列; ⑵n a n n 221-=+; ⑶4)1(2221-+-=++++n n a a a n n Λ. 7. .已知各项都不相等的等差数列}{n a 的前六项和为60,且2116a a a 和为 的等比中项. (1)求数列}{n a 的通项公式n n S n a 项和及前; (2)若数列}1{,3),(}{11n n n n n b b N n a b b b 求数列且满足=∈=-*+的前n 项和T n .

高考数学专题复习简单几何体的面积与体积

第5讲 简单几何体的面积与体积 一、选择题 1.长方体的三个相邻面的面积分别为2,3,6,这个长方体的顶点都在同一个球面上,则这个球的面积为( ) A.7 2π B .56π C .14π D .64π 解析 设长方体的过同一顶点的三条棱长分别为a ,b ,c ,则??? ab =2, bc =3, ac =6,得??? a =2, b =1, c =3, 令球的半径为R ,则(2R )2=22+12+32=14,∴R 2=7 2, ∴S 球=4πR 2=14π. 答案 C 2.若等腰直角三角形的直角边长为3,则以一直角边所在的直线为轴旋转一周所成的几何体体积是( ) A .9π B .12π C .6π D .3π 解析 由题意知所得几何体为圆锥,且底面圆半径为3,高为3,故V =13·(π·32 )·3=9π. 答案 A 3.一个几何体的三视图如图所示,那么此几何体的侧面积(单位:cm 2)为( ).

A .48 B .64 C .80 D .120 解析 据三视图知,该几何体是一个正四棱 锥(底面边长为8),直观图如图,PE 为侧面△PAB 的边AB 上的高,且PE =5.∴此几何体的侧面积是S =4S △PAB =4×1 2×8×5= 80(cm 2). 答案 C 4.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( ). A.2 6 B.36 C.23 D.22 解析 在直角三角形ASC 中,AC =1,∠SAC =90°,SC =2,∴SA =4-1=3;同理SB = 3.过A 点作SC 的垂线交SC 于D 点,连接DB ,因△SAC ≌△SBC ,故BD ⊥SC ,故SC ⊥平面ABD ,且平面ABD 为等腰三角形,因∠ASC =30°,故 AD =1 2SA = 32,则△ABD 的面积为1 2 ×1× AD 2-? ?? ?? 122 =24,则三棱锥的体积为13×24×2=26. 答案 A 5.某品牌香水瓶的三视图如下(单位:cm),则该几何体的表面积为 ( ).

高考数学试题分类汇编 算法初步

高考数学试题分类汇编算法初步 1.(天津理3)阅读右边的程序框图,运行相应的程序,则输出i的值为 A.3 B.4 C.5 D.6 【答案】B 2.(全国新课标理3)执行右面的程序框图,如果输入的N是6,那么输出的p是 (A)120 (B) 720 (C) 1440 (D) 5040 【答案】B 3.(辽宁理6)执行右面的程序框图,如果输入的n是4,则输出的P 是 (A)8 (B)5 (C)3 (D)2 【答案】C

4. (北京理4)执行如图所示的程序框图,输出的s 值为 A .-3 B .-12 C .13 D .2 【答案】D 5.(陕西理8)右图中, 1x ,2x ,3x 为某次考试三个评阅人对同一道题的独立评分,P 为该题的最终得分。当126,9.x x ==p=8.5时,3x 等于 A .11 B .10 C .8 D .7 【答案】C 6.(浙江理12)若某程序框图如图所示,则该程序运行后输出的k 的值是 。 【答案】5

Read a,b If a >b Then m←a Else m←b End If 7.(江苏4)根据如图所示的伪代码,当输入a,b分别为2,3时,最后输出的m的值是 【答案】3 8.(福建理11)运行如图所示的程序,输出的结果是_______。 【答案】3 9.(安徽理11)如图所示,程序框图(算法流程图)的输出结果是 . 【答案】15 10.(湖南理13)若执行如图3所示的框图,输入1 1 x= ,23 2,3,2 x x x ==-= , 则输出的数等于。 【答案】 2 3

11.(江西理13)下图是某算法的程序框图,则程序运行后输出的结果是 【答案】10 12.(山东理13)执行右图所示的程序框图,输入l=2,m=3,n=5,则输出的y的值是【答案】68

2019-2020学年度最新人教版高考数学总复习(各种专题训练)Word版

2019-2020学年度最新人教版高考数学总复习 (各种专题训练)Word版(附参考答案) 一.课标要求: 1.集合的含义与表示 (1)通过实例,了解集合的含义,体会元素与集合的“属于”关系; (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用; 2.集合间的基本关系 (1)理解集合之间包含与相等的含义,能识别给定集合的子集; (2)在具体情境中,了解全集与空集的含义; 3.集合的基本运算 (1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集; (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集; (3)能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。二.命题走向 有关集合的高考试题,考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用Venn图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练。考试形式多以一道选择题为主,分值5分。 预测2013年高考将继续体现本章知识的工具作用,多以小题形式出现,也会渗透在解答题的表达之中,相对独立。具体题型估计为: (1)题型是1个选择题或1个填空题; (2)热点是集合的基本概念、运算和工具作用。 三.要点精讲 1.集合:某些指定的对象集在一起成为集合。 a∈;若b不是集合A的元素,(1)集合中的对象称元素,若a是集合A的元素,记作A b?; 记作A (2)集合中的元素必须满足:确定性、互异性与无序性; 确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A 的元素,或者不是A的元素,两种情况必有一种且只有一种成立; 互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体 (对象),因此,同一集合中不应重复出现同一元素; 无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排 列顺序无关; (3)表示一个集合可用列举法、描述法或图示法; 列举法:把集合中的元素一一列举出来,写在大括号内; 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。 注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。 (4)常用数集及其记法:

2020高考数学专题训练16

六) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 1.满足条件?≠?M ≠?{0,1,2}的集合共有( ) A .3个 B .6个 C .7个 D .8个 2.等差数列}{n a 中,若39741=++a a a ,27963=++a a a ,则前9项的和9S 等于( ) A .66 B .99 C .144 D .297 3.函数)1(log 2-=x y 的反函数图像是( ) A B C D 4.已知函数)cos()sin()(??+++=x x x f 为奇函数,则?的一个取值为( ) A .0 B .4 π - C .2π D .π 5.从10种不同的作物种子中选出6种放入6个不同的瓶子中展出,如果甲、乙两种种 子不能放入第1号瓶内,那么不同的放法共有( ) A .4 82 10A C 种 B .5 91 9A C 种 C .5 91 8A C 种 D .5 81 8A C 种 6.函数512322 3 +--=x x x y 在[0,3]上的最大值、最小值分别是( ) A .5,-15 B .5,-4 C .-4,-15 D .5,-16 7.已知9)222(-x 展开式的第7项为4 21 ,则实数x 的值是( ) A .31- B .-3 C .4 1 D .4 8.过球面上三点A 、B 、C 的截面和球心的距离是球半径的一半,且AB =6,BC =8, AC =10,则球的表面积是( ) A .π100 B .π300 C . π3100 D .π3 400 9.给出下面四个命题:①“直线a 、b 为异面直线”的充分非必要条件是:直线a 、b 不相交;②“直线l 垂直于平面α内所有直线”的充要条件是:l ⊥平面α;③“直线a ⊥b ”的充分非必要条件是“a 垂直于b 在平面α内的射影”;④“直线α∥平面β”的必要非充分条件是“直线a 至少平行于平面β内的一条直线”.其中正确命题的个数是( )

2018年高考数学立体几何试题汇编

2018年全国一卷(文科):9.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .217 B .25 C .3 D .2 18.如图,在平行四边形ABCM 中,3AB AC ==,90ACM =?∠,以AC 为折痕将△ACM 折起,使点M 到达点 D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ; (2)Q 为线段AD 上一点,P 为线段BC 上一点,且2 3 BP DQ DA == ,求三棱锥Q ABP -的体积. 全国1卷理科 理科第7小题同文科第9小题 18. 如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点 P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值. 全国2卷理科: 9.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为

A .1 B . 5 C . 5 D . 2 20.如图,在三棱锥P ABC -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点. (1)证明:PO ⊥平面ABC ; (2)若点M 在棱BC 上,且二面角M PA C --为30?,求PC 与平面PAM 所成角的正弦值. 全国3卷理科 3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是 19.(12分) 如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ; (2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值. 2018年江苏理科:

高考数学考点专题总复习15

1.若数列{a n }前8项的值各异,且a n +8=a n 对任意n ∈N *都成立,则 下列数列中可取遍{a n }前8项值的数列为 A .{a 2k +1} B .{a 3k +1} C .{a 4k +1} D .{a 6k +1} 2.根据市场调查结果,预测某种家用商品从年初开始的n 个月内累 积的需求量S n (万件)近似地满足S n =90 n (21n -n 2-5)(n =1,2,……,12),按此预测,在本年度内,需求量超过1.5万件的月份是 A .5月、6月 B .6月、7月 C .7月、8月 D .8月、9月 3.在数列{a n }中,如果存在非零常数T ,使得a m+T =a m 对于任意的非 零自然数m 均成立,那么就称数列{a n }为周期数列,其中T 叫数列{a n }的周期。已知数列{x n }满足x n+1=|x n –x n-1|(n ≥2),如果x 1=1,x 2=a (a ∈R ,a ≠0),当数列{x n }的周期最小时,该数列前2019项的和是 A .668 B .669 C .1336 D .1337 4.一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关 系式)(1n n a f a =+得到的数列}{n a 满足)(*1N n a a n n ∈>+,则该函数的图象是

5.已知{}n a 是 首项为1,公差为-2的等差数列 ,则 ∑=-10121k k a = 。 6.200根圆柱形钢管,堆成一三角形垛或梯形垛,每上一层少一根,最下一层最少要放 根 。 7.已知函数1 3)(+=x x x f ,数列{}n a 满足).)((,111*+∈==N n a f a a n n (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)记13221++++=n n n a a a a a a S ,求n S . 参考答案 BCDA -2019, (∑∑==-=+-=-∴+-=-+-=10110 122.20163021,321,32k k k k n k a k a n a ) 20.( ,2)1(321+=++++n n n 满足条件2002 )1(≥+n n 的最小自然数n 为20,故最小一层最少要放20根。) 7.解析:(Ⅰ)由已知得,131+= +n n n a a a , ∴311 1+=+n n a a ,即3111=-+n n a a ∴数列?? ????n a 1是首项11=a ,公差3=d 的等差数列. ∴233)1(11-=?-+=n n a n , 故)(2 31*∈-=N n n a n

(完整)2019-2020年高考数学大题专题练习——圆锥曲线(一).doc

2019-2020 年高考数学大题专题练习——圆锥曲线(一) x 2 y2 2 的直线与 12 1.设 F , F为椭圆的左、右焦点,动点P 的坐标为 ( -1,m),过点 F 4 3 椭圆交于 A, B 两点 . (1)求 F1,F 2的坐标; (2)若直线 PA, PF 2, PB 的斜率之和为 0,求 m 的所有 整数值 . x2 2 2.已知椭圆y 1,P是椭圆的上顶点.过P作斜率为 4 k(k≠0)的直线l 交椭圆于另一点A,设点 A 关于原点的 对称点为 B. (1)求△PAB 面积的最大值; (2)设线段 PB 的中垂线与 y 轴交于点 N,若点 N 在椭圆内 部,求斜率 k 的取值范围 . 2 2 5 x y = 1 a > b > 0 ) 的离心率为,定点 M ( 2,0 ) ,椭圆短轴的端点是 3.已知椭圆 C : 2 + 2 a b ( 3 B1, B2,且MB1 MB 2. (1)求椭圆C的方程; (2)设过点M且斜率不为0 的直线交椭圆C于 A, B 两点,试问 x 轴上是否存在定点P ,使 PM 平分∠APB ?若存在,求出点P 的坐标,若不存在,说明理由.

x2 y2 4.已知椭圆C 的标准方程为 1 ,点 E(0,1) . 16 12 (1 )经过点 E 且倾斜角为3π 的直线 l 与椭圆 C 交于A、B两点,求 | AB | .4 (2 )问是否存在直线p 与椭圆交于两点M 、 N 且 | ME | | NE | ,若存在,求出直线p 斜率 的取值范围;若不存在说明理由. 5.椭圆 C1与 C2的中心在原点,焦点分别在x 轴与y轴上,它们有相同的离心率e= 2 ,并 2 且 C2的短轴为 C1的长轴, C1与 C2的四个焦点构成的四边形面积是2 2 . (1)求椭圆 C1与 C2的方程; (2) 设P是椭圆 C2上非顶点的动点,P 与椭圆C1长轴两个顶点 A , B 的连线 PA , PB 分别与椭圆 C1交于E,F点 . (i)求证:直线 PA , PB 斜率之积为常数; (ii) 直线AF与直线BE的斜率之积是否为常数?若是,求出该值;若不是,说明理由.

高考数学专题训练试题7

第一部分 专题二 第1讲 等差数列、等比数列 (限时60分钟,满分100分) 一、选择题(本大题共6个小题,每小题6分,共36分) 1.(精选考题·北京高考)在等比数列{a n }中,a 1=1,公比|q |≠1.若a m =a 1a 2a 3a 4a 5, 则m =( ) A .9 B .10 C .11 D .12 解析:由题知a m =|q |m -1=a 1a 2a 3a 4a 5=|q |10,所以m =11. 答案:C 2.(精选考题·广元质检)已知数列{a n }满足a 1=2,a n +1=1+a n 1-a n (n ∈N *),则连乘积a 1a 2a 3…aa 精选考题的值为( ) A .-6 B .3 C .2 D .1 解析:∵a 1=2,a n +1=1+a n 1-a n ,∴a 2=-3,a 3=-12,a 4=13,a 5= 2,∴数列{a n }的周期为4,且a 1a 2a 3a 4=1, ∴a 1a 2a 3a 4…aa 精选考题=aa 精选考题=a 1a 2=2×(-3)=-6. 答案:A 3.设等差数列{a n }的前n 项和为S n ,若2a 8=6+a 11,则S 9=( ) A .54 B .45

C .36 D .27 解析:根据2a 8=6+a 11得2a 1+14d =6+a 1+10d ,因此a 1+4d =6,即a 5=6.因此S 9=9(a 1+a 9) 2 =9a 5=54. 答案:A 4.已知各项不为0的等差数列{a n },满足2a 3-a 2 7+2a 11=0,数 列{b n }是等比数列,且b 7=a 7,则b 6b 8=( ) A .2 B .4 C .8 D .16 解析:因为a 3+a 11=2a 7,所以4a 7-a 27=0,解得a 7=4,所以 b 6b 8=b 27=a 2 7=16. 答案:D 5.(精选考题·福建高考)设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( ) A .6 B .7 C .8 D .9 解析:设等差数列{a n }的公差为d , ∵a 4+a 6=-6,∴a 5=-3, ∴d =a 5-a 1 5-1=2, ∴a 6=-1<0,a 7=1>0, 故当等差数列{a n }的前n 项和S n 取得最小值时,n 等于6. 答案:A 6.(精选考题·陕西高考)对于数列{a n },“a n +1>|a n |(n =1,2…)”

高考数学真题分类汇编集合专题(基础题)

高考数学真题分类汇编集合专题(基础题) 一、单选题 1.集合M={x|1<x+1≤3},N={x|x2﹣2x﹣3>0},则(?R M)∩(?R N)等于() A. (﹣1,3) B. (﹣1,0)∪(2,3) C. (﹣1,0]∪[2,3) D. [﹣1,0]∪(2,3] 2.已知R是实数集,M={x| <1},N={y|y= +1},N∩?R M=() A. (1,2) B. [0,2] C. ? D. [1,2] 3.已知集合,,若,则实数的值为() A. 1 B. C. 2 D. 4.已知集合,,则等于() A. B. C. D. 5.已知集合A={x|x>0},函数的定义域为集合B,则A∩B=() A. [3,+∞) B. [2,3] C. (0,2]∪[3,+∞) D. (0,2] 6.已知集合,,则() A. B. C. D. 7.已知集合A={x|x2﹣x+4>x+12},B={x|2x﹣1<8},则A∩(?R B)=() A. {x|x≥4} B. {x|x>4} C. {x|x≥﹣2} D. {x|x<﹣2或x≥4} 8.已知M={x|x2-2x-3>0},N={x|x2+ax+b≤0},若M∪N=R,M∩N=(3,4],则a+b=() A. 7 B. -1 C. 1 D. -7 9.已知集合A={2,4},B={2,3,4},,则C中元素个数是() A. 2 B. 3 C. 4 D. 5 二、填空题 10.集合,,则的子集个数是________. 答案 一、单选题 1.D 2.D 3. A 4. C 5.B 6. D 7.B 8. D 9.B 二、填空题 10. 2 第1 页共1 页

高考数学考点专题总复习12

1. 在△ABC 中,∠C=90°,),3,2(),1,(==k 则k 的值是 A 5 B -5 C 23 D 2 3- 2.已知a 、均为单位何量,它们的夹角为60°,那么| a + 3 | = A 7 B 10 C 13 D 4 3. 已知点A (3,1),B (0,0)C (3,0).设∠BAC 的平分线AE 与BC 相交于E ,那么有λλ其中,=等于 A 2 B 21 C -3 D -31 4. 已知向量a ≠e ,|e |=1,对任意t ∈R ,恒有|a -t e |≥|a -e |,则 A a ⊥e B a ⊥(a -e ) C e ⊥(a -e ) D (a +e )⊥(a -e ) 5.已知向量(,12),(4,5),(,10)OA k OB OC k ===-,且A 、B 、C 三点共线,则k=___ 6..已知向量a 与的夹角为120°,且|a |=2, ||=5,则 (2a -b )·a = . 7..已知向量 b a x f x x b x x a ?=-+=+=)()),4 2tan(),42sin(2()),42tan(,2cos 2(令πππ. 是否存在实数?))()((0)()(],,0[的导函数是其中使x f x f x f x f x '='+∈π若存在,则求出x 的值;若不存在,则证明之.

8.如图,在Rt △ABC 中,已知BC=a ,若长为2a 的线段PQ 以点A 为中点,问PQ 最大值. 与的夹角θ取何值时,·的值最大?并求出这个 A B C a

参考答案 1.A [解析]: ∠C=90°,),3,2(),1,(==AC k AB 则 )2,2(k BC -=∵∠C=90° ∴506)2(20=∴=+-∴=?k k BC AC 2.C [解析]:已知a 、均为单位何量,它们的夹角为60°,那么a ?b =2 1 ∴| a + 3 |2=13962 2=+?+

高考数学1.简单几何体专题1

高考数学1.简单几何体专题1 2020.03 1,下面的图形可以构成正方体的是() A B C D 2,正四棱台上,下底面边长为a,b,侧棱长为c,求它的高和斜高. 3,下列命题中正确的是 () A.由五个平面围成的多面体只能是四棱锥 B.棱锥的高线可能在几何体之外 C.仅有一组对面平行的六面体是棱台 D.有一个面是多边形,其余各面是三角形的几何体是棱锥 4,圆锥的侧面展开图是直径为a的半圆面,那么此圆锥的轴截面是() A.等边三角形B.等腰直角三角形 C.顶角为30°的等腰三角形D.其他等腰三角形 5,把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1∶4,母线 长10cm.求:圆锥的母长. 6,长方体ABCD-A1B1C1D1中,AB=2,BC=3,AA1=5,则一只小虫从A点沿长方 体的表面爬到C1点的最短距离是. 7,已知集合A={正方体},B={长方体},C={正四棱柱},D={直四棱柱},

E={棱柱},F={直平行六面体},则 ( ) A .E F D C B A ????? B .A C B F D E ????? C .C A B D F E ????? D .它们之间不都存在包含关系 8,A 、B 为球面上相异两点,则通过A 、B 两点可作球的大圆有 ( ) A .一个 B .无穷多个 C .零个 D .一个或无穷多个 9,若一个几何体有两个面平行,且其余各面均为梯形,则它一定是棱台,此命题是否正确,说明理由. 10,长方体三条棱长分别是AA ′=1,AB=2,AD=4,则从A 点出发,沿长方体的表面到 C ′的最短矩离是 ( ) A .5 B .7 C .29 D .37 11,线段AB 长为5cm ,在水平面上向右平移4cm 后记为CD ,将CD 沿铅垂线方向向下移动3cm 后记为C ′D ′,再将C ′D ′沿水平方向向左移4cm 记为A ′B ′,依次连结构成长方体ABCD-A ′B ′C ′D ′. ①该长方体的高为 ; ②平面A ′B ′C ′D ′与面CD D ′C ′间的距离为 ; ③A 到面BC C ′B ′的距离为 .

高三数学 高考大题专项训练 全套 (15个专项)(典型例题)(含答案)

1、函数与导数(1) 2、三角函数与解三角形 3、函数与导数(2) 4、立体几何 5、数列(1) 6、应用题 7、解析几何 8、数列(2) 9、矩阵与变换 10、坐标系与参数方程 11、空间向量与立体几何 12、曲线与方程、抛物线 13、计数原理与二项式分布 14、随机变量及其概率分布 15、数学归纳法

高考压轴大题突破练 (一)函数与导数(1) 1.已知函数f (x )=a e x x +x . (1)若函数f (x )的图象在(1,f (1))处的切线经过点(0,-1),求a 的值; (2)是否存在负整数a ,使函数f (x )的极大值为正值?若存在,求出所有负整数a 的值;若不存在,请说明理由. 解 (1)∵f ′(x )=a e x (x -1)+x 2 x 2, ∴f ′(1)=1,f (1)=a e +1. ∴函数f (x )在(1,f (1))处的切线方程为 y -(a e +1)=x -1, 又直线过点(0,-1),∴-1-(a e +1)=-1, 解得a =-1 e . (2)若a <0,f ′(x )=a e x (x -1)+x 2 x 2 , 当x ∈(-∞,0)时,f ′(x )>0恒成立,函数在(-∞,0)上无极值;当x ∈(0,1)时,f ′(x )>0恒成立,函数在(0,1)上无极值. 方法一 当x ∈(1,+∞)时,若f (x )在x 0处取得符合条件的极大值f (x 0), 则???? ? x 0>1,f (x 0)>0,f ′(x 0)=0, 则0 0000 2 00 201,e 0,e (1)0,x x x a x x a x x x ? > +> -+ = ? ①②③ 由③得0 e x a =-x 20 x 0-1,代入②得-x 0x 0-1+x 0 >0, 结合①可解得x 0>2,再由f (x 0)=0 e x a x +x 0>0,得a >-02 0e x x , 设h (x )=-x 2 e x ,则h ′(x )=x (x -2)e x , 当x >2时,h ′(x )>0,即h (x )是增函数, ∴a >h (x 0)>h (2)=-4 e 2.

相关文档
相关文档 最新文档