文档库 最新最全的文档下载
当前位置:文档库 › 第十二章习题解答详解

第十二章习题解答详解

第十二章习题解答详解
第十二章习题解答详解

第12章 量子物理基础 2010-12-24

19世纪末、二十世纪初,为克服经典物理在解释一系列物理实验(如黑体辐射、光电效应、康普顿散射等)时所遇到的巨大困难,人们创立了量子理论,量子理论与相对论理论一起共同构成了现代物理学的两大理论支柱。本章介绍量子理论基础。主要内容有:普朗克能量子假设;爱因斯坦光量子假设和光电效应方程;光子和自由电子互相作用的康普顿效应;氢原子的玻尔理论;德布罗意物质波假设;不确定关系;量子力学关于氢原子的主要结果;薛定谔方程以及薛定谔方程用于求解一维势阱和势垒问题等。

§12-1 黑体辐射 普朗克量子假设

12-1-1热辐射 黑体

任何物体在任何温度下都向外发射各种波长电磁波的性质称为热辐射。实验表明:热辐射具有连续的辐射能谱,辐射能按波长的分布主要决定于物体的温度,温度越高,光谱中与能量最大的辐射所对应的波长越短 ,辐射的总能量越大。

温度为T 时,从物体表面单位面积上在单位波长间隔内所发射的功率称为单色辐出本领,用M λ(T )表示,单位是瓦/米2(W/m 2)。温度为T 时,物体表面单位面积上所发射的各种波长的总辐射功率,称为物体的总辐射本领,用M (T )式表示,单位为W ?m -2。一定温度下时,物体的辐出度和单色辐出度的关系为

0()()M T M T d λλ∞

=?. (12-1-1) 任何物体在任何温度下都发射热辐射,也吸收热辐射。不同物体发射(或吸收)热辐射的本领往往是不同的。1860年基尔霍夫研究指出,热辐射吸收本领大的物体,发射热辐射的本领也大。白色表面吸收热辐射的能力小,在同温度下它发出热辐射的本领也小;表面越黑, 吸收热辐射的能力就越大,在同温度下它发出热辐射的本领也越大。能完全吸收射到它上面的热辐射的物体叫做绝对黑体(简称黑体)。黑体辐射热辐射的本领最大,研究黑体辐射的规律具有重要的理论意义。

绝对黑体是理想模型,自然界中绝对黑体是不存在的,但存在着近似的绝对黑体。如不透明的空腔壁上开有一个小孔,小孔表面可以近似当作黑体。这是因为射入小孔的电磁辐射,要被腔壁多次反射,每反射一次,空腔的内壁将吸收部分辐射能。经过多次的反射,进入小孔的辐射几乎完全被腔壁吸收,由小孔穿出的辐射能可以略去不计则,故小孔可认为是近似的绝对黑体。此外,当空腔处于某确定的温度时,有电磁辐射从小孔发射出来,相当于从面积等于小孔面积的温度为T 的绝对黑体表面射出。

图12-1空腔的小孔表面是近似的绝对黑体

问题

12-1

白天,从远处看建筑物的窗户是黑暗的,这是为什么?

问题12-2 把一块表面一半涂了煤烟的白瓷砖放到火炉内烧,高温下瓷砖的哪一半显得更亮些?

12-1-2黑体辐射的实验规律

黑体辐射实验的M (λ,T)-λ曲线如图15-2所示。根据实验结果可总结出黑体辐射的两条实验规律。

首先对于给定温度的黑体,总辐射本领与温度的四次方成正比,即

4

()

M T T

σ

=(12-1-2)其中σ=5.67×10-8W/(m2·K4)为斯特藩-玻尔兹曼常数,此为斯特藩-玻尔兹曼定律。其次黑体单色辐出度M(λ,T)最大值对应的波长λm与黑体温度成反比,即

b

T=

m

λ(12-1-3)式中b=2.898×10-3m·K。(12-1-3)式表明,当黑体的温度升高时,(),

M T

λλ

-曲线上与单色辐

出度的峰值相对应的波长

m

λ向短波方向移动,此规律称为维恩位移定律。

热辐射的规律在现代科学技术上具有广泛的应用,是高温测量、遥感、红外追综等技术的物理基础。

问题12-3 铁块在炉中加热,当升高到一定温度后,可以看到铁块的颜色随着温度的升高而变化。请说明原因。

问题12-4人体也向外发出热辐射,为什么在黑暗中还是看不到人呢?

问题12-5 将地球和太阳视为黑体,假设地球处于热辐射平衡状态,平均温度为285K,试据此估算太阳的温度。(已知太阳半径、地球半径和日地距离分别是86

6.9610m, 6.3710m

S E

R R

=?=?,11

1.49610m

d=?。) 例12-1实验测得太阳辐射波谱的λm=490nm,若把太阳视为黑体,试计算太阳每单位表面上所发射的功率。

解:根据维恩位移定律λm T=b得,

)

K

(

10

9.5

10

490

10

898

.2

3

9

3

m

?

=

?

?

=

=

-

-

λ

b

T

图12-2 黑体辐射的实验曲线

又根据斯特藩-玻尔兹曼定律可求出总辐出度,即单位表面上的发射功率

483472() 5.6710(5.910) 6.8710(W/m )M T T σ-==???=?

12-1-3经典物理学的困难和普朗克量子假设

黑体辐射实验规律的理论解释是一个涉及热力学、统计物理学和电磁学的重大理论问题,在19世纪末吸引了许多物理学家的注意,其中最有代表意义的研究结果是维恩、瑞利和金斯的工作。1896年,维恩把辐射体上分子或原子看作线性谐振子,其辐射能谱分布类似于麦克斯韦速率分布,得到的黑体热辐射公式在波长较短处与实验结果符合得很好,但在波长很长处与实验结果相差较大。1900年,瑞利和金斯把统计物理中的能量按自由度均分定理用到电磁辐射上来,假设每个线性谐振子的平均能量都为kT ,得到的黑体热辐射公式在波长很长处与实验结果比较接近,但在波长趋向零时得到辐射能趋向无穷大,这是荒谬的。经典物理学在解释黑体辐射上的这个结果被科学界称为“紫外灾难”。

1900年,普朗克运用插值方法提出了一个与实验结果符合得很好的热辐射经验公式

2

5/2π(,)(e 1)

hc kT hc M T λλλ=- (12-1-4) 式中c 为光速, 346.62610J h s -=??为一普适常量,称为普朗克常数。(12-4)式叫做普朗克公

式。由普朗克公式可推导出维恩位移定律和斯特藩-玻尔兹曼定律。为了从理论上解释黑体辐射的实验规律,普朗克提出了能量子假设:辐射黑体表面带电粒子的振动可视作谐振子,谐振子可以发射和吸收辐射能,但是这些振子只能处于某些分立的状态,在这些状态中。对于频率为ν 的谐振子来说,谐振子的最小能量(称为能量子)为

νεh =0 (12-1-5)

谐振子的能量是最小能量的整数倍,即谐振子的能量为

0n εε= (12-1-6)

其中n=0,1,2,,3...是整数,称为量子数,这是物理学史上首次提出量子的概念。

普朗克根据能量子假设成功地导出了与黑体辐射实验结果相符合的普朗克公式。能量子假设与经典物理学的概念是格格不入的,普朗克本人曾长期致力于用经典物理学来解释量子的概念,试图回到经典理论中,但都没有成功,直到1911年,他才真正认识到量子化是根本不可能从由经典理论导出的,量子化具有的全新的和基础性的重要意义 。

问题12-7 (1)在波长很短或温度较低的条件下,由普朗克公式可导出维恩公式

()25,2πe kc

kT M T hc λλλ--=

(2)在波长很长或温度很高的条件下,由普朗克公式可导出瑞利-金斯公式

()4,2πM T kc T λλ-=

试推导之。

例12-2 一质量为20g 的物体与一无质量的弹簧组成弹簧振子,弹簧的劲度系数为0.25N/m 。将弹簧拉伸4cm 后自由释放。(1) 用经典方法计算弹簧振子的总能量和振动频率;(2) 一个能量子具有的能量是多少?(3) 假设弹簧振子能量是量子化的,振子的量子数n 是多少?

解:(1)弹簧振子的总能量为

)J (100.2)104(25.02

1214222--?=???==kA E

弹簧振子的频率为 )H (56.010

2025.0π21π21

3z m k =?==-ν (2) 一个能量子的能量为 )J (107.356.010626.634340--?=??==νεh

(3)由E =nh ν,振子的量子数为

29344

104.556

.010626.6100.2?=???==--νh E n 能量为2.0×10-4J 的振子有5.4×1029个能量状态,相邻两个状态的能量差是3.7×10-24J ,所以振子的能量几乎是连续的。这表明宏观物体的量子化特性通常显示不出来。

例12-3设有一音叉尖端的质量为0.050kg ,将其频率调为ν=480Hz ,振幅A=1.0mm 。求(1)尖端振动的量子数;(2)当量子数由n 增加到n+1时,振幅的变化是多少?

解:(1)尖端振动的能量为

222211(2)022722

E m A m A J ωπν=

== 量子数为 297.1310E n h ν

==? 音叉振动的量子数是非常大的。

(2)因为221(2)2E

m A πν=,E =nh ν 所以有

222nh A m πν= 取微分有

222nh AdA dn m πν=

取A dA ?→,dn n →?得

2A n n A ?=

? 代入数据得m A 341001.7-?=?。如此微小的变化是难以觉察到的,表明宏观范围内,能量量子化效应是极不明显的,宏观物体的能量可认为是连续的。

§12-2 光电效应光子

12-2-1 光电效应的实验规律

光照射在金属表面上时有电子从金属中逸出的现象称为光电效应。研究光电效应的实验装置如图15-2所示。在一个抽空的玻璃泡内装有金属电极阴极(K)和阳极(A),用适当频率的光从石英窗口射入,照在阴极K上时,便有电子自其表面逸出,逸出的电子称为光电子。光电子经电场加速后为阳极A所收集,形成光电流。

实验表明,对于一定的金属阴极,当照射光的频率v小于某个最小值v0时,不管光强多大,照射时间多长,都没有光电流,即阴极K不释放光电子,这个最小频率v0称为该金属的光电效应截止效率,也叫做红限,红限也常用对应的波长λ0表示。红限决定于阴极材料的性质,与光强无关,多数金属的红限在紫外区,见表12.1。

表12.1 几种金属的逸出功和红限

金属铯(Cs) 钾(K) 钠(Na) 锌(Zn) 钨(W) 银(Ag)

逸出功/eV 1.94 2.25 2.29 3.38 4.54 4.63 红限v0/(1014Hz) 4.69 5.44 5.53 8.06 10.95 11.19 红限λ0/nm 639 551 541 372 273 267

实验表明,保持光照射不变的情况下,改变电压U AK,发现当U AK=0时,仍有光电流,表明光电子逸出时具有一定的初动能。如何测量光电子的初动能呢?改变电压极性,使U AK<0,当反向电压增大到某一定值时,光电流降为零,此时反向电压的绝对值称为遏止电压,用U a表示。光电子的最大初动能和遏止电压U a与的间关系为

2

m

1

2a

m eU

υ=,(12-2-1)

式中m和e分别是电子的质量和电量,

m

υ是光电子逸出金属表面时的最大速率。

图12-2 光电效应实验

新人教版八年级数学下册勾股定理典型例题分析

新人教版八年级下册勾股定理典型例习题 一、经典例题精讲 题型一:直接考查勾股定理 例1.在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理 222a b c += 解:⑴2210AB AC BC =+= ⑵228BC AB AC =-= 题型二:利用勾股定理测量长度 例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米? 解析:这是一道大家熟知的典型的“知二求一”的题。把实物模型转化为数学模型后,.已 知斜边长和一条直角边长,求另外一条直角边的长度,可以直接利用勾股定理! 根据勾股定理AC 2+BC 2=AB 2, 即AC2+92=152,所以AC 2 =144,所以AC=12. 例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分B C的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到D 点,并求水池的深度AC. 解析:同例题1一样,先将实物模型转化为数学模型,如图 2. 由题意可知△AC D中,∠ACD=90°,在Rt △ACD 中,只知道CD =1.5,这是典型的利用勾股定理“知二求一”的类型。 标准解题步骤如下(仅供参考): 解:如图2,根据勾股定理,AC 2+CD 2=A D2 设水深AC= x 米,那么AD =A B=AC+CB =x +0.5 x2+1.52=( x +0.5)2 解之得x =2. 故水深为2米. 题型三:勾股定理和逆定理并用—— 例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 4 1= 那么△DEF 是直角三角形吗?为什么? C B D A

高中数学:两角和、差及倍角公式练习

高中数学:两角和、差及倍角公式练习 1.(新疆乌鲁木齐一诊)2cos10°-sin20° sin70° 的值是( C ) A .12 B .32 C . 3 D . 2 解析:原式= 2cos (30°-20°)-sin20° sin70° =2(cos30°·cos20°+sin30°·sin20°)-sin20°sin70° =3cos20° cos20°= 3. 2.(山西五校联考)若cos θ=23,θ为第四象限角,则cos ? ???? θ+π4的值为( B ) A . 2+10 6 B . 22+10 6 C .2-106 D .22-106 解析:由cos θ=2 3,θ为第四象限角, 得sin θ=-5 3, 故cos ? ???? θ+π4=22(cos θ-sin θ)=22×? ????23+53=22+106.故选B . 3.若α∈? ????π2,π,且3cos2α=sin ? ???? π4-α,则sin2α的值为( C ) A .-1 18 B .1 18 C .-1718 D .1718 解析:由3cos2α=sin ? ?? ?? π4-α可得

3(cos 2 α-sin 2 α)=2 2(cos α-sin α), 又由α∈? ???? π2,π可知cos α-sin α≠0, 于是3(cos α+sin α)=2 2, 所以1+2sin α·cos α=1 18, 故sin2α=-17 18.故选C . 4.已知锐角α,β满足sin α-cos α=1 6,tan α+tan β+3tan α·tan β=3,则α,β的大小关系是( B ) A .α<π 4<β B .β<π 4<α C .π 4<α<β D .π 4<β<α 解析:∵α为锐角,sin α-cos α=1 6>0, ∴π4<α<π2 . 又tan α+tan β+3tan αtan β=3, ∴tan(α+β)= tan α+tan β 1-tan αtan β =3, ∴α+β=π3,又α>π4,∴β<π 4<α. 5.在△ABC 中,sin A =513,cos B =3 5,则cos C =( A ) A .-1665 B .-5665 C .± 1665 D .± 5665 解析:∵B 为三角形的内角,cos B =3 5>0, ∴B 为锐角,∴sin B =1-cos 2B =4 5,

余弦定理练习题及答案解析

1.在△ABC中,已知a=4,b=6,C=120°,则边c的值是() A.8B.217 C.6 2 D.219 解析:选D.根据余弦定理,c2=a2+b2-2ab cos C=16+36-2×4×6cos 120°=76,c=219. 2.在△ABC中,已知a=2,b=3,C=120°,则sin A的值为() A. 57 19 B. 21 7 C. 3 38D.- 57 19 解析:选A.c2=a2+b2-2ab cos C =22+32-2×2×3×cos 120°=19. ∴c=19. 由a sin A= c sin C得sin A= 57 19. 3.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为__________. 解析:设底边边长为a,则由题意知等腰三角形的腰长为2a,故顶角的余弦值为4a2+4a2-a2 2·2a·2a= 7 8. 答案:7 8 4.在△ABC中,若B=60°,2b=a+c,试判断△ABC的形状.解:法一:根据余弦定理得 b2=a2+c2-2ac cos B. ∵B=60°,2b=a+c, ∴(a+c 2) 2=a2+c2-2ac cos 60°, 整理得(a-c)2=0,∴a=c. ∴△ABC是正三角形. 法二:根据正弦定理, 2b=a+c可转化为2sin B=sin A+sin C. 又∵B=60°,∴A+C=120°, ∴C=120°-A, ∴2sin 60°=sin A+sin(120°-A), 整理得sin(A+30°)=1, ∴A=60°,C=60°. ∴△ABC是正三角形. 课时训练一、选择题 1.在△ABC中,符合余弦定理的是() A.c2=a2+b2-2ab cos C B.c2=a2-b2-2bc cos A C.b2=a2-c2-2bc cos A D.cos C=a2+b2+c2 2ab 解析:选A.注意余弦定理形式,特别是正负号问题. 2.(2011年合肥检测)在△ABC中,若a=10,b=24,c=26,则最大角的余弦值是() A.12 13 B. 5 13

(完整版)勾股定理典型例题详解及练习(附答案)

典型例题 知识点一、直接应用勾股定理或勾股定理逆定理 例1:如图,在单位正方形组成的网格图中标有AB CD EF、GH四条线段, 其中能构成一个直角三角形三边的线段是() A.CD、EF、 GH C. AB、CD GH B.AB、EF、GH D. AB、CD EF 愿路分乐屮 1)題意分析’本题考查幻股定理及勾股定理的逆定理.亠 2)解題思器;可利用勾脸定理直接求出各边长,再试行判断?』 解答过整屮 在取DEAF中,Af=l, AE=2,根据勾股定理,得昇 EF = Q抡於十£尸° = Q +F二艮 同理HE = 2百* QH. = 1 CD = 2^5 计算发现W十◎血尸=(鸥31即血+曲=GH2,根据勾股定理的逆宦理得到UAAE、EF\ GH为辺的三角形是直毎三角形.故选B. * 縮題后KJ思专:* 1.勾股定理只适用于直角三角形,而不适用于说角三角形和钝角三角形? 因此」辭题时一宦妾认真分析题目所蛤■条件■,看是否可用勾股定理来解口* 2.在运用勾股左理时,要正确分析题目所给的条件,不要习惯性地认为就是斜 迫而“固执”地运用公式川二/十就其实,同样是S6

"不一罡就等于餌,疋不一罡就昱斜辺,KABC不一定就是直角三祐

3.直角三第形的判定条件与勾股定理是互逆的.区别在于勾股定理的运用是一个从 卅形s—个三角形是直角三角形)到懺 y =沖十沪)的过程,而直角三角形的判定是一 ①从嗦(一个三角形的三辺满足X二护+酹的条件)到偲个三角形是直角三角形)的过 程.a 4?在应用勾股定理解题叭聲全面地琴虑间题.注意m题中存在的多种可能性,遊免漏辭.初 例玉如圏,有一块直角三角形?椀屈U,两直角迫4CM5沁丸m?现将直角边AC沿直绘AD折蠡便它落在斜边AB上.且点C落到点E处, 则切等于(、* C/) "禎 B. 3cm G-Icni n題童分析,本题着查勾股定理的应用刎 :)解龜思路;車题若直接在△MQ中运用勾股定理是无法求得仞的长的,因为貝知遒一条边卫0的长,由题意可知,AACD和心迓门关于直线KQ对称.因而^ACD^hAED ?进一歩则有应RUm CZAED ED 丄AB,设UD=E2>黄泱,则在Rt A ABO中,由勾股定 理可得^=^(^+^=^83=100,得AB=10cm,在松迟DE 中,W ClO-fl)2= d驚解得尸 九4 解龜后的思琴尸 勾股定理说到底是一个等式,而含有未知数的等式就是方程。所以,在利用勾股定理求线段的长时常通过解方程来解决。勾股定理表达式中有三个量,如果条件中只有一个已知量,必须设法求出另一个量或求出另外两个量之间的关系,这一点是利用勾股定理求线段长时需要明确的思路。 方程的思想:通过列方程(组)解决问题,如:运用勾股定理及其逆定理求线段的长度或解决实际问题时,经常利用勾股定理中的等量关系列出方程来解 决问题等。 例3:一场罕见的大风过后,学校那棵老杨树折断在地,此刻,张老师正和占 明、清华、绣亚、冠华在楼上凭栏远眺。 清华开口说道:“老师,那棵树看起来挺高的。” “是啊,有10米高呢,现在被风拦腰刮断,可惜呀!” “但站立的一段似乎也不矮,有四五米高吧。”冠华兴致勃勃地说。 张老师心有所动,他说:“刚才我跑过时用脚步量了一下,发现树尖距离树根恰好3米,你们能求出杨树站立的那一段的高度吗?” 占明想了想说:“树根、树尖、折断处三点依次相连后构成一个直角三角

三角函数的两角和差及倍角公式练习题

三角函数的两角和差及倍角公式练习题 一、选择题: 1、若)tan(,21tan ),2(53sin βαβπαπα-=<<= 则的值是 A .2 B .-2 C .211 D .-211 2、如果sin cos ,sin cos x x x x =3那么·的值是 A .16 B .15 C .29 D .310 3、如果的值是那么)4tan(,41)4tan(,52)tan(παπββα+=-= + A .1318 B .322 C .1322 D .-1318 4、若f x x f (sin )cos ,=?? ?? ?232则等于 A .-12 B .-32 C .12 D .32 5、在?ABC A B A B 中,··sin sin cos cos ,<则这个三角形的形状是 A .锐角三角形 B .钝角三角形 C .直角三角形 D .等腰三角形 二、填空题: 6、角αβαβ终边过点,角终边过点,则(,)(,)sin()4371--+= ; 7、若αα23tan ,则=所在象限是 ; 8、已知=+-=??? ??+θθθθθπsin 2cos cos sin 234cot ,则 ; 9、=??-?+?70tan 65tan 70tan 65tan · ; 10、化简3232sin cos x x += 。 三、解答题: 11、求的值。·??+?100csc 240tan 100sec

12、的值。,求已知)tan 1)(tan 1(43βαπβα--=+ 13、已知求的值。cos ,sin cos 23544θθθ=+ 14、已知)sin(2)(sin 053tan ,tan 22βαβαβα+++=-+的两个根,求是方程x x ·cos()αβ+的值。

余弦定理内容以及解析

余弦定理详解 余弦定理定义及公式 余弦定理,是描述三角形中三边长度与一个角的余弦值关系的数学定理。是勾股定理在一般三角形情形下的推广。 a2=b2+c2-2bccosA 余弦定理证明 如上图所示,△ABC,在c上做高,根据射影定理,可得到: 将等式同乘以c得到: 运用同样的方式可以得到: 将两式相加: 向量证明

正弦定理和余弦定理 正弦定理 a/sinA=b/sinB=c/sinC=2R (1)已知三角形的两角与一边,解三角形 (2)已知三角形的两边和其中一边所对的角,解三角形 (3)运用a:b:c=sinA:sinB:sinC解决角之间的转换关系 直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦。 余弦定理 是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三 边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起 来更为方便、灵活。 直角三角形的一个锐角的邻边和斜边的比值叫这个锐角的余弦值 在△DEF中有余弦定理:DE2=DF2+EF2-2DF?EFcos∠DFE.拓展到空间,类比三角形的余弦定理,在斜三棱柱ABC-A1B1C1的中ABB1A1与BCC1B1所成的二面角的平面角为θ,则得到的类似的关系式是_____. 答案: . 解析: 由平面和空间中几何量的对应关系,和已知条件可写出类比结论 解:平面中的点、线、面分别对应空间中的线、面、体,平面中的长度对应空间中的面积,平面中线线的夹角,对应空间中的面面的夹角 故答案为: 证明如下:如图斜三棱柱ABC-A1B1C1 设侧棱长为a 做面EFG垂直于侧棱AA1、BB1、CC1,则∠EFG=θ 又∵ 在△EFG中,根据余弦定理得:EG2=EF2+FG2-2EF?FG?COSθ

三角函数的两角及差与倍角公式练习题.doc

三角函数的两角和差及倍角公式练习题 一、选择题: 1、若 sin 3 ( 2 ), tan 1 ,则 tan( ) 的值是 5 2 A .2 B .- 2 2 2 C . D . 11 11 2、如果 sin x 3cosx, 那么 sin x · cosx 的值是 1 1 2 3 A . B . C . D . 6 5 9 10 3、如果 tan( ) 2 , tan( ) 1 ,那么 tan( )的值是 5 4 4 4 13 3 13 13 A . B . C . D . 18 22 22 18 4、若 f (sin x) cos2x, 则 f 3 等于 2 1 3 1 3 A . B . C . D . 2 2 2 2 5、在 ABC 中, sin A · sin B cosA · cosB, 则这个三角形的形状是 A .锐角三角形 B .钝角三角形 C .直角三角形 D .等腰三角形 二、填空题: 6 、角 终边过点 (4,3) ,角 终边过点 ( 7, 1),则 sin() ; 7 、若 tan 3,则 2 所在象限是 ; 8 、已知 cot 4 3,则 2 sin cos ; cos 2 sin 9 、 tan 65 tan 70 tan65·tan 70 ; 10、 化简 3sin 2x 3 cos2x 。 三、解答题: 11、求 sec100 tan 240·csc100 的值。

12、已知3 ,求(1 tan )(1 tan )的值。4 13、已知cos2 3 , 求 sin 4 cos4的值。 5 14、已知tan, tan 是方程x 2 3x 5 0的两个根, 求 sin 2 ( ) 2 sin( ) ·cos( ) 的值。

最新余弦定理教案设计

余弦定理 一、教材分析 本节主要研究xxxxxx,分两课时,这里是第一课时。它是在学生已经学习了正弦定理的内容,初步掌握了正弦定理的证明及应用,并明确了用正弦定理可以来解三角形的基础上进行学习的。通过利用平面几何法、坐标法(两点的距离公式)、向量的模,正弦定理等方法推导余弦定理,学生会正确理解余弦定理的结构特征和表现形式,解决“边、角、边”和“边、边、边”问题,初步体会余弦定理解决“边、边、角”问题,体会方程思想,理解余弦定理是勾股定理的特例, 从多视角思考问题和发现问题,形成良好的思维品质,激发学生探究数学,应用数学的潜能,培养学生思维的广阔性。 二、学情分析 本课之前,学生已经学习了三角函数、向量基本知识和正弦定理有关内容,对于三角形中的边角关系有了较进一步的认识。在此基础上利用向量方法探求余弦定理,学生已有一定的学习基础和学习兴趣。总体上学生应用数学知识的意识不强,创造力较弱,看待与分析问题不深入,知识的系统性不完善,使得学生在余弦定理推导方法的探求上有一定的难度,在发掘出余弦定理的结构特征、表现形式的数学美时,能够激发学生热爱数学的思想感情;从具体问题中抽象出数学的本质,应用方程的思想去审视,解决问题是学生学习的一大难点。 本节内容是人教B版普通高中课程标准实验教科书必修5第一章第一节余弦定理的第一课时。余弦定理是关于任意三角形边角之间的另一定理,是解决有关三角形问题与实际应用问题(如测量等)的重要定理,它将三角形的边和角有机的结合起来,实现了"边"和"角"的互化,从而使"三角"与"几何"有机的结合起来,为求与三角形有关的问题提供了理论依据,同时也为判断三角形的形状和证明三角形中的等式提供了重要的依据。教科书首先通过设问的方式,指出了"已知三角形的两边和夹角,无法用正弦定理去解三角形",进而通过直角三角形中的勾股定理引导学生去探究一般三角形中的边角关系,然后通过构造直角三角形去完

勾股定理练习题及问题详解(共6套)

勾股定理课时练(1) 1. 在直角三角形ABC中,斜边AB=1,则AB2 2 2AC BC+ +的值是() A.2 B.4 C.6 D.8 2.如图18-2-4所示,有一个形状为直角梯形的零件ABCD,AD∥BC,斜腰DC的长为10 cm,∠D=120°,则该零件另一腰AB的长是______ cm(结果不取近似值). 3. 直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 4.一根旗杆于离地面12m处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m,旗杆在断裂之前高多少m? 5.如图,如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米. 6. 飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米? 7. 如图所示,无盖玻璃容器,高18cm,底面周长为60cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm的F处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度. 8. 一个零件的形状如图所示,已知AC=3cm,AB=4cm,BD=12cm。求CD的长. 9. 如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB的长. 10. 如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北 7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少? 11如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱? 12. 甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?

两角和与差理解练习知识题

两角和与差的三角函数及倍角公式练习及答案 一、选择题: 1、若)tan(,2 1 tan ),2(53sin βαβπαπα-=<<=则的值是 A .2 B .-2 C .211 D .-2 11 2、如果sin cos ,sin cos x x x x =3那么·的值是 A . 1 6 B . 15 C . 29 D . 310 3、如果的值是那么)4 tan(,41)4tan(,52)tan(π απββα+=-=+ A . 1318 B .322 C .1322 D .-1318 4、若f x x f (sin )cos ,=?? ? ??232则等于 A .- 12 B .- 32 C . 12 D . 32 5、在?ABC A B A B 中,··sin sin cos cos ,<则这个三角形的形状是 A .锐角三角形 B .钝角三角形 C .直角三角形 D .等腰三角形 二、填空题: 6、角αβαβ终边过点,角终边过点,则(,)(,)sin()4371--+= ; 8、已知=+-=?? ? ??+θθθθθπsin 2cos cos sin 234cot ,则 ; 12、的值。 ,求已知)tan 1)(tan 1(4 3βαπ βα--= + 两角和与差练习题 一、选择题: 2.已知)2,0(πα∈,sin(6πα+)=5 3,则cos α的值为( ) A .-10 334+ B .10 343- C .10334- D .10 334+

7.已知cos(α-π6)+sin α= 4 5 3,则sin(α+7π 6 )的值是 ( ) A .- 2 35 B.235 C .-45 D.45 8.f(x)=sinx cosx 1+sinx +cosx 的值域为( ) A .(―3―1,―1) ∪(―1, 3―1) B .[-2-1 2,―1] ∪(―1, 2-1 2 ) C .( -3-12 , 3-1 2 ) D .[ -2-1 2,2-1 2 ] 解析:令t =sin x +cos x = 2sin(x +π 4)∈[― 2,―1]∪(―1, 2). 则f(x)=t 2-1 21+t = t -12∈[-2-1 2,―1]∪(―1, 2-1 2 ).B 9 .sin()cos()cos()θθθ+?++?-+?7545315的值等于( ) A. ±1 B. 1 C. -1 D. 0 10.等式sin α+3cos α=4m -6 4-m 有意义,则m 的取值范围是 ( ) A .(-1,7 3) B .[-1,7 3 ] C .[-1,7 3 ] D .[―73 ,―1] 11、已知αβγ,,均为锐角,且1tan 2α=,1tan 5β=,1tan 8 γ=,则αβγ++的值( ) A.π 6 B. π4 C. π3 D.5π4 12.已知 是锐角,sin =x,cos =y,cos()=- 5 3 ,则y 与x 的函数关系式为

三角函数基础,两角和与差、倍角公式

练习: 一、填空题 1. α是第二象限角,则2 α 是第 象限角. 2.已知扇形的半径为R ,所对圆心角为α,该扇形的周长为定值c ,则该扇形最大面积为 . 同角三角函数的基本关系公式: αααtan cos sin = ααα cot sin cos = 1cot tan =?αα 1cos sin 22=+αα 1?“同角”的概念与角的表达形式无关,如: 13cos 3sin 2 2 =+αα 2tan 2 cos 2sin ααα = 2?上述关系(公式)都必须在定义域允许的围成立。 3?由一个角的任一三角函数值可求出这个角的其余各三角函数值,且因为利用“平方关系”公式,最终需求平方根,会出现两解,因此应尽可能少用,若使用时,要注意讨论符号. 这些关系式还可以如图样加强形象记忆: ①对角线上两个函数的乘积为1(倒数关系). ②任一角的函数等于与其相邻的两个函数的积(商数关系). ③阴影部分,顶角两个函数的平方和等于底角函数的平方(平方关系). 二、讲解例: 例1化简:ο440sin 12- 解:原式οοο ο ο 80cos 80cos 80sin 1)80360(sin 122 2 ==-=+-= 例2 已知α α αααsin 1sin 1sin 1sin 1+---+是第三象限角,化简 解:) sin 1)(sin 1() sin 1)(sin 1()sin 1)(sin 1()sin 1)(sin 1(αααααααα-+--- -+++= 原式 |cos |sin 1|cos |sin 1sin 1)sin 1(sin 1)sin 1(2 222ααααα ααα--+=----+= 0cos <∴αα是第三象限角,Θ αα α ααtan 2cos sin 1cos sin 1-=----+= ∴原式 (注意象限、符号) 例3求证: α α ααcos sin 1sin 1cos +=- 分析:思路1.把左边分子分母同乘以x cos ,再利用公式变形;思路2:把左边分子、分母同乘以(1+sinx )先满足

余弦定理练习题(含答案)

余弦定理练习题 1.在△ABC 中,如果BC =6,AB =4,cos B =1 3 ,那么AC 等于( ) A .6 B .2 6 C .3 6 D .46 2.在△ABC 中,a =2,b =3-1,C =30°,则c 等于( ) D .2 3.在△ABC 中,a 2=b 2+c 2 +3bc ,则∠A 等于( ) A .60° B .45° C .120° D .150° ? 4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2 )tan B =3ac ,则∠B 的值为( ) 或5π6 或2π 3 5.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,则a cos B +b cos A 等于( ) A .a B .b C .c D .以上均不对 6.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .由增加的长度决定 8.在△ABC 中,b =3,c =3,B =30°,则a 为( ) B .2 3 或2 3 D .2 ~ 9.已知△ABC 的三个内角满足2B =A +C ,且AB =1,BC =4,则边BC 上的中线AD 的长为________. 10.△ABC 中,sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10,求最大角的度数. 11.已知a 、b 、c 是△ABC 的三边,S 是△ABC 的面积,若a =4,b =5,S =53,则边c 的值为________. 12.在△ABC 中,sin A ∶sin B ∶sin C =2∶3∶4,则cos A ∶cos B ∶cos C =________. 13.在△ABC 中,a =32,cos C =1 3 ,S △ABC =43,则b =________. 15.已知△ABC 的三边长分别是a 、b 、c ,且面积S =a 2+b 2-c 2 4 ,则角C =________. 16.三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为________. 17.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2 -23x +2=0的两根,且2cos(A +B )=1,求AB 的长. ` 18.已知△ABC 的周长为2+1,且sin A +sin B =2sin C .(1)求边AB 的长;(2)若△ABC 的面积为1 6 sin C ,求角C 的度数. : 19.在△ABC 中,BC =5,AC =3,sin C =2sin A .(1)求AB 的值;(2)求sin(2A -π 4 )的值. 20.在△ABC 中,已知(a +b +c )(a +b -c )=3ab ,且2cos A sin B =sin C ,确定△ABC 的形状. —

(完整版)勾股定理经典例题(教师版)

勾股定理全章知识点和典型例习题 一、基础知识点: 1?勾股定理 内容:____________________________________________________________ 表示方法:如果直角三角形的两直角边分别为 a , b,斜边为c,那么__________________ 2 ?勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 3 ?勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC中,C 90 , 则 __________________________________________ ②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定 理解决一些实际问题 4. 勾股定理的逆定理 如果三角形三边长a , b , c满足a2 b2c,那么这个三角形是直角三角形,其中c为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过数转化为形”来确定三角形的可能 形状,在运用这一定理时,可用两小边的平方和a2 b2与较长边的平方c2作比较,若它们相等时,以 a , b , c为三边 的三角形是直角三角形;若 _________ ,时,以a , b , c为三边的三角形是钝角三角形;若__________________ ,时,以a , b , c为三边的三角形是锐角三角形; ②定理中a , b , c及a2 b2 c2只是一种表现形式,不可认为是唯一的,如若三角形三边长 a , b , c满足a2 c2 b2, 那么以a , b , c为三边的三角形是直角三角形,但是b为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 5. 勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即a2 b2 c2中,a , b , c为正整数时,称a , b , c为 一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5 ; 6,8,10 ; 5,12,13; 7,24,25等 ③用含字母的代数式表示n组勾股数: 2 2 n 1,2n,n 1 (n 2, n 为正整数); 2n 1,2n2 2n,2n2 2n 1 (n为正整数)m2 n2,2mn,m2 n2(m n, m , n为正整数)7 .勾股定理的应用

三角函数的两角和差及倍角公式练习题之欧阳学文创编

三角函数的两角和差及倍角公式练 习题 欧阳学文 一、选择题: 1、若)tan(,2 1 tan ),2 (53sin βαβπαπα-= <<=则的值是 A .2 B .-2 C .211 D .-211 2、如果sin cos ,sin cos x x x x =3那么·的值是 A .16 B .15 C .29 D . 3 10 3、如果的值是那么)4 tan(,4 1)4 tan(,5 2)tan(παπββα+=-=+ A .1318 B . 322 C .1322 D .-1318 4、若f x x f (sin )cos ,=?? ? ? ?232则等于 A .-12 B .-32 C .12 D . 32 5、在?ABC A B A B 中,··sin sin cos cos ,<则这个三角形的形状是 A .锐角三角形 B .钝角三角形 C .直角三角形 D .等腰三角形 二、填空题:

6、角αβαβ终边过点,角终边过点,则(,)(,)sin()4371--+=; 7、若αα23tan ,则=所在象限是; 8、已知=+-=?? ? ??+θθθθθπ sin 2cos cos sin 234cot ,则; 9、=??-?+?70tan 65tan 70tan 65tan ·; 10、化简3232sin cos x x + =。 三、解答题: 11、求的值。 ·??+?100csc 240tan 100sec 12、的值。,求已知)tan 1)(tan 1(4 3βαπβα--=+ 13、已知求的值。cos ,sin cos 235 44θθθ=+ 14、已知 )sin(2)(sin 053tan ,tan 22βαβαβα+++=-+的两个根,求是方程x x ·cos()αβ+的值。 答案: 一、 1、B 2、D 提示: tanx = 3, 所求12 2sin x , 用万能公式。 3、B 提示: ()απ αββπ+ =+--? ? ?? ?44 4、A 提示: 把x =π3 代入

正弦定理、余弦定理综合应用典型例题

正弦定理、余弦定理综合应用 例1.设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. 解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1 sin 2 B = , 由ABC △为锐角三角形得π6B = . (Ⅱ)cos sin cos sin A C A A π?? +=+π-- ?6?? cos sin 6A A π??=++ ???1cos cos 2A A A =++ 3A π? ?=+ ???. 由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336 A πππ <+<, 所以1sin 23A π??+< ???. 3A π??<+< ?? ? 所以,cos sin A C +的取值范围为322?? ? ?? ?,. 例2.已知ABC △1,且sin sin A B C +=. (I )求边AB 的长; (II )若ABC △的面积为1 sin 6 C ,求角C 的度数. 解:(I )由题意及正弦定理,得1AB BC AC ++=, BC AC +=, 两式相减,得1AB =. (II )由ABC △的面积11sin sin 26BC AC C C =g g ,得1 3 BC AC =g , 由余弦定理,得222cos 2AC BC AB C AC BC +-=g 22()21 22 AC BC AC BC AB AC BC +--= =g g , 所以60C =o . 例3.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n , 且a cos B +b cos A =c sin C ,则角B = 6 π . 例4.设ABC ?的内角A ,B ,C 的对边分别为a ,b ,c ,且A =60o ,c =3b.求a c 的值; 解:由余弦定理得2222cos a b c b A =+-=2221117 ()2,3329 c c c c c +-=g g g 故3a c = 例5.在△ABC 中,三个角,,A B C 的对边边长分别为3,4,6a b c ===, 则cos cos cos bc A ca B ab C ++的值为 . 61 2 例6.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若() C a A c b cos cos 3=-, 则=A cos _________________. 3 例7.(2009年广东卷文)已知ABC ?中, C B A ∠∠∠,,的对边分别为,,a b c 若a c ==75A ∠=o ,则b = 【解析】0000000 sin sin 75sin(3045)sin 30cos 45sin 45cos30A ==+=+=

最新勾股定理逆定理讲义(经典例题+详解+习题)

XX教育一对一个性化教案 授课日期:2014 年月日学生姓名许XX 教师姓名授课时段2h 年级8 学科数学课型VIP 教学内容勾股定理及逆定理 教学重、难点重点:运用勾股定理判定一个三角形是否为直角三角形。难点:运用用勾股定理和勾股定理逆定理解决实际问题。 教学步骤及突出教学方法一、知识归纳 1、勾股定理的逆定理 如果三角形三边长a,b,c满足222 a b c +=,那么这个三角形是直角三角形,其中c为斜边。 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22 a b +与较长边的平方2c作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;若222 a b c +<,时,以a,b,c为三边的三角形是钝角三角形;若222 a b c +>,时,以a,b,c为三边的三角形是锐角三角形; ②定理中a,b,c及222 a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足222 a c b +=,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边。 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形。 2、勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222 a b c +=中,a,b,c为正整数时,称a,b,c为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n组勾股数: 22 1,2,1 n n n -+(2, n≥n为正整数); 22 21,22,221 n n n n n ++++(n为正整数) 2222 ,2, m n mn m n -+(, m n >m,n为正整数)

解三角形(正弦定理余弦定理)知识点例题解析高考题汇总及答案

解三角形 【考纲说明】 1、掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。 2、能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题 【知识梳理】 一、正弦定理 1、正弦定理:在△ABC 中,R C c B b A a 2sin sin sin ===(R 为△AB C 外接圆半径)。 2、变形公式:(1)化边为角:2sin ,2sin ,2sin ;a R A b R B c R C === (2)化角为边:sin ,sin ,sin ;222a b c A B C R R R === (3)::sin :sin :sin a b c A B C = (4)2sin sin sin sin sin sin a b c a b c R A B C A B C ++====++. 3、三角形面积公式:21111sin sin sin 2sin sin sin 22224ABC abc S ah ab C ac B bc A R A B C R ?====== 4、正弦定理可解决两类问题: (1)两角和任意一边,求其它两边和一角;(解唯一) (2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角.(解可能不唯一) 二、余弦定理 1、余弦定理:A bc c b a cos 22 2 2 -+=?bc a c b A 2cos 2 2 2 -+= B ac a c b cos 22 2 2 -+=?ca b a c B 2cos 2 2 2 -+= C ab b a c cos 22 2 2 -+=?ab c b a C 2cos 2 2 2 -+= 2、余弦定理可以解决的问题: (1)已知三边,求三个角;(解唯一) (2)已知两边和它们的夹角,求第三边和其他两个角;(解唯一): (3)两边和其中一边对角,求另一边,进而可求其它的边和角.(解可能不唯一) 三、正、余弦定理的应用 1、仰角和俯角 在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图1).

初二数学经典讲义 勾股定理(基础)知识讲解

勾股定理(基础) 【学习目标】 1. 掌握勾股定理的内容及证明方法,能够熟练地运用勾股定理由已知直角三角形中的两条 边长求出第三条边长. 2. 掌握勾股定理,能够运用勾股定理解决简单的实际问题,会运用方程思想解决问题. 3. 熟练应用勾股定理解决直角三角形中的问题,进一步运用方程思想解决问题. 【要点梳理】 【高清课堂 勾股定理 知识要点】 要点一、勾股定理 直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为 a b ,,斜边长为c ,那么222a b c +=. 要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系. (2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线 段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解 决问题的目的. (3)理解勾股定理的一些变式: 222a c b =-,222b c a =-, ()2 22c a b ab =+-. 要点二、勾股定理的证明 方法一:将四个全等的直角三角形拼成如图(1)所示的正方形. 图(1)中,所以. 方法二:将四个全等的直角三角形拼成如图(2)所示的正方形. 图(2)中,所以. 方法三:如图(3)所示,将两个直角三角形拼成直角梯形.

,所以. 要点三、勾股定理的作用 1. 已知直角三角形的任意两条边长,求第三边; 2. 用于解决带有平方关系的证明问题; 3. 利用勾股定理,作出长为 的线段. 【典型例题】 类型一、勾股定理的直接应用 1、在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c . (1)若a =5,b =12,求c ; (2)若c =26,b =24,求a . 【思路点拨】利用勾股定理222a b c +=来求未知边长. 【答案与解析】 解:(1)因为△ABC 中,∠C =90°,222a b c +=,a =5,b =12, 所以2222251225144169c a b =+=+=+=.所以c =13. (2)因为△ABC 中,∠C =90°,222a b c +=,c =26,b =24, 所以222222624676576100a c b =-=-=-=.所以a =10. 【总结升华】已知直角三角形的两边长,求第三边长,关键是先弄清楚所求边是直角边还是斜边,再决定用勾股原式还是变式. 举一反三: 【变式】在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c . (1)已知b =2,c =3,求a ; (2)已知:3:5a c =,b =32,求a 、c . 【答案】 解:(1)∵ ∠C =90°,b =2,c =3, ∴ 2222325a c b =-=-; (2)设3a k =,5c k =. ∵ ∠C =90°,b =32, ∴ 222a b c +=. 即222(3)32(5)k k +=. 解得k =8. ∴ 33824a k ==?=,55840c k ==?=. 类型二、勾股定理的证明

勾股定理经典例题详解

勾股定理经典例题详解 Last revised by LE LE in 2021

勾股定理经典例题详解 知识点一:勾股定理 如果直角三角形的两直角边长分别为:a,b,斜边长为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方. 要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。 (2)勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。 (3)理解勾股定理的一些变式: c2=a2+b2, a2=c2-b2, b2=c2-a2,c2=(a+b)2-2ab 知识点二:用面积证明勾股定理 方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。 图(1)中,所以。 方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。 图(2)中,所以。 方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。 在(3)—1中,甲的面积=(大正方形面积)—(4个直角三角形面积), 在(3)—2中,乙和丙的面积和=(大正方形面积)—(4个直角三角形面积), 所以,甲的面积=乙和丙的面积和,即:. 方法四:如图(4)所示,将两个直角三角形拼成直角梯形。

,所以。 知识点三:勾股定理的作用 1.已知直角三角形的两条边长求第三边;2.已知直角三角形的一条边,求另两边的关系; 3.用于证明平方关系的问题; 4.利用勾股定理,作出长为的线段。 2. 在理解的基础上熟悉下列勾股数 满足不定方程x2+y2=z2的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x,y,z为三边长的三角形一定是直角三角形。 熟悉下列勾股数,对解题是会有帮助的: ①3、4、5②5、12、13;③8、15、17;④7、24、25;⑤10、24、26;⑥9、40、41.如果(a,b,c)是勾股数,当t>0时,以at,bt,ct为三角形的三边长,此三角形必为直角三角形。 经典例题透析类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6, c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= (2) 在△ABC中,∠C=90°,a=40,b=9,c= (3) 在△ABC中,∠C=90°,c=25,b=15,a= 总结升华:有一些题目的图形较复杂,但中心思想还是化为直角三角形来解决。如:不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差或和。 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少 【答案】∵∠ACD=90° AD=13, CD=12 ∴AC2 =AD2-CD2 =132-122 =25 ∴AC=5 又∵∠ABC=90°且BC=3 ∴由勾股定理可得 AB2=AC2-BC2 =52-32 =16 ∴AB= 4 ∴AB的长是4. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC的长.

相关文档
相关文档 最新文档