文档库 最新最全的文档下载
当前位置:文档库 › 密码学及其研究现状(2014年)

密码学及其研究现状(2014年)

密码学及其研究现状(2014年)
密码学及其研究现状(2014年)

密码学及其研究现状(2014年)

{摘要}:

密码系统的两个基本要素是加密算法和密钥管理。加密算法是一些公式和法则,它规定了明文和密文之间的变换方法。由于密码系统的反复使用,仅靠加密算法已难以保证信息的安全了。事实上,加密信息的安全可靠依赖于密钥系统,密钥是控制加密算法和解密算法的关键信息,它的产生、传输、存储等工作是十分重要的。{关键词}:密码技术安全网络密匙管理

密码技术是信息安全的核心技术。如今,计算机网络环境下信息的保密性、完

整性、可用性和抗抵赖性,都需要采用密码技术来解决。密码体制大体分为对称密

码(又称为私钥密码)和非对称密码(又称为公钥密码)两种。公钥密码在信息安全中

担负起密钥协商、数字签名、消息认证等重要角色,已成为最核心的密码。

密码是通信双方按约定的法则进行信息特殊变换的一种重要保密手段。依照这

些法则,变明文为密文,称为加密变换;变密文为明文,称为脱密变换。密码在早

期仅对文字或数码进行加、脱密变换,随着通信技术的发展,对语音、图像、数据

等都可实施加、脱密变换。

密码学是在编码与破译的斗争实践中逐步发展起来的,并随着先进科学技术的

应用,已成为一门综合性的尖端技术科学。它与语言学、数学、电子学、声学、信

息论、计算机科学等有着广泛而密切的联系。它的现实研究成果,特别是各国政府

现用的密码编制及破译手段都具有高度的机密性。

进行明密变换的法则,称为密码的体制。指示这种变换的参数,称为密钥。它

们是密码编制的重要组成部分。密码体制的基本类型可以分为四种:错乱--按照

规定的图形和线路,改变明文字母或数码等的位置成为密文;代替--用一个或多

个代替表将明文字母或数码等代替为密文;密本--用预先编定的字母或数字密码

组,代替一定的词组单词等变明文为密文;加乱--用有限元素组成的一串序列作

为乱数,按规定的算法,同明文序列相结合变成密文。以上四种密码体制,既可单

独使用,也可混合使用,以编制出各种复杂度很高的实用密码。

当前,公钥密码的安全性概念已经被大大扩展了。像著名的RSA公钥密码算法、

Rabin公钥密码算法和ElGamal公钥密码算法都已经得到了广泛应用。但是,有些公

钥密码算法在理论上是安全的,可是在具体的实际应用中并非安全。因为在实际应用中不仅需要算法本身在数学证明上是安全的,同时也需要算法在实际应用中也是安全的。比如,公钥加密算法根据不同的应用,需要考虑选择明文安全、非适应性选择密文安全和适应性选择密码安全三类。数字签名根据需要也要求考虑抵抗非消息攻击和选择消息攻击等。因此,近年来,公钥密码学研究中的一个重要内容——可证安全密码学正是致力于这方面的研究。

公钥密码在信息安全中担负起密钥协商、数字签名、消息认证等重要角色,已成为最核心的密码。目前密码的核心课题主要是在结合具体的网络环境、提高运算效率的基础上,针对各种主动攻击行为,研究各种可证安全体制。其中引人注目的是基于身份(ID)密码体制和密码体制的可证安全模型研究,目前已经取得了重要成果。这些成果对网络安全、信息安全的影响非常巨大,例如公钥基础设施(PKI)将会更趋于合理,使其变为ID-PKI。在密码分析和攻击手段不断进步,计算机运算速度不断提高以及密码应用需求不断增长的情况下,迫切需要发展密码理论和创新密码算法。

在2004年信息安全国际会议上,本文第一作者(即曹珍富教授)做了“密码理论中的若干问题”的主题报告,其中也介绍了密码学的最新进展。这在不同程度上代表了当前密码学的发展方向。

1.在线/离线密码学

公钥密码学能够使通信双方在不安全的信道上安全地交换信息。在过去的几年里,公钥密码学已经极大地加速了网络的应用。然而,和对称密码系统不同,非对称密码的执行效率不能很好地满足速度的需要。因此,如何改进效率成为公钥密码学中一个关键的问题之一。

针对效率问题,在线/离线的概念被提出。其主要观点是将一个密码体制分成两个阶段:在线执行阶段和离线执行阶段。在离线执行阶段,一些耗时较多的计算可以预先被执行。在在线阶段,一些低计算量的工作被执行。

2.圆锥曲线密码学

圆锥曲线密码学是1998年由本文第一作者首次提出,C.Schnorr认为,除椭圆曲

线密码以外这是人们最感兴趣的密码算法。在圆锥曲线群上的各项计算比椭圆曲线群上的更简单,一个令人激动的特征是在其上的编码和解码都很容易被执行。同时,还可以建立模n的圆锥曲线群,构造等价于大整数分解的密码。现在已经知道,圆锥曲线群上的离散对数问题在圆锥曲线的阶和椭圆曲线的阶相同的情况下,是一个不比椭圆曲线容易的问题。所以,圆锥曲线密码已成为密码学中的一个重要的研究内容。

3.代理密码学

代理密码学包括代理签名和代理密码系统。两者都提供代理功能,另外分别提供代理签名和代理解密功能。

目前,代理密码学的两个重要问题亟需解决。一个是构造不用转换的代理密码系统,这个工作已经被本文第一作者和日本Tsukuba大学的学者进行了一些研究。另外一个是如何来构造代理密码系统的较为合理的可证安全模型,以及给出系统安全性的证明。已经有一些研究者开始在这方面展开工作。

4.密钥托管问题

在现代保密通信中,存在两个矛盾的要求:一个是用户间要进行保密通信,另一个是政府为了抵制网络犯罪和保护国家安全,要对用户的通信进行监督。密钥托管系统就是为了满足这种需要而被提出的。在原始的密钥托管系统中,用户通信的密钥将由一个主要的密钥托管代理来管理,当得到合法的授权时,托管代理可以将其交给政府的监听机构。但这种做法显然产生了新的问题:政府的监听机构得到密钥以后,可以随意地监听用户的通信,即产生所谓的“一次监控,永远监控”问题。另外,这种托管系统中“用户的密钥完全地依赖于可信任的托管机构”的做法也不可取,因为托管机构今天是可信任的,不表示明天也是可信任的。

在密钥托管系统中,法律强制访问域LEAF(Law Enforcement Access Field)是被通信加密和存储的额外信息块,用来保证合法的政府实体或被授权的第三方获得通信的明文消息。对于一个典型的密钥托管系统来说,LEAF可以通过获得通信的解密密钥来构造。为了更趋合理,可以将密钥分成一些密钥碎片,用不同的密钥托管代理的公钥加密密钥碎片,然后再将加密的密钥碎片通过门限化的方法合成。以

此来达到解决“一次监控,永远监控”和“用户的密钥完全地依赖于可信任的托管机构”的问题。现在对这一问题的研究产生了构造网上信息安全形式问题,通过建立可证安全信息形式模型来界定一般的网上信息形式。

5.基于身份的密码学

基于身份的密码学是由Shamir于1984年提出的。其主要观点是,系统中不需要证书,可以使用用户的标识如姓名、IP地址、电子邮件地址等作为公钥。用户的私钥通过一个被称作私钥生成器PKG(Private Key Generator)的可信任第三方进行计算得到。基于身份的数字签名方案在1984年Shamir就已得到。然而,直到2001年,Boneh等人利用椭圆曲线的双线性对才得到Shamir意义上的基于身份的加密体制(IBE)。在此之前,一个基于身份的更加传统的加密方案曾被Cocks提出,但效率极低。目前,基于身份的方案包括基于身份的加密体制、可鉴别身份的加密和签密体制、签名体制、密钥协商体制、鉴别体制、门限密码体制、层次密码体制等。

6.多方密钥协商问题

密钥协商问题是密码学中又一基本问题。

Diffie-Hellman协议是一个众所周知的在不安全的信道上通过交换消息来建立会话密钥的协议。它的安全性基于Diffie-Hellman离散对数问题。然而,Diffie-Hellman协议的主要问题是它不能抵抗中间人攻击,因为它不能提供用户身份验证。

当前已有的密钥协商协议包括双方密钥协商协议、双方非交互式的静态密钥协商协议、双方一轮密钥协商协议、双方可验证身份的密钥协商协议以及三方相对应类型的协议。

如何设计多方密钥协商协议?存在多元线性函数(双线性对的推广)吗?如果存在,我们能够构造基于多元线性函数的一轮多方密钥协商协议。而且,这种函数如果存在的话,一定会有更多的密码学应用。然而,直到现在,在密码学中,这个问题还远远没有得到解决。目前已经有人开始作相关的研究,并且给出了一些相关的应用以及建立这种函数的方向,给出了这种函数肯定存在的原因。

7.可证安全性密码学

当前,在现有公钥密码学中,有两种被广泛接受的安全性的定义,即语义安全性和非延展安全性。语义安全性,也称作不可区分安全性IND(Indistinguishability),首先由Goldwasser和Micali在1984年提出,是指从给定的密文中,攻击者没有能力得到关于明文的任何信息。非延展安全性NM(Non-malleability)是由Dolev、Dwork和Naor在1991年提出的,指攻击者不能从给定的密文中,建立和密文所对应的与明文意义相关的明文的密文。在大多数令人感兴趣的研究问题上,不可区分安全性和非延展安全性是等价的。

对于公钥加密和数字签名等方案,我们可以建立相应的安全模型。在相应的安全模型下,定义各种所需的安全特性。对于模型的安全性,目前可用的最好的证明方法是随机预言模型ROM(Random Oracle Model)。在最近几年里,可证明安全性作为一个热点被广泛地研究,就像其名字所言,它可以证明密码算法设计的有效性。现在,所有出现的标准算法,如果它们能被一些可证明安全性的参数形式所支持,就被人们广泛地接受。就如我们所知道的,一个安全的密码算法最终要依赖于NP问题,真正的安全性证明还远远不能达到。然而,各种安全模型和假设能够让我们来解释所提出的新方案的安全性,按照相关的数学结果,确认基本的设计是没有错误的。

随机预言模型是由Bellare和Rogaway于1993年从Fiat和Shamir的建议中提出的,它是一种非标准化的计算模型。在这个模型中,任何具体的对象例如哈希函数,都被当作随机对象。它允许人们规约参数到相应的计算,哈希函数被作为一个预言返回值,对每一个新的查询,将得到一个随机的应答。规约使用一个对手作为一个程序的子例程,但是,这个子例程又和数学假设相矛盾,例如RSA是单向算法的假设。概率理论和技术在随机预言模型中被广泛使用。

然而,随机预言模型证明的有效性是有争议的。因为哈希函数是确定的,不能总是返回随机的应答。1998年,Canetti等人给出了一个在ROM模型下证明是安全的数字签名体制,但在一个随机预言模型的实例下,它是不安全的。

尽管如此,随机预言模型对于分析许多加密和数字签名方案还是很有用的。在一定程度上,它能够保证一个方案是没有缺陷的。

但是,没有ROM,可证明安全性的问题就存在质疑,而它是一个不可忽视的问题。

直到现在,这方面仅有很少的研究。

信息理论密码学从Shannon创建到现在已走过了半个世纪的路程.从前面的综述可见它已有了很大的发展和变化,其研究领域伸展到现代密码学的各个分支,成为现代密码的一个重要理论基础.当然它过去和今后的发展与现代密码的迅猛发展是分不开的.由于解决秘密钥密码系统中密钥管理和分配出现的复杂问题,公钥密码系统大大发展起来.在信息理论密码学中,也提出了一些在公开信道上进行保密通信的模型.研究不用密钥或用很短的密钥在公开信道上建立密钥协议和保密通信的模型和方法是应用的需要.可望有更多的这类模型和方法问世.采用随机化方法来换取密钥达到保密的加强也是一个途径.它的代价是增加传送数据.这方面的研究也将取得更多成果,认证理论和认证码,密钥共享是当前研究的热点.可望在信息理论上有更多进展,另一个动向是信息论方法与复杂性理论的结合.除了第十节提到的结合方式外,研究新的基于复杂性理论的不定性度量作为安全性度量也是一种结合方式.例如Yao的有效熵就是这种度量.另一方面信息理论密码学的发展与信息论编码理论的发展也是分不开的.近年来在信息论和编码理论方面有许多新成果,如任意变化多用户信道,信道辨识码,磁记录信道及其编码,Turbo码,Galois环上的码等.这些新成果可望应用于密码研究.当然对本文前面各节提出的研究问题也将会不断取得新的进展.综上所述,信息理论密码学是一个富有生命力和有很大发展前途的学科.

密码学的发展历史与在战争中的应用

密码学的发展历史与在战争中的应用 摘要:本文分为两部分,一部分阐述了密码学的发展历史,分别介绍了古代加密方法、古典密码和近代密码,对不同阶段分别进行了详细的介绍,其中的许多方法至今沿用,对古代人们对密码学的应用进行了举例说明。另一部分介绍了密码学在战争的应用案例,通过甲午战争、抗日战争等说明了密码学在战争中的重要作用。 密码学包括密码编制学和密码分析学这两个相互独立又相互依存的分支。从其发展来看,可分为古典密码——以字符为基本加密单元的密码,以及现代密码——以信息块为基本加密单元的密码。 密码学的发展大致经过了三个历史阶段:古代加密方法、古典密码和近代密码。 古代加密方法(手工阶段) 存于石刻或史书中的记载表明许多古代文明,包括埃及人、希伯来人、亚述人都在实践中逐步发明了密码系统。从某种意义上说,战争是科学技术进步的催化剂。人类自从有了战争,就面临着通信安全的需求, 密码作为一种技术源远流长。 古代加密方法大约起源于公元前440年出现在古希腊战争中的隐写术。当时为了安全的传送军事情报,奴隶主剃光奴隶的头发,将情报写在努力的光头上,待头发长起后将奴隶送到另一个部落,再次剃光头发,原有的信息复现出来,从而实现这两个部落的秘密通信。 我国古代也早有以藏头诗、藏尾诗、漏格诗以及回话等形式,将要表达的真正意思或“密语”隐藏在诗文或画卷中特定位置的记载,一般人只注意诗或画的表面意境,而不去注意或难于发现隐藏在其中的“话外之音”。

由上可见,自从有了文字和书写以来,为了某种需要人们总是尽力隐藏书面形式的信息,以起到摆正信息安全的目的。这些古代加密方法体现了后来发展起来的密码学的若干要素,但是只能限制在一定范围内(只知道保密构造方法的人)使用。 古代加密方法主要基于手工的方式实现,因此,称为密码学发展的手工阶段。以今天的眼光来看,古代加密方法通常原理简单、变化量小、时效性较差。 古典密码(机械阶段) 古典密码的加密方法一般是文字置换,使用手工或机械变换的方式实现。古典密码系统已经初步体现出近代密码系统的雏形,他比古代加密方法更复杂,但其变化量仍然比较小。古典密码的代表密码体制主要有:单表代替密码、多表代替密码以及转轮密码。 阿拉伯人是第一个清晰的理解密码学原理的人,他们设计并且使用代替和换位加密,并且发现了密码分析中的字母频率分布关系。 欧洲的密码学起源于中世纪的罗马和意大利。到了1986年,密码系统在外交通信中已得到普遍适用,且已成为类似应用中的宠儿。当时,密码系统主要用于军事通信,如在美国国内战争期间,联邦军广泛的使用换位加密;联合军密码分析人员破译了截获的大部分联邦军密码,处于绝望中的联邦军有时在报纸上公布联合军的密码,请求读者帮助分析。 到了20世纪20年代,随着机械和机电技术的成熟,以及电报和无线电需求的出现,引起了密码设备方面的一场革命——发明了轮转

国内外分组密码理论与技术的研究现状及发展趋势

国内外分组密码理论与技术的研究现状及发展趋势 1 引言 密码(学)技术是信息安全技术的核心,主要由密码编码技术 和密码分析技术两个分支组成。密码编码技术的主要任务是寻求产 生安全性高的有效密码算法和协议,以满足对数据和信息进行加密 或认证的要求。密码分析技术的主要任务是破译密码或伪造认证信 息,实现窃取机密信息或进行诈骗破坏活动。这两个分支既相互对 立又相互依存,正是由于这种对立统一的关系,才推动了密码学自 身的发展[6]。目前人们将密码(学)理论与技术分成了两大类, 一类是基于数学的密码理论与技术,包括分组密码、序列密码、公 钥密码、认证码、数字签名、Hash函数、身份识别、密钥管理、 PKI技术、VPN技术等等,另一类是非数学的密码理论与技术,包括 信息隐藏、量子密码、基于生物特征的识别理论与技术等。 在密码(学)技术中,数据加密技术是核心。根据数据加密所 使用的密钥特点可将数据加密技术分成两种体制,一种是基于单密 钥的对称加密体制(传统加密体制),包括分组密码与序列密码, 另一类是基于双密钥的公钥加密体制。本文主要探讨和分析分组密 码研究的现状及其发展趋势。 2 国内外分组密码研究的现状 2.1 国内外主要的分组密码 美国早在1977年就制定了本国的数据加密标准,即DES。随着 DES的出现,人们对分组密码展开了深入的研究和讨论,已有大量 的分组密码[1,6],如DES的各种变形、IDEA算法、SAFER系列算 法、RC系列算法、Skipjack算法、FEAL系列算法、REDOC系列算 法、CAST系列算法以及Khufu,Khafre,MMB,3- WAY,TEA,MacGuffin,SHARK,BEAR,LION,CA.1.1,CRAB,Blowfish,GOST,SQUA 算法和AES15种候选算法(第一轮),另有NESSIE17种候选算法 (第一轮)等。 2.2 分组密码的分析 在分组密码设计技术不断发展的同时,分组密码分析技术也得 到了空前的发展。有很多分组密码分析技术被开发出来,如强力攻 击(穷尽密钥搜索攻击、字典攻击、查表攻击、时间存储权衡攻 击)、差分密码分析、差分密码分析的推广(截段差分密码分析、 高阶差分密码分析、不可能差分密码分析)、线性密码分析、线性 密码分析的推广(多重线性密码分析、非线性密码分析、划分密码 分析)、差分线性密码分析、插值攻击、密钥相关攻击、能量分 析、错误攻击、定时攻击等等。 其中,穷尽密钥搜索攻击是一种与计算技术密不可分的补素密码分 析技术,也是最常用的一种密码分析技术。通过这种技术,可以破 译DES的算法。在DES最初公布的时候,人们就认为这种算法的密钥 太短(仅为56bit),抵抗不住穷尽密钥搜索的攻击。因此,1997 年1月28日,美国colorado的程序员Verser从1997年3月13日起, 在Internet上数万名志愿者的协同下,用96天的时间,于1997年6

密码学

密码学 ——信息战中的一把利剑 中文摘要:密码技术是保障信息安全的核心技术。密码学是在编码与破译的斗争实践中逐步发展起来的,并随着先进科学技术的应用,已成为一门综合性的尖端技术科学。Abstract:Cryptographic techniques to protect the information security of the core technology. Cryptography is the practice of encoding and decoding of the struggle gradually developed, and along with the application of advanced science and technology has become a comprehensive cutting-edge technological sciences. 中文关键字:密码学密码技术信息安全 Keyword:Cryptology Crytography Security 第一章引言 密码学是研究编制密码和破译密码的技术科学。研究密码变化的客观规律,应用于编制密码以保守通信秘密的,称为编码学;应用于破译密码以获取通信情报的,称为破译学,总称密码学。 一般来讲,信息安全主要包括系统安全及数据安全两方面的内容。系统安全一般采用防火墙、病毒查杀、防范等被动措施;而数据安全则主要是指采用现代密码技术对数据进行主动保护,如数据保密、数据完整性、数据不可否认与抵赖、双向身份认证等。 密码技术是保障信息安全的核心技术。密码技术在古代就已经得到应用,但仅限于外交和军事等重要领域。随着现代计算机技术的飞速发展,密码技术正在不断向更多其他领域渗透。它是集数学、计算机科学、电子与通信等诸多学科于一身的交叉学科。密码技术不仅能够保证机密性信息的加密,而且完成数字签名、身份验证、系统安全等功能。所以,使用密码技术不仅可以保证信息的机密性,而且可以保证信息的完整性和确证性,防止信息被篡改、伪造和假冒。 密码是通信双方按约定的法则进行信息特殊变换的一种重要保密手段。依照这些法则,变明文为密文,称为加密变换;变密文为明文,称为脱密变换。密码在早期仅对文字或数码进行加、脱密变换,随着通信技术的发展,对语音、图像、数据等都可实施加、脱密变换。 密码学是在编码与破译的斗争实践中逐步发展起来的,并随着先进科学技术的应用,已成为一门综合性的尖端技术科学。它与语言学、数学、电子学、声学、信息论、计算机科学等有着广泛而密切的联系。它的现实研究成果,特别是各国政府现用的密码编制及破译手段都具有高度的机密性。

现代密码学 学习心得

混合离散对数及安全认证 摘要:近二十年来,电子认证成为一个重要的研究领域。其第一个应用就是对数字文档进行数字签名,其后Chaum希望利用银行认证和用户的匿名性这一性质产生电子货币,于是他提出盲签名的概念。 对于所有的这些问题以及其他的在线认证,零知识证明理论成为一个非常强有力的工具。虽然其具有很高的安全性,却导致高负荷运算。最近发现信息不可分辨性是一个可以兼顾安全和效率的性质。 本文研究混合系数的离散对数问题,也即信息不可识别性。我们提供一种新的认证,这种认证比因式分解有更好的安全性,而且从证明者角度看来有更高的效率。我们也降低了对Schnorr方案变形的实际安全参数的Girault的证明的花销。最后,基于信息不可识别性,我们得到一个安全性与因式分解相同的盲签名。 1.概述 在密码学中,可证明为安全的方案是一直以来都在追求的一个重要目标。然而,效率一直就是一个难以实现的属性。即使在现在对于认证已经进行了广泛的研究,还是很少有方案能兼顾效率和安全性。其原因就是零知识协议的广泛应用。 身份识别:关于识别方案的第一篇理论性的论文就是关于零知识的,零知识理论使得不用泄漏关于消息的任何信息,就可以证明自己知道这个消息。然而这样一种能够抵抗主动攻击的属性,通常需要许多次迭代来得到较高的安全性,从而使得协议或者在计算方面,或者在通信量方面或者在两个方面效率都十分低下。最近,poupard和stern提出了一个比较高效的方案,其安全性等价于离散对数问题。然而,其约减的代价太高,使得其不适用于现实中的问题。 几年以前,fiege和shamir就定义了比零知识更弱的属性,即“信息隐藏”和“信息不可分辨”属性,它们对于安全的识别协议来说已经够用了。说它们比零知识更弱是指它们可能会泄漏秘密消息的某些信息,但是还不足以找到消息。具体一点来说,对于“信息隐藏”属性,如果一个攻击者能够通过一个一次主动攻击发现秘密消息,她不是通过与证明者的交互来发现它的。而对于“信息不可分辨”属性,则意味着在攻击者方面看来,证据所用的私钥是不受约束的。也就是说有许多的私钥对应于一个公钥,证据仅仅传递了有这样一个私钥被使用了这样一个信息,但是用的是哪个私钥,并没有在证据传递的信息中出现。下面,我们集中考虑后一种属性,它能够提供一种三次传递识别方案并且对抗主动攻击。Okamoto 描述了一些schnorr和guillou-quisquater识别方案的变种,是基于RSA假设和离散对数子群中的素数阶的。 随机oracle模型:最近几年,随机oracle模型极大的推动了研究的发展,它能够用来证明高效方案的安全性,为设计者提供了一个有价值的工具。这个模型中理想化了一些具体的密码学模型,例如哈希函数被假设为真正的随机函数,有助于给某些加密方案和数字签名等提供安全性的证据。尽管在最近的报告中对于随机oracle模型采取了谨慎的态度,但是它仍然被普遍认为非常的有效被广泛的应用着。例如,在这个模型中被证明安全的OAPE加密

(完整版)密码学学习心得

密码学认识与总结 专业班级信息112 学号201112030223 姓名李延召报告日期. 在我们的生活中有许多的秘密和隐私,我们不想让其他人知道,更不想让他们去广泛传播或者使用。对于我们来说,这些私密是至关重要的,它记载了我们个人的重要信息,其他人不需要知道,也没有必要知道。为了防止秘密泄露,我们当然就会设置密码,保护我们的信息安全。更有甚者去设置密保,以防密码丢失后能够及时找回。密码”一词对人们来说并不陌生,人们可以举出许多有关使用密码的例子。现代的密码已经比古代有了长远的发展,并逐渐形成一门科学,吸引着越来越多的人们为之奋斗。 一、密码学的定义 密码学是研究信息加密、解密和破密的科学,含密码编码学和密码分析学。 密码技术是信息安全的核心技术。随着现代计算机技术的飞速发展,密码技术正在不断向更多其他领域渗透。它是集数学、计算机科学、电子与通信等诸多学科于一身的交叉学科。使用密码技术不仅可以保证信息的机密性,而且可以保证信息的完整性和确证性,防止信息被篡改、伪造和假冒。目前密码的核心课题主要是在结合具体的网络环境、提高运算效率的基础上,针对各种主动攻击行为,研究各种可证安全体制。 密码学的加密技术使得即使敏感信息被窃取,窃取者也无法获取信息的内容;认证性可以实体身份的验证。以上思想是密码技术在信息安全方面所起作用的具体表现。密码学是保障信息安全的核心;密码技术是保护信息安全的主要手段。 本文主要讲述了密码的基本原理,设计思路,分析方法以及密码学的最新研究进展等内容 密码学主要包括两个分支,即密码编码学和密码分析学。密码编码学对信息进行编码以实现信息隐藏,其主要目的是寻求保护信息保密性和认证性的方法;密码分析学是研究分析破译密码的学科,其主要目的是研究加密消息的破译和消息的伪造。密码技术的基本思想是对消息做秘密变换,变换的算法即称为密码算法。密码编码学主要研究对信息进行变换,以保护信息在传递过程中不被敌方窃取、解读和利用的方法,而密码分析学则于密码编码学相反,它主要研究如何分析和破译密码。这两者之间既相互对立又相互促进。密码的基本思想是对机密信

国内外密码学发展现状

国内外密码学发展现状 简述国内外密码学发展现状 一、近年来我国本学科的主要进展 我国近几年在密码学领域取得了长足进展,下面我们将从最新理论与技术、最新成果应用和学术建制三个方面加以回顾和总结。 (一)最新理论与技术研究进展 我国学者在密码学方面的最新研究进展主要表现在以下几个方面。 (1)序列密码方面,我国学者很早就开始了研究工作,其中有两个成果值得一提:1、多维连分式理论,并用此理论解决了多重序列中的若干重要基础问题和国际上的一系列难题。2、20世纪80年代,我国学者曾肯成提出了环导出序列这一原创性工作,之后戚文峰教授领导的团队在环上本原序列压缩保裔性方面又取得了一系列重要进展。 (2)分组密码方面,我国许多学者取得了重要的研究成果。吴文玲研究员领导的团队在分组密码分析方面做出了突出贡献,其中对NESSIE工程的候选密码算法NUSH的分析结果直接导致其在遴选中被淘汰;对AES、Camellia、SMA4等密码算法做出了全方位多角度的分析,攻击轮数屡次刷新世界纪录。 (3)Hash函数(又称杂凑函数)方面,我国学者取得了一批国际领先的科研成果,尤其是王小云教授领导的团队在Hash函数的安全性分析方面做出了创新性贡献:建立了一系列杂凑函数破解的基本理论,并对多种Hash函数首次给出有效碰撞攻击和原像攻击。 (4)密码协议方面,我国学者的成果在国际上产生了一定的影响,其中最为突出的是在重置零知识方面的研究:构造了新工具,解决了国际收那个的两个重要的猜想。

(5)PKI技术领域,我国学者取得了长足的发展,尤其是冯登国教授领导的团队做出了重要贡献:构建了具有自主知识产权的PKI模型框架,提出了双层式秘密分享的入侵容忍证书认证机构(CA),提出了PKI实体的概念,形成了多项国家标准。该项成果获得2005年国家科技进步二等奖。 (6)量子密码方面,我国学者在诱骗态量子密码和量子避错码等方面做出了开创性工作;在协议的设计和分析方面也提出了大量建设性意见。 (7)实验方面,主要有郭光灿院士领导的团队和潘建伟教授领导的团队取得了 一些令人瞩目的成绩,其中的“量子政务网”和“量子电话网”均属世界首创。 (二)最新成果应用进展 2009年是我国《商用密码管理条例》发布实施10周年。10年来我国的商用密码取得了长足发展。尤其值得一提的是可信计算和WAPI方面的密码应用。 (1)通过在可信计算领域中的密码应用推广,推出了我国自主的《可信计算密码支撑平台功能与接口规范》,大大提升了我国密码算法的应用水平和密码芯片的设计和研制水平。 (2)我国自主研发的宽带无线网络WAPI安全技术,弥补了同类国际标准的安全缺陷,形成并颁布了两项国家标准;其中的加密算法采用了自主研发的分组密码算法SMS4。该成果2005年获得国家发明二等奖。 二、密码学的发展趋势和展望 (1)密码的标准化趋势。密码标准是密码理论与技术发展的结晶和原动力,像AES、NESSE、eSTREAM和SHA 3等计划都大大推动了密码学的研究。 (2)密码的公理化趋势。追求算法的可证明安全性是目前的时尚,密码协议的形式化分析方法、可证明安全性理论、安全多方计算理论和零知识证明协议等仍将是密码协议研究的主流方向。

关于密码学的发展和一些常见的加密算法

关于密码学的发展和一些常见的加密算法 1.悠久迷人的密码史话——密码学和密码 前言: 密码学(Cryptology,来源于希腊语kryptos和graphein,即隐藏和书写的意思)这门科学,或者说这门艺术,通常被分为两个部分,密码学(Cryptography)的任务是构建更为隐秘而且有效的密码,或者说加密方式;而与之相对应,密码分析学(Crypanalysis)则是研究已有的加密法的弱点,在没有密钥的情况下将密文还原成为明文。这两种科学相互依靠而不能分割,密码学家(Cryptologist)需要研习密码学来掌握加密方式,以便更好地解密;同样需要了解密码分析学,以判定自己密码的安全性高低。有一句话说的很好:“密码是两个天才的较量,败者将耗尽智慧而死。” 密码学产生的根本原因在于人们想要传递一些只有我们允许的接受者才能接受并理解的信息。被隐藏的真实信息称为明文(Plaintext),明文通过加密法(Cipher)变为密文(Ciphertext),这个过程被称为加密(Encryption),通过一个密钥(Key)控制。密文在阅读时需要解密(Decryption),同样需要密钥,这个过程由密码员(Cryptographer)完成。但是密码的传递并非绝对安全,可能有未得到允许的人员得到密文,并且凭借他们的耐心和智慧(我们通常假定他们有足够的时间和智慧),在没有密钥的情况下得到明文,这种方法称为破解(Break)。通常使用的加密方法有编码法(Code)和加密法(Cipher),编码法是指用字,短语和数字来替代明文,生成的密文称为码文(Codetext),编码法不需要密钥或是算法,但是需要一个编码簿(Codebook),编码簿内是所有明文与密文的对照表;而加密法则是使用算法和密钥。另外一种较常用的方法是夹带加密法(Steganography),顾名思义,它是将密文以隐藏的方式传递的,比如图画或是其它消息中,或是使用隐形墨水,在计算机能够进行图象和其它信息的处理之后,这种方法更是有了极大的发展空间。 密码的历史十分悠久。大约在4000年以前,在古埃及的尼罗河畔,一位擅长书写者在贵族的基碑上书写铭文时有意用加以变形的象形文字而不是普通的象形文字来写铭文,从而揭开了有文字记载的密码史。 公元前5世纪,古斯巴达人使用了一种叫做“天书”的器械,这是人类历史上最早使用的密码器械。“天书”是一根用草纸条、皮条或羊皮纸条紧紧缠绕的木棍。密信自上而下写在羊皮纸条上。然后把羊皮纸条解开送出。这些不连接的文字毫无意义,除非把羊皮纸条重新缠在一根直径和原木棍相同的木棍上,这样字就一圈圈跳出来,形成那封信。 公元前4世纪前后,希腊著名作家艾奈阿斯在其著作《城市防卫论》中就曾提到一种被称为“艾奈阿斯绳结”的密码。它的作法是从绳子的一端开始,每隔一段距离打一个绳结,而绳结之间距离不等,不同的距离表达不同的字母。按此规定把绳子上所有绳结的距离按顺序记录下来,并换成字母,就可理解它所传递的信息。 古罗马时代曾使用过一种“代替式密码”,把信中每个文字的字母都用字母顺序表中相隔两位后的一个字母取代,这种代替式密码直到第二次大战时还被日本海军使用。 此外,在古代还出现过一种被称为“叠痕法”的密码,使用时先把信纸折叠几下(上下及左右),然后铺平信纸,将传递的信息按顺序一个个分开,写在折

现代密码学课后题答案

《现代密码学习题》答案 第一章 判断题 ×√√√√×√√ 选择题 1、1949年,( A )发表题为《保密系统的通信理论》的文章,为密码系统建立了理论基础,从此密码学成了一门科学。 A、Shannon B、Diffie C、Hellman D、Shamir 2、一个密码系统至少由明文、密文、加密算法、解密算法和密钥5部分组成,而其安全性是由( D)决定的。 A、加密算法 B、解密算法 C、加解密算法 D、密钥 3、计算和估计出破译密码系统的计算量下限,利用已有的最好方法破译它的所需要的代价超出了破译者的破译能力(如时间、空间、资金等资源),那么该密码系统的安全性是( B )。 A无条件安全B计算安全C可证明安全D实际安全 4、根据密码分析者所掌握的分析资料的不通,密码分析一般可分为4类:唯密文攻击、已知明文攻击、选择明文攻击、选择密文攻击,其中破译难度最大的是( D )。 A、唯密文攻击 B、已知明文攻击 C、选择明文攻击 D、选择密文攻击 填空题: 5、1976年,和在密码学的新方向一文中提出了公开密钥密码的思想,从而开创了现代密码学的新领域。 6、密码学的发展过程中,两个质的飞跃分别指 1949年香农发表的保密系统的通信理论和公钥密码思想。 7、密码学是研究信息寄信息系统安全的科学,密码学又分为密码编码学和密码分析学。 8、一个保密系统一般是明文、密文、密钥、加密算法、解密算法 5部分组成的。 9、密码体制是指实现加密和解密功能的密码方案,从使用密钥策略上,可分为对称和非对称。 10、对称密码体制又称为秘密密钥密码体制,它包括分组密码和序列密码。 第二章 判断题: ×√√√ 选择题: 1、字母频率分析法对(B )算法最有效。 A、置换密码 B、单表代换密码 C、多表代换密码 D、序列密码 2、(D)算法抵抗频率分析攻击能力最强,而对已知明文攻击最弱。 A仿射密码B维吉利亚密码C轮转密码D希尔密码

国内外密码理论与技术研究现状及发展趋势

国内外密码理论与技术研究现状及发展趋势 一、国外密码技术现状 密码理论与技术主要包括两部分,即基于数学的密码理论与技术(包括公钥密码、分组密码、序列密码、认证码、数字签名、Hash函数、身份识别、密钥管理、PKI技术等)和非数学的密码理论与技术(包括信息隐形,量子密码,基于生物特征的识别理论与技术)。 自从1976年公钥密码的思想提出以来,国际上已经提出了许多种公钥密码体制,但比较流行的主要有两类:一类是基于大整数因子分解问题的,其中最典型的代表是RSA;另一类是基于离散对数问题的,比如ElGamal公钥密码和影响比较大的椭圆曲线公钥密码。由于分解大整数的能力日益增强,所以对RSA的安全带来了一定的威胁。目前768比特模长的RSA已不安全。一般建议使用1024比特模长,预计要保证20年的安全就要选择1280比特的模长,增大模长带来了实现上的难度。而基于离散对数问题的公钥密码在目前技术下512比特模长就能够保证其安全性。特别是椭圆曲线上的离散对数的计算要比有限域上的离散对数的计算更困难,目前技术下只需要160比特模长即可,适合于智能卡的实现,因而受到国内外学者的广泛关注。国际上制定了椭圆曲线公钥密码标准IEEEP1363,RSA等一些公司声称他们已开发出了符合该标准的椭圆曲线公钥密码。我国学者也提出了一些公钥密码,另外在公钥密码的快速实现方面也做了一定的工作,比如在RSA的快速实现和椭圆曲线公钥密码的快速实现方面都有所突破。公钥密码的快速实现是当前公钥密码研究中的一个热点,包括算法优化和程序优化。另一个人们所关注的问题是椭圆曲线公钥密码的安全性论证问题。 公钥密码主要用于数字签名和密钥分配。当然,数字签名和密钥分配都有自己的研究体系,形成了各自的理论框架。目前数字签名的研究内容非常丰富,包括普通签名和特殊签名。特殊签名有盲签名,代理签名,群签名,不可否认签名,公平盲签名,门限签名,具有消息恢复功能的签名等,它与具体应用环境密切相关。显然,数字签名的应用涉及到法律问题,美国联邦政府基于有限域上的离散对数问题制定了自己的数字签名标准(DSS),部分州已制定了数字签

现代密码学教程课后部分答案考试比用

第一章 1、1949年,(A )发表题为《保密系统的通信理论》的文章,为密码系统建立了理论基础,从此密码学成了一门科学。 A、Shannon B、Diffie C、Hellman D、Shamir 2、一个密码系统至少由明文、密文、加密算法、解密算法和密钥5部分组成,而其安全性是由(D)决定的。 A、加密算法 B、解密算法 C、加解密算法 D、密钥 3、计算和估计出破译密码系统的计算量下限,利用已有的最好方法破译它的所需要的代价超出了破译者的破译能力(如时间、空间、资金等资源),那么该密码系统的安全性是(B )。 A无条件安全B计算安全C可证明安全D实际安全 4、根据密码分析者所掌握的分析资料的不同,密码分析一般可分为4类:唯密文攻击、已知明文攻击、选择明文攻击、选择密文攻击,其中破译难度最大的是(D )。 A、唯密文攻击 B、已知明文攻击 C、选择明文攻击 D、选择密文攻击 5、1976年,W.Diffie和M.Hellman在密码学的新方向一文中提出了公开密钥密码的思想,从而开创了现代密码学的新领域。 6、密码学的发展过程中,两个质的飞跃分别指1949年香农发表的保密系统的通信理论和公钥密码思想。 7、密码学是研究信息及信息系统安全的科学,密码学又分为密码编码学和密码分析学。 8、一个保密系统一般是明文、密文、密钥、加密算法、解密算法5部分组成的。 9、密码体制是指实现加密和解密功能的密码方案,从使用密钥策略上,可分为对称和非对称。 10、对称密码体制又称为秘密密钥密码体制,它包括分组密码和序列密码。 第二章 1、字母频率分析法对(B )算法最有效。 A、置换密码 B、单表代换密码 C、多表代换密码 D、序列密码 2、(D)算法抵抗频率分析攻击能力最强,而对已知明文攻击最弱。 A仿射密码B维吉利亚密码C轮转密码D希尔密码 3、重合指数法对(C)算法的破解最有效。 A置换密码B单表代换密码C多表代换密码D序列密码 4、维吉利亚密码是古典密码体制比较有代表性的一种密码,其密码体制采用的是(C )。 A置换密码B单表代换密码C多表代换密码D序列密码 5、在1949年香农发表《保密系统的通信理论》之前,密码学算法主要通过字符间的简单置换和代换实现,一般认为这些密码体制属于传统密码学范畴。 6、传统密码体制主要有两种,分别是指置换密码和代换密码。 7、置换密码又叫换位密码,最常见的置换密码有列置换和周期转置换密码。 8、代换是传统密码体制中最基本的处理技巧,按照一个明文字母是否总是被一个固定的字母代替进行划分,代换密码主要分为两类:单表代换和多表代换密码。 9、一个有6个转轮密码机是一个周期长度为26 的6次方的多表代替密码机械装置。 第四章 1、在( C )年,美国国家标准局把IBM的Tuchman-Meyer方案确定数据加密标准,即DES。 A、1949 B、1972 C、1977 D、2001 2、密码学历史上第一个广泛应用于商用数据保密的密码算法是(B )。 A、AES B、DES C、IDEA D、RC6 3、在DES算法中,如果给定初始密钥K,经子密钥产生的各个子密钥都相同,则称该密钥K为弱密钥,DES算法弱密钥的个数为(B )。 A、2 B、4 C、8 D、16

密码学及其研究现状(2014年)

密码学及其研究现状(2014年) {摘要}: 密码系统的两个基本要素是加密算法和密钥管理。加密算法是一些公式和法则,它规定了明文和密文之间的变换方法。由于密码系统的反复使用,仅靠加密算法已难以保证信息的安全了。事实上,加密信息的安全可靠依赖于密钥系统,密钥是控制加密算法和解密算法的关键信息,它的产生、传输、存储等工作是十分重要的。{关键词}:密码技术安全网络密匙管理 密码技术是信息安全的核心技术。如今,计算机网络环境下信息的保密性、完 整性、可用性和抗抵赖性,都需要采用密码技术来解决。密码体制大体分为对称密 码(又称为私钥密码)和非对称密码(又称为公钥密码)两种。公钥密码在信息安全中 担负起密钥协商、数字签名、消息认证等重要角色,已成为最核心的密码。 密码是通信双方按约定的法则进行信息特殊变换的一种重要保密手段。依照这 些法则,变明文为密文,称为加密变换;变密文为明文,称为脱密变换。密码在早 期仅对文字或数码进行加、脱密变换,随着通信技术的发展,对语音、图像、数据 等都可实施加、脱密变换。 密码学是在编码与破译的斗争实践中逐步发展起来的,并随着先进科学技术的 应用,已成为一门综合性的尖端技术科学。它与语言学、数学、电子学、声学、信 息论、计算机科学等有着广泛而密切的联系。它的现实研究成果,特别是各国政府 现用的密码编制及破译手段都具有高度的机密性。 进行明密变换的法则,称为密码的体制。指示这种变换的参数,称为密钥。它 们是密码编制的重要组成部分。密码体制的基本类型可以分为四种:错乱--按照 规定的图形和线路,改变明文字母或数码等的位置成为密文;代替--用一个或多 个代替表将明文字母或数码等代替为密文;密本--用预先编定的字母或数字密码 组,代替一定的词组单词等变明文为密文;加乱--用有限元素组成的一串序列作 为乱数,按规定的算法,同明文序列相结合变成密文。以上四种密码体制,既可单 独使用,也可混合使用,以编制出各种复杂度很高的实用密码。 当前,公钥密码的安全性概念已经被大大扩展了。像著名的RSA公钥密码算法、 Rabin公钥密码算法和ElGamal公钥密码算法都已经得到了广泛应用。但是,有些公

密码学发展史

密码学发展简史 学院:数学与统计学院专业:信息与计算科学学生:卢富毓学号:20101910072 密码是什么?什么是密码学? 信息泛指人类社会传播的一切内容。人通过获得、识别自然界和社会的不同信息来区别不同事物,得以认识和改造世界。而密码便是对信息进行隐藏的一种手段。它既是一种工具又是一门艺术。 《破译者》一书说:“人类使用密码的历史几乎与使用文字的时间一样长。”因为自从有了文字以来,人们为了某种需要总是想方设法隐藏某些信息,以起到保证信息安全的目的。人们最早为了包通信的机密,通过一些图形或文字互相传达信息的密令。连闯荡江湖的侠士和被压迫起义者各自有一套秘密的黑道行话和地下联络的暗语。 而在今天信息泛滥的计算机世界里,如何保护好自己的重要信息不被泄露,保护自己的通讯不被窃听等一系列与信息有关的内容中,同样需要一个较好的密码协议来完成对信息的私密化!可以看出密码学在不同的时代里有着不同的诠释。 所以密码学是一门既古老又新兴的学科。 古典密码学 密码学大致可以分为五个时期: 1、第一阶段从古代到1949,这一时期称为古典密码时期,密码学可以 说是一门艺术,而不是一种学科。(发展缓慢) 2、第二阶段是从1949年到1976年,这一时期,由香浓发表的“保密系 统的信息理论”一文产生了信息论,信息论为对称密码系统建立了理论基础,从此密码学成为一门学科。 3、第三个阶段是从1976年到1984年。1976年Diffie和Hellman发表了 《密码学新方向》一文,从而导致了密码学上的一场革命。他们首次证明了发送端和接收端无密钥传输的保密通讯是可能的,从而开创了公钥密码学的新纪元。 4、第四个阶段是从1984年至今,1984年Goldwasser和Micali首次提出 了证明安全的思想。他们讲概率论中的东西引入到密码学,在计算复杂度理论假设下,安全性是可以证明的。 5、第五个阶段,这是我个人认为有必要写出来的——两字密码学时期: 当量子计算机大量的投入使用后,可以预见好多目前主流的加密算法将不再实用,新的方案新的体系将被人们发现利用。 公元前400年,斯巴达人就发明了“塞塔式密码”,即把长条纸螺旋形地斜绕在一个多棱棒上,将文字沿棒的水平方向从左到右书写,写一个字旋转一下,写完一行再另起一行从左到右写,直到写完。解下来后,纸条上的文字消息杂乱无章、无法理解,这就是密文,但将它绕在另一个同等尺寸的棒子上后,就能看到原始的消息。这是最早的密码技术。

密码学论文

通过这个学期对应用密码学的学习,我深刻地体会到应用密码学的魅力,也认识到随着科学的发展,密码学越来越成为一个国家不可缺少的一项科学技术。密码学是研究编制密码和破译密码的技术科学。研究密码变化的客观规律,应用于编制密码以保守通信秘密的,称为编码学;应用于破译密码以获取通信情报的,称为破译学,总称密码学。 密码是通信双方按约定的法则进行信息特殊变换的一种重要保密手段。依照这些法则,变明文为密文,称为加密变换;变密文为明文,称为脱密变换。密码在早期仅对文字或数码进行加、脱密变换,随着通信技术的发展,对语音、图像、数据等都可实施加、脱密变换。密码学是在编码与破译的斗争实践中逐步发展起来的,并随着先进科学技术的应用,已成为一门综合性的尖端技术科学。它与语言学、数学、电子学、声学、信息论、计算机科学等有着广泛而密切的联系。它的现实研究成果,特别是各国政府现用的密码编制及破译手段都具有高度的机密性。 密码学主要经历了三个阶段:古代加密方法、古代密码和近代密码。首先,古代加密方法处于手工阶段,其源于应用的无穷需求总是来推动技术发明和进步的直接动力。存于石刻或史书中的记载表明,许多古代文明,包括埃及人、希伯来人、亚述人都在实践中逐步发明了密码系统。从某种意义上说,战争是科学技术进步的催化剂。人类自从有了战争,就面临着通信安全的需求,密码技术源远流长。古代加密方法大约起源于公元前440年出现在古希腊战争中的隐写术。当时为了安全传送军事情报,奴隶主剃光奴隶的头发,将情报写在奴隶的光头上,待头发长长后将奴隶送到另一个部落,再次剃光头发,原有的信息复现出来,从而实现这两个部落之间的秘密通信。公元前 400 年,斯巴达人就发明了“塞塔式密码” ,即把长条纸螺旋形地斜绕在一个多棱棒上,将文字沿棒的水平方向从左到右书写,写一个字旋转一下,写完一行再另起一行从左到右写,直到写完。解下来后,纸条上的文字消息杂乱无章、无法理解,这就是密文,但将它绕在另一个同等尺寸的棒子上后,就能看到原始的消息。这是最早的密码技术。我国古代也早有以藏头诗、藏尾诗、漏格诗及绘画等形式,将要表达的真正意思或“密语” 隐藏在诗文或画卷中特定位置的记载,一般人只注意诗或画的表面意境,而不会去注意或很难发现隐藏其中的“话外之音” 。比如:我画蓝江水悠悠,爱晚亭枫叶愁。秋月溶溶照佛寺,香烟袅袅绕轻楼其次是古典密码(机械阶段),古典密码的加密方法一般是文字置换,使用手工或机械变换的方式实现。古典密码系统已经初步体现出近代密码系统的雏形,它比古代加密方法复杂,其变化较小。古典密码的代表密码体制主要有:单表代替密码、多表代替密码及转轮密码。最后是近代密码,这是计算机阶段,密码形成一门新的学科是在 20 世纪 70 年代,这是受计算机科学蓬勃发展刺激和推动的结果。快速电子计算机和现代数学方法一方面为加密技术提供了新的概念和工具,另一方面也给破译者提供了下伪装:加密者对需要进行伪装机密信息(明文)进行伪装进行变换(加密变换),得到另外一种看起来似乎与原有信息不相关的表示(密文),如果合法者(接收者)获得了伪装后的信息,那么他可以通过事先约定的密钥,从得到的信息中分析得到原有的机密信息(解密变换),而如果不合法的用户(密码分析者)试图从这种伪装后信息中分析得到原有的机密信息,那么,要么这种分析过程根本是不可能的,要么代价过于巨大,以至于无法进行。 在计算机出现以前,密码学的算法主要是通过字符之间代替或易位实现的,我们称这些密码体制为古典密码。其中包括:易位密码、代替密码(单表代替密码、多表代替密码等)。这些密码算法大都十分简单,现在已经很少在实际应用中使用了。由于密码学是涉及数学、通讯、计算机等相关学科的知识,就我们现有的知识水平而言,只能初步研究古典密码学的基本原理和方法。但是对古典密码学的研究,对于理解、构造和分析现代实用的密码都是很有帮助。然后是古典密码学的基础运用:从密码学发展历程来看,可分为古典密码(以字符为基本加密单元的密码)以及现代密码(以信息块为基本加密单元的密码)两类。凯

现代密码学小论文

目录 现代密码学的认识与应用 (1) 一、密码学的发展历程 (1) 二、应用场景 (1) 2.1 Hash函数 (1) 2.2应用场景分析 (2) 2.2.1 Base64 (2) 2.2.2 加“盐” (2) 2.2.3 MD5加密 (2) 2.3参照改进 (3) 2.3.1 MD5+“盐” (3) 2.3.2 MD5+HMAC (3) 2.3.3 MD5 +HMAC+“盐” (3) 三、总结 (4)

现代密码学的认识与应用 一、密码学的发展历程 密码学的起源的确要追溯到人类刚刚出现,并且尝试去学习如何通信的时候,为了确保他们的通信的机密,最先是有意识的使用一些简单的方法来加密信息,通过一些(密码)象形文字相互传达信息。接着由于文字的出现和使用,确保通信的机密性就成为一种艺术,古代发明了不少加密信息和传达信息的方法。 事实上,密码学真正成为科学是在19世纪末和20世纪初期,由于军事、数学、通讯等相关技术的发展,特别是两次世界大战中对军事信息保密传递和破获敌方信息的需求,密码学得到了空前的发展,并广泛的用于军事情报部门的决策。 20世纪60年代计算机与通信系统的迅猛发展,促使人们开始考虑如何通过计算机和通信网络安全地完成各项事务,从而使得密码技术开始广泛应用于民间,也进一步促进了密码技术的迅猛发展。 二、应用场景 2.1 Hash函数 Hash函数(也称杂凑函数、散列函数)就是把任意长的输入消息串变化成固定长度的输出“0”、“1”串的函数,输出“0”、“1”串被称为该消息的Hash值(或杂凑值)。一个比较安全的Hash函数应该至少满足以下几个条件: ●输出串长度至少为128比特,以抵抗攻击。对每一个给定的输入,计算 Hash值很容易(Hash算法的运行效率通常都很高)。 ●对给定的Hash函数,已知Hash值,得到相应的输入消息串(求逆)是计 算上不可行的。 ●对给定的Hash函数和一个随机选择的消息,找到另一个与该消息不同的 消息使得它们Hash值相同(第二原像攻击)是计算上不可行的。 ●对给定的Hash函数,找到两个不同的输入消息串使得它们的Hash值相同 (即碰撞攻击)实际计算上是不可行的Hash函数主要用于消息认证算法 构造、口令保护、比特承诺协议、随机数生成和数字签名算法中。 Hash函数算法有很多,最著名的主要有MD系列和SHA系列,一直以来,对于这些算法的安全性分析结果没有很大突破,这给了人们足够的信心相信它们是足够安全的,并被广泛应用于网络通信协议当中。

国外RFID技术发展现状和趋势

国外的RFID射频识别技术发展现状和趋势 技术预见通讯2008年第8期(总第175期) RFID射频识别技术被公认为是本世纪最有发展前途的信息技术之一,已经得到业界高度重视。近年来,RFID技术应用发展迅速。 一、发展现状 RFID射频识别技术正在成为市场关注的热点。RFID射频识别技术正在逐步被广泛应用于工业自动化、商业自动化、交通运输控制管理等众多的领域。各国政府、零售业巨头、IT 业著名厂商给予高度关注,并且大力支持甚至给于巨大的投入,全面推动RFID电子标签产业快速发展。由于发达的国家RFID电子标签工作开展得较早,所以在标准、技术、产业链及应用方面都已经比较完备,并且仍在发展中。发达的国家在核心技术尤其是在芯片技术上目前已经提供了相对完备的产品线,并且由于技术进步和RFID电子标签工艺的提升,以及成本的降低,应用推广进入了良性循环。 随着全球产品电子代码中心推出第2代超高频(UHF)RFID电子标签标准(EPCG2)作为欧美地区的新标准,各大供应商的EPCG2芯片纷纷亮相:飞利浦公司推出UCODEEPCG2芯片;Impinj公司推出Monza芯片和读取器平台;TI也推出EPCG2产品,并且实现量产。相对于第1代标准,EPCGen2具有若干优势,例如,中心频率在900MHz,使读出速率达到500~1500标签/秒,反向散射数据速率提高到650kbps,扫描范围提高到30英尺。许多高科技公司,包括英特尔、微软、甲骨文和SUN等,正在开发支持RFID射频识别电子标签专用的软件和硬件。 二、发展趋势 RFID射频识别技术已经逐步发展成为独立跨学科的专业领域。RFID射频识别技术将大量的来自完全不同的专业领域的技术(例如,高频技术、电磁兼容技术、半导体技术、数据保护和密码学技术、电信技术、制造技术等)综合起来。过去的十多年,RFID射频识别技术得到了快速发展,逐步被广泛应用于工业自动化、商业自动化、交通运输控制管理等众多的溯源和防伪应用领域。而随着技术进步,基于RFID射频识别技术产品的种类将越来越丰富,应用也将越来越广泛,可预计,在今后的几年中,RFID射频识别技术将持续保持高速发展的势头。 总体而言,RFID射频识别技术当前发展趋于标准化、低成本、低差错率、高安全性、低功耗。具体表现在,基于RFID射频识别技术的电子标签产品将达到:芯片所需的功耗更低,无源标签、半有源标签技术更趋成熟;作用距离更远;无线可读写性能更加完善;适合高速移动物品识别;快速多标签读/写功能;一致性更好;强场强下的自保护功能更完善;智能性更强;成本更低。读写器性能将达到:多功能(与条码识读集成、无线数据传输、脱机工作等);智能多天线端口;多种数据接口(RS232,RS422/485,USB,红外,以太网口);多制式兼容(兼容读写多种标签类型);小型化、便携式和嵌入式,以及模块化;多频段兼容;成本更低。管理系统将达到:高频近距离系统具有更高智能、安全特性;超高频远距离系统性能更完备,系统更完善。标准化将达到:标准化基础性研究更深入,也更成熟;标准化为更多企业所接受。系统和模块将达到:可替换性更好,也更普及。自2007年起,RFID 射频识别技术单品级应用是全球最大的RFID射频识别技术应用市场。 据预测,到2009年,全球的RFID射频识别技术的应用市场的规模将由2004年3亿美元增至28亿美元。如果目前有关RFID电子标签的单个条款能得到广泛接纳,RFID射频识别技术单品级的应用市场份额有可能远远超过这个数字——1年中将有超过万亿的邮件使用RFID电子标签。这将是继零售供应链RFID电子标签产品的应用之后,全球使用RFID射频识

密码学的发展历史简介

密码学的发展简史 中国科学院研究生院信息安全国家重点实验室聂旭云学号:2004 密码学是一门年轻又古老的学科,它有着悠久而奇妙的历史。它用于保护军事和外交通信可追溯到几千年前。这几千年来,密码学一直在不断地向前发展。而随着当今信息时代的高速发展,密码学的作用也越来越显得重要。它已不仅仅局限于使用在军事、政治和外交方面,而更多的是与人们的生活息息相关:如人们在进行网上购物,与他人交流,使用信用卡进行匿名投票等等,都需要密码学的知识来保护人们的个人信息和隐私。现在我们就来简单的回顾一下密码学的历史。 密码学的发展历史大致可划分为三个阶段: 第一个阶段为从古代到1949年。这一时期可看作是科学密码学的前夜时期,这段时间的密码技术可以说是一种艺术,而不是一门科学。密码学专家常常是凭直觉和信念来进行密码设计和分析,而不是推理证明。这一个阶段使用的一些密码体制为古典密码体制,大多数都比较简单而且容易破译,但这些密码的设计原理和分析方法对于理解、设计和分析现代密码是有帮助的。这一阶段密码主要应用于军事、政治和外交。 最早的古典密码体制主要有单表代换密码体制和多表代换密码体制。这是古典密码中的两种重要体制,曾被广泛地使用过。单表代换的破译十分简单,因为在单表代换下,除了字母名称改变以外,字母的频度、重复字母模式、字母结合方式等统计特性均未发生改变,依靠这些不变的统计特性就能破译单表代换。相对单表代换来说,多表代换密码的破译要难得多。多表代换大约是在1467年左右由佛罗伦萨的建筑师Alberti发明的。多表代换密码又分为非周期多表代换密码和周期多表代换密码。非周期多表代换密码,对每个明文字母都采用不同的代换表(或密钥),称作一次一密密码,这是一种在理论上唯一不可破的密码。这种密码可以完全隐蔽明文的特点,但由于需要的密钥量和明文消息长度相同而难于广泛使用。为了减少密钥量,在实际应用当中多采用周期多表代换密码。在

相关文档