文档库 最新最全的文档下载
当前位置:文档库 › 1.4.2本征半导体的载流子浓度

1.4.2本征半导体的载流子浓度

宽禁带半导体的本征载流子浓度

宽禁带半导体的本征载流子浓度 列举了有代表性的宽禁带半导体本征载流子浓度的理论公式,简要叙述了温度与禁带宽度变化的关系,讨论了本征载流子浓度对电力电子器件参数特性的影响,并通过与硅材料的对比说明了宽禁带半导体的优异性能。 标签:宽禁带半导体;本征载流子;禁带宽度;电力电子器件 半导体材料的发展已历经三代,即分别以硅(Si)和砷化镓(GaAs)为代表的第一、第二代半导体材料,和以碳化硅(SiC)、氮化镓(GaN)为代表的第三代半导体材料,也称宽禁带半导体材料。由于其具有更宽的禁带宽度、更高的击穿电场强度、更高的热导率、更高的电子饱和漂移速度等独特的参数特性,因而在电力电子器件、光电器件、射频微波器件、激光器和探测器等方面,显示出广阔的发展前景,已成为目前世界各国半导体研究的重点。在这其中,电力电子器件是在高电压、大电流和高温下工作的,本征载流子浓度等温度敏感参数对器件的特性有着显著的影响,而宽禁带半导体材料比硅材料在这方面有着明显的优势,了解和把握这一点,对于研究宽禁带电力电子器件的参数特性显得十分必要。 1 本征载流子浓度的理论公式 根据半导体物理学,半导体的本征载流子浓度ni由下式给出: 2 温度对禁带宽度的影响 研究表明:随着温度的上升,禁带宽度将随之减小。文献[2]、[4]给出了硅和其它半导体禁带宽度与温度之间关系的表达式: 文献[2]给出了不同半导体材料禁带宽度参数,见表2。其中Eg(0)为00K 时的禁带宽度,α、β均为温度变化系数。 3 Eg与ni对电力电子器件参数特性的影响 3.1 Eg对击穿电压的影响 在描述半导体的雪崩击穿电压VB与材料禁带宽度Eg和杂质浓度NB的关系时,文献[5]引用了S.M.Sze公式: VB=60(Eg/1.1)1.5(NB/1016)-0.75 (8) 对于p+n结,当NB=1014cm-3时,分别将Si的Eg=1.12eV、4H-SiC的Eg=3.23eV代入式(8),计算出Si的雪崩击穿电压为1900V,而4H-SiC的雪崩击穿电压可达9500V,是Si的5倍。

本征载流子

本征载流子 (1)基本概念: 本征载流子(Intrinsic carrier)就是本征半导体中的载流子(电子和空穴),即不是由掺杂所产生出来的载流子。也就是说,本征载流子是由热激发——本征激发所产生出来的,即是价电子从价带跃迁到导带而产生出来的;它们是成对产生的,所以电子和空穴的浓度始终相等。 本征半导体,从物理本质上来说,也就是两种载流子数量相等、都对导电起同样大小的半导体。因此,未掺杂的半导体是本征半导体,但是掺有杂质的半导体在一定条件下也可能成为本征半导体(只要两种载流子的浓度相等)。 对于掺有杂质的n型或p型半导体,其中的多数载流子主要就是由杂质电离所提供,而其中的少数载流子则是由本征激发所产生的。因此,在杂质全电离情况下,多数载流子浓度基本上与温度无关,但少数载流子则随着温度将指数式增大。 (2)与温度的关系: 因为本征载流子是由本征激发所产生的,则它的产生与热激发有关,也与禁带宽度有关,所以具有以下特点:一是电子浓度=空穴浓度;二是载流子浓度随着温度的升高而指数式增大;三是与禁带宽度有指数函数关系(不同半导体的本征载流子浓度不同)。本征载流子浓度ni与温度T和禁带宽度Eg的关系为(与杂质无关) ni = (NcNv)^(1/2) exp[-Eg/(2kT)] 在室温下,Si的ni=1.45×10^10cm-3,GaAs的ni=1.79×10^10cm-3。 由于本征载流子浓度ni随着温度的升高而指数式增大,故在足够高的温度下,对于掺杂的半导体,在较高温度下,本征载流子浓度也都将大于杂质所提供的载流子浓度——多数载流子浓度。这就是说,即使是掺杂的半导体(除非掺杂浓度异常高),都将随着温度的升高而逐渐转变为本征半导体(两种载流子浓度相等)。这种半导体本征化的作用,即将导致pn 结失效,所以这实际上也就是限制所有半导体器件及其集成电路的最高工作温度的根本原因;也因此,半导体器件的最高工作温度也就由半导体的本征化温度来稳定。

相关文档
相关文档 最新文档