文档库 最新最全的文档下载
当前位置:文档库 › 第25章 过渡金属催化的有机反应习题答案

第25章 过渡金属催化的有机反应习题答案

第25章   过渡金属催化的有机反应习题答案
第25章   过渡金属催化的有机反应习题答案

后过渡金属催化剂综述

后过渡金属催化剂综述 1催化剂的意义 催化剂是可以加速化学反应的物质。化学反应若要发生,则反应物分子之间必须有足够能量的发生碰撞以形成活性复合物或过渡态复合物,这个能量就是活化能。而催化剂能够提供一个较低的活化能,因此加速了化学反应的发生。和未添加催化剂的反应的一步实现原理相比,催化反应包含了许多种化合物与过渡态复合物[1]。 催化技术对于目前乃至未来的能源、化学反应、环境工业、石化工业都是至关重要的。原油、煤和天然气向燃料和化学原料的转化,大量石油化工和化学产品的生产,以及CO、NO、碳氢化合物排放物的控制,全都依赖于催化技术。此外,催化剂还是燃料电池电极的必要组分——无论电极使用的是固体氧化物离子还是聚合物质子电解液[2]。催化技术的发展、催化剂的改进和新催化剂的成功开发, 往往会带动已有工艺的改进和新工艺的诞生。据统计,85%以上的化学反应都与催化反应有关。目前工业上采用的催化剂大多为金属、金属盐和金属氧化物等多相催化剂, 其优点是催化性能较稳定, 使用温度广, 容易回收重复使用, 但催化活性较低, 反应常常需要高温、高压条件, 而且副反应较多。最近几十年, 发展了以有机金属络合物为主的均相催化剂, 为化学工业带来革命性进步。这种催化剂分散度高, 活性中心均一, 结构明确, 催化剂活性和选择性都较高, 反应可以在很温和的条件下进行[3]。 2后过渡金属催化剂的性质 聚烯烃工业的发展是一个国家石化工业发展的重要标志。Ziegler - Natta催化剂、茂金属催化剂和后过渡金属催化剂仍然是烯烃聚合催化剂研发的3个主要方向[4]。 90年代,美国北卡罗来纳大学的Brookhart等人[5]报道了利用适当的配体, 可使元素周期表中的第Ⅷ族中Ni和Pd的配合物用来引发烯烃聚合, 从而由单一烯烃可获得高分子量的、有各种支化度的聚合物, 并能实现与极性单体的共聚。他们将这一类催化剂称为烯烃聚合后过渡金属催化剂。后过渡金属催化剂中金属元素的种类涉及到第Ⅷ族中的元素, 目前研究得比较多的为Fe、Co、Ni、Pd4种金属元素[6]。 这类金属配合物的亲氧性相对较弱,对空气和水分不太敏感,特别是催化烯烃以及环烯烃聚合的活性很高[7],而且对比茂金属催化剂, 后过渡金属催化剂具有稳定性好、生产费用低、能生产新品种聚烯烃以及能合成带有官能团的新型聚合物等优点。再加上后过渡金属催化剂合成相对简单, 产率较高,因而其成本远低于茂金属催化剂, 而且聚合时助催化剂用量比较低, 一般与负载的茂金属催化剂相当, 因此成为烯烃聚合用催化剂的新的研究热点[8]。 3 后过渡金属催化剂的种类 后过渡金属烯烃聚合催化剂是指以镍( Ⅱ) 、钯( Ⅱ) 、铁( Ⅱ) 、钴( Ⅱ) 、钌( Ⅱ)等后过渡金属原子为活性中心的一类金属配合物烯烃聚合催化剂。 3.1 镍系 镍系包括双亚胺类、P - O类和N - O类等。双亚胺类镍系烯烃聚合催化剂是指以双亚胺为配体的一类平面型镍(Ⅱ)阳离子配合物。当采用甲基铝氧烷(MAO)作助催化剂时,二溴化双亚胺合镍的衍生物具有很高的催化活性。这类催化剂在Lewis酸如MAO 的作用下形成阳

金属有机化学中的钯催化的反应全解

XXXX大学研究生学位课程论文(2012 ---- 2013 学年第一学期) 学院(中心、所):化学化工学院 专业名称:应用化学 课程名称:高等有机化学 论文题目:金属有机化学中的钯催化的反应 授课教师(职称)XXXX(教授) 研究生姓名:XXXX 年级:2012级 学号:XXXXXXXXX 成绩: 评阅日期: XXXX大学研究生学院 2012年12 月25 日

金属有机化学中的钯催化的反应 XXXXXX (XXXX大学化学化工学院,山西,太原,030006) 摘要:过渡金属钯在金属有机化学方面具有丰富的反应性,在各类有机化学反应中如氢化、氧化脱氢、偶联、环加成等反应中,钯是优良的催化剂,或是催化剂的重要组分之一。本文在查阅大量近几年文献资料的基础上,综述了钯催化的反应,同时综述了钯催化反应的机理以及钯催化反应的研究现状。 关键词:钯,催化剂,反应机理,研究进展 1钯催化的反应类型及反应机理 在现今炼油、石油化工等工业催化反应中,有很多的钯催化反应,尤其是氢化反应中的选择加氢,以及氧化反应中选择氧化生产乙醛、醋酸乙烯、甲基丙烯酸甲酯,均广泛采用和开发钯催化剂。对石油重整反应,钯也是常选取的催化剂组分之一。 1.1氢化反应 钯催化剂具有很大的活性和极优良的选择性,部分氢化选择性高,常用作烯烃选择性氢化催化剂。 1.1.1反应式及反应机理 反应底物首先和氢气分子分别被吸附到催化剂上,然后和催化剂的活性中心形成配位键,最后完成氢的转移,氢和反应底物形成σ-键。 1.1.2反应方程式举例 1.2氧化反应 烯烃和炔烃是十分常见并且重要的有机化合物,选择性地氧化这类不饱和碳氢化合物一直是化学工业和学术界的重要研究目标之一。 1.2.1分子氧参与的钯催化烯烃的氧化反应 根据亲核试剂的不同,如氧、氮和碳等亲核试剂,把催化烯烃的氧化反应可以形成C-O、C-N和C-C键。 1.2.1.1反应机理 钯催化烯烃的氧化反应都经过三个过程:首先,把插入烯烃形成新的C-Pd键;接着,有机钯中间体进行β-H消除产生Pd(0);最后,Pd(0)被重新氧化为Pd(П)。 1.2.1.2形成C-C键 1.2.1.2.1烯-烯偶联

过渡金属催化C-S合成

过渡金属催化的C-S的合成 摘要:过渡金属催化的C-S交叉偶联反应在有机合成方法学的研究中一直起着不可或缺的作用。这些经过交叉偶联反应所形成的一系列含碳-硫键结构的化合物,在染料、医药、农药、化工以及聚合物的制备中都有广泛的应用。不同过渡金属催化合成硫化物成为当前研究的一个热点。本文简单综述了不同过渡金属催化反应合成含C-S的化合物。 关键词:过渡金属;硫醇;催化;偶联反应;碳一硫键构建 Transition Metal Catalyzed Synthesis of C-S bond Abstract: transition metal catalyzed C-S cross coupling reaction plays an important role in organic synthetic methodology. The compounds synthesized through cross coupling reaction have very good biological activity and wide application in colorant, pharmaceutical, pesticide, and chemical industry , and the preparation of polymer.So transition metal catalytic synthesis of C-S bond becomes a hot issue. In this paper,transition metal-catalyzed reaction was briefly summarized. Key words: transition-metal; thiols; catalyze; coupling reaction;C-S bond formation 许多含硫化合物具有生物活性,包括磺酰胺类抗生素和哮喘药物顺尔宁抗生素等[1-2]。多种含硫化合物的各类构建方法需要深入地研究,碳一硫键的构建和以及进一步的官能团化已经引起科学界的相当关注。硫化物,硫醇及它们的氧化衍生物在有机合成方面有广泛的应用[3-4]。与碳一氧键和碳一氮键的构建方法相比,有机金属试剂催化的碳一硫键的构建方依然是不足的。尽管人们始终认为硫能够毒化金属催化剂,但是金属催化的碳一硫键的构建方法研究有逐渐增强的趋势。 过渡金属催化通过偶联反应构建碳一硫键的各种方法有很多报道,我们接来将介绍不同的过渡金属催化合成碳硫键的这类反应最近进展。 1铜催化

后过渡金属催化剂的研究进展-哈尔滨工业大学教师个人主页

《高等无机化学》课程论文文献综述 综述题目后过渡金属催化剂 的研究进展 作者所在系别理学院 作者所在专业无机化学 作者姓名吕海涛 作者学号12S007005 导师姓名唐冬雁 导师职称教授 完成时间2013 年 4 月 哈尔滨工业大学材料化学教研室制

说明 1.文献综述各项内容要实事求是,文字表达要明确、严谨,语言通顺,外来语要同时用原文和中文表达。第一次出现缩写词,须注出全称。 2.学生撰写文献综述,阅读的主要参考文献应在10篇以上。本课程的相关教材也可列为参考资料,但必须注明参考的具体页码。 3.文献综述的撰写格式按撰写规范的要求,字数在2000字左右。

后过渡金属催化剂的研究进展 1 后过渡金属催化剂的进展 后过渡金属催化剂是近年来受到广泛关注的一种新型催化剂,是对聚合催化剂的又一重要革新。它开辟了一个完全崭新的催化领域,将成为继茂金属催化剂之后的又一研究开发热点。后过渡金属( 铁、钴、镍、钯等) 配合物用于烯烃催化研究可追溯至上世纪70年代,其研究结果发展成了SHOP( Shell higher olefin process) 催化体系(1987)[1],被广泛用于工业生产线性A烯烃。然而,由于后过渡金属容易导致B氢消除反应,影响了乙烯聚合催化的发展。直到上世纪90 年代中期,Brookhart研究组发现了A—二亚胺镍、钯配合物能催化乙烯聚合制得高分子量聚乙烯(1995)[2],后过渡金属配合物催化乙烯聚合的重要性才真正为人们所认识。 研究后过渡金属催化剂卓有成效的世界著名大公司有Du Pont、Shell、BP 、BF Goodrich和W.R.Grace 公司等(1996)[3]。他们在该技术领域投人了大量精力,深入研究,取得令人瞩目的成就,其中有的研究已接近于工业化。shell公司于1996年在英国的Carringtion开始运转了一套使用后过渡金属把基络合物催化剂的聚酮装置,生产能力约1.5万t/a ,这种商品名为Carilon的聚酮产品已经销售到了欧洲和美国。该公司目前正对第二套聚酮装置的地点和生产能力进行评估, 准备扩大生产规模。BP公司在英国的Grangemouth也有采用钯基催化剂的CO/烯烃共聚物中试装置运行。 后过渡金属催化烯烃以及环烯烃聚合的研究在近年来取得了重大进展, 已经能够设计合成具有特殊微观结构的聚烯烃;实现了乙烯与极性单体、乙烯与环烯烃的共聚;催化机理的研究也日益完善。这些结果将为新型催化体系的设计及新型功能材料的合成起到一定的指导作用。在后过渡金属烯烃催化剂的合成过程中, 近年来开始出现了一些新的方法和技术。例如高通量筛选方法( high throughput screening, HTS) 的应用(2002)(2003)[4,5],其优点在于, 在相同的时间段内合成和试验数个甚至数十个配体和配合物, 极大地加速了高效催化剂的筛选, 节省了大量时间, 降低了药品的消耗。相信这一技术将大大促进催化剂合成与筛选的速度。 2 后过渡金属催化剂的特点 后过渡金属(铁、钴、镍、钯等)配合物催化剂由于具有稳定性高、易于合成和耐受杂原子和极性基团的能力,具有与前过渡系催化剂明显不同的性能(2009)(2003)[6,7]为烯烃齐聚、聚合及共聚研究提供了新的发展空间。其主要特点有:(l) 聚合活性极高。这种新型络合物均相催化剂无论与传统高效Ziegler催化剂或茂金属催化剂相比, 都显示出异常高的活性, 高达11x106gPE/mol·h。 (2)聚合能力强,聚合单体范围广。可以接受官能化的极性单体,用于全范围的单体聚合及共聚合,合成种类繁多的新型聚烯烃树脂和特种性能树脂等。

读《金属参与的现代有机合成反应》有感

读《金属参与的现代有机合成反应》有感寒假在家里闲的无事可做,就找了一本电子书,麻生明出版的《金属参与的现代有机合成反应》,刚看到书名我就被深深吸引了,有机合成是一个很赚钱的行业,带着浓厚的兴趣我开始读这本书。 这本书共九章,从绪论到从金属有机化学基元反应出发设计新的有机合成反应。全书讲解详细,即使是有机化学基础不好也可以看懂。 一、金属有机化学简史 金属有机化学和有机金属化学是同一概念不同的说法,直译英文为有机金属化学(Journal of Organometallic Chemistry: J. Organometal. Chem.),中文习惯为金属有机化学。纵观金属有机化学发展史,其特点是——有趣又有用,有趣在于其具有多样性和意外性,因此,有人说,金属有机化学的历史是一部充满意外发现的历史。 最早的金属有机化合物是1827年由丹麦药剂师Zeise用乙醇和氯铂酸盐反应而合成的;比俄国门捷列夫1869年提出元素周期表约早40年,与有机合成之父Wöher合成尿素几乎同一时期(1828年)。 金属与烷基以s键直接键合的化合物是1849年由Frankland在偶然的机会中合成的(Frankland是He的发现人)。他设计的是一个获取乙基游离基的实验:实验中误将C4H10当成了乙基游离基;但是这却是获得二乙基锌的惊人发现。所以,人们称这个实验为“收获最多的失败”。直到1900年Grignard试剂发现前,烷基锌一直作为是重要的烷基化试剂使用。 1890年Mond发现了羰基镍的合成方法;1900年Grignard发现了Grignard 试剂(获得1912年诺贝尔化学奖)。但是,金属有机化学飞速发展的契机仍是:1951年Pauson和Miller合成著名的“夹心饼干”——二茂铁,及1953年末Ziegler领导的西德MaxPlank煤炭研究所发现的Ziegler催化剂。随后,Natta 发现Natta催化剂,史合称Ziegler-Natta催化剂。Wilkison, Fischer(1973年),Ziegler, Natta(1963年)等由于这些研究获得了诺贝尔化学奖。 1950年初,是金属有机化学新纪云的开端。 1979年研究烯烃硼氢化的H.C.Brown与有机磷Wittig反应者Wittig获得诺贝尔化学奖。Lipscomb(1976年)由于对硼烷类的缺电子键的理论研究获得

可见光氧化还原与金属镍协同催化偶联反应研究

投稿网址:https://www.wendangku.net/doc/397867395.html, 可见光氧化还原与金属镍协同催化偶联反应 研究 李蕾,宫清嵩,王贺 (辽宁石油化工大学化学化工与环境学部,辽宁抚顺113001) 摘要:可见光催化反应已经成为有机合成化学的重要工具之一。可见光氧化还原与金属镍协同催化偶联反应由于具有反应能垒低、条件温和以及选择性高等优点得到人们广泛关注。综述了近年来光氧化还原与金属镍协同催化碳-碳和碳-杂键形成反应的最新进展,另外,对光氧化还原催化C-X(X=C、N、O、P、S)键形成反应中涉及到的机理进行了详细的探讨。 关键词:可见光氧化还原;镍催化;交叉偶联反应;碳-碳键;碳-杂键 中图分类号:O621.3文献标志码:A doi:10.3969/j.issn.1006-396X.2018.06.001 Study on Visible-Light-Induced and Nickel-Cocatalyzed Cross-Coupling Reactions Li Lei,Gong Qingsong,Wang He (College of Chemistry,Chemical Engineering and Environmental Engineering,Liaoning Shihua University,Fushun Liaoning113001,China) Abstract:Visible-light-photoredox catalysis has been recognized as a powerful technique to facilitate activation of organic molecules,enabling achievement of a wide variety of new chemical reactions.The combination of photoredox catalysis and nickel catalysis has shown even greater potential in promoting the cross-coupling reactions,owing to the advantages of low energy barrier, mild reaction condition and high selectivity.This review mainly focuses on the progress of carbon-carbon and carbon-heteroatom bond formation via the combination of photoredox catalysis and nickel catalysis in recently.The mechanisms of visible-light-photoredox catalyzed C-X(X=C,N,O,P,S)bond formation are discussed in details. Keywords:Visible?light?photoredox catalysis;Nickel catalysis;Coupling reaction;Carbon-carbon bond;Carbon?heteroatom bond 随着现代经济的高速发展,能源消耗日益增大,传统的化石资源也接近枯竭。与此同时,环境污染以及生态恶化等问题日渐严重。探索并合理使用绿色、可持续能源去发展温和、绿色、高效的化学反应,一直是有机化学家所追求的目标和前进的方向。可见光是清洁绿色可再生的自然资源,直接利用可见光作为能源实现有机反应在一定程度上可减少环境的污染以及能源的消耗。由于有机化合物的结构特征,大部分有机化合物对可见光的吸收非常少,但是通过引入光催化剂(光敏剂)和光催化循环,为可见光诱导的有机反应带来了新的研究契机[1-2]。光催化剂(以[Ru(bpy)3]2+络合物为例[3-4])受到光照激发形成不稳定的三重激发态,再通过得失电子的形式进行能量的转移,从而实现可见光在有机合成中的应用(如图1所示)。在可见光促进的有机反应中,光催化过程在十分温和的条件下产生了自由基阳离子或自由基阴离子。这些中间体它们不仅可以自身发生反应,而且还可以通过其他方式转化为反应性的自由基或离子。其反应途径与经典的热活化反应相比,具有更低的反应能垒、更 第31卷第6期2018年12月Vol.31No.6 Dec.2018 文章编号:1006-396X(2018)06-0001-10石油化工高等学校学报 JOURNAL OF PETROCHEMICAL UNIVERSITIES 收稿日期:2018-08-01修回日期:2018-08-25 基金项目:国家自然科学青年基金项目(21702087、21801105);辽宁省教育厅项目(L2017LQN010、L2017LQN001);辽宁省科技厅项目(20170520353)。 作者简介:李蕾(1989-),女,博士,副教授,从事可见光催化有机小分子合成研究;E-mail:https://www.wendangku.net/doc/397867395.html,@https://www.wendangku.net/doc/397867395.html,。

金属钯催化的碳-碳偶联反应

金属钯催化的碳-碳偶联反应 中文 在有机化学中,C-C键的形成是有机合成研究的重要内容,而纳米过渡金属催化的偶联反应则是形成C-C键的一种有效手段。在经典的纳米过渡金属催化的C-C偶联反应的基础上,我们不断寻找新的催化剂,优化反应体系,以期使传统的C-C偶联反应达到更好的效果。本文中,我们采用一种新的磁性纳米Pd/Fe3O4/s-G催化剂,利用一锅法从芳胺衍生物出发,通过对反应条件的优化,分别采用亚硝酸叔丁酯和BF3?Et2O为重氮化试剂和添加剂,在甲醇溶剂中保持60 ℃反应5小时,经过重氮化/Suzuki偶联反应,成功实现了芳胺与芳基硼酸衍生物的交叉偶联反应。该反应是对经典Suzuki反应的有益补充,同时也为联芳基类化合物的形成提供了新的论文方法。与此同时,我们对新的磁性纳米Pd催化剂的循环实验进行了研究,结果表明,该催化剂能够重复使用4次并且保证催化效率基本不变,且易于通过磁性分离进行回收。近几年来,非活性的C-H键官能化反应一直是有机化学中的研究热点。虽然在C-H活化方面各国的研究学者已经取得了很大进展,但是将C-H键直接转化成C-C、C-X、C-N、C-O、C-S 键等,仍然是具有挑战性的课题。虽然已有多种官能团被用于导向的C-H键活化,但Pd催化的以乙酰基为导向基团的C-H活化反应目前仅有过一例报道。在本文中,我们以芳香酮类化合物和烯烃为底物,以Pd(OAc)2为催化剂,Cu(OAc)2?H2O为氧化剂,完成了酰基邻位sp2 C-H键活化氧化Heck反应。该反应是导向的氧化C-H官能化反应的一个新的发展。 译文 In the field of organic chemistry, the formation of C-C is an important content of organic synthesis, while the nano transition-metal-catalyzed cross-couplings are the effective measures of the formation of C-C. In the basement of classical C-C cross-couplings, we keep looking for new catalysts and optimizing reaction systems in order to make traditional C-C cross-couplings to achieve better effect. In this article, a new, magnetic Pd/Fe3O4/s-G-catalyzed one-pot diazotization/cross-coupling of anilines and arylboronic acids has been developed. Through the on-going optimation of our reaction, we at last https://www.wendangku.net/doc/397867395.html, choose tBuONO as diazo reagent and BF3?Et2O as the additive. The experiments are conducted in MeOH at sixty degrees celsius and the reaction time is five hours. This process complemented the traditional Suzuki cross-couplings and provided a more economic approach for the preparation of biaryl products. At the same time, we have also studied the cycle test of our new catalyst. It turned out that this kind of catalyst can be reused four times and the effect is largely unchanged. The recycling of the catalyst is very convenient through magnetic separation. In recent years, the activation of inact C-H has been the research

过渡金属催化理论知识

过渡金属催化剂有二大特点:Ⅰ、在反应气氛如H2、O2气下,过渡金属是以金属晶体存在。Ⅱ、最适合用于金属催化剂的活性组份是那些最外层有1~2个S电子,次外层为d电子,d电子为大部分充满状态的元素。 金属催化作用与d电子性质、金属晶体、表面结构有关。 3d带电子填充量为94%,若平均到每个Ni原子上时,d轨道的电子填充量为9.4个电子。即Ni金属晶体中的Ni 原子d轨道中还差0.6个电子就可被完全充满,使d轨道能量或d带能量处于

最低,因而有很强的能力去获得电子,我们把这个电子差额称之为d孔穴。 20、25、36、38、40、42、46、59、61、93-102、104-106、110、144、148、149(很重要)、153、159、172(不错)、173(非常好)、177、180(以及后面连续的几页都比较重要)页有重要信息 几何论和能量匹配论包括两个方面: Ⅰ、吸附物分子与活性位空间结构的几何对应关系。Ⅱ、吸附物分子与活性位之

间的能量对应关系。 EFGH晶面的Miller指数:(100)ABC晶面的Miller指数:(222) 金属结构的应用在于: 形成合金:当原子半径相近,而晶胞结构又相同的一些金属可以相互取代,形成结构不被破坏的合金,如,Pd—Au,Pt—Re,Cu—Ni 等合金催化剂。 低Miller指数晶面上晶格原子排布整齐,高能量的边、角原子少,原子密度高,故其表面剩余能低,稳定性高。 高Miller指数晶面则晶格排布

有不规整的地方,处于高能态的边、角原子多,原子密度低,表面剩余能高,稳定性差。 表面以下面几种方式来降低晶体的总表面能: 1.尽量减少向外暴露的表面积。 2.暴露表面以低表面能的晶面为主。 3.改变金属晶体外露的表面几何结构。 4.增强金属与载体间的相互作用。 改变外露的表面几何结构以减少表面能表面松弛与重构(Relaxation & Reconstruction of

第三章有机金属化合物的反应

第三章有机金属化合物的反应 第三章有机金属化合物的反应 3.2 1.掌握有机锂化合物的制备方法、性质及应用 2.掌握有机锂化合物与有机镁化合物的区别 课堂讲授 1. 作业:93页:1,2 (2),(3),4,(1),(2) 3.2 有机锂试剂与Grinard试剂有许多相似之处,并比Grinard试剂活泼,且具备一些特殊的反应性能: (1) 与位阻大的酮反应 (2)与羧酸盐负离子反应生成酮 (3)与αβ-不饱和羰基化合物反应 (4)与酰胺和-C=NR官能团化合物反应 (5)与CO2反应 (6)与烯烃双键反应 (7)偶联反应 (8)与电正性较低的金属卤化物反应 1. 卤代烷和金属锂反应 卤代烷与金属锂在非极性溶剂(无水乙醚、石油醚、苯)中作用生成有机锂第三章有机金属化合物的反应

化合物: RX + 2Li ? RLi + LiX HLi + LiXCCHX + 2 Li4949

卤代烷与锂反应的活性次序为:R1>RBr>RCl>RF。氟代烷的反应活性很小。而碘代烷又很容易与生成的RLi发生反应生成高碳的烷烃,所以常用RBr或RCl来制取RLi。 由于烯丙基氯和苄氯易发生Wurtz类偶联反应,不易用此法制备相应的烯丙基锂 和苄基氯。 锂的反应活性高于镁,烷基锂的化学活性也高于烷基卤化镁,在有机合成中有机锂显得特殊重要。由于有机锂中的碳锂键的离子性很强,碳负离子非常容易 被氧化或与活泼氢结合,所以在制备有机锂时应在情性气体保护下进行,所用溶 剂如乙醚、苯、环己烷等必须是特别干燥。 丁基锂的制备: 1/3无水乙醚配溴代正丁烷,2/3投入反应器中,在氮气下加入锂丝,-10度下搅拌滴入少量溴代正丁烷乙醚溶液,反应变浑浊,锂丝出现金属光泽,继续滴加溴代正丁烷,反应在0-10度搅拌-2小时,在氮气保护下滤去固体LiBr,得正丁基锂乙醚溶液,滴定后封存备用. 2. 通过金属-卤素交换制备(锂-卤交换) RLi + R’X R’Li + RX RX + C4H9Li C4H10 + RLi 通过金属-卤素交换是制备有机锂试剂的另一重要方法。该法主要用于1-烯基锂或芳基锂的制备。此类反应进行的方向是朝着生成更稳定的有机锂化合物,即金属连接到电负性更大的碳上。 活性很低的卤苯或活性非常高的苄卤或烯丙基卤,它们不适合直接与锂作用

最新金属有机化学气相沉积法

金属有机化学气相沉积 一、原理: 金属有机化学气相沉积(MOCVD)是以Ⅲ族、Ⅱ族元素的有机化合物和V、Ⅵ族元素的氢化物等作为晶体生长源材料,以热分解反应方式在衬底上进行气相外延,生长各种Ⅲ-V 族、Ⅱ-Ⅵ族化合物半导体以及它们的多元固溶体的薄层单晶材料。金属有机化学气相沉积系统(MOCVD)是利用金属有机化合物作为源物质的一种化学气相淀积(CVD)工艺,其原理为利用有机金属化学气相沉积法 metal-organic chemical vapor deposition.MOCVD 是一利用气相反应物,或是前驱物 precursor 和Ⅲ族的有机金属和 V 族的 NH3,在基材substrate 表面进行反应,传到基材衬底表面固态沉积物的工艺。 二、MOCVD 的应用范围 MOCVD 主要功能在於沉积高介电常数薄膜,可随著precursor 的更换,而沉积出不同种类的薄膜.对於LED 来说,LED 晶片由不同半导体材料的多层次架构构成,这些材料放在一个装入金属有机化学气相沉积系统的圆形晶片上.这个过程叫做晶体取向附生,对於决定LED 的性能特徵并因此影响白光LED 的装仓至关重要. MOCVD 应用的范围有: 1, 钙钛矿氧化物如PZT,SBT,CeMnO2 等; 2, 铁电薄膜; 3, ZnO 透明导电薄膜,用於蓝光LED 的n-ZnO 和p-ZnO,用於TFT 的ZnO,ZnO 纳米线; 4, 表面声波器件SAW(如LiNbO3 等,; 5, 三五族化合物如GaN,GaAs 基发光二极体(LED),雷射器(LD)和探测器; 6, MEMS 薄膜; 7, 太阳能电池薄膜; 8, 锑化物薄膜; 9, YBCO 高温超导带; 10, 用於探测器的SiC,Si3N4 等宽频隙光电器件MOCVD 对镀膜成分,晶相等品质容易控制,可在形状复杂的基材,衬底,上形成均匀镀膜,结构密致, 附著力良好之优点,因此MOCVD 已经成为工业界主要的镀膜技术.MOCVD 制程依用途不同,制程设备也有相异的构造和型态.MOCVD 近来也有触媒制备及改质和其他方面的应用,如制造超细晶体和控制触媒得有效深度等.在可预见的未来裏,MOCVD 制程的应用与前景是十分光明的. 三、MOCVD组件介绍 MOCVD系统的组件可大致分为:反应腔、气体控制及混合系统、反应源及废气处理系统。 1. 反应腔 反应腔 (Reactor Chamber) 主要是所有气体混合及发生反应的地方,腔体通常是由不锈钢或是石英所打造而成,而腔体的内壁通常具有由石英或是高温陶瓷所构成的内衬。在腔体中会有一个乘载盘用来乘载基板,这个乘载盘必须能够有效率地吸收从加热器所提供的能量而达到薄膜成长时所需要的温度,而且还不能与反应气体发生反应,所以多半是用石墨所制造而成。加热器的设置,依照设计的不同,有的设置在反应腔体之内,也有设置在腔体之外的,而加热器的种类则有以红外线灯管、热阻丝及微波等加热方式。在反应腔体内部通常有许多可以让冷却水流通的通道,可以让冷却水来避免腔体本身在薄膜成长时发生过热的状况。

过渡金属催化

化工与材料工程学院 毕业论文开题报告 钯催化C-H键、C-C键活化反应的研究

1.课题来源及选题意义 人类在新世纪面临俩大危机,一是资源的不断枯竭,而是生态环境的日益恶化。目前世界上工业制造出的化合物的数量大约在2万到3万之间。这些数目巨大的化合物只是由很少数目的原料来制备的,并且碳的来源几乎都是化石物质,即石油,天然气和煤。石油、天然气以及煤中的主要成分是含有惰性的C-H键、C-C键的烷烃类化合物,这些宝贵的化石燃料的利用至今仍主要局限于将其燃烧提供能源。因此,惰性的C-C、C-H键的活化首先可以大幅度的提高资源的利用效率。 早在上个世纪初,人们就发现一些特定的方法可以对一些惰性C-H、C-C键进行直接的官能团的活化,但如何在活化过程中对个形形色色的C-C、C-H键进行识别和区分,并有目的性的对特定位置进行定向官能团的衍生,一直是有机合成领域的一个难点。随着过渡金属化学的迅速发展,一系列新反应、新试剂陆续被发现和合成,并在有机合成中得到广泛的应用。 碳氢(C-H)键的转化和碳碳键的连接是有机化学中最重要、最基础的研究内容之一。作为自然界最简单、最普遍的惰性化学键和结构单元,C-C键与C-H键广泛存在各种有机化合物中(如简单的碳氢化合物、复杂有机分子、生物体内组织,工业多聚物材料等)。而通过活化和诱导C-H键形成新的化合物(特别是新的C-C键)无疑是一条既具有吸引力的反应策略。通过活化C-C键促进芳烃的交叉偶联反应,集中体现了原子经济性、步骤经济性。

C-H键具有较高的电能,并且碳原子和氢原子的电负性相近。因此,C-H键的基本特点是稳定坚固且极性很小,反应活性很小,没有官能团活化的情况下是很难发生化学反应的。所以在C-H键反应过程中遇到的第一个问题是活性,其次的一个问题是反应的选择性。由于大部分情况下是有机分子中含有多个化学性质相似的C-H键,如何对这些形色各异的C-C、C-H键进行识别和催化,并按照预期设想的结果进行反应,就成了催化活化C-C、C-H键最为根本并待于解决的问题。 过渡金属中很多都可以实现C-C、C-H键的活化,而过渡金属的参与为了这一领域的发展带来了无限的机遇,成功的解决了这一类相关研究的难题。 各种过渡金属化合物对于碳氢键、碳碳键的识别和活化的机制各不相同,金属钯是银白色的过渡金属,化学性质不活泼,常温下在空气和潮湿环境中稳定。钯能耐氢氟酸、磷酸、高氯酸、盐酸、硫酸蒸汽的侵蚀。在1803年,英国化学家武拉斯顿从铂矿中发现的。它可以通过催化中环钯化的过程实现对于临近的各类碳氢键的活化。钯催化剂是以钯为主要活性组分,使用钯黑或把钯黑载于氧化铝、沸石等载体上。以钠、镉、铅等的盐为助催化剂。并且,选择钯这种过渡元素可实现有机化合物之间高效,高选择性,且条件温和的转化,是实现绿色化学的重要内容。可实现在环境友好的反应条件下的催化活化,是对于资源的高效的利用。 2.国内外的发展及前景 2.1国外发展状况

文献综述过渡金属络合物

配位化学文献综述 希夫碱及其过渡金属配合物性能 研究进展 姓名:XXX(2013XXXXXXXX) 培养单位:XXXXXXXXX 上课时间:周一(四) 地点:XXXXX 希夫碱及其过渡金属配合物性能研究进展 XXX (1.中国科学院大学化学与化学工程学院北京100049)摘要:随着配位化学的不断深入发展,我国在过渡金属配合物方面取得的长足发展,希夫碱过渡金属配合物作为配合物中的重要组成部分,其在众多领域的应用更是成为研究热点之一。本文从这类配合物的稳定性及其生物活性、催化活性、分析化学、材料领域的应用现状以及合成方法等多方面对席夫碱配合物做了详细的阐述。 关键词:席夫碱过渡金属配合物,生物活性,催化性能,分析化学,材料,合成 中图分类编号:文献标识码:A 文章编号:1005-281X(201x)-0000-00 Research progress of Schiff bases and their transition metal complexes XXXXX (1.Institute of Chemistry and Chemical Engineering, Beijing100049, China ) Abstract The transition metal complexes achieved rapid development with the deepening of coordination chemistry development in our country. As an important component, the extensive application of Schiff base complexes in many fields to become one of the hot. This article explains in detail the Schiff base complexes in the stability and biological activity, catalytic

相关文档
相关文档 最新文档