文档库 最新最全的文档下载
当前位置:文档库 › 水溶性纤维素醚

水溶性纤维素醚

水溶性纤维素醚
水溶性纤维素醚

赫达纤维素醚介绍

低取代羟丙基纤维素(L-HPC)

一.名称:

1.化学名称:低取代2-羟丙基醚纤维素

2.英文全称:Low-Substituted Hydroxyproxyl Cellulose

3.英文简称:L-HPC

二.分子组成与结构式:

三.技术要求:

四.理化性质:

1.外观:白色或类白色粉末,无臭,无味。

2.性状:L-HPC在水中溶胀成澄清或微浑浊的胶体溶液;在乙醇、丙酮或乙醚中不溶。高取代羟丙基纤维素(H-HPC)

一.名称:

1.化学名称:高取代2-羟丙基醚纤维素

2.英文全称:High-Substituted Hydroxyproxyl Cellulose

3.英文简称:H-HPC

二.分子组成与结构式:

三.技术要求:

四.理化性质:

1.外观:白色或类白色粉末,无臭无味.

2.颗粒度:20目过筛率不小于99%;30目过筛率不小于95%。

3.假比重:0.5~0.6克/立方厘米,比重1.2224。

4.热稳定性:

变色温度:195~210℃

碳化温度:260~275℃

软化温度:130℃

38℃以下在水中呈清晰透明的溶液。

凝胶温度:40℃以上。

五.特性:

1.常温下溶于水和多种有机溶剂。如:无水甲醇、乙醇、异丙醇、丙二醇、二氯甲烷、也可

溶于丙酮、氯仿、和溶碱剂,溶液均透明。

2.H—HPC是良好的热塑性物质,具有优良的成膜性,所成膜非常坚韧,光泽性良好弹性充分。

3.灰份极低,使本产品具有优良的粘结性,作为乳液增粘用,十分稳定,而且分散性好。

4.H—HPC本身无药理作用,无毒,对生理无害。

5.H—HPC呈化学惰性,难与其它物质发生化学反应。

6.取代基分布比较均匀,充分,H—HPC抗菌强。

7.平衡湿含量较低。

8.由于本身是非离子性质本品在酸性溶液中不会凝胶.在广泛PH值中显示优良稳定性。

9.H—HPC的浓溶液可形成正规取向的液晶。

10.H—HPC水溶液具有表面活性作用。

11.其水溶液随温度的升高和降低,能历次经过凝胶和溶解的可逆过程。

六.溶解方法:

1.溶解于水:

1).将H-HPC慢慢加入到剧烈搅拌的水中,直到完全溶解为止.如果将全部物料加入将难于溶解;

2).取预定水量的20~30%加热到60℃以上,在充分搅拌的条件下将H-HPC慢慢加入,待所有H-HPC入后,再将剩余的80—70%的水加入,可完全溶解。

2.溶解于有机溶剂:

在充分搅拌下将H—HPC慢慢加入到有机溶剂中,若一次性加入溶解很困难。

羟丙基甲基纤维素(HPMC)

一.名称:

1.化学名称:2-羟丙基醚甲基纤维素

2.英文全称:Hydroxypropyl Methyl Cellulose

3.英文简称:HPMC

二.分子组成与结构式:

三.技术要求:

3.羟丙基甲基纤维素产品表示方法示例:

公司已取到HPMC 60H5,60H15

四.理化性质:

1.外观:HPMC为白色或类白色纤维状或颗粒状粉末;无臭。

2.可溶性:HPMC在无水乙醇、乙醚、丙酮中几乎不溶,在冷水中溶胀成澄清或微浑浊的胶体溶液。HPMC可溶在某些有机溶剂中,也可溶解在水─有机溶剂的混合溶剂中。

3.颗粒度:100目通过率≥98.5,80目通过率100%。

4.视密度:0.30-0.70g/cm3,密度1.26-1.31g/cm3。

五.特性:

1.抗盐性:HPMC是非离子型纤维素醚,而且不是聚合电解质,因此在金属盐或有机电解质存在时,在水溶液中比较稳定,但过量的添加电解质,可引起凝胶和沉淀。

2.表面活性:HPMC水溶液具有表面活性功能,可作为胶体保护剂,乳化剂和分散剂。

3.热凝胶:HPMC水溶液当加热到一定温度时,变的不透明,凝胶,形成沉淀,但在连续冷却时,则又恢复到原来的溶液状态。而发生这种凝胶和沉淀的温度主要取决于它们的类型、浓度和加热速率。

4.PH─稳定性:HPMC水溶液的粘度几乎不受酸或碱的影响,而且PH值在3.0-11.0的范

围内比较稳定。因此,溶液的粘度在长期贮存过程中趋于稳定。

5.保水性:HPMC是一种高效保水剂。在陶瓷、建筑材料以及许多其它方面具有广泛的应用。

6.成膜性:HPMC可形成一种透明、坚韧、柔性的薄膜,而这种膜能极好的阻止油脂的渗入。

7.粘结性:HPMC作为一种高性能粘结剂,运用于颜料、造纸、烟草产品和陶瓷产品。

六.溶解方法:

HPMC产品直接加入到水里,会产生凝聚,接着溶解,但这样溶解很慢,并且困难。下面建议三种溶解方法,用户可根据使用情况,选择最方便的方法:

1.热水法:由于HPMC不溶解在热水里,因而初期HPMC能够均匀的分散在热水中,随后冷却时,三种典型的方法描述如下:

1).在容器内放入需要量的热水,并加热到大约70℃。在慢慢搅拌下逐渐加入HPMC,开始HPMC浮在水的表面,然后逐渐形成一种淤浆,在搅拌下冷却该淤浆。

2).加热1/3或2/3(需要量)的水在容器内,并加热到70℃,按1)的方法,分散HPMC,制备热水淤浆;然后在容器内加入剩余量的冷水或冰水,再加入上述HPMC的热水淤浆到冷水中,并搅拌,之后冷却该混合物。

3).在容器内加入所需量1/3或2/3的水,并加热到70℃,按1)的方法,分散HPMC,制备热水淤浆;然后加入剩余量的冷水或冰水至热水淤浆中,搅拌之后冷却该混合物。

2.粉末混合法:将HPMC粉末粒子与相等的或更大量的其它粉状的配料,通过干混合来充分分散,之后加水溶解,则此时HPMC可以溶解,而不凝聚。

3.有机溶剂湿润法:将HPMC用有机溶剂,如乙醇、乙二醇或油预先分散或湿润,然后加水溶解,则此时HPMC也可以顺利地溶解。

化学名称:纤维素乙基醚

2.英文全称:Ethyl Cellulose

3.英文简称:EC

二.分子组成与结构式:

三.技术要求:

2.乙基纤维素牌号表示方法示例(粘度应该为2%水溶液):

四.理化性质:

外观:EC为白色或浅灰色的流动性粉末,无臭。性状:EC具有热塑性,软化点为135~155℃,假比重0.3~0.4克/立方厘米,相对密度1.07~1.18克/立方厘米,熔点为165~185℃,可溶于水,亦可溶于各种有机溶剂,热稳定性好,燃烧时灰份极低,很少有粘着感或发涩,能生成坚韧薄膜,在低温时仍能保持挠曲性,本品无毒,有极强的抗生物性能,代谢惰性,但在阳光下或紫外光下易发生氧化降解。

甲基纤维素(MC)

一、分子组成与结构式:

三、理化性质:

1、外观:MC为白色或类白色纤维状或颗粒状粉末,无臭。

2、性状:MC在无水乙醇、乙醚、丙酮中几乎不溶。在80~90℃的热水中迅速分散、溶胀,降温后迅速溶解,水溶液在常温下相当稳定,高温时能凝胶,并且此凝胶能随温度的高低与溶液互相转变。具有优良的润湿性、分散性、粘接性、增稠、乳化性、保水性和成膜性,以及对油脂的不透性。所成膜具有优良的韧性、柔曲性和透明度,因属非离子型,可与其他的乳化剂配伍,但易盐析,溶液在PH2-12范围内稳定。

3、视密度:0.20-0.60g/cm3,密度约1.3g/cm3。

五、用途:

甲基纤维素呈现生理惰性,在药品食品和化妆品中广泛用作增稠剂、保护胶体、辅助乳化剂、色素、片剂的粘合剂和成膜剂。也可用于混悬或粘性滴眼液的基质,以及作用药物的稳定剂,内服通便剂,漱口液和眼角膜接触目镜润湿液的主要原料,变用作骨架材料。MC制备亲水凝胶骨架性缓释制剂,微孔膜或多层包衣膜缓释制剂。低粘度的MC一般用作水包油乳剂的乳化剂;高粘度的MC常用作溶液的增粘、增稠、助悬和片剂粘合;MC还可与HPMC 混用,用于片剂的薄膜包衣。

纤维素及其衍生物在食品行业的发展与应用

纤维素衍生物在食品行业的应用 曹国宝 (海南大学材料与化工学院,海南海口570228) 摘要:长期以来,纤维素及其衍生物作为一种丰富的可再生的生物能源广泛地应用于现代工业。而其在食品领域也有重要的发展与应用。本文本文从纤维素的结构、性质谈起,选述纤维素及其衍生物的显著特点和在食品工业目前的研究现状。 关键词:纤维素衍生物,食品,应用 Cellulose derivate’s application in food industry CAO Guo-bao (College of material and chemistry,Hainan university,Haikou 570228) Abstract: As a kind of abundant and reproducible biological resources , celluloses and its derivate are widely used in modern industry for a long time. Especially its application in the food industry. this paper start with cellulose structure and properties, summerise cellulose an its derivate’s properties and ist development in the food industry Key words:cellulose derivate,food,application 一.简介 纤维素(cellulose)在自然界分布很广,是构成植物的主要成分,如棉花中约含90%以上,木材中约含50%。纤维素的纯品无色无味无臭,不溶于水和一般有机溶剂。与淀粉一样,纤维素也具有还原性[1]。纤维素大分子的基环是D-葡萄糖以β-1,4糖苷键组成的大分子多糖,分子量约50000~2500000,相当于300~15000个葡萄糖基脱水葡萄糖,其分子式为:(C6H10O5)n, 其化学组成含碳44.44%、氢6.17%、氧49.39%。纤维素比淀粉难水解一般需要在浓酸中或用稀酸在加压条件下进行,在水解过程中可以得到纤维四糖,纤维三糖和纤维二糖等,但水解的最终产物也是D-(+)-葡萄糖,其结构式可以表示如下[2]: 主要可进行的反应有 1.纤维素中的羟基能与酸生成纤维素酯(cellulose ether) 1.纤维素与碱作用生成纤维素钠盐,然后与卤代烃反应生成纤维素醚(cellulose ester) 本报告中涉及较多的是两种物质:羟丙甲基纤维素(hydroxypropylmethy cellulose,HPMC)和羧甲基纤维素(CMC)。HPMC属于非离子型纤维素混合醚中的一个品种,具有冷水溶性和热水不溶性的特征,但由于含有羟丙基,使它在热水中的凝胶化温度较甲基纤维素大大提高,在有机头溶剂中较甲基纤维素良好,能溶于丙酮、异丙醇和双丙酮等有机溶剂中。它的粘度在温度升高时开始下降,但至一定温度时则粘度突然上升而发生凝胶化。CMC时是最具代表性的离子性纤维素醚,通常使用的是它的钠盐,纯净的CMC系白色或乳白色纤维状粉末或颗粒,无嗅无味,不溶于酸和甲醇、乙醇、乙醚、丙酮、氯仿、及苯等有机溶剂,而溶于水。CMC的粘度通常在25-50Pa.S之间,取代度在0.3左右。CMC 具有吸湿性,其平衡水分随着空气湿度的升高而增加,随温度的升高而减少[2]。 二.在食品业的发展或应用 1.制作可食用膜 纤维素系列食用膜(edible films)有良好的成膜性质,制得的可食性膜能够阻止食品吸水

纤维素工艺汇总

羟丙基甲基纤维素(HPMC)生产工艺 反应原理:羟丙基甲基纤维素的生产采用氯甲烷和环氧丙烷作为醚化剂, 其化学反应方程是: Rcell –OH(精制棉)+ NaOH(片碱、氢氧化钠)+ CH3Cl (氯甲烷)+ CH2OCHCH3(环氧丙烷)→Rcell - O - CH2OHCHCH3 (羟丙基甲基纤维素)+ NaCl (氯化钠)+ H2O (水) 化学结构式为: 工艺流程:精制棉粉碎---化碱---投料---碱化---醚化---溶剂回收及洗涤---离心分离---干燥---粉碎---混料---成品包装1:生产羟丙基甲基纤维素的原料及辅料 主要原料为精制棉,辅助材料为氢氧化钠(片碱)、环氧丙烷、氯甲烷、醋酸、甲苯、异丙醇、氮气。(精制棉粉碎的目的:通过机械能破坏精制棉的聚集态结构,以降低结晶度和聚合度,增加其表面积。) 2:精确计量与原料质量控制 在设备一定的前提下,任何主副原材料的质量及加入量和溶剂的浓度比例都直接影响产品的各项指标。生产过程体系中含有一定量的水,水与有机溶剂并非完全互溶,水的分散度影响碱在体系中分布。若没有充分搅拌,则对纤维素均匀碱化与醚化不利。

3:搅拌与传质传热 纤维素碱化、醚化都是在非均相(利用外力搅拌均匀)条件下进行的。水、碱、精制棉及醚化剂在溶剂体系中的分散与相互接触是否充分均匀,都会直接影响碱化、醚化效果。碱化过程搅拌不匀,会在设备底部产生碱结晶而沉淀,上层浓度低碱化不够充分,结果是醚化结束后体系还存在大量自由碱,但是纤维素本身碱化不够充分,产品取代不均匀,从而导致透明度差,游离纤维多,保水性能差,凝胶点也低,PH值偏高。 4:生产工艺(淤浆法生产过程) (1:)向化碱釜内加入规定量的固体碱(790Kg)、水(系统总水量460Kg),搅拌升温至80度恒温40分钟以上,固态碱完全溶解(2:)向反应釜加入6500Kg的溶剂(溶剂中异丙醇与甲苯的比值为15/85左右);将化好的碱压入反应釜,压碱后向化碱釜喷淋200Kg溶剂以冲洗管道;反应釜降温至23℃,将粉碎精制棉(800Kg)加入,精制棉加入后喷淋600Kg溶剂开始碱化反应。粉碎精制棉加入必须在规定时间(7分钟)内完成(加入时间长短很重要)。精制棉一旦与碱溶液接触,碱化反应就开始了。加料时间太长,会因精制棉进入反应体系的时间不同而使碱化程度有差异,导致碱化不均匀,产品均匀性降低,同时会引起碱纤维素与空气长时间接触发生氧化降解,导致产品粘度下降。为得到不同粘度级别的产品,可在碱化过程中抽真空、充氮,也可加入一定量的抗氧剂(二氯甲烷)。碱化时间控制在120min,温度保持20-23℃ (3:)碱化结束,加入规定量的醚化剂(氯甲烷和环氧丙烷),升温至规定温度并在规定的时间内进行醚化反应。醚化条件:氯甲烷加入量950Kg,环氧丙烷加入量303Kg。加入醚化剂冷搅40分钟后升温,醚化一段温度56℃、恒温时间2.5h,醚化二段温度87℃,恒温2.5h。羟丙基的反应在30℃左右即能进行,50℃时反应速率大大加快,甲氧基化反应在60℃时缓慢,50℃以下更弱。氯甲烷和环氧丙烷的量、比例和时机以及醚化过程的升温控制,直接影响产品结构。

【CN110078866A】一种纳米纤维素聚合物复合水凝胶及其制备方法和应用【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910298576.3 (22)申请日 2019.04.15 (71)申请人 中国科学院理化技术研究所 地址 100190 北京市海淀区中关村东路29 号 (72)发明人 吴敏 鲁非雪 王超 黄勇  (74)专利代理机构 北京路浩知识产权代理有限 公司 11002 代理人 王文君 陈征 (51)Int.Cl. C08F 251/02(2006.01) C08F 220/06(2006.01) C08F 220/56(2006.01) C08F 220/54(2006.01) G01B 7/16(2006.01) (54)发明名称 一种纳米纤维素-聚合物复合水凝胶及其制 备方法和应用 (57)摘要 本发明公开一种纳米纤维素-聚合物复合水 凝胶及其制备方法和应用。本发明所述纳米纤维 素-聚合物复合水凝胶的制备方法为:纳米纤维 素分散液及单体在引发剂及N ,N ′-亚甲基双丙烯 酰胺的作用下经自由基聚合反应制得;其中所述 引发剂选自过硫酸钾、过硫酸铵、芬顿试剂中的 一种。本发明所述的纳米纤维素-聚合物复合水 凝胶的制备方法,具有原料来源广泛、制备方法 简单、反应时间短等优点。本发明制得的纳米纤 维素-聚合物复合水凝胶的导电性能、自愈合性 能和机械性能良好,可以应用在柔性智能材料、 电容器或电池隔膜等领域。权利要求书1页 说明书6页 附图3页CN 110078866 A 2019.08.02 C N 110078866 A

权 利 要 求 书1/1页CN 110078866 A 1.一种纳米纤维素-聚合物复合水凝胶的制备方法,其特征在于,纳米纤维素分散液及单体在引发剂及N,N′-亚甲基双丙烯酰胺的作用下经自由基聚合反应制得; 其中,所述引发剂选自过硫酸钾、过硫酸铵、芬顿试剂中的一种,优选为芬顿试剂。 2.根据权利要求1所述的制备方法,其特征在于,所述纳米纤维素分散液选自纤维素纳米纤维分散液、纤维素纳米晶分散液、纤维素纳米片分散液、纤维素纳米颗粒分散液中的一种; 优选所述纳米纤维素分散液占所述自由基聚合反应的物料体系总质量的50%~80%。 3.根据权利要求1或2任一项所述的制备方法,其特征在于,所述单体选自丙烯酸、丙烯酰胺、N-异丙基丙烯酰胺、甲基丙烯酸、N-乙基丙烯酰胺中的一种或几种; 优选所述单体以单体溶液的形式加入,所述单体在所述自由基聚合反应的物料体系中摩尔浓度为0.5~4mol/L。 4.根据权利要求1~3任一项所述的制备方法,其特征在于,所述纳米纤维素分散液中纳米纤维素的摩尔用量为所述单体摩尔用量的1%~20%。 5.根据权利要求1~4任一项所述的制备方法,其特征在于,所述引发剂以引发剂溶液的形式加入,所述引发剂的摩尔用量为所述单体摩尔用量的1‰~5%。 6.根据权利要求1~5任一项所述的制备方法,其特征在于,所述N,N′-亚甲基双丙烯酰胺以N,N′-亚甲基双丙烯酰胺溶液的形式加入,所述N,N′-亚甲基双丙烯酰胺的摩尔用量为所述单体摩尔用量的1‰~10%。 7.根据权利要求1~6任一项所述的制备方法,其特征在于,所述自由基聚合的反应时间为5~30min。 8.根据权利要求1~7任一项所述的制备方法,其特征在于,还包括将所述自由基聚合反应后的产物倒入模具中加热成型的步骤;优选所述加热成型的加热温度为30~80℃;更优选所述加热成型的时间为10min~10h。 9.权利要求1~8任一所述的制备方法得到的纳米纤维素-聚合物复合水凝胶。 10.权利要求1~8任一项所述方法得到的纳米纤维素-聚合物复合水凝胶或权利要求9所述的纳米纤维素-聚合物复合水凝胶在制备导电材料、传感材料、超级电容器隔膜上的应用。 2

纤维素衍生物在环保和医药方面的应用

纤维素衍生物在环保和医药方面的应用 【摘要】:以天然纤维素为基体进行改性可以得到活性更强的改性纤维素。且纤维素是是符合可持续发展要求的可再生资源。本文从纤维素的结构对其作出简介,并对纤维素和其衍生物在环境保护和医学药用方面的应用。【关键词】:纤维素衍生物环境保护医学药用应用 Cellulose derivatives in terms of environmental protection and medicine 【Abstract】:Natural cellulose for matrix modified can get active stronger modified cellulose. And cellulose is accord with the sustainable develop ment requirements of the renewable resources. This article from the cellu lose structure is made to its profile, and the cellulose and its derivatives in environmental protection and medical medicinal applications. 【Key words】:cellulose derivative environmental protection Medicine medicinal application 【引言】:纤维素是世界上最丰富的天然有机物,占植物界碳含量的 50% 以上,每年通过光合作用可合成约1.5×1012t 。纤维素及其衍生物在纺织、轻工、化工、国防、石油、医药、能源、生物技术和环境保护等部门应用十分广泛。近年来随着石油、煤炭储量的下降以及石油价格的飞速增长和各国对环境污染问题的

纤维素提取分离技术研究进展_高璇

第28卷第2期 2012年4月 德州学院学报 Journal of Dezhou University Vol.28,No.2 Apr.,2012  纤维素提取分离技术研究进展 高 璇1,陆书明2 (1.江苏省科学技术情报研究所,南京210042;2.南通醋酸纤维有限公司,江苏南通226000) 摘 要:纤维素是一种丰富的生物质资源,具有可再生、可降解等优点,其转化和利用被认为是发展可持续能源的有效途径.本文从近几年的国内外科技文献(尤其是专利)入手,研究并综述了从天然纤维素原料中分离提取纤维素的工艺,分析并指出实现清洁分级分离纤维素、木质素、半纤维素,做到木质纤维素全生物量优化利用才是组分分离的未来. 关键词:纤维素;提取;分离 中图分类号:N99 文献标识码:A 文章编号:1004-9444(2012)02-0069-04 收稿日期:2012-03-15 作者简介:高璇(1983-),女,山东滨州人,硕士,研究方向:科技情报研究、专利分析与战略决策. 1 纤维素概述 纤维素(cellulose)是自然界中存在量最大的一类有机化合物,木材、亚麻、棉花等的主要成分都是纤维素.它是植物细胞壁的主要成分,是构成植物的骨架.纤维素是无色、无味具有纤维状结构的多糖,分子式可以用(C6H10O5)n(n为聚合度)来表示,组成纤维素的基本结构单元是葡萄糖,但与淀粉不同,它是由许多D-葡萄糖单元通过β-1,4糖苷键结合起来的链状高分子化合物.纤维素是目前制浆造纸工业、纺织工业和纤维化工的重要原料,纤维素形式的生物质能也将作为日后重要的清洁能源[1]. 2 纤维素提取分离技术 木质纤维类材料如各种农业残余物(玉米秸杆、小麦秸杆、稻草等)、林业残余物(伐木产生的枝叶、死树、病树等)、野草、芦苇、专门栽培的作物(如松、杨、甘蔗、甜菜、甜高梁等)以及各种废弃物(城市固体垃圾、废纸、甘蔗渣等)都是含有大量纤维素的天然纤维素原料,如果能从其中提取出优质的纤维素应用于工业生产中将会产生巨大的经济效益和生态效益. 但是,纤维素、半纤维素和木质素本身均是具有复杂空间结构的高分子化合物[1],在天然纤维素原料中,它们聚合为一个整体,形成复杂的超分子化合物.其中,木质素大部分存在于胞间层中,和半纤维素形成牢固结合层,对纤维素形成覆盖保护作用.因此,要想获得纤维素并充分利用,就必须将三种组分分离开来,实现纤维素的有效提取. 根据所使用方法的不同性质,纤维素提取工艺可分为物理处理法和化学处理法.在实际应用中,大多是采用两种或两种以上方法的组合,以取长补短,发挥各自优势,改善纤维素分离提取的效果.2.1 物理处理法 物理处理法主要包括机械粉碎、蒸汽爆破、微波和超声波辅助提取法等,一般用于纤维素提取的预处理工艺或是辅助工艺,其目的是去除木质素等对纤维素具有保护作用的成分[1]. 1)机械粉碎法 机械粉碎[1]常用双滚压碎机、球磨机、流态能量

纤维素

木质素lignin 木质素是由聚合的芳香醇构成的一类物质,存在于木质组织中,主要作用是通过形成交织网来硬化细胞壁。因单体不同,可将木质素分为3种类型: 从植物学观点出发,木质素就是包围于管胞、导管及木纤维等纤维束细胞及厚壁细胞外的物质,并使这些细胞具有特定显色反应(加间苯三酚溶液一滴,待片刻,再加盐酸一滴,即显红色)的物质。 在亚硫酸盐法生产纸浆的工艺中,正是由于亚硫酸盐溶液与木粉中的原本木质素发生了磺化反应,引进了磺酸基,增加了亲水性,而后这种木质素磺酸盐在酸性蒸煮液中进一步发生水解反应,使与木质素结合着的半纤维素发生解聚,从而使木质素磺酸盐溶出,实现了木质素、纤维素与半纤维素的分离,得到了纸浆。 半纤维素hemicellulose 植物细胞壁中与纤维素紧密结合的几种不同类型多糖混合物。包括木聚糖、木葡聚糖和半乳葡萄甘露聚糖等。 半纤维素:是由几种不同类型的单糖构成的异质多聚体,这些糖是五碳糖和六碳糖,包括木糖、阿伯糖、甘露糖和半乳糖等。半纤维素木聚糖在木质组织中占总量的50%,它结合在纤维素微纤维的表面,并且相互连接,这些纤维构成了坚硬的细胞相互连接的网络。

半纤维素与纤维素共生、可溶于碱溶液,遇酸后远较纤维素易于水解的那部分植物多糖。一种植物往往含有几种由两或三种糖基构成的半纤维素。半纤维素主要分为三类,即聚木糖类、聚葡萄甘露糖类和聚半乳糖葡萄甘露糖类。任何植物原料的化学制浆工业处理中,在脱木素的同时半纤维素也会发生酸性水解或碱性水解、剥皮反应和氧化反应等,蒸煮溶出的半纤维素又可再沉积吸附于纸浆上,在制纤维素衍生物用浆时则须尽量除去半纤维素。 半纤维素与纤维素间无化学键合,相互间有氢键和范德瓦耳斯力存在。半纤维素与木素之间可能以苯甲基醚的形式连接起来,形成木素-碳水化合物的复合体。

纤维素醚生产制备工艺技术要点

1. 200880112852 包括2-丙烯酰氨基甲基丙烷磺酸的两亲性共聚物和任选的纤维素烷基醚和/或烷基纤维素烷基醚的加香组合物 2. 86101979 采用新型羟丙基甲基纤维素醚作为悬浮剂聚合氯乙烯的方法 3. 88104545 3-烷氧基-2-羟丙基纤维素醚衍生物的组合物及其在建筑胶料中的应用 4. 89102682 一步法合成交联羧甲基羟丙基纤维素复合醚工艺 5. 89102657 非离子型纤维素醚用于添加剂、缝密封材料及涂层材料 6. 89101622 用作氯乙烯悬浮聚合的悬浮剂及有机液体增稠剂的**丙基甲基纤维素醚类 7. 91100348 一步法合成交联羧烷基羟烷基纤维素复合醚工艺 8. 93120890 高度取代的羧甲基磺乙基纤维素醚及其用途 9. 93120888 高度取代的羧甲基磺乙基纤维素醚及其生产工艺和在纺织品印花油墨中的应用 10. 95190826 含有纤维素醚的热凝胶药物转运载体 11. 96114639 快速混媒法生产食(药)用级羧甲基纤维素醚的工艺 12. 96101672 聚阴离子纤维素醚防伪线及其在商品防伪包装上应用 13. 98808434 纤维素醚和涂敷过的片状载体材料上固定生物分子的方法 14. 98805409 纤维素醚淤浆 15. 98107714 含有2-丙烯基的纤维素醚及其在聚合中作为保护胶体的用途 16. 99808663 增稠性能改善的非离子纤维素醚 17. 99800835 改性纤维素醚 18. 99813715 制备低粘性水溶性的纤维素醚的方法 19. 00118796 把纸浆粉碎为粉末的方法和制造纤维素醚的方法 20. 00111228 高取代羟丙基纤维素醚及其制备方法 21. 00811009 包含疏水改性的纤维素醚的头发调理组合物 22. 00108603 水溶性纤维素醚组合物及胶料

纤维素总结

一:纤维素的结构分类及应用: 1)纤维素的结构: 2)纤维素的分类: 根据其在特定条件下的溶解度,可以分级为:α—纤维素,β-纤维素,γ-纤维素,α—纤维素指的是聚合度大于200的纤维素,β-纤维素是指聚合度为10一200的纤维素,γ-纤维素是指聚合度小于10的纤维素。 3)纤维素的应用: 纤维素是一多羟基葡萄糖聚合物,经过特定的物理或化学改性后,具有不同的功能特性,可以粉状,片状,膜,纤维以及溶液等不同形式出现,因此用纤维素开发的功能材料极具灵活性及应用的广泛性。 3.1 高性能纤维材料: 纤维素纤维是现代纺织业的重要原料之一,同时也是纤维素化工和造纸业的重要原料,当前,纸己经成为社会发展的必需品,不仅大量应用于印刷,日用品及包装物,还可以用于绝缘材料,过滤材料以及复合材料等领域,具有广泛而重要的用途。 3.2 可生物降解材料

纤维素能够作为可降解材料的基材使用,因为纤维素具有很多独特的优点:(1)纤维素本身能够被微生物完全降解;(2)维素大分子链上有许多轻基,具有较强的反应性能和相互作用性能,使得材料便于加工,成本低,而且无污染;(3)纤维素具有很强的生物相容性;(4)纤维素本身无毒,可广泛使用,由于纤维素分子间存在很强的氢键,而且取向度和结晶度都很高,使得纤维素不溶于一般溶剂,高温下分解而不融,所以无法直接用来制作生物降解材料,必须对其进行改性,纤维素改性的方法主要有醋化,醚化以及氧化成醛,酮,酸等。纤维素生物降解材料应用广泛,例如园艺品,农,林,水产用品,医药用品,包装材料及光电子化学品等,这里要特别提出的是纤维素在医学,光电子化学,精细化工等高新技术领域应用的更好西川橡胶工业公司研制开发的纤维素,壳聚糖系发泡材料存在很好的应用前景,其特点是重量轻,绝热性好,透气,吸水等,这些特点使其广泛应用于农业,渔业,工业,包装,医疗等各个领域。 3.3 纤维素液晶材料: 天然纤维素及其衍生物液晶是一类新颖的液晶高分子材料,和其它的纤维素衍生物液晶相比,新型的复合型纤维素衍生物液晶在纤维素大分子链中引入了刚性介晶基元,使得控制其液晶性质能够成为现实"这同时就为开发具有特殊性能的液晶高分子提供了新的研究领域,并且其相应的理论基础研究对探索高分子液晶的形成也有十分重要的指导意义,另外,由于天然纤维素是自然界取之不尽,用之不竭的可再生天然高分子,那么在石油及能源日益枯竭的今天,我们就很有必

纤维素的结构及性质

一.结构 纤维素是一种重要的多糖,它是植物细胞支撑物质的材料,是自然界最非丰富的生物质资源。在我们的提取对象-农作物秸秆中的含量达到450-460g/kg。纤维素的结构确定为β-D-葡萄糖单元经β-(1→4)苷键连接而成的直链多聚 体,其结构中没有分支。纤维素的化学式:C 6H 10 O 5 化学结构的实验分子式为 (C 6H 10 O 5 ) n 早在20世纪20年代,就证明了纤维素由纯的脱水D-葡萄糖的重复 单元所组成,也已证明重复单元是纤维二糖。纤维素中碳、氢、氧三种元素的比例是:碳含量为%,氢含量为%,氧含量为%。一般认为纤维素分子约由8000~12000个左右的葡萄糖残基所构成。 O O O O O O O O O 1→4)苷键β-D-葡萄糖 纤维素分子的部分结构(碳上所连羟基和氢省略)二.天然纤维素的原料的特征 做为陆生植物的骨架材料,亿万年的长期历史进化使植物纤维具有非常强的自我保护功能。其三类主要成分-纤维素、半纤维素和木质素本身均为具有复杂空间结构的高分子化合物,它们相互结合形成复杂的超分子化合物,并进一步形成各种各样的植物细胞壁结构。纤维素分子规则排列、聚集成束,由此决定了细胞壁的构架,在纤丝构架之间充满了半纤维素和木质素。天然纤维素被有效利用的最大障碍是它被难以降解的木质素所包被。 纤维素和半纤维素或木质素分子之间的结合主要依赖于氢键,半纤维素和木质素之间除了氢键外还存在着化学健的结合,致使半纤维素和木质素之间的化学健结合主要在半纤维素分子支链上的半乳糖基和阿拉伯糖基与木质素之间。 表:植物细胞壁中纤维素、半纤维素、和木质素的结构和化学组成

项目纤维素木质素半纤维素 结构单元吡喃型D-葡萄 糖基G、S、H D-木糖、苷露糖、L-阿拉伯糖、 半乳糖、葡萄糖醛酸 结构单元间连接键β-1,4-糖苷键多种醚键和C-C 键,主要是 β-O-4型醚键 主链大多为β-1,4-糖苷键、 支链为 β-1,2-糖苷键、β-1,3-糖苷 键、β-1,6-糖苷键 聚合度几百到几万4000200以下 聚合物β-1,4-葡聚糖G木质素、GS木质 素、 GSH木质素木聚糖类、半乳糖葡萄糖苷露聚糖、葡萄糖甘露聚糖 结构由结晶区和无 定型区两相 组成立体线性 分子α不定型的、非均一 的、非线性 的三维立体聚合 物 有少量结晶区的空间结构不 均一的分子,大多为无定型 三类成分之间的连接氢键与半纤维素之间 有化学健作用 与木质素之间有化学健作用 天然纤维素原料除上述三大类组分外,尚含有少量的果胶、含氮化合物和无机物成分。天然纤维素原料不溶于水,也不溶于一般有机溶剂,在常温下,也不为稀酸和稀碱所溶解。 三.纤维素的分类 按照聚合度不同将纤维素划分为:α-纤维素、β-纤维素、γ-纤维素,据测α-纤维素的聚合度大于200、β-纤维素的聚合度为10~100、γ-纤维素的聚合度小于10。工业上常用α-纤维素含量表示纤维素的纯度。 综纤维素是指天然纤维素原料中的全部碳水化合物,即纤维素和半纤维素的总和。

纤维素醚方法

纤维素醚检验方法 1外观: 在自然散射光下目测。 2粘度: 取400 ml 高搅烧杯称重,并称取294g水置入其中,开搅拌机,然后加入称取的纤维素醚 6.0 g;并不断的搅拌直至全溶,使其溶解配制成2%溶液;放置于实验温度(20±2)℃下3-4 h后;用NDJ-1型旋转粘度计测试,测试时选择合适的粘度计转子号数与转子转速。旋上转子并放入溶液中静置3-5分钟后;打开开关,待数值稳定后,记录结果 注:(MC 4万、6万、7.5万)选择4号转子,转速6转。 3水中溶解状态: 配置成2%的溶液过程中,观察溶解的过程、速度。 4灰分: 取瓷坩埚在马费炉中灼烧后,放在干燥器中冷却,称重,直至恒重后备用。精确称取(5~10)克试样于坩埚中,将坩埚先在电炉上焙烧,达到完全碳化后,放入马费炉中灼烧约(3~4)h,再放入干燥器中冷却,称量,直至恒重。 灰分计算(X): X = (m2-m1) / m0×100 式中:m1——坩埚质量,g; m2——灼烧后坩埚与灰分总质量,g; m0——试样质量,g; 5含水量(干燥失重): 称取5.0g 样品于快速水分测定仪托盘上,精确调节至零位刻度线。升温并调节温度于(105±3)℃之间。待显示刻度不动时,记下数值m1(称量精度为 5mg )。 含水量(干燥失重X(%))计算: X = ( m1 / 5.0) ×100 高效减水剂与水泥相容性检验方法 1、主题内容与适用范围 本方法适用于在试验室内比较高效减水剂与不同水泥的相容性。当使用矿物掺合料时,本方法也可用于比较高效减水剂与不同混合胶凝材料的相容性。 2、引用标准

本方法参照《混凝土外加剂匀质性试验方法》GB8077-87规定的净浆流动度试验方法。 3、高效减水剂与水泥相容性的检测方法如下: 3.1、仪器设备 1)水泥净浆搅拌机; 2)截锥形圆模:上口内径36mm,下口内径60mm,高度60mm,内壁光滑无接缝,为金属或有机玻璃制品; 3)玻璃板(400mm×400mm); 4)钢直尺(至少400mm); 5)刮刀 6)药物天平(称量100g,感量0.1g) 7)药物天平(称量1000g,感量1g)。 3.2、试验步骤 1)调整玻璃板至水平位置,将锥模置于水平玻璃板上,锥模和玻璃板均用湿布擦过,并将湿布覆盖上面; 2)称取水泥900g,倒入用湿布擦过的搅拌锅内; 3)加入4.5g粉状高效减水剂及261g或315g水,搅拌4min; 4)将拌好的水泥浆,迅速注入锥模内并用刮刀刮平,将锥模按垂直方向迅速提起,30s时量取互相垂直的两直径(mm),取其平均值作为水泥净浆的流动度。5)30min和60min后,继续搅拌余下的水泥浆,并按上述方法测定相应时间的流动度。 3.3、试验结果处理 1)测定高效减水剂与不同水泥品种相容性,流动度值取三个试样的算术平均值,绘制流动度随时间变化的曲线,得出结论; 2)需注明所用高效减水剂和水泥的品种、标号、生产厂;如果水灰比(水胶比)或高效减水剂掺量与本规定不符,也应注明。 砂浆减水率检验方法 1、主题内容与适用范围 本方法规定了水泥胶砂流动度测定的仪器和操作步骤。 本方法适用于火山灰质硅酸盐水泥、复合硅酸盐水泥和掺有火山灰质混合材料的普通硅酸盐水泥、矿渣硅酸盐水泥及指定采用本方法的其他品种水泥的胶砂流动度测定。 2、引用标准 GB177水泥胶砂强度检验方法 GB178水泥强度试验用标准砂 JBW 01-1-1水泥胶砂流动度标准样 3、砂浆减水率的检测方法如下: 3.1、仪器设备

水溶性纤维素醚

赫达纤维素醚介绍 低取代羟丙基纤维素(L-HPC) 一.名称: 1.化学名称:低取代2-羟丙基醚纤维素 2.英文全称:Low-Substituted Hydroxyproxyl Cellulose 3.英文简称:L-HPC 二.分子组成与结构式: 三.技术要求: 四.理化性质: 1.外观:白色或类白色粉末,无臭,无味。 2.性状:L-HPC在水中溶胀成澄清或微浑浊的胶体溶液;在乙醇、丙酮或乙醚中不溶。高取代羟丙基纤维素(H-HPC) 一.名称: 1.化学名称:高取代2-羟丙基醚纤维素 2.英文全称:High-Substituted Hydroxyproxyl Cellulose 3.英文简称:H-HPC 二.分子组成与结构式:

三.技术要求: 四.理化性质: 1.外观:白色或类白色粉末,无臭无味. 2.颗粒度:20目过筛率不小于99%;30目过筛率不小于95%。 3.假比重:0.5~0.6克/立方厘米,比重1.2224。 4.热稳定性: 变色温度:195~210℃ 碳化温度:260~275℃ 软化温度:130℃ 38℃以下在水中呈清晰透明的溶液。 凝胶温度:40℃以上。 五.特性: 1.常温下溶于水和多种有机溶剂。如:无水甲醇、乙醇、异丙醇、丙二醇、二氯甲烷、也可

溶于丙酮、氯仿、和溶碱剂,溶液均透明。 2.H—HPC是良好的热塑性物质,具有优良的成膜性,所成膜非常坚韧,光泽性良好弹性充分。 3.灰份极低,使本产品具有优良的粘结性,作为乳液增粘用,十分稳定,而且分散性好。 4.H—HPC本身无药理作用,无毒,对生理无害。 5.H—HPC呈化学惰性,难与其它物质发生化学反应。 6.取代基分布比较均匀,充分,H—HPC抗菌强。 7.平衡湿含量较低。 8.由于本身是非离子性质本品在酸性溶液中不会凝胶.在广泛PH值中显示优良稳定性。 9.H—HPC的浓溶液可形成正规取向的液晶。 10.H—HPC水溶液具有表面活性作用。 11.其水溶液随温度的升高和降低,能历次经过凝胶和溶解的可逆过程。 六.溶解方法: 1.溶解于水: 1).将H-HPC慢慢加入到剧烈搅拌的水中,直到完全溶解为止.如果将全部物料加入将难于溶解; 2).取预定水量的20~30%加热到60℃以上,在充分搅拌的条件下将H-HPC慢慢加入,待所有H-HPC入后,再将剩余的80—70%的水加入,可完全溶解。 2.溶解于有机溶剂: 在充分搅拌下将H—HPC慢慢加入到有机溶剂中,若一次性加入溶解很困难。 羟丙基甲基纤维素(HPMC) 一.名称: 1.化学名称:2-羟丙基醚甲基纤维素 2.英文全称:Hydroxypropyl Methyl Cellulose 3.英文简称:HPMC 二.分子组成与结构式: 三.技术要求:

半纤维素的提取及功能化应用

半纤维素的提取及功能化应用 摘要:进入新世纪以后,全面可持续发展的科学发展观不断深入人心,为贯彻这一思想,可再生木质纤维素类生物质资源的开发和利用得到了人们的极大重视和关注。半纤维素是农林生物质的主要组分之一,含量仅次于纤维素,是地球上最丰富、最廉价的可再生资源之一。本文主要对半纤维素的提取及功能化应用进行综述。 关键词:生物质;半纤维素;功能化应用 Extraction and functional application of Hemicelluloses Abstract: After entering the new century, the comprehensive sustainable development of the concept of scientific development unceasingly thorough popular feeling, lignocelluloses biomass resources development and utilization of the people's great attention and concern to carry out the idea of renewable class. Hemicelluloses is a major component of forestry biomass, content, second only to cellulose is the most abundant on earth, one of the most cheap renewable resource. This article mainly summarized the extraction and functional application of hemicelluloses. Key Words: biomass ; hemicelluloses; functional applications 1.引言 植物体内通常含有纤维素、半纤维素、木质素、果胶和特种化合物。其中,半纤维素在自然界中的含量十分丰富,在木质纤维生物质中的含量占1/4 ~1/3,仅次于纤维素的含量,比木质素还高。长期以来纤维素和木质素的研究利用占据了人们的主导研究地位,近年来有关半纤维素的研究逐步得到了重视,特别是半纤维素的提取和改性技术的提高,使其在造纸、食品包装、生物医药等领域有着潜在的商业价值[1]。本文通过半纤维素的简介、提取方法及功能化应用三个方面进行详细阐述。 2.半纤维素的简介 半纤维素是植物细胞壁的主要组分之一,是由非葡萄糖单元组成的一类多糖的总称,约占细胞壁总重的20~35%。半纤维素与纤维素均一聚糖的直链结构不同,在参与细胞壁的构建中形成的种类很多,多为支链结构,结构复杂,且化学结构随植物种类不同呈现较大差异。 半纤维素主要由大量的非晶戊糖和己糖组成[2],既有均一聚糖也有非均一聚糖。根据一级结构,半纤维素可分为甘露聚糖、木聚糖、半乳聚糖、木葡聚糖和阿拉伯聚糖[3]。下图是半纤维素的主要结构单元。

纤维素提取

3,5-二硝基水杨酸(DNS)法测定还原糖3,5-二硝基水杨酸(DNS)法测定还原糖【原理】 还原糖的测定是糖定量测定的基本方法。还原糖是指含有自由醛基和酮基的糖类。单糖都是还原糖。利用单糖、双糖与多糖的溶解度的不同可把他们分开。用酸水解法使没有还原性的双糖,彻底水解成具有还原性的单糖,再进行测定,就可以求出样品中的还原糖的含量。 在碱性溶液中,还原糖变为烯二醇(1,2-烯二醇)。 烯二醇易被各种氧化剂如铁氰化物、3,5-二硝基水杨酸和Cu2+氧化为糖酸。氰化物和二硝基水杨酸盐的还原作用是还原糖定量测定的基础。还原糖和碱性二硝基水杨酸试剂一起共热,产生一种棕红色的氨基化合物,在一定的浓度范围内,棕红色物质颜色的深浅程度与还原糖的量成正比。因此,我们可以测定样品中还原糖以及总糖的量。【试剂】 1. 小麦粉

2. 6 mol/L HCl 50 ml浓盐酸加水稀释至100 ml。 3. 6 mol/L NaOH 240 g NaOH溶解于500 ml水中加水定容到1000 ml。 4. 碘-碘化钾溶液 20 g碘化钾和10 g碘溶于100 ml水中,使用前取1 ml加水稀释到20 ml。 5. 1 mg/ml的葡萄糖溶液 6. 3,5-二硝基水杨酸 6.3 g 3,5-二硝基水杨酸溶于262 ml 2 mol/L的氢氧化钠溶液中。将此溶液与500 ml含有182 g酒石酸钾钠的热水混合。向该溶液中再加入5 g重蒸酚和5 g亚硫酸钠,充分搅拌使之溶解,待溶液冷却后,用水稀释到1 000 ml。储存于棕色瓶中(需在冰箱中放置一周后方可使用)。 【操作】 1. 葡萄糖标准曲线的绘制 取试管6支,按下表操作: 管号 1 2 3 4 5 6

纤维素及其作用

纤维素及其作用 纤维素(cellulose)是由葡萄糖组成的大分子多糖。不溶于水及一般有机溶剂。是植物细胞壁的主要成分。纤维素是自然界中分布最广、含量最多的一种多糖,占植物界碳含量的50%以上。棉花的纤维素含量接近100%,为天然的最纯纤维素来源。一般木材中,纤维素占40~50%,还有10~30%的半纤维素和20~30%的木质素。 麻、麦秆、稻草、甘蔗渣等,都是纤维素的丰富来源。纤维素是重要的造纸原料。此外,以纤维素为原料的产品也广泛用于塑料、炸药、电工及科研器材等方面。食物中的纤维素(即膳食纤维)对人体的健康也有着重要的作用。 纤维素是地球上最古老、最丰富的天然高分子,是取之不尽用之不竭的,人类最宝贵的天然可再生资源。纤维素化学与工业始于160多年前,是高分子化学诞生及发展时期的主要研究对象,纤维素及其衍生物的研究成果为高分子物理及化学学科的创立、发展和丰富作出了重大贡献。全世界用于纺织造纸的纤维素,每年达800万吨。此外,用分离纯化的纤维素做原料,可以制造人造丝,赛璐玢以及硝酸酯、醋酸酯等酯类衍生物;也可制成甲基纤维素、乙基纤维素、羧甲基纤维素、聚阴离子纤维素等醚类衍生物,用于石油钻井、食品、陶瓷釉料、日化、合成洗涤、石墨制品、铅笔制造、电子、涂料、建筑建材、装饰、蚊香、烟草、造纸、橡胶、农业、胶粘剂、塑料、炸药、电工及科研器材等方面。 生理作用

纤维素的主要生理作用是吸附大量水分,增加粪便量,促进肠蠕动,加快粪便的排泄,使致癌物质在肠道内的停留时间缩短,对肠道的不良刺激减少,从而可以预防肠癌发生。 膳食纤维 人类膳食中的纤维素主要含于蔬菜和粗加工的谷类中,虽然不能被消化吸收,但有促进肠道蠕动,利于粪便排出等功能。草食动物则依赖其消化道中的共生微生物将纤维素分解,从而得以吸收利用。食物纤维素包括粗纤维、半粗纤维和木质素。食物纤维素是一种不被消化吸收的物质,过去认为是“废物”,现在认为它在保障人类健康,延长生命方面有着重要作用。因此,称它为第七种营养素。 ①有助于肠内大肠杆菌合成多种维生素。 ②纤维素比重小,体积大,在胃肠中占据空间较大,使人有饱食感,有利于减肥。 ③纤维素体积大,进食后可刺激胃肠道,使消化液分泌增多和胃肠道蠕动增强,可防治糖尿病的便秘。 ④高纤维饮食可通过胃排空延缓、肠转运时间改变、可溶性纤维在肠内形成凝胶等作用而使糖的吸收减慢。亦可通过减少肠激素如抑胃肽或胰升糖素分泌,减少对胰岛B细胞的刺激,减少胰岛素释放与增高周围胰岛素受体敏感性,使葡萄糖代谢加强。 ⑤近年研究证明高纤维饮食使Ⅰ型糖尿病患者单核细胞上胰岛素受体结合增加,从而节省胰岛素的需要量。由此可见,糖尿病患者进食高纤

纤维素醚的生产工艺及流程图解版

纤维素醚的生产工艺及流程图解版 注:根据以下文字描述来源做成的图解,仅代表个人理解,若有偏差,请多包涵。 设备生产工艺生产流程

纤维素醚的生产工艺及流程 传统的纤维素醚生产工艺是:将精制棉用氢氧化钠在一定的条件下进行碱化生成纤维素钠,再 由环氧丙烷、环氧乙烷、氯甲烷或氯乙酸等醚化剂进行醚化,在一定条件下反应生成不同类型 品种纤维素醚,再通过中和、回收溶剂、洗涤、干燥、粉碎最终得到粉末状的成品;因醚化剂 的不同,取代基就不同,所以纤维素醚的名称就不同,这种工艺存在的不足是:生产出来的纤 维素醚成本高,尤其是近几年棉花的价格不断上涨,导致了精制棉的价格飞速上涨,最终各种 纤维素醚产品成本价格也在提高,直接影响了销售及其推广。 1.一种纤维素醚的制备方法,其特征在于:包括如下反应步骤: 第一步:木浆的粉碎 首先利用木浆开松机,将木浆进行开松,开松后的木浆再经过开棉粉碎机进行粉碎,得到与精 制棉一样松密度(≥130g/L)的木浆粉,达到生产纤维素醚的指标要求; 第二步:木浆的碱化 将氢氧化钠800份投入反应釜内,升温至65℃,将碱溶解,然后降温至20℃,投入粉碎后的木浆850份,在22℃的条件下,碱化2.5小时,生成纤维素钠,反应过程中,每反应10分钟,静置15分钟; 第三步:纤维素钠的醚化 在碱化后生成的纤维素钠中加入醚化剂环氧丙烷400份、氯甲烷900份,在22℃的条件下恒 温反应20分钟,使其醚化剂充分搅拌均匀,然后升温至50±1℃,恒温反应1小时,然后立刻升温至90℃,恒温反应2小时反应结束,降温至40℃加入乙醇溶液中和洗涤,然后加入醋酸 中和调节PH值5-7之间,然后将物料压入回收釜,用100℃以上的软水将溶剂置换回收,回 收完后,通过离心机将物料与软水分离,然后物料再用无轴螺旋输送至闪蒸干燥机,干燥后得 到最终的产品,羟丙基甲基纤维素醚。 技术总结 本发明涉及一种木浆纤维素醚的制备方法,包括如下反应步骤:第一步:木浆的粉碎;第二步:木浆的碱化;第三步:纤维素钠的醚化。本发明工艺制备的羟丙基甲基纤维素醚与传统工艺用 精制棉制备生产的羟丙基甲基纤维素醚在同等条件下进行对比试验,发现本发明用木浆制备生 产的羟丙基甲基纤维素醚,质量高于用精制棉制备生产的羟丙基甲基纤维素醚质量,但成本价 格却要低40%以上;本发明采用氢氧化钠和水为反应介质,不添加任何惰性有机溶剂,显著降低了生产成本。

④纤维素接枝环糊精水凝胶的制备及其性能研究

作者简介:杨韶平,男,博士研究生,主要从事医用水凝胶的合成。*基金项目:国家高技术发展研究计划(2007AA100704) 纤维素接枝环糊精水凝胶的制备及其性能研究 * 杨韶平 付时雨 李雪云 周益名 詹怀宇 (华南理工大学制浆造纸工程国家重点实验室,广东广州510640) 摘 要:以环氧氯丙烷作为化学交联剂,在碱性均相纤维素溶液中,将 -环糊精接枝到微晶纤维素上,合成了接枝 -环糊精的功能性纤维素基水凝胶。研究了水凝胶的溶胀动力学和温敏性能,发现该水凝胶对温度敏感。考察了该水凝胶对甲基橙、亚甲基蓝的吸附性能,实验结果表明,接枝 -环糊精的纤维素基水凝胶对甲基橙和亚甲基蓝具有很好的吸附效果,其吸附容量分别达到3.48m g /g 、1.42m g /g ,其脱附性能也较好。并运用差热扫描(DSC)、热重(TGA )和扫描电镜(SE M )对该水凝胶进行分析。关键词:纤维素;环糊精;水凝胶;温敏;吸附 中图分类号:TS727 文献标识码:A 文章编号:1671-4571(2010)02 0049 05 水凝胶是由高分子的三维网络与水组成的多元体系,在水中只溶胀,而不溶于水,是自然界中普遍存在的一种物质形态[1] 。基于纤维素(cellulose)大分子的水凝胶,由于其具有较好的生物兼容性和易降解等优点,是一种理想的药物缓释剂[2] 。因而,对其的制备及其性能的研究在临床医学上又很重大的意义。 由于纤维素难溶于一般溶剂,纤维素水凝胶主 要以纤维素衍生物为原料来制备,I vanov 等[3] 以甲基纤维素和聚乙烯醇为原料,环氧氯丙烷为交联剂,合成了纤维素基水凝胶。据报道[4-5] 氢氧化钠水溶液对微晶纤维素和短棉绒具有较好的溶解性,而且该溶液是一种绿色溶剂,相对有机溶剂而言,不会残留有毒物质,是制备医用水凝胶的理想溶剂,张俐娜等 [6] 以纤维素为原料,氢氧化钠和尿素为溶剂,环 氧氯丙烷为交联剂,一步合成了纤维素基水凝胶,但是这些水凝胶装载药物的量却很小。 -环糊精( -CD )是一种环状低聚葡萄糖,其独特的内部疏水、外部亲水的结构,使之易与相应尺寸的客体分子通过分子间相互作用形成超分子包合物[7] 。由环糊精等为原料制备的水凝胶具有对药物吸附容量大、释放速率可控和副作用小等优点,如K aneto 等 [8] 以羟丙基纤维素、乙基纤维素和环糊 精等为原料,制备的糖衣,对药物具有释放速率可控等优点。 本文以微晶纤维素为原料,N a OH 为绿色溶剂, 均相合成了纤维素接枝环糊精水凝胶,该水凝胶对模型药物甲基橙和亚甲基蓝具有很好的吸附性,其释放速率也较稳定,对温度敏感,其玻璃转化温度位于体温,可望作为药物缓释剂。1 实验部分1.1 试剂与仪器 微晶纤维素和 -环糊精分别购买于上海晶纯化学有限公司和中国医药(集团)上海化学试剂公司,无水乙醇、酚酞、环氧氯丙烷、氢氧化钠和碳酸钠等试剂均为分析纯。 紫外可见分光光度计(S-4100):美国SC I N C O 公司;差热分析仪(DSC -Q200)和热重分析仪(TGA 500):美国TA Instrum ents 公司;扫描电子显微镜:S-3700N (日本日立公司)。 1.2 纤维素接枝环糊精水凝胶的制备 配制10%浓度的氢氧化钠的水溶液100m ,l 冷却到-10 ,然后加入5g 的微晶纤维素,边加边搅拌,然后在-20 下,保持5h ,拿出后,在室温下静止,可得透明的纤维素碱溶液。 配制一系列环糊精含量不同的碱溶液,边搅拌,边加入过量的环氧氯丙烷,在40 下反应8h ,静置分层,去掉未反应的环氧氯丙烷,然后缓慢滴加至纤维素碱溶液中,反应12h 后,产物用大量蒸馏水和乙醇洗涤,直至洗出液为中性,并且至洗出液中无环氧氯丙烷 [5] 。反应示意如图1所示。 49

相关文档