文档库 最新最全的文档下载
当前位置:文档库 › 连续时间傅里叶变换

连续时间傅里叶变换

连续时间傅里叶变换
连续时间傅里叶变换

2

奇偶信号的FS:

(i) 偶信号的FS:

2 a n

f (t)cosn T] T 1

Fn 弘

1tdt ;

bn 2 T1 f (t)sin n 1tdt

c

n

d

n

a

n

(ii )

jbn an 2 2

偶的周期信号的 奇信号的FS:

F n ( Fn 实, 偶对称);n

FS 系数只有直流项和余弦项。 2

T

f(t)sinn 1tdt ; 5 dn T| 11

1

Fn

F n jbn ( Fn 纯虚,奇对称);

a

a

n 0

b

n

b

n

2jFn 第二章连续时间傅里叶变换

1周期信号的频谱分析 一一傅里叶级数FS

(1)

狄义赫利条件:在同一个周期 T1内,间断点的个数有限;极大值和极小值的数目有限;信号绝

为T i ,角频率为 ,2 f ,—。

Ti

(3)任何满足狄义赫利条件周期函数都可展成傅里叶级数。 ⑷三角形式的FS:

(i) 展开式:f(t) a 0 (ancon it bn sin n ,t) n 1

(ii) 系数计算公式:

(a) 直流分量: ao

f (t)dt

T 1 T 1

(b) n 次谐波余弦分量: a n - f (t) cosn 1tdt, n N

T1 T 1 2

(c) n 次谐波的正弦分量: bn — f (t)sinn 1tdt, n N

T1 T 1

(iii) 系数an 和bn 统称为三角形式的傅里叶级数系数,简称傅里叶系数。 (iv) 称f1 1/T1为信号的基波、基频; nf1为信号的n 次谐波。

(V)

合并同频率的正余弦项得:

n 和n 分别对应合并后 门次谐波的余弦项和正弦项的初相位。

(vi) 傅里叶系数之间的关系:

(5)复指数形式的FS:

(i) 展开式:f (t) Fne

jn 1t

n

(ii) 系数计算:Fn 丄 f(t)e jn 1t

dt, n Z

T] T 1

(iii) 系数之间的关系:

(iv) Fn 关于

n 是共扼对称的,即它们关于原点互为共轭。

(v)

正负n (n 非零)处的Fn 的幅度和等于Cn 或dn 的幅度。

对可积 丁 f(t)dt 。

(2)傅里叶级数:正交函数线性组合。

正交函数集可以是三角函数集

{1,cosn *,sinn 1t :n

N}或复指数函数集

{e jn 术:n Z},函数周期

(i) 称Fn 为信号的傅里叶复数频谱,简称傅里叶级数谱或 FS 谱。

(ii) 称Fn 为信号的傅里叶复数幅度频谱,简称 FS 幅度谱。

(iii) 称n 为傅里叶复数相位频谱,简称 FS 相位谱。

(iv) 周期信号的FS 频谱仅在一些离散点角频率

n"或频率nf 1)上有值。 (v) FS 也被称为傅里叶离散谱,离散间隔为

i 2 /Ti 。

(vi) F S 谱、FS 幅度谱和相位谱图中表示相应频谱、频谱幅度和频谱相位的离散线段被称为谱

线、幅度谱线和相位谱线,分别表示 FS 频谱的值、幅度和相位 (vii) 连接谱线顶点的虚曲线称为包络线, 反映了各谐波处FS 频谱、幅度谱和相位谱随分量的 变化情况。

(viii)称cn 为单边谱,表示了信号在谐波处的实际分量大小。

(ix)称Fn 为双边谱,其负频率项在实际中是不存在的。正负频率的频谱幅度相加,才是实际 幅度。 (8)

周期矩形脉冲序列的 FS 谱的特点: (i)

谱线包络线为Sa 函数;

(ii ) 谱线包络线过零

点:

(其中

2 一 1 为谱线间隔)

n

k ,或 n 1

T1

2k

,k

Z,k 0

即当 n 1 2k /

时,a

n c

n F n 0。

(iii) 在频域,能量集中在第一个过零点之内。 (iv) 带宽 2 /或f 1/只与矩形脉冲的脉宽

有关,而与脉高和周期均无关。

(定义

0~2 /为周期矩形脉冲信号的频带宽度,简称带宽

)

(9) 周期信号的功率:P f(t) |F n |2

n

2

(10) 帕斯瓦尔方程: 丄 f 2

(t)dt

F n T

1 Tl

n

2非周期信号的频谱分析一傅里叶变换(FT)

(1)信号f (t )的傅里叶变换:

是信号f(t)的频谱密度函数或 FT 频谱,简称为频谱(函数)。 ⑵ 频谱密度函数F()的逆傅里叶变换为:f(t) 1

F( )e

j t

d ?F 1 F()

2

⑶ 称e j t 为FT 的变换核函数,e j t 为IFT 的变换核函数。 ⑷FT 与IFT 具有唯一性。如果两个函数的

FT 或IFT 相等,则这两个函数必然相等。

⑸FT 具有可逆性。如果 F f (t) F(),则必有F 1 F( ) f(t);反之亦然。

(i) 称F()为幅度频谱密度函数, 简称幅度谱,表示信号的幅度密度

随频率变化的幅频特性;

(ii)

称()Arg F()为相位频谱密度函数,简称相位谱函数,表示信号的相位随频率变化 的相频特性。

(7) FT 频谱可分解为实部和虚部:

F( ) F r ( ) jF i ()

(8) FT 存在的充分条件:时域信号

f (t)绝对可积,即

f(t)dt

注意:这不必要条件。有一些并非绝对可积的信号也有 FT 。

(9) FT 及IFT 在赫兹域的定义:

F(f) f (t)e j2 ft dt ; f (t) F(f )e j2 ft df

(10)

比较FS 和FT :

(6)信号的傅里叶变换一般为复值函数,可写成

F( ) F( )e j ()

3典型非周期信号的FT 频谱 (1)单边指数信号:

f(t) e at u(t)(a

0)

幅度谱:

F()

1

a

2 2

相位谱:

() Arg F()

Arg

a j

arctg —

a

八rg

2 2

单边指数信号及其幅度谱、相位谱如图 1所示。 图1 (a)单边指数信号(b)幅度谱(c)相位谱

(2)偶双边指数信号:f(t) e at (a 0)

°e(a

j }t

dt 0 e (a j }t dt

1

a j

1 2

2a 2,为实偶函数。

a 2

a j

幅度谱:

F

( ) 22a

2 a

相位谱: ()0

偶双边指数信号及其频谱如图 2所示。

图2 (a)偶双边指数信号(b)频谱

⑶ 矩形脉冲信号:f(t) EG (t)(脉宽为、脉高为E )

E Sin _- /22 E Sa —,为实函数。

幅度谱:F( ) E Sa 一

2

矩形脉冲信号及其频谱如图 3所示。

图3 (a)矩形脉冲信号(b)频谱

矩形脉冲FT 的特点:

(i) F T (ii) FT 为Sa 函数,原点处函数值等于矩形脉冲的面积;

的过零点位置为

2k / (k 0);

(iii) 频域的能量集中在第一个过零点区间

2 / ,2 /之内

(iv) 带宽为B 2 /或Bf 1/,只与脉宽 有关,与脉高E 无关。

信号等效脉宽:

F(0)/f(0)

信号等效带宽:Bf 丄

图4 (a)信号的等效脉宽(b)等效带宽

(4)符号函数:不满足绝对可积条件,但存在

FT 。

幅度

谱: F( ) 2

相位谱:

/2,

0 ()

/2,

符号函数及其频谱如图 5所示。

图5⑻符号函数(b)频谱

(5)冲激信号:

均匀谱/白色谱:频谱在任何频率处的密度都是均匀的。 强度为E 的冲激函数的频谱是均匀谱,密度就是冲激的强度。

相位谱:

4k

0,

1

1 2(2k 1)

2(2k 1) II

4(k 1)

()

(对应 F( ) 0) ______ k Z

(对应F( ) 0)

(6)FT

0处有一个冲激,该冲激来自 u(t)中的直流分量。

单位阶跃信号及其幅度谱如图 6所示。

图6单位阶跃函数及其幅度谱

4 FT 的性质

实信号的FT :(实信号可分解为:实偶

实部是偶函数,虚部是奇函数:实 偶共扼对称:F( ) F*() 幅度谱为偶函数,相位谱为奇函

数: 虚信号的FT 具有奇共扼对称性:F (

偶共轭对称或奇共轭对称的函数满足幅度对称: 实信号或虚信号的 FT 幅度谱偶对称,幅度谱函数是偶函数。 反褶和共轭性:

F g( ) g( )e j t

d 表示按自变量 进行傅里叶变换,结果是 t 的函数。

IFT 可以通过 FT 来实现。 FT 的对偶特性:F[F(t)] 2 f()

若f (t)为偶函数,则F F(t) 2 f (); 若f(t)为奇函数,则F F(t) 2 f( ) o

此性质表明:时域压缩对应频域扩展、时域扩展对应频域压缩。

⑹时移特性:F f (t to) F( )e j to F f(t)e j to

时移不影响幅度谱,只在相位谱上叠加一个线性相位。 与尺度变换特性综合:

(7)频移特性:

与尺度变换特性综合:

F 1 f - e j ot/a

F a o , (a 0)

a a

频谱搬移:时域信号乘以一个复指数信号后, 频谱被搬移到复指数信号的频率位置处。 利用欧

(1) 线性性:F

anF fn(t)

n

anf n(t)

n 线性性包括:齐次性 F af

(t) aF f (t); 奇偶虚实性:

偶 奇 实偶 实奇

叠加性 F fi(t) f2(t) F fi(t) F f2(t)。

偶 奇

实偶(FT 可变为余弦变换) 虚奇(FT 可变为正弦变换) 实奇)

实偶+j 实奇

实偶EXP(实奇)

)

F(

) F()。

对偶性:

傅里叶正逆变换的变换核函数是共轭对称的:

(5)尺度变换特性:

F[f(at)]

F

a ,(a 0)

e j t

e j t

; e j t

e j t

拉公式,通过乘以正弦或余弦信号达到频谱搬移目的。

(8)微分特性:

时域微分: F Af(t) dt j F()

频域微分:dF()

d

F ( jt)f (t)

如果连续运用微分特性,则

(9)积分特性:

时域积分:F t f( )d (j ) 1 F( ) F(O)()

如果LL2 在0处有界(或F(0) 0),则 F t f( )d (j ) 1F()

1

频域积分:F( )d f (0) (t) f (t)

jt

(10)卷积定理:

时域卷积定理: F f1(t) f2(t) F f1(t) F f2(t)

频域卷积定理:F f1(t) f2(t) —F f1(t) F f2(t)

2

(11)时域相关性定理: F RfM) F f1(t)F* f2(t)

若f2(t)是实偶函数,则FR f1f2(t) F1( )F2()。此时,相关性定理与卷积定理一致。

自相关的傅里叶变换: F Rf(t) F f(t)F* f(t) F f(t) 2。即函数的自相关函数与其幅度谱的平方是一对傅里叶变换对)。

2

1

2 2

(12)帕斯瓦尔定理:f(t) dt — F( ) d F(2 f) df

5周期信号的FT

(1)正余弦信号的FT:

余弦信号和正弦信号的频谱如图7所示:

图7余弦信号和正弦信号的FT

(2)一般周期信号的FT:

(i)设周期为T1的周期信号f(t)在第一个周期内的函数为fo(t),则

(ii)周期单位冲激序列的FT: F T1(t) 1 ( n 1) 1 1()

n

(a)FT 的对偶性(e jn 1t 2 ( n 1))

(b)冲激串FS 为:T1(t) ne jn1t

n

(c)FT的线性性

(iii)一般周期信号的FT:

(iv)F n - F0(n 1) F0(n 1)

2 T1

(v)关系图:

图8非周期信号FT与周期信号FS/FT比较

6抽样信号的FT

1

(1)抽样信号的FT: Fs( ) — F( n s)

T S n

(2)理想抽样前后信号频谱的变化如图9所示:

(3)结论1:按间隔Ts进行冲激串抽样后信号的傅里叶变换,是周期函数,是原函数傅里叶变换的

Ts分之一按周期s 2 /Ts所进行的周期延拓。

(ii)工程上:将f s (t)通过截止频率为 c 、放大倍数为Ts 的低通滤波器。

(4) 结论2:时域离散频域周期 7抽样疋理

(1) 抽样定理:要保证从信号抽样后的离散时间信号无失真地恢复原始时间连续信号(即抽样不

会导致任何信息丢失),必须满足:信号是频带受限的 (信号频率区间有限);采样率s 至少

是信号最高频率的两倍。 (2) 概念(名词):

抽样周期:进行理想采样的冲激串的周期

T s 。

抽样频率:f s

1/T s

抽样角频率:

s

2 /T s

奈奎斯特间隔:所允许的最大抽样周期 TS maX)

2fc 奈奎

斯特频率(折叠频率):信号经采样后,采样率的一半 奈奎斯特区间:

s/2, s/2或

fs/2, fs/2

(3) 性质:在连续信号的抽样满足抽样定理时,奈奎斯特频率 (4) 从抽样信号恢复原始信号的方法:

(i) 理论上:f(t) f s (t) 2-c Sa( c t)

2-L

f nT s Sa

s

S n

奈奎斯特率:无失真恢复原信号条件允许的最小抽样率 图9理想抽样信号的FT

s /2 或 fs/2)

s/2是信号频率的上

限。

傅里叶变换在信号处理中的应用

傅里叶变换在信号处理中的应用 姓名董柱班级电气工程及其自动化学号1109141013 摘要: 傅里叶变换是一种特殊的积分变换。通过傅里叶变换把信号的从时域变换到频域研究,采用频域法较之经典时域的方法有很多突出的优点,虽然傅里叶分析不是信息科学与技术领域中唯一的变换域方法,但是不得不承认,在此领域中,傅里叶变换分析始终有着广泛的应用,通过傅里叶变换实现信号的滤波,调制,抽样是傅里叶变换在信号处理中最主要的作用。通过对信号的调制可以将信号的低频成分调制到高频,实现频谱搬移,减少马间串扰,提高抗噪声新能,有利于信号的远距离传输,另外,对信号采样可以使连续信号离散化,有利于用计算机对信号进行处理,总之,傅里叶变换在信号处理中有着非常重要的作用。傅里叶变换是学习其他频域变换的基础。 关键词: 傅里叶变换,时域,频域,信号处理,信息科学与技术,滤波,调制,抽样。 一傅里叶变换 1.定义 f(t)是t的函数,如果t满足狄里赫莱条件:具有有限个间断点;具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅立叶变换, ②式的积分运算叫做F(ω)的傅立叶逆变换。F(ω)叫做f(t)的像函数,f(t)叫做 F(ω)的像原函数。F(ω)是f(t)的像。f(t)是F(ω)原像。 ① 傅里叶变换 傅里叶逆变换 2.分类 连续傅立叶变换:一般情况下,若“傅立叶变换”一词的前面未加任何限定语,则指的是“连续傅立叶变换”。“连续傅立叶变换”将平方可积的函数f(t) 表示成复指数函数的积分或级数形式。 f(t) = \mathcal^[F(ω)] = \frac{\sqrt{2π}} \int\limits_{-\infty}^\infty F(ω)e^{iωt}\,dω.

傅里叶变换定律-傅里叶变换定义定律

第2章信号分析 本章提要 信号分类 周期信号分析--傅里叶级数 非周期信号分析--傅里叶变换 脉冲函数及其性质 信号:反映研究对象状态和运动特征的物理量信号分析:从信号中提取有用信息的方法 和手段 §2-1 信号的分类 两大类:确定性信号,非确定性信号 确定性信号:给定条件下取值是确定的。 进一步分为:周期信号, 非周期信号。

质量M 弹簧 刚度K t x (t ) o x 0 质量-弹簧系统的力学模型 x (t ) ? ?? ? ??+=0cos )(?t m k A t x 非确定性信号(随机信号):给定条件下取值是不确定的 按取值情况分类:模拟信号,离散信号 数字信号:属于离散信号,幅值离散,并用二进制表示。 信号描述方法 时域描述 如简谐信号

频域描述 以信号的频率结构来描述信号的方法:将信号看成许多谐波(简谐信号)之和,每一个谐波称作该信号的一个频率成分,考察信号含有那些频率的谐波,以及各谐波的幅值和相角。

§2-2 周期信号与离散频谱 一、 周期信号傅里叶级数的三角函数形式 周期信号时域表达式 ) 21() ()2()()( ,,±±=+==+=+=n nT t x T t x T t x t x T :周期。注意n 的取值:周期信号“无始无终” # 傅里叶级数的三角函数展开式 ) sin cos ()(01 00t n b t n a a t x n n n ωω∑∞ =++= (n =1, 2, 3,…) 傅立叶系数:

?- = 2 2 0)(1T T dt t x T a ?- = 2 2 0cos )(2T T n tdt n t x T a ω ? - = 2 2 0sin )(2T T n tdt n t x T b ω 式中 T--周期;0--基频, 0=2 /T 。 三角函数展开式的另一种形式: ) cos()(1 00∑∞ =++=n n n t n A a t x ?ωN 次谐波 N 次谐波的相角 N 次谐波的频率 N 次谐波的幅值 信号的均值,直流分量

Chirp信号的傅里叶变换的特征比较.

Chirp信号的傅里叶变换的特征比较 Chirp信号即线性调频信号是瞬时频率在某个范围内随时间变化的正弦波,因其良好的频带利用率,具有较强的抗干扰、抗多途效应和抗多普勒衰减以及良好的频带利用率等优点,因此在通信、声呐、雷达等领域具有广泛的应用。本文就瞬时频率范围(信号的调频宽度)和信号的持续时间(信号的周期)对傅里叶变换后的chirp函数的频谱函数的影响做出讨论,运用MATLAB仿真分析比较。 一.信号的调频宽度上下限对频谱函数的影响 1)高频宽度300情况下的频谱函数。信号的采样频率为43000,扫描时间为0.05,初始频率设为19700,结束频率位置为20000。 2)低频宽度300情况下的频谱函数。信号的采样频率为2000,信号的持续时间为0.05,初始频率设为40,结束频率设置为340。 由上面两幅图可以看出,当它们满足,幅度谱的大小基本都在 0.01和0.015之间,这是因为它们的调频上下限之差相同都是300,且时间周 期都为0.05。由公式可知,幅度与信号的调频宽度(表示傅里叶变换后的频带宽度)和时间周期有关。 二.信号的调频宽度对频谱函数的影响 1)高频宽度10000情况下的频谱函数。信号的采样频率为48000,扫描时间为0.05,初始频率设为10000,结束频率位置为20000。

2)低频宽度80情况下的频谱函数。信号的采样频率为1000,信号的持续时间为0.05,初始频率设为40,结束频率设置为120。 上面两图在频带宽度内的幅度谱差异很明显,这是因为只有当时,近似程度才更高。 三.信号的持续时间对频谱函数的影响 1)低频宽度80情况下的频谱函数。信号的采样频率为1000,chirp 脉冲为0.05,信号的持续时间为2,初始频率设为40,结束频率设置为120。 上图的信号周期是2,发射脉冲长度为0.05与之前其它参数相同的图4比较可知,频带宽度基本相同,在频带宽度内的幅度谱没有太大变化,只是频点上的曲线多了些波动。

连续时间信号傅里叶变换及调制定理

乐山师范学院学生实验报告 实验课程名称: matlab 与信号系统实验 实验日期:2014年 月 日 姓名 学号 同组人 班级 系(院) 专业 级 班 指导老师 一、实验项目名称 连续时间信号傅里叶变换及调制定理 二、实验目的 1.学会用MA TLAB 求符号运算法的傅立叶正反变换; 2. 理解调制对信号频谱的影响 三、实验主要仪器设备仪器、器材、软件等 PC 机与matlab 软件 四、实验原理 见指导书 五、实验内容、步骤 1.求信号)()(t e t f t ε-=的频谱函数,并分别作出原函数与频谱函数的波形。 2.求信号2 )1(2)(ωω ωj j F += 的原函数,并分别作出原函数与频谱函数的波形。 3.设信号)100sin()(t t f π=,载波)(t y 为频率为400Hz 的余弦信号。试用MATLAB 实现调幅信号)(t y ,并观察)(t y 的频谱和)(t f 的频谱,以及两者在频域上的关系。 4.设),10cos( )()(),1()1()(1t t f t f t u t u t f π=--+=,试用MATLAB 画出)(),(1t f t f 的时域波形及其频谱,并观察傅里叶变换的频移特性。 六、实验记录(数据、现象、报表、软件、图象等) 1、 syms t w; f=exp(-1*t).*heaviside(t); y=fourier(f);

y=simplify(y); subplot(121); ezplot(f,[-3,3]); subplot(122); ezplot(w,y,[-2,2]); -2 02 0.10.20.30.40.50.60.70.80.9t exp(-t) heaviside(t) -2 -1 01 2 -3-2 -101 2 34 x y x = w, y = 1/(1+i w) 2、 syms t w ; ft=ifourier((2*w/(1+i*w)^2),t); y=ifourier(ft); y=simplify(y); subplot(121); ezplot(real(ft)); subplot(122); ezplot(imag(ft)); -5 05 -1 -0.8-0.6-0.4-0.200.20.40.60.81 t i exp(-t) heaviside(t) (t-1)-i conj(exp(-t) heaviside(t) (t-1))0 2 4 6 -0.6 -0.5-0.4-0.3-0.2-0.100.10.20.3 t -1/2 i (2 i exp(-t) heaviside(t) (t-1)+2 i conj(exp(-t) heaviside(t) (t-1)))

傅里叶Fourier级数的指数形式与傅里叶变换

(4) 2 T 2 T f (t)dt 傅里叶(Fourier )级数的指数形式与傅里叶变换 专题摘要:根据欧拉(Euler )公式,将傅里叶级数三角表示转化为指数表示,进而得到傅 里叶积分定理,在此基础上给出傅里叶变换的定义和数学表达式。 在通信与信息系统、交通信息与控制工程、信号与信息处理等学科中,都需要对各种 信号与系统进行分析。 通过对描述实际对象数学模型的数学分析、 求解,对所得结果给以物 理解释、赋予其物理意义,是解决实际问题的关键。这种数学分析方法主要针对确定性信号 的时域和频域分析,线性时不变系统的描述以及信号通过线性时不变系统的时域分析与变换 域分析。所有这些分析方法都离不开傅里叶变换、拉普拉斯变换和离散时间系统的 z 变换。 而傅里叶变换的理论基础是傅里叶积分定理。 傅里叶积分定理的数学表达式就是傅里叶级数 的指数形式。 不但傅里叶变换依赖于傅里叶级数,就是纯数学分支的调和分析也来源于函数的傅里 叶级数。因此,傅里叶级数无论在理论研究还是在实际应用中都占有非常重要的地位。 我们 承认满足狄里克莱(Dirichlet )条件下傅里叶级数的收敛性结果,不去讨论和深究傅里叶展 式的唯一性问题。 傅里叶级数的指数形式 一个以T 为周期的函数f (t ),在[-T ,T ]上满足狄里克莱条件:1o f (t )连续或只有 2 2 数。在连续点处 有限个第一类间断点; 2。 只有有限个极值点。 那么f (t )在nT,T ]上就可以展成傅里叶级 f(t) a 0 ,. (a n cosn ?t b n sin n ?t) (1) 其中 a n T 2 f (t) cosn tdt, (n 二 0,1,2,), _2 根据欧拉(Euler )公式: b n ;认)州艸(n=1,2,3,), (3) e" - cos : j si , (1)式化为 f(t)二色二 a 2 J e jn e" n jn ? £ j jn ? t +b e —e M n 2j 若令 a n - j b n 一 2 jn ;.-:t . a n jb n ?弓曲 2 」,

快速傅里叶变换的意义

傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。 傅里叶变换属于谐波分析。 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似; 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; 卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段; 离散形式的傅里叶变换可以利用数字计算机快速的算出(其算法称为快速傅里叶变换算法(FFT)). 1、为什么要进行傅里叶变换,其物理意义是什么? 傅立叶变换是数字信号处理领域一种很重要的算法。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。 和傅立叶变换算法对应的是反傅立叶变换算法。该反变换从本质上说也是一种累加处理,这样就可以将单独改变的正弦波信号转换成一个信号。 因此,可以说,傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。最后还可以利用傅立叶反变换将这些频域信号转换成时域信号。 从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。 在数学领域,尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类:1. 傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子;2. 傅立叶变换的逆变换容易求出,而且形式与正变换非常类似;3. 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;5. 离散形式的傅立叶的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;4. 著名的卷积定理指出:傅立叶变换可以化复变换可以利用数字计算机快速的算出(其算法称为快速傅立叶变换算法(FFT))。 正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。 2、图像傅立叶变换的物理意义 图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区

傅里叶变换_百度文库.

傅里叶变换,拉普拉斯变换和Z 变换的意义来源:于理扬的日志 傅里叶变换在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中, 傅里叶变换的典型用途是将信号分解成幅值分量和频率分量。 傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数或者它们的积分的线性组合。在不同的研究领域, 傅里叶变换具有多种不同的变体形式, 如连续傅里叶变换和离散傅里叶变换。 傅里叶变换是一种解决问题的方法,一种工具,一种看待问题的角度。理解的关键是:一个连续的信号可以看作是一个个小信号的叠加, 从时域叠加与从频域叠加都可以组成原来的信号,将信号这么分解后有助于处理。 我们原来对一个信号其实是从时间的角度去理解的,不知不觉中,其实是按照时间把信号进行分割, 每一部分只是一个时间点对应一个信号值, 一个信号是一组这样的分量的叠加。傅里叶变换后, 其实还是个叠加问题, 只不过是从频率的角度去叠加, 只不过每个小信号是一个时间域上覆盖整个区间的信号, 但他确有固定的周期,或者说,给了一个周期,我们就能画出一个整个区间上的分信号,那么给定一组周期值(或频率值,我们就可以画出其对应的曲线,就像给出时域上每一点的信号值一样,不过如果信号是周期的话,频域的更简单,只需要几个甚至一个就可以了,时域则需要整个时间轴上每一点都映射出一个函数值。 傅里叶变换就是将一个信号的时域表示形式映射到一个频域表示形式;逆傅里叶变换恰好相反。这都是一个信号的不同表示形式。它的公式会用就可以,当然把证明看懂了更好。 对一个信号做傅里叶变换,可以得到其频域特性,包括幅度和相位两个方面。幅度是表示这个频率分量的大小, 那么相位呢, 它有什么物理意义?频域的相位与时域的相位有关系吗?信号前一段的相位(频域与后一段的相位的变化是否与信号的频率成正比关系。

连续信号的傅里叶变换及matlab显示

(1)f(t)=u(t+6)-u(t-6) (2)f1(t)=f(-2t) (3)f2(t)=f(t-2) (4)f3(t)=f(t)· 以上四个式子的Matlab编程求其傅里叶变换与幅频特性,相频特性图 dt=0.001 t=-15:dt:15; f=(t>=-6)-(t>=6); k=-600:600; w1=2*pi*k/600; F=f*exp(-j*t'*w1)*dt; subplot(4,3,1); plot(t,f); axis([-15,15,-0.1,1.1]);grid; subplot(4,3,2); plot(w1,abs(F)); axis([-7,7,-1,13]);grid; subplot(4,3,3); plot(w1,angle(F)); axis([-10,10,-5,5]);grid; dt=0.001 t=-15:dt:15; f=(t<=6)-(t<=-3); k=-600:600; w1=2*pi*k/600; F=f*exp(-j*t'*w1)*dt; subplot(4,3,4); plot(t,f); axis([-15,15,-0.1,1.1]);grid; subplot(4,3,5); plot(w1,abs(F)); axis([-7,7,-1,10]);grid;

subplot(4,3,6); plot(w1,angle(F)); axis([-10,10,-5,5]);grid; dt=0.001 t=-15:dt:15; f=(t>=-4)-(t>=8); k=-600:600; w1=2*pi*k/600; F=f*exp(-j*t'*w1)*dt; subplot(4,3,7); plot(t,f); axis([-15,15,-0.1,1.1]);grid; subplot(4,3,8); plot(w1,abs(F)); axis([-7,7,-1,13]);grid; subplot(4,3,9); plot(w1,angle(F)); axis([-8,8,-5,5]);grid; dt=0.001; t=-15:dt:15; f=((t>=-6)-(t>=6)).*exp(-j*5*t); k=-600:600; w1=2*pi*k/600; F=f*exp(-j*t'*w1)*dt; subplot(4,3,10); plot(t,f); axis([-10,10,-1.2,1.2]);grid; subplot(4,3,11); plot(w1,abs(F)); axis([-7,7,-1,13]);grid; subplot(4,3,12); plot(w1,angle(F)); axis([-8,8,-5,5]);grid;

信号处理中傅里叶变换简介

傅里叶变换 一、傅里叶变换的表述 在数学上,对任意函数f(x),可按某一点进行展开,常见的有泰勒展开和傅里叶展开。泰勒展开为各阶次幂函数的线性组合形式,本质上自变量未改变,仍为x,而傅里叶展开则为三角函数的线性组合形式,同时将自变量由x变成ω,且由于三角函数处理比较简单,具有良好的性质,故被广泛地应用在信号分析与处理中,可将时域分析变换到频域进行分析。 信号分析与处理中常见的有CFS(连续时间傅里叶级数)、CFT (连续时间傅里叶变换)、DTFT(离散时间傅里叶变换)、DFS(离散傅里叶级数)、DFT(离散傅里叶变换)。通过对连续非周期信号x c(t)在时域和频域进行各种处理变换,可推导出以上几种变换,同时可得出这些变换之间的关系。以下将对上述变换进行简述,同时分析它们之间的关系。 1、CFS(连续时间傅里叶级数) 在数学中,周期函数f(x)可展开为 由此类比,已知连续周期信号x(t),周期为T0,则其傅里叶级数为 其中,

为了简写,有 其中, 为了与复数形式联系,先由欧拉公式e j z=cos z+jsin z得 故有

令 则 对于D n,有 n≤0时同理。 故 CFS图示如下:

Figure 1 理论上,CFS对于周期性信号x(t)在任意处展开都可以做到无误差,只要保证n从-∞取到+∞就可以。在实践中,只要n取值范围足够大,就可以保证在某一点附近对x(t)展开都有很高的精度。 2、CFT(连续时间傅里叶变换) 连续非周期信号x(t),可以将其看成一连续周期信号的周期T0→∞。当然,从时域上也可以反过来看成x(t)的周期延拓。将x(t)进行CFS展开,有 若令 则 有

连续时间傅里叶变换

2 奇偶信号的FS: (i) 偶信号的FS: 2 a n f (t)cosn T] T 1 Fn 弘 1tdt ; bn 2 T1 f (t)sin n 1tdt c n d n a n (ii ) jbn an 2 2 偶的周期信号的 奇信号的FS: F n ( Fn 实, 偶对称);n FS 系数只有直流项和余弦项。 2 T f(t)sinn 1tdt ; 5 dn T| 11 1 Fn F n jbn ( Fn 纯虚,奇对称); a a n 0 ; b n b n 2jFn 第二章连续时间傅里叶变换 1周期信号的频谱分析 一一傅里叶级数FS (1) 狄义赫利条件:在同一个周期 T1内,间断点的个数有限;极大值和极小值的数目有限;信号绝 为T i ,角频率为 ,2 f ,—。 Ti (3)任何满足狄义赫利条件周期函数都可展成傅里叶级数。 ⑷三角形式的FS: (i) 展开式:f(t) a 0 (ancon it bn sin n ,t) n 1 (ii) 系数计算公式: (a) 直流分量: ao f (t)dt T 1 T 1 (b) n 次谐波余弦分量: a n - f (t) cosn 1tdt, n N T1 T 1 2 (c) n 次谐波的正弦分量: bn — f (t)sinn 1tdt, n N T1 T 1 (iii) 系数an 和bn 统称为三角形式的傅里叶级数系数,简称傅里叶系数。 (iv) 称f1 1/T1为信号的基波、基频; nf1为信号的n 次谐波。 (V) 合并同频率的正余弦项得: n 和n 分别对应合并后 门次谐波的余弦项和正弦项的初相位。 (vi) 傅里叶系数之间的关系: (5)复指数形式的FS: (i) 展开式:f (t) Fne jn 1t n (ii) 系数计算:Fn 丄 f(t)e jn 1t dt, n Z T] T 1 (iii) 系数之间的关系: (iv) Fn 关于 n 是共扼对称的,即它们关于原点互为共轭。 (v) 正负n (n 非零)处的Fn 的幅度和等于Cn 或dn 的幅度。 对可积 丁 f(t)dt 。 (2)傅里叶级数:正交函数线性组合。 正交函数集可以是三角函数集 {1,cosn *,sinn 1t :n N}或复指数函数集 {e jn 术:n Z},函数周期

实验六傅里叶变换及其反变换

实验六 傅里叶变换及其反变换 6.1实验目的 1.学会运用MATLAB 求连续时间信号的傅里叶变换; 2.学会运用MATLAB 求连续时间信号的傅里叶反变换; 3.学会运用MATLAB 求连续时间信号的频谱图。 6.2实验原理及实例分析 1.连续时间信号傅里叶变换----CTFT 傅里叶变换在信号分析中具有非常重要的意义,它主要是用来进行信号的频谱分析的。傅里叶变换和其逆变换定义如下: ?∞ ∞--= dt e t x j X t j ωω)()( 6.1 ?∞∞-=ωωπωd e j X t x t j )(21)( 6.2 连续时间傅里叶变换主要用来描述连续时间非周期信号的频谱。按照教材中的说法,任意非周期信号,如果满足狄里克利条件,那么,它可以被看作是由无穷多个不同频率(这些频率都是非常的接近)的周期复指数信号e j ωt 的线性组合构成的,每个频率所对应的周期复指数信号e j ωt 称为频率分量(frequency component ),其相对幅度为对应频率的|X(j ω)|之值,其相位为对应频率的X(j ω)的相位。 X(j ω)通常为关于的复函数,可以按照复数的极坐标表示方法表示为: X(j ω)=| X(j ω)|e j ∠ X(j ω) 其中,| X(j ω)|称为x(t)的幅度谱,而∠X(j ω)则称为x(t)的相位谱。 给定一个连续时间非周期信号x(t),它的频谱也是连续且非周期的。对于连续时间周期信号,也可以用傅里变换来表示其频谱,其特点是,连续时间周期信号的傅里叶变换时有冲激序列构成的,是离散的——这是连续时间周期信号的傅里叶变换的基本特征。 2.用MATLAB 实现CTFT 的计算 MATLAB 进行傅里叶变换有两种方法,一种利用符号运算的方法计算,另一种是数值计算。 1) MATLAB 符号运算求解法 MATLAB 符号数学工具箱提供了直接求解傅里叶变换与傅里叶反变换的函数fourier( )及ifourier( )。常用的是:F=fourier(f) 默认返回值是关于ω的函数。 f=fourier(F,t) 返回值是关于t 的函数 例:利用MATLAB 求单边指数信号f(t) = e -2t u(t)的傅里叶变换,画出f(t)及其幅度谱和相位谱图。 syms t v w x phase im re ; %定义符号变量 f = exp(-2*t)*sym('Heaviside(t)'); %f(t)=exp(-2*t)*u(t) Fw = fourier(f); %求傅里叶变换 subplot(311); ezplot(f); %绘制f(t)的时域波形 axis([-1 2.5 0 1.1]); subplot(312); ezplot(abs(Fw)); %绘制幅度谱 im = imag(Fw); %计算F(w)的虚部

用Matlab对信号进行傅里叶变换实例

目录 用Matlab对信号进行傅里叶变换 (2) Matlab的傅里叶变换实例 (5) Matlab方波傅立叶变换画出频谱图 (7)

用Matlab对信号进行傅里叶变换 1.离散序列的傅里叶变换DTFT(Discrete Time Fourier Transform) 代码: 1 N=8; %原离散信号有8点 2 n=[0:1:N-1] %原信号是1行8列的矩阵 3 xn=0.5.^n; %构建原始信号,为指数信号 4 5 w=[-800:1:800]*4*pi/800; %频域共-800----+800 的长度(本应是无穷,高频分量很少,故省去) 6 X=xn*exp(-j*(n'*w)); %求dtft变换,采用原始定义的方法,对复指数分量求和而得 7 subplot(311) 8 stem(n,xn); 9 title('原始信号(指数信号)'); 10 subplot(312); 11 plot(w/pi,abs(X)); 12 title('DTFT变换') 结果: 分析:可见,离散序列的dtft变换是周期的,这也符合Nyquist采样定理的描述,连续时间信号经周期采样之后,所得的离散信号的频谱是原连续信号频谱的周期延拓。 2.离散傅里叶变换DFT(Discrete Fourier Transform)

与1中DTFT不一样的是,DTFT的求和区间是整个频域,这对 结果图:

分析:DFT只是DTFT的现实版本,因为DTFT要求求和区间无穷,而DFT只在有限点内求和。 3.快速傅里叶变换FFT(Fast Fourier Transform) 虽然DFT相比DTFT缩减了很大的复杂度,但是任然有相当大的计算量,不利于信息的实时有效处理,1965年发现的DFT解决了这一问题。 实现代码: 1 N=64; %原离散信号有8点 2 n=[0:1:N-1] %原信号是1行8列的矩阵 3 xn=0.5.^n; %构建原始信号,为指数信号 4 Xk=fft(xn,N); 5 subplot(221); 6 stem(n,xn); 7 title('原信号'); 8 subplot(212); 9 stem(n,abs(Xk)); 10 title('FFT变换') 效果图: 分析:由图可见,fft变换的频率中心不在0点,这是fft算法造成的,把fft改为fftshift可以将频率中心移到0点。

傅里叶变换的基本性质.

傅里叶变换的基本性质(一) 傅里叶变换建立了时间函数和频谱函数之间转换关系。在实际信号分析中,经常需要对信号的时域和频域之间的对应关系及转换规律有一个清楚而深入的理解。因此有必要讨论傅里叶变换的基本性质,并说明其应用。 一、线性 傅里叶变换是一种线性运算。若 则 其中a和b均为常数,它的证明只需根据傅里叶变换的定义即可得出。 例3-6利用傅里叶变换的线性性质求单位阶跃信号的频谱函数。 解因 由式(3-55)得 二、对称性 若则 证明因为 有 将上式中变量换为x,积分结果不变,即

再将t用代之,上述关系依然成立,即 最后再将x用t代替,则得 所以 证毕 若是一个偶函数,即,相应有,则式(3-56) 成为 可见,傅里叶变换之间存在着对称关系,即信号波形与信号频谱函数的波形有着互相置换的关系,其幅度之比为常数。式中的表示频谱函数坐标轴必须正负对调。例如: 例3-7若信号的傅里叶变换为 试求。 解将中的换成t,并考虑为的实函数,有 该信号的傅里叶变换由式(3-54)可知为

根据对称性 故 再将中的换成t,则得 为抽样函数,其波形和频谱如图3-20所示。 三、折叠性 若 则 四、尺度变换性 若 则 证明因a>0,由

令,则,代入前式,可得 函数表示沿时间轴压缩(或时间尺度扩展) a倍,而则表示 沿频率轴扩展(或频率尺度压缩) a倍。 该性质反映了信号的持续时间与其占有频带成反比,信号持续时间压缩的倍数恰好等于占有频带的展宽倍数,反之亦然。 例3-8已知,求频谱函数。 解前面已讨论了的频谱函数,且 根据尺度变换性,信号比的时间尺度扩展一倍,即波形压缩了一半,因此其频谱函数 两种信号的波形及频谱函数如图3-21所示。

实验四连续信号的傅立叶变换

实验4非周期信号的傅立叶变换分析 一、实验目的 (1)熟悉连续非周期信号频谱特点及其分析方法; (2)掌握用MATLAB 实现傅立叶变换的两种方法; (3)了解常用傅立叶变换性质的MATLAB 实现方法; 二、实验原理 1、傅里叶变换和其逆变换定义如下: ?∞ ∞--= dt e t x j X t j ωω)()( 4.1?∞∞-=ωωπωd e j X t x t j )(1)( 4.2 连续时间傅里叶变换主要用来描述连续时间非周期信号的频谱。按照教材中的说法,任意非周期信号,如果满足狄里克利条件,那么,它可以被看作是由无穷多个不同频率(这些频率都是非常的接近)的周期复指数信号e j ωt 的线性组合构成的,每个频率所对应的周期复指数信号e j ωt 称为频率分量(frequency component),其相对幅度为对应频率的|X(j ω)|之值,其相位为对应频率的X(j ω)的相位。 X(j ω)通常为复函数,可以按照复数的极坐标表示方法表示为: X(j ω)=|X(j ω)|e j ∠X(j ω) 其中,|X(j ω)|称为x(t)的幅度谱,而∠X(j ω)则称为x(t)的相位谱。 给定一个连续时间非周期信号x(t),它的频谱也是连续且非周期的。 2、用MATLAB 实现方法 MATLAB 进行傅里叶变换有两种方法,一种利用符号运算的方法计算,另一种是数值计算。 2.1采用数值计算的方法来进行傅里叶变换的计算 严格来说,用数值计算的方法计算连续时间信号的傅里叶变换需要有个限定条件,即信号是时限信号(Time limited signal),也就是当时间|t|大于某个给定时间时其值衰减为零或接近于零,这个条件与前面提到的为什么不能用无限多个谐波分量来合成周期信号的道理是一样的。计算机只能处理有限大小和有限数量的数。 采用数值计算算法的理论依据是: ()()j t X j x t e dt ωω∞ --∞= ?∑∞-∞=-→=k T jk T T e kT x ω)(lim 0

连续时间傅立叶变换与离散时间傅里叶变换之间的关系

连续时间傅立叶变换与离散时间傅里叶变换之间的关系 对于连续限带(B )的时间信号x (t),在满足奈奎斯特抽样定理的条件下进行抽样(抽样频率f s =1/T s = 2B'>2B ),其样点为x n =x (nT s )。可以由样点序列进行内插来恢复原始信号x (t): ()()()sin 2')s n x t x nT c B t n = -∑ (1) 证明: 抽样采用理想冲击脉冲串:()()s T s t t nT δδ= -∑ ()()()s s T x t x t t δ= ()()s s n x nT t nT δ= -∑ (2) 其中2B'=1/T s 。由傅里叶变换的频域卷积性质,理想抽样信号x s (t)的傅里叶变换为: 1()()s k s s k X f X f f T T δ?? =* - ??? ∑ (3) 其中*表示连续的卷积运算。于是得到 ()1s k s s k X f X f T T ??= - ?? ?∑ s k s k f X f T ?? =- ?? ?∑ (4) 即理想抽样信号在频域是原信号x (t)傅里叶变换(频谱密度)的周期性位移,周 期为1/T s 。其中更详细的原理请参看经典课本:奥本海姆(《信号与系统》)/樊昌信先生(《通信原理》)/周炯盘先生(《通信原理》)。本文目的是架起连续时间傅里叶变换和离散时间傅里叶变换的桥梁,这在很多课本中都是省略掉的;对抽样定理不再赘述。 在频域k=0处对抽样信号进行理想低通滤波,滤波器带宽为B'>B 。理想低通滤波器的频率响应为矩形窗函数H(f)=( )2' f B ∏,它对应的时域单位冲激响应函数

快速傅里叶变换的通俗解释

一、傅立叶变换的由来 关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解,最近,我偶尔从网上看到一个关于数字信号处理的电子书籍,是一个叫Steven W. Smith, Ph.D.外国人写的,写得非常浅显,里面有七章由浅入深地专门讲述关于离散信号的傅立叶变换,虽然是英文文档,我还是硬着头皮看完了有关傅立叶变换的有关内容,看了有茅塞顿开的感觉,在此把我从中得到的理解拿出来跟大家分享,希望很多被傅立叶变换迷惑的朋友能够得到一点启发. 要理解傅立叶变换,确实需要一定的耐心,别一下子想着傅立叶变换是怎么变换的,当然,也需要一定的高等数学基础,最基本的是级数变换,其中傅立叶级数变换是傅立叶变换的基础公式。 二、傅立叶变换的提出 让我们先看看为什么会有傅立叶变换?傅立叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807 年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。法国科学学会屈服于拉格朗日的威望,拒绝了傅立叶的工作,幸运的是,傅立叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。直到拉格朗日死后15年这个论文才被发表出来。 谁是对的呢?拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号。但是,我们可以用正弦曲线来非常逼近地表示它,逼近到两种表示方法不存在能量差别,基于此,傅立叶是对的。 为什么我们要用正弦曲线来代替原来的曲线呢?如我们也还可以用方波或三角波来代替呀,分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的。且只有正弦曲线才拥有这样的性质,正因如此我们才不用方波或三角波来表示。 三、傅立叶变换分类

傅里叶变换(FFT)详解

关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解,最近,我偶尔从网上看到一个关于数字信号处理的电子书籍,是一个叫Steven W. Smith, Ph.D.外国人写的,写得非常浅显,里面有七章由浅入深地专门讲述关于离散信号的傅立叶变换,虽然是英文文档,我还是硬着头皮看完了有关傅立叶变换的有关内容,看了有茅塞顿开的感觉,在此把我从中得到的理解拿出来跟大家分享,希望很多被傅立叶变换迷惑的朋友能够得到一点启发,这电子书籍是免费的,有兴趣的朋友也可以从网上下载下来看一下,URL地址是: https://www.wendangku.net/doc/3b10118662.html,/pdfbook.htm 要理解傅立叶变换,确实需要一定的耐心,别一下子想着傅立叶变换是怎么变换的,当然,也需要一定的高等数学基础,最基本的是级数变换,其中傅立叶级数变换是傅立叶变换的基础公式。 二、傅立叶变换的提出 让我们先看看为什么会有傅立叶变换?傅立叶是一位法国数学家和物理学家的 名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。法国科学学会屈服于拉格朗日的威望,拒绝了傅立叶的工作,幸运的是,傅立叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。直到拉格朗日死后15年这个论文才被发表出来。 谁是对的呢?拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号。但是,我们可以用正弦曲线来非常逼近地表示它,逼近到两种表示方法不存在能量差别,基于此,傅立叶是对的。 为什么我们要用正弦曲线来代替原来的曲线呢?如我们也还可以用方波或三角波来代替呀,分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的。且只有正弦曲线才拥有这样的性质,正因如此我们才不用方波或三角波来表示。

傅里叶变换的基本定理

傅里叶变换的基本定理 1.相似性定理 如果)(x f 的傅里叶变幻是)(s F ,则)(ax f 的傅里叶变换是)/(1 a s F a -。 推导: )(1)()(1)()/)((22a s F a ax d e ax f a dx e ax f a s ax i xs i ==--∞ ∞-??ππ 2.加性定理 如果)(x f 和)(x g 的傅里叶变换分别为)(s F 和)(s G ,则相应地)()(x g x f +的傅里叶变换是)()(s G s F +。 推导: []) ()()()()()(222s G s F dx e x g dx e x f dx e x g x f xs i xs i xs i +=+=+???+∞∞-+∞∞-+∞∞----πππ3.移位定理 如果)(x f 的傅里叶变换是)(s F ,则)(a x f -的傅里叶变换是)(2s F e as i π-。 推导: ) ()()()(22)(22s F e a x d e e a x f dx e a x f as i as i s a x i xs i ππππ----∞∞--∞ ∞-=--=-??4.卷积定理 如果)(x f 和)(x g 的傅里叶变换分别是)(s F 和)(s G ,则)(x f *)(x g 的傅里叶变换是)(s F )(s G ,也就是说两个函数的卷积的变换等于它们变换的乘积。 推导: dx e x d x x g x f xs i ??∞ ∞--∞∞-??????''-'π2)()( x d d x e x x g x f xs i '?? ????'-'=-∞∞-∞ ∞-??π2)()( x d s G e x f s x i ''='-?)()(2π )()(s G s F =

傅里叶变换性质证明

2.6傅里叶变换的性质 2.6.1线性 若信号「和J的傅里叶变换分别为「"和F』-, 则对于任意的常数a和b,有 将其推广,若- - - 「出■,则 其中匚为常数,n为正整数。 由傅里叶变换的定义式很容易证明线性性质. 显然傅里叶变换也是一种线性运算,在第一章我们已经知道了,线性有两个含义:均匀性和叠加性。均匀性表明,若信号乘以常数a,则信号的傅里叶变换也乘以相同的常数a,即卩 叠加性表明,几个信号之和的傅里叶变换等于各个信号的傅里叶变换之和 砒心?]的?卜伽)1 2.6.2反褶与共轭性 设f(t) 的傅里叶变换为F面我们来讨论信号反褶、共轭以及既反褶又共轭后,新信号的傅里叶变换

(1)反褶

f(-t)是f(t)的反褶,其傅里叶变换为 綁new九 (2) 共轭 =匸施)时论匸加門(幼 因为曲是实数,所以(dtr=dt 彳 寻共觇提到积分之外根据傅里 叶变换的定义 (3) 既反褶又共轭 町(卯訂:厂(号叫fe 本性质还可利用前两条性质来证明: 设g(t)=f(-t) ,h(t)=g*(t),则 *曾筍%芳遛凸■_苗苫 在上面三条性质的证明中,并没有特别指明f(t)是实函数还是复函数,因此,无论f(t)为实信号还是复信号,其傅里叶变换都满足下面三条性质

FLTH)] = F? 町甘D FLH 心FH) 2.6.3奇偶虚实性 已知f(t)的傅里叶变换为。在一般情况下,是复函数,因此可以把它表示 成模与相 位或者实部与虚部两部分,即 下面根据f(t)的虚实性来讨论F()的虚实性。 (1) f(t) 为实函数 对比式(2-33)与(2-34),由FT 的唯一性可得 尺(耐=][/(f)cosaf 址 (1.1)f(t)是实的偶函数,即f(t)=f(-t) X()的积分项是奇函数,而奇函数在对称区间内的积分为零,故 这时X( )=0,于是 可见,若f(t)是实偶函数,则F()也是实偶函数,即 匚】:’匚° :左边反褶,右边共轭 (1.2)f(t)是实的奇函数,即-f(t)=f(-t) R()的积分项是奇函数,而奇函数在对称区间内的积分为零,故 这时R( )=0,于是 FQ)=卩(询片 眄' =盹)+歼询) 根据定义,上式还可以写成 (2-33) 呎弊)=arc tan [制 (曲)=2[

相关文档
相关文档 最新文档